A BERNSTEIN RESULT FOR MINIMAL GRAPHS OF CONTROLLED GROWTH

KLAUS ECKER \& GERHARD HUISKEN

It is well known that the only entire solutions of the minimal surface equation on \mathbf{R}^{n},

$$
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0
$$

are affine functions, provided that either $n \leq 7$, [1], [2], [7], [8], [14] or u grows at most linearly [4], [6], [11].

Recently Caffarelli, Nirenberg and Spruck [5] extended this theorem to the case where it is merely assumed that

$$
|D u(x)|=o\left(|x|^{1 / 2}\right) .
$$

Their result was in fact obtained for a general class of nonlinear elliptic equations.

Using the stong geometric information contained in the Codazzi equations we establish the following theorem for minimal surfaces.

Theorem. An entire smooth solution u of the minimal surface equation satisfying

$$
|D u(x)|=o\left(\sqrt{|x|^{2}+|u(x)|^{2}}\right)
$$

is an affine function.
Our result follows from the curvature estimate

$$
\begin{equation*}
|A| v(0) \leq c(n) R^{-1} \sup _{M \cap B_{R}} v \tag{1}
\end{equation*}
$$

for $M=$ graph u, which holds for arbitrary entire minimal graphs. Here $0 \in M, M \cap B_{R}=\left\{\left.(x, u(x)) \in \mathbf{R}^{n+1}| | x\right|^{2}+|u(x)|^{2} \leq R^{2}\right\}, v=\sqrt{1+|D u|^{2}}$ and $|A|$ denotes the norm of the second fundamental form of M.

Notice that (1) still implies a global bound on $|A| v$ in case v grows linearly.

Received February 15, 1988 and, in revised form, July 29, 1988.

For an account of nonlinear minimal graphs we refer to [3], [13]. The example in [3] behaves like

$$
|u(x)|=O\left(|x|^{2+O(1 / n)}\right)
$$

and [13, Chapter 6] contains nontrivial minimal graphs the gradient of which satisfies

$$
|D u(x)| \leq c|x|^{1+O(1 / n)}
$$

As for some of these examples $|A(x)| \sim|x|^{-1}$, estimate (1) is optimal.
To prove (1) we recall two well-known relations for minimal surfaces, the Jacobi field equation for minimal graphs

$$
\begin{equation*}
\Delta v=|A|^{2} v+2 v^{-1}|\nabla v|^{2} \tag{2}
\end{equation*}
$$

and Simons' identity [14]

$$
\begin{equation*}
\Delta|A|^{2}=-2|A|^{4}+2|\nabla A|^{2}, \tag{3}
\end{equation*}
$$

where ∇ and Δ denote covariant differentiation and the Laplace-Beltrami operator on M respectively.

As was shown in [12] the Codazzi equations imply the inequality

$$
\begin{equation*}
\Delta|A|^{2} \geq-2|A|^{4}+2(1+2 / n)|\nabla| A| |^{2} \tag{4}
\end{equation*}
$$

From (2) and (4) we compute

$$
\begin{aligned}
\Delta\left(|A|^{p} v^{q}\right) \geq & (q-p)|A|^{p+2} v^{q}+\left.p(p-1+2 / n)|A|^{p-2} v^{q}|\nabla| A\right|^{2} \\
& +q(q+1) v^{q-2}|A|^{p}|\nabla v|^{2} \\
& +2 p q|A|^{p-1} v^{q-1} \nabla|A| \cdot \nabla v .
\end{aligned}
$$

Using Young's inequality we derive

$$
\begin{equation*}
\Delta\left(|A|^{p} v^{q}\right) \geq(q-p)|A|^{p+2} v^{q} \tag{5}
\end{equation*}
$$

for $p \geq 2$ and $q(1-2 / n) \leq p-1+2 / n$. In particuiar for $q=p \geq(n-2) / 2$ we obtain

$$
\begin{equation*}
\Delta\left(|A|^{p} v^{p}\right) \geq 0 \tag{6}
\end{equation*}
$$

A standard mean value inequality on minimal surfaces [9, Chapter 16] can be applied to yield

$$
\begin{equation*}
|A|^{p} v^{p}(0) \leq c(n) R^{-n / 2}\left(\int_{M \cap B_{R}}|A|^{2 p} v^{2 p} d \mathscr{H}^{n}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

where we used the fact that the n-dimensional Hausdorff measure on minimal graphs can be estimated by $\mathscr{H}^{n}\left(M \cap B_{R}\right) \leq c(n) R^{n}$ [9, Chapter 16].

In order to estimate the integral on the right-hand side of (7) we derive from (5) for $p \geq \max (3, n-1)$ fixed

$$
\begin{equation*}
\Delta\left(|A|^{p-1} v^{p}\right) \geq|A|^{p+1} v^{p} \tag{8}
\end{equation*}
$$

We then multiply (8) by $|A|^{p-1} v^{p} \eta^{2 p}$ where η is a test function with compact support. Integrating by parts in conjunction with Young's inequality leads to

$$
\int_{M}|A|^{2 p} v^{2 p} \eta^{2 p} d \mathscr{H}^{n} \leq c(p) \int_{M}|A|^{2(p-1)} v^{2 p} \eta^{2(p-1)}|\nabla \eta|^{2} d \mathscr{H}^{n}
$$

In view of the inequality

$$
a b \leq \varepsilon\left(\frac{p-1}{p}\right) a^{p /(p-1)}+\frac{\varepsilon^{-(p-1)}}{p} b^{p}
$$

we finally arrive at

$$
\begin{equation*}
\int_{M}|A|^{2 p} v^{2 p} \eta^{2 p} d \mathscr{H}^{n} \leq c(p) \int_{M} v^{2 p}|\nabla \eta|^{2 p} d \mathscr{H}^{n} \tag{9}
\end{equation*}
$$

We now choose η to be the standard cut-off function for $M \cap B_{R}$. Then, since $p=p(n)$, we obtain from (9)

$$
\begin{equation*}
\left(\int_{M \cap B_{R}}|A|^{2 p} v^{2 p} d \mathscr{H}^{n}\right)^{1 / 2} \leq c(n) R^{n / 2} R^{-p} \sup _{M \cap B_{2 R}} v^{p} \tag{10}
\end{equation*}
$$

which in view of (7) implies estimate (1).
Note added in proof. The authors were recently informed by J. C. C. Nitsche that in the case $|D u(x)|=O\left(|x|^{\mu}\right), \mu<1$, a proof of the corresponding result was obtained in his book Lectures on minimal surfaces, Vol. I, to appear.

References

[1] F. J. Almgren, Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. 84 (1966), 277-292.
[2] S. Bernstein, Sur un theoreme de geometrie et ses applications aux equations aux derivees partielles du type elliptique, Comm. Soc. Math. Kharkov (2) 15 (1915-1917) 38-45.
[3] E. Bombieri, E. De Giorgi \& E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969) 243-268.
[4] E. Bombieri, E. De Giorgi \& M. Miranda, Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche, Arch. Rational Mech. Anal. 32 (1969) 255.
[5] L. Caffarelli, L. Nirenberg \& J. Spruck, On a form of Bernstein's Theorem, preprint, to appear.
[6] E. De Giorgi, Sulla differenziabilità e l'analyticità della estremali degli integrali multipli regolari, Mem. Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3) 3 (1957) 25-43.
[7] __, Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa III 19 (1965), 79-85.
[8] W. H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo 2 (1962) 1-22.
[9] D. Gilbarg \& N. Trudinger, Elliptic partial differential equations of second order, 2nd edition, Springer, Berlin, 1983.
[10] E. Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl 2 (1952) 51-56.
[11] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961) 577-591.
[12] R. Schoen, L. Simon \& S. T. Yau, Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975) 275-288.
[13] L. Simon, Entire solutions of the minimal surface equation, J. Differential Geometry, to appear.
[14] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968) 62-105.

