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THE LICHNEROWICZ CONJECTURE
ON HARMONIC MANIFOLDS

Z. I. SZABO

0. Introduction

The theory of harmonic manifolds has a relatively long history. It
started with a work of H. S. Ruse in 1930, who made an attempt to find a
solution for the equation Δ/ = 0 on a general Riemannian manifold which
depends only on the geodesies distance r(x, •). His main aim was to use
these functions to develop harmonic analysis on Riemannian manifolds
similar to the euclidean case.

It turned out that such radial harmonic functions exist only in very spe-
cial cases, namely, in the cases where the density function ωp := ^/|detg//|
in the normal coordinate neighborhood {x1,••• ,xn}p around each point
p depends only on r(p, •). From the well-known symmetry ωp(q) = coq{p)
it can be easily seen that this is the case if and only if the function ωp{q)
is of the form

ωp(q) = Φ(r(p,q)); Φ' R+ - R,

where R+ is the set of all positive real numbers, and R is the set of all real
numbers. A Riemannian manifold was defined to be harmonic precisely
when its density function ωp(q) satisfies this radial property.

For a precise formulation one can introduce the notions of global, lo-
cal, and infinitesimal harmonicity [5]. The global (respectively, local) har-
monicity refers to the case where the above radial property of the density
function is global (respectively, local). For infinitesimal harmonicity we
assume only that the derivatives VI. * ωp with respect to the unit vectors
ξp G Tp(Mn) define constant functions on the manifold. These notions are
obviously equivalent for analytic Riemannian manifolds [5].

The derivatives Vίk) , ωp can be expressed with the help of the curva-
ture tensor and its covariant derivatives. For example, we have
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where R(X, Y) is the Ricci curvature, so the harmonic manifolds of any
type are Einstein manifolds. On the other hand, any Einstein metric is
analytic in the harmonic and normal coordinates by the Kazdan-De Turck
theorem [6]. Thus we get

The global local and infinitesimal harmonicity are equivalent properties.

We mention that in another paper we shall prove that also these spaces
which satisfy the Legendre curvature condition Rij\k + Rjk\i + &ki\j - 0 are
real analytic. It follows that all the commutative spaces and DΆtri spaces
are analytic.

An interesting equivalent formulation of harmonicity was found by
Willmore [44]:

A Riemannian space is harmonic if and only if for any harmonic function
u the classical mean-value theorem

I
hp

udsP Λχ)

holds, where dSp.r(x) means the induced measure on the geodesic sphere
Sp r with the center p and radius r.

Any two-point homogeneous manifold is obviously harmonic. The main
problem about the harmonic manifolds was to prove the Lichnerowicz con-
jecture [23] asserting the converse statement: Any harmonic manifold is
two-point homogeneous.

The conjecture has been proved so far only for dimensions < 4 [23],
[43], [5]. All these solutions use the dimensionality very heavily, and
did not give any hope for higher dimensions. In higher dimensions, only
partial results were proved using an additional strong assumption. One
such theorem is the following.

Any locally symmetric harmonic manifold is two-point homogeneous.

The harmonic spaces were investigated from a local point of view in
most cases. Among the few global investigations we mention the Allami-
geon theorem [2] and the "nice imbedding theorem" of Besse [5]. The first
theorem asserts that any complete simply connected harmonic manifold
is diffeomorphic either to a Euclidean d-space R^ or to a Blaschke mani-
fold, which has simple closed geodesies with the same length. In Besse's
theorem an isometric imbedding φ: Mn -• R^ is constructed for compact
simply connected harmonic spaces such that φ(Mn) is minimal in a certain
sphere, and, furthermore, all the geodesies are congruent screw lines in R .̂
Both theorems will be used in the present paper.
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Besides giving a general consideration our aim is to prove the conjecture
for simply connected compact harmonic spaces. Using the universal cov-
ering spaces, this proof gives a proof of the Lichnerowicz conjecture for the
compact (infinitesimal, local or global) harmonic manifolds which have a
finite fundamental group (and hence a compact universal covering space).

It should be remarked that this proof also gives a new direct proof to
the following fact for the compact case:

Any two-point homogeneous space with finite fundamental group is a
symmetric space.

The above result was proved without using Wang's classification by S.
Helgason for the noncompact Case and by H. Matsumoto for the compact
case. Using universal covering spaces, the combination of our proof with
Helgason's gives:

Any two-point homogeneous space is symmetric.
The author would like to express many thanks to Professors S. Helgason

and A. Koranyi for their valuable remarks and to Professors H. Karcher,
O. Kobayashi and K. Nomizu for the helpful conversations while he was
staying at Max-Planck-Institut fur Mathematik in Bonn.

1. The basic commutativity in harmonic spaces

For the sake of simplicity we investigate in this paper simply connected
complete Riemannian manifolds (Mn,g), where the metric g is assumed
to be positive definite.

Let (xi, ,Xn)pbea normal coordinate neighborhood around a point
p € Mn. The function

d d
ωD :=

stands for the volume density in the space. We introduce also the polar
coordinate neighborhood (rp,φ) around /?, where rp(q) = r(p,q) denotes
the geodesic distance between p and q, and φ represents the points of the
unit sphere in the tangent space Tp(Mn) at p. In this system the function
ωp can be written in the form ωp(r,φ), and the density with respect to
(rp,φ) is

θp:=r"-ιωp.

A Riemannian manifold is said to be harmonic if the density Θp is a
radial or spherical symmetric function around any point p e Mn, i.e., it
depends only on the variable r and thus can be written as Θp(r).
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From the symmetry θp(rp(q)) = θq{rq(p)) it follows easily that the
functions θp{r), p e Mn, are also independent of the points p e Mn in a
harmonic space [5].

Now let SPtR be a geodesic sphere around p with radius R whose
Minkowskian mean curvature is denoted by σp(R, φ). The formula

is rather well known [5], where the comma means the derivation with
respect to radial direction, and Δ := -V, V' is the Laplace operator in the
space.

From this formula it follows that a Riemannian manifold is harmonic
iff the mean curvature function σp(R9 •) is a radial function of the form
σp(r> ψ) = σ(r{P> ))• The statement can be proved by solving the equation

σ(r)-(n-l)/r = ωf(r)/ω(r)

with the initial condition ω(0) = 1.
We also mention here another connection between the Laplace operator

Δ and the mean curvature function σp(r, φ). Let V (resp. A) be the covari-
ant derivative (resp. the Laplace operator) of a geodesies sphere SPiΓ whose
second fundamental form is denoted by MPyΓ(X, Y). Then the formula

V2f(X, X) = X X(f) - (VXX) (/) = Ψf(X, X) + M(X, X)f

holds for a function / in Mn and a vector field X tangent to SPJ. Thus

(1.2) Af = Af-f"-σp(r,φ)f,

and therefore the action of Δ on a radial function / (around p) is

(1.3) Δf:=-f'-σp(r,φ)f.

We introduce also the so-called averaging operators AP9 p e Mn, which
play a very important role in the following discussions.

Let / be a smooth function of Mn. Then the averaged function Ap(f)
is defined as a radial function around p whose values are, at the points of
a geodesic sphere SPtn just the average of / on SPtn i.e.,

The function Ap(f) is defined only locally, namely for the small values
of r which are less than the injectivity radius of Mn at p e Mn. On the
other hand Ap(f) is globally defined for any p e Mn if the space is a
compact Blaschke manifold (i.e., if the cut values for the space Mn are
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equal at any tangent space Tp(Mn)) or a noncompact complete manifold
with an infinite injectivity radius. In the last case Mn is diffeomorphic
to W by the exponential map. We call these spaces globally averageable
spaces. The compact Blaschke manifolds have simply closed geodesies
with a common length 2L such that the geodesies, starting from a point
m, intersect the cut locus at the distance L orthogonally (see Corollary
5.42 and Proposition 7.9 in [5]). From this statement we get easily that
the averaged function Ap(f) of a function / of class Ck is a globally defined
function of class Ck in any globally averageable space.

By the Allamigeon theorem any simply connected complete harmonic
manifold is globally averageable space.*

Lemma 1.1 (Basic commutativity in harmonic spaces). A Riemannian
manifold (Mn,g) is harmonic if and only if the Laplace operator A com-
mutes with the averaging operators, i.e.,

(1.5) Ap(Af) = AAp(f)

yields for any smooth function f and p e Mn.
Proof If Mn is harmonic, then by (1.2), (1.3) and the Stokes theorem

we get

Ap{Af) = Ap(Af) - Ap(f") - Ap(σp(r)f)

(A(f))" - σp(r)(Ap(f))f = AAp(f\

which proves the commutativity in harmonic manifolds.
Conversely, if the commutativity

(1.7) Ap(Af) = AAp(f) = -(Ap(f))" - σp{r, φ)(Ap{f))'

holds, then the mean curvature

(1.8) σp = [-(Ap(f))f/ - Ap(Af)]/(ApfY

is a radial function, and the space is harmonic, q.e.d.
The above characterization of harmonic manifolds has several advan-

tages. To make these perfectly clear we investigate here also the heat kernel
on these manifolds.

At first we consider a compact Riemannian manifold Mn, and several
investigations for the noncompact case will be given later.

* On the cut locus Cp of a Blaschke manifold the averaging Ap is defined by limit. Around
any point P € Cp the manifold is a (topologic) Cartesian product: U x V, where V c Cp.
Furthermore the submanifold U is described (locally) by the geodesies intersecting Cp at
P orthogonally. For harmonic manifolds the Ap(f) is a radial function on U around P
which has the radial even derivatives {\/Ωn-ι) f{d2ef/dr2e)(L,φ)dφ and vanishing odd
derivatives at P.
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The heat operator of Mn is defined by

(1.9) L:=A + d/dt,

and a solution of the heat equation L(u) = 0 is called a heat flow. The
solutions of this equation can be determined by the heat kernel Ht(x,y).
This kernel function is defined on Mn x Mn x R+ and is characterized by
the following properties:

(1) It is of class C1 with respect to the variable t, and
of class C 2 with respect to the other variables.

(2) LyHt(x,y) = 0 for any fixed point xeMn.
( U ° ) (3) Set H*(y) for the function y -> Ht(x,y), then

lim Hf = δx (Dirac ^-function)

is satisfied for any x e Mn.

The existence of such a kernel is assured by well-known constructions
[4]. The usual simple proof of the uniqueness is as follows.

Let λo = 0 < λ\ < λι < be the (discrete!) spectrum of the Laplace op-
erator Δ. Furthermore, let {φo, <P\, <P2,. } be the corresponding orthonor-
mal set of eigenfunctions forming a basis in the L2 function space of Mn.
The series

stands for the L2 expansion of Hf(y) for the fixed points t and x9 and

thus

(1.11) fi(x,t) = JHt(x,y)φi(y)dy.

By properties (1) and (2) we get

(1.12)

and therefore by property (3),

(1.13) fi{x,t) = e-λitφi{x), Ht(x,y) =

which proves the uniqueness of the kernel Ht(x9y) on compact Rieman-

nian manifolds.

The series (1.13) is absolutely convergent by the Parseval formula for

the integral

(1.14) J Ht/2(x,z)Ht/2(y9z)dz.

Also the series

(1.15) Σe~λιi = ί Ht(x,x)dx, t > 0 9
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is convergent by the Beppo-Levi theorem.
The heat kernel Ht{x,y) is used for the solution of the heat equation

L(u) = 0 with the initial condition u(x, 0) = UQ(0) by the formula

u(x,t) = I Ht(x,y)uo(y)dy.

The situation is much more complicated regarding the heat kernel of a
noncompact Riemannian space, as the Laplace operator does not have a
discrete spectrum in these cases and we cannot use an orthonormal basis
of the eigenfunctions. On the other hand we can derive several heat ker-
nels in such spaces because of the determined boundary conditions. Very
recent results refer to the existence and uniqueness of the heat kernel of
a complete noncompact Riemannian manifold which vanishes at infinity
[47], [14], [38]. In the following we use this heat kernel in the case of
complete noncompact manifolds. We mention that the assumption on the
Ricci curvature in Yau's theorem is trivially satisfied here, since now the
manifold is Einsteinian with constant norm | | ϋ | | of the curvature tensor.

A complete Riemannian manifold without boundary is said to be
strongly harmonic if the heat kernel Ht(x,y) is a function only of t and
the distance r(x,y), i.e., it is of the form Ht(x,y) = Ht(r(x,y)).

In this case the functions Hf = Ht(x, ) are radial functions around x.
Obviously this weaker property characterizes strong harmonicity, taking
into account the symmetry Ht(x>y) = Ht(y,x).

Any strongly harmonic manifold is harmonic (see [5, p. 172]), as can
be seen from

(U6) Δ,/F = -*r-g^ = ^
From this equation we get that the mean curvature σx = &x/θx is also a
radial function, and so the space is harmonic.

The converse statement is also true for simply connected and complete
harmonic manifolds, as was proven by D. Michel [26] using the technical
method of Brownian motion. Since this theorem immediately follows from
our Basic Commutativity (1.5), we give the complete proof here.

Theorem 1.1. In the class of simply connected complete Riemannian
manifolds, harmonicity and strong harmonicity are equivalent properties.

Proof We have to prove only that harmonicity implies strong har-
monicity.

The simply connected complete harmonic manifolds are globally aver-
ageable spaces by the Allamigeon theorem. Therefore the averaged kernel

(1.17) Ht(x,y):=(AxH?(y))
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is a globally defined smooth function which obviously satisfies (3) of (1.10).
The equation LyHt(x,y) = 0 follows immediately from the Basic Com-
mutativity (1.5), and Ht(x9y) = Ht(x,y) from the uniqueness of the heat
kernel. This proves the radial symmetry of the heat kernel, which is just
the statement of the Theorem.

2. The analysis of radial functions in harmonic spaces

Any function / : R+ —• R generates a radial function fx around a point
x e Mn defined by fx(y) := f(r(x,y)), where r(x9y) means the geodesic
distance between the points x,y e Mn. This function is well defined only
for the points y for which r(x,y) is less than the injectivity radius at x.
The supporting radius of the function / is defined by the infimum of the
values R e R+ for which /([ϋ,oo)) = 0 holds. If this radius is less than
the injectivity radius at x, then the function fx is globally defined on Mn.

Now let (Mn, g) be a harmonic manifold with the density function Θp.
We consider also an eigenfunction φ of the Laplacian Δ with the eigen-
value λ > 0. From the Basic Commutativity AxAφ = AAxφ it follows
that the radial function (Axφ)(r) is an eigenfunction with the eigenvalue λ
again. Thus the function z(r) := (Axφ)(r) is the solution of the differential
equation

(2.1) z" + σ(r)z' + Λz = 0

with the initial conditions z(0) = φ{x) and z'(0) = 0. One of the dif-
ficulties with this equation is that σ(r) has infinite value at r = 0; more
precisely, it is of the form σ(r) = σ*(r)/r with σ*(0) — n-\. The follow-
ing lemma plays an important role throughout the whole paper; it can be
found also in [3] with a different proof.

Lemma 2.1. The differential equation

z" + σ(r)z' + λz = 0,

where λ > 0 and σ{r) > 0 near zero, has only one solution with the initial
conditions z(0) = 1, z'(0) = 0.

Proof. For this uniqueness it is enough to prove that the only solution
of (2.1) with z(0) = 0, z'(0) = 0 is the zero function. Now let z be such a
solution. So by multiplication with z' we get

(2.2) z"z' + σ(z')2 + λzz' = 0; ^ Ά + σ{z'γ + i^Σ = 0.

By introducing the function

(2.3) v = ±((zf)2
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we reduce the second equation in (2.2) to

(2.4) υ' = -(z')2σ < 0,

which means that the function v is nonincreasing in a neighborhood of
r - 0. Since v > 0 and v(0) = 0, we have v = 0, z' = 0, and z = 0 in this
neighborhood. Thus z = 0 everywhere by the Picard-Lindelόff theorem,
and the lemma is proved completely.

If φ(x) Φ 0 at a point x e Mn for the eigenfunction φ with the eigen-
value λ, then the function

(2.5) 9 λ ( r ) : ^

satisfies (2.1) with the initial conditions φλ(0) - 1 and (^A)'(0) = 0, so
φλ{r) is uniquely determined and independent of the choice of the point
x. Furthermore

(2.6) (Axφ)(r) = φ(x)φλ

x(r)

also holds. This formula can be considered as a generalization of the
mean value theorem for the eigenfunctions of the Laplacian in harmonic
manifolds, since for harmonic functions φ we have φx{r) = 1.

Formula (2.6) means also that for a fixed point x € Mn the averaging
operator Ax projects the space of eigenfunctions with a common eigenvalue
λ onto a one-dimensional function space. Also the formula

(2.7) Ay(Axφ)(r) = (Axφ)(y)φλ

y(r)

follows immediately from (2.6).
Next we give a new characterization of harmonicity.
If H(x,y) and G(x,y) are two kernel functions on a Riemannian man-

ifold such that for any x the functions Hx{-) := H(x, ), Gx( ) := G(-,x)
are L2-functions, then the convolution H * G is defined as usual by

(2.8) H * G(x,y) := jH(x9 z)G(z,y) dz.

In the following Proposition we investigate the convolution of two radial
kernel functions of the form H(r(x,y)); G(r(x,y)), where the functions
H\ G: R+ —• R are of compact support.

Proposition 2.1. A simply connected complete Riemannian manifold is
harmonic if and only if the convolution of two radial kernel functions is a
radial kernel function again.

Proof First we prove that if in a space the convolution of two radial
kernel functions is a radial kernel function, then the space is harmonic.
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In fact, in this case for any R > 0 and any smooth kernel function
H(r(x,y)) the kernel functions

(2.9) HR(x,y):= ί H(x,p)dp,
Js"-'

(2.10)
d2HR(x,y)

ΘR2

R=0

In

,y) - X-p{y)H{x,y))

are radial, where Ay means the Laplacian acting on the second component,
and p(y) is the Riemannian curvature scalar. This is possible, if p is
constant and the Minkowskian mean curvature σx(y) := &x(y)/&x{y) of
the geodesies spheres defines a radial function around x. From this the
harmonicity follows.

For the proof of the converse statement we consider first a simply
connected compact harmonic manifold and two radial kernel functions
h(r(x9y); g(r(x,y)) on it. For a fixed point x the eigenfunctions φx

ι form
an orthogonal basis among the radial L2-functions around x, so hx can be
written as L2-series

(2.11) **

Thus from (2.7) we get

hx(z)gy(z) dz = Σ <*i I <PλAz)gy(z) dz

' φx

i(ry
/ φλ

x

i(ry,φ)g(r)θ(r)drdφ
o

/ / (Ayφ
λ

x')(r)g(r)θ(r)dr
Jo

where Ωrt_! denotes the hypersurface area of the euclidean unit sphere
Sn~\ and Rg is the supporting radius of the function g: R+ -> R.

As the functions ^ are radial functions around x, so is the function
(h * g)x(y) = J hx(z)gy(z)dz. This completely proves the converse state-
ment for the compact case.
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In the noncompact case the procedure is similar. In this case for any
geodesic ball Bxδ with the center x and radius Rh + Rg < δ, a system
{ψλχ}^ί\ of radial eigenfunctions can be chosen in such a way that these
functions span the radial L2 function space defined on Bxδ around x.
Using these functions, the radiality of (h * g)x(y) follows from the same
computation as before.

This proposition has several geometric corollaries supporting the Lich-
nerowicz conjecture.

Corollary 2.1. Let BXor[ and Byri be geodesic balls in a harmonic
manifold. Then the volume vol(BXorι n ByΛ), the hypersurface area
Area(5JCoΓl n Syj2) and in general the integral

(2.13) ί f(rXo(P))dSy,r2(P); f: R+ -> R
Bχ o ri ^ y r2

are constant as y moves along the sphere with center x0 and radius R =
rXo(y) = constant.

The proof is straightforward by using the characteristic functions of the
balls in the above proposition.

Another simple but interesting corollary of the generalized mean value
theorem (2.6) is the following.

For a radial kernel function H(r(x,y)) with RH < oo we define the
convolution H * / on the L2(Mn) function space by

(2.14) H * f(x) = I H(r(x,y))f(y) dy.

For a simply connected complete harmonic space we have
Corollary 2.2. All the globally defined eigenfunctions φ of the Laplacian

{with the eigenvalue λ) are the eigenfunctions of the operator H* with the
eigenvalue

(2.15) Ωrt_! [Rhφλ(r)H(r)θ(r)dr,
Jo

where Ω.n-\ is the area of the euclidean unit sphere Sn~ι.
The proof easily follows from (2.6) by

J φ(z)Hy(z)dz = Ωn-iJH φλ(r)H(r)θ(r)drφ(y).

3. A generalization of Besse's nice imbedding

A. L. Besse stated a beautiful theorem in [5], where he constructed
isometric imbeddings of compact strongly harmonic manifolds into the
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euclidean spaces in such a way that the images of the geodesies are con-
gruent screw lines in the euclidean space. For the proof he used the heat
kernel of the manifolds considered.

Now we generalize this statement considerably as we construct similar
imbeddings of an arbitrary harmonic manifold into the Hubert space I2.
Our method will be different from Besse's as the heat kernel cannot be
used for such general cases. On the other hand, our method gives Besse's
result as a special case.

First of all we survey some facts about the screw lines in the Hubert
space I2. A coherent theory of these curves was given by J. von Neumann
and I. J. Schoenberg in [28]. They defined these screw lines in I2 as the rec-
tifiable continuous curves r(.s), parametrized by the arclength s, for which
the distance \\r(s\) — r(s2)|| in the /2-space depends only on the arclength
S\ — Si for any two points τ(s\) and rfo). They called the function

(3.1) 5(5) = | | φ o + 5 ) - φ o ) | | 2

the screw function of the screw lines considered, and investigated these
functions from the viewpoint of positive definite functions.

We remark that the above notion of the screw lines in the Hubert space
I2 can easily be traced back to the classical screw-line notion. In fact,
let r(s) C I2 be a C°° curve in /2, which is a screw line in the above
sense with the screw function S(s). The Frenet frame f\(s) = i(s)9f2(s) =
r(s)/|if(.s)|, , etc. is defined as usual in the classical case together with
the curvatures K\ = \r\ = l,K2 = |r|, •••,#/,-••, etc.

If we transfer the origin of the space I2 into r(0), then by the assumption
the function (r($), τ(s)) is independent of the choice of the origin s = 0 on
the curve r, and therefore the derivatives of this function at s = 0 define
constant functions along the curve. From this we shall see that curvatures
Ki are constant.

We prove this statement by induction. By the Frenet formulas we get
(r(^),r(^))^=o = ~2Λ 2̂, so Kι is constant indeed. Assuming that the curva-
tures K\,- ,Λ^_! are constant we prove that K^ is also constant.

In fact, by the formulas

r ( 2 ) = K2f2,

(3.2) ^

Γ ] — K 2 K ι •• • Kk_\ik_\ + Tk_\(K\, •• ,Ki(-2,fk-3>h-5> •)>
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we find

= K'kK2 - Kk~\tk + K2 KkKk+{fk+x - K2

+ Tk+\{K\9- - ,Kk_ιJι, ,fk-\),

(3.3) :

r^+/) = r;+/(^),Λ:/,f jk+/,- -,f jk./+1)

+ (-\)ικ2 κk_ικ
2_ι+ι.. κ2fk_ι

where the terms 7} and T* are suitable functions (linear combinations) of

the arguments. Thus for the derivative (r, r ) ^ we have

/=o

(3.4) =Σ
1=0

from which Kk = constant follows obviously. So the smooth screw lines
have constant curvatures. The converse is also obvious.

Now return to the investigations of von Neumann and Schoenberg, who
constructed for any screw line r(s) a continuous one-parameter family Us

of unitary transformations in the space I2 such that r(s) is the orbit of Us

of the form

τ(s) = UMO)).

It can also be proved that for two screw lines T\(s), r2(s) with the same
screw function S{(s) = S2(s), between the spaces vt , spanned by {Γ, («S)}S€R,
there exists an isometry v: v\ —• v2 which takes ri onto r2.

After this introduction we construct an isometric immersion of a com-
plete simply connected locally harmonic manifold Mn into the Hubert
space L2(Mn) = I2. We remark that this method also gives local imbed-
dings for a general harmonic manifold without any topological assumption.

For this construction we consider a function h: R+ —• R of class C1

with /^(O) = 0 and compact support whose supporting radius Rh is not
greater than the radius ip of injectivity at any point p e Mn.
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In the case ip = oo we could consider also a function h for which
fh2θdt,f{h')2Θdt < oo, i.e., h,h' e L%.

With the help of h we define the map

(3.5)

by

(3.6)

,:Mn

Mn) (eL2(F)),

where hp{y) is given by hp(y) := h(r(p,y)) as in §2.
If 7(5) is a geodesic of AT1 parametrized by the arc length s, then the

tangent vectors of Φ^(γ(s)) are functions again. A simple calculation shows

dΦh(γ(s))
ds =

t)9y))-h{r{γ{s)9y))

(3.7)
= lim-

= -hf(r(γ(s),y))cosa,

where α is the angle between γ(s) and the tangent vector z(γ(s)) of the
geodesic joining γ(s) and y. So these tangent vectors have the constant
norm:

(3.8) Wh(y(s))\\ =
Ω n _,^i Γ\h')2(r)θ(r)

n Jo

1/2

IIA'IIΘ

Theorem 3Λ(Imbedding theorem of harmonic spaces).
(1) For any radial kernel function h(r(p,y)) above the map

(3.9)

whereq := ^/W/ΩΠ_I/| |Λ' | |Θ, is an isometric immersion of a harmonic space
Mn into the sphere SQ ofL2{Mn) with radius Q = >/n||A||θ/l|AΊIθ.
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(2) The geodesies ofrh(Mn) are congruent screw lines in the space L2(Mn)
= I2.

(3) The submanifold rh{Mn) c SQ is minimal in the sphere SQ iff the
functions hp{y) are eigenfunctions of the Laplacian Δ. In this case the
eigenvalues have the form λ = n/Q2 automatically because /V, AV'A =
-/ΛΔΛ.

Proof Using (3.8), for any geodesic γ(s) of Mn we have
1, so rh is an isometric immersion indeed. From

A| = Ωπ-i ί
» J

we obviously get

(3.10) τh(M")cSQ.

Furthermore for any two points τ^(γ(s\)) and Th(γ(s2)) the inner product
Fγ(sus2) := (rh(γ(s{)),rh{γ(s2)))

= ,,«./M2 / hy^)(y)hγ(s2){y)>
\\n lie J

and therefore also the function

Wh(y{sχ)) - rh(γ(s2))\\2 = 2Q2 - 2Fγ(sus2) = 2Q2 - 2F(\s{ - s2\)

depends only on the geodesies distance \s\ - s2\ by Proposition 2.1. This
means that the geodesies of rh(Mn) are congruent screw lines in L2(Mn)
with the common screw function 2(Q2 - F(s)) = S(s).

For the proof of the last statement we consider also an orthonormal
basis φ\,φ2,... in the Hubert space L2(Mn) with the coordinate functions

(3.12) xi(p) = (φι,τh(p))=Jφiτh(p).

By a well-known theorem [21, p. 342] the submanifold rh(Mn) c SQ is
minimal in SQ if and only if

(3.13) Ax1 = {nlQ2)x\ ι = l , 2 , --,

i.e., if and only if

(3.14) / φi(x)Aph(r(p,x))dx = -^ ί φi{x)h(r(p,x))dx9

and consequently

(3.15) Aph(r(p,x)) = {Axhp){x) = -j^hp(x)

is satisfied for any p e Mn. This proves the theorem completely.
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In the cases of compact strongly harmonic manifolds the space is a
Blaschke manifold with a simply closed geodesic with constant length 2L
[5]. So for any eigenvalue λ e spect{/t,/}M« of the spectrum a uniquely de-
termined radial eigenfunction φx exists with φx(x) = 1 and the eigenvalue
λ, as the space is globally averageable. The functions φx( ) = φλ(r(x,-))
span a finite dimensional subspace in L2(Mn), namely the eigensubspace
Vλ. Thus the map

(3.16) rφλ:M
n^L2(Mn)

maps the manifold Mn into the sphere SQ of Vλ such that all the geodesies
are congruent screw lines in Vλ. The minimality of rφλ(Mn) c SQ in SQ
follows from the fact that the φx are eigenf unctions for any x. Besse con-
structed exactly these maps for compact strongly harmonic manifolds, and
called them Nice Imbeddings of compact strongly harmonic manifolds.

We describe yet some more useful formulas. Let pi, ,^/ beanor-
thonormal basis in Vλ. Then φx is of the form

(3.17) φλ

x{y) = axφι(y) + +

with

(3.18) ai(x)= f φλ

x(y)φi(y)dy = an-lφi(x) ί (φλ(r))2θ(r)dr.
J Mn JO

Thus for any strongly harmonic manifold, we have

φx(y)

From these we get

(3.20) (9iyx2

which means that the restriction of the eigenfunction <px onto a geodesic
γ(r) with γ(0) = x is of the form

(3.21) φ\r) = φχ(γ(r)) = Bλ(rφλ(x),rφλ(γ(r))),

where Bλ obviously depends only on λ.
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4. The proof of Lichnerowicz's conjecture

for compact simply connected harmonic manifolds

We prove the conjecture for compact simply connected harmonic mani-
folds step-by-step using more lemmas. Note that then the conjecture is es-
tablished for a compact harmonic manifold with finite fundamental group.

First of all we answer the following elementary question. Let fa(t) :=
f{t + h) stand for the parallel displacement of a function / : R —• R with
respect to a real number h e R. Our question is as follows: What are
the continuous functions / : R —• R for which the functions {fa} hen span
a function space of finite dimension? Although the following answer is
classical, we will give a short proof here, for the sake of completeness.

Lemma 4.1. The functions {fa} hen sPan a function-space V of finite
dimension iff f is of the form

k

(4.1) f(x) = Σ Pi{x) sinα/x + Qt(x) cosβiX + Ri(x)eγiX,
i=\

where Pi(x), Qi(x), and Ri(x) are polynomials.

Proof It is easy to show that for functions of the form (4.1) the
function-space V spanned by {fa}hen is of finite dimension indeed.

Conversely, if V is of finite dimension, then let

(4.2) φh:V^V, Φh: g(x) - gh(x)

be the operator of the parallel displacement in V. Thus {Φh}hen is a
continuous one-parameter family of linear transformations in V, since

(4.3) Φh{θL\g\+θL2g2)=θLlΦh{gx) + a1Φh(g2)\ αi,α 2 GR, gug2eV,

Φ 0 = id, Φhι+h2 =Φhϊ oφ Λ 2

hold trivially. By the Cartan theorem (which is the finite dimensional
version of the Stone theorem), Φh is of the form

(4.4) Φh = exphX = Σ^*k

for a linear endomorphism X: V —> V. So the function f(x) is not only
continuous but also of class C°° for which the ith derivative is just the
continuous function Xl(f). More precisely, / is an analytic function, as
the curve c(h): h -• fh = Φh(f) in V is analytic with the convergent Taylor
expansion

(4.5) /*(*) = Σ ^ * * ( / ) / * , \h\<ε<0.
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Therefore the Taylor expansion

(4.6) f{χ) = £ ^ψ-x' = £ |

is convergent for |JC| < ε.
It is also obvious that the derivatives dif/dxi := / ( / ) belong to V, and as

V is of finite dimension, /W is a linear combination of the functions / ( 0 ) =
/>/(1)> • ,βk~ι) for some /:. Therefore the function / is the solution of
a differential equation of constant coefficients of the form

(4.7)
ι=0

and / is of the form (4.1) by a rather well-known classical theorem, q.e.d.
Using Allamigeon's theorem, we assume that the space is normalized

in such a way that the total length of a geodesic is 2π. So the generator
function φλ(r) of a radial eigenfunction with λ e Spect{/l/}Λ/« is a function
with period 2π.

Lemma 4.2. The functions <pλ(r), λ € {λi}M»> of a normalized harmonic
manifold with the diameter π are of the form φλ(r) = Pχ(cosr), where the
Pχ 's are polynomials.

Proof Since the functions φλ

x e Vλ span the finite dimensional eigen-
subspace Vλ, for any geodesic γ(r) the functions φ^r) span a finite dimen-
sional space. The restrictions of the functions φ^r) to γ form a parallel
displaced family of functions in the above sense by Lemma 4.1. As these
functions span a finite dimensional function-space and are even periodic
functions, the generator function φλ(r) is of the form

k

(4.8) φλ{r) = Σ At cosα, r, Ah α, G R.
/=i

We prove that the distinct (!) values α/ are uniquely determined natural
numbers.

The distinct values α, are uniquely determined for φλ. Supposing the
contrary we have a nontrivial linear combination

(4.9)
i=\

By the derivation we have

/

(4.10) £ * / a ? * = 0 , * = 0,1,2, . - ,
i=\
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which is a contradiction, since the Vandermonde matrix {flf}^0;'.'.'/"1 :=

{ajk} has nonvanishing determinant.
From the periodicity φλ(r + In) = φλ{r) and the above consideration

we get cos 2atπ = 1 and sin 2a, π = 0. So any value α, in (4.8) is a
natural number and therefore, by the Chebyshev polynomials, φλ(r) is a
polynomial of cos r. (This lemma can also be proved by using Fourier
series.) q.e.d.

In the following we prove a similar statement for the density function
Θ2(r).

Lemma 4.3. The function Θ2(r) is also a trigonometric polynomial of
the form Θ2(r) = Γ(cosr) for any compact normalized harmonic manifold.

Proof Let

(4.11) rλ:M
n

be the Nice Imbedding of Mn into Vλ with respect to an eigenvalue λ G
{ΛZ}Λ/«. We consider a variation xs

r, -ε < s < ε, of a geodesic xr = x?.
Then the map

(4.12) rλ(r,s) := τλ(xf): R x (-β,

has the property that for any values of s the curves r
ent screw lines in Vλ. So a differential operator

(4.13)

r, 5*) are congru-

i=0

of constant coefficients exists1 such that

(4.14) L(τλ) =

holds for any point (r,s). Thus we get

5=0

(4,5, °-§,
which means that the Jacobian field

(4.16) Y^:=

is also a solution of the differential equation

(4.17) L(Y) = 0.

iThis can be derived by using the last Frenet formula and also formulas (3.2) for the

expression of the Frenet basis {f,} with the help of r ^ - s.
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Let e\9 - - ,ep be an orthonormal basis in Vλ. Since the differential equa-
tions L(Yι) = 0 are satisfied for the functions Y*(r) := {Y(r),ei), as in the
previous lemma, Y[ is a trigonometric polynomial of the form

(4.18) Yt(r) =
7=0

Now let 7(i), , Y(n-\) be Jacobian fields along xr with 7(7)(0) = 0; fur-
thermore the vectors E^ := 7^(0) form an orthonormal basis in the
hyperspace of TXo(Mn) orthogonal to xo. So the norm of the [n - l)-form

(4.19) 7 ( 1)Λ7 ( 2 )Λ...Λ7 ( A 2_i)(r)

along xr is just θ(r).

On the other hand we have
(4.20)

7 ( 1 ) Λ . . . Λ 7 ( λ 7 _ 1 ) ( r ) = Σ ^ 1 ) W ^;-" 1 i)^Λ Λ ^ _ 1

l<7i, Jn~ι<P

— V^ ni\ir in-\(γl \p. A " A P

l</'l< <//i-l<P

where the functions Q'i»-»'"-i are suitable polynomials of the functions
Y[k), i.e., these coefficients are trigonometric polynomials again. Thus the
function

(4.21)

is a trigonometric polynomial. As Θ2(r) is a periodic even function, it is
of the form Θ2(r) = Γ(cosr), where T(x) is a polynomial, q.e.d.

Now we examine the roots of the polynomials Pχ and T. Our aim is to
prove that the polynomial T has only the roots +1 and - 1 . First of all we
consider the polynomial Pχ.

Lemma 4.4. Neither +1 nor - 1 is a root of Pχ\ furthermore all the roots
ofPχ have multiplicity one.

Proof Since φλ(r) = Pλ(cosr), φλ(0) = Pλ(l) = 1 holds, the value +1
is not a root of Pχ. Let us introduce also the function z(r) := φλ(π - r),
for which we have

(4.22) z" + σz1 = -λz,

where σ{r) := -σ{π - r) is a positive function for small values of r, as the
function σ is negative near π. (In fact, the θ(r) is a decreasing function
near π.) As z'(0) = -φ'λ{n) = sin(π)P'(cos(π)) = 0, we have z(0) =



HARMONIC MANIFOLDS 21

ψx(π) - Pχ(cosπ) = Pχ(-\) φ 0 by virtue of Lemma 2.1. Thus the value
— 1 is not a root of Pχ.

Now we return to the second part of the lemma. The equation

(4.23) 9Ϊ + %9'λ = -λφλ

can also be written in the form:

Θ' φ'l 1 / ( θ 2 ) ' {{φ'k)
2)'\

θ φ' 2 I θ 2 (p')2 I
(4.24) Λ ^ λ> '

I(θ2(φ'λ)
2)' = φλ

2 ΘHφ'λ)
2 V

The function Θ2(φf

λ)
2 is a trigonometric polynomial of the form

^2(r)(ψχ)2(r) = β( c°s^) by the above lemmas, therefore

(4.25) (lnβ(cosr))' =
sinrP'(cosr)'

(4.26) InQ(cosr) = -2λ ί ft(^r)

 χ dr.
J -s\nrP'(cosr)

Using the substitution x — cos r we get

(4.27) 1

Let ϋΓi, , Â r be the roots of i^ with respective multiplicities a\9 ,α r .
Then the derived polynomial P'λ has values AT/ as roots exactly with mul-
tiplicities (fl/ - 1). Furthermore for P[ we have additional new roots
μi, ,/// (different from the ϋΓ, ) with the respective multiplicities, say,
b\,b2, - ,bι. So we have

(4.28) lnβ(jc)= / ί 7 ί rrz [i~Kl\h'}
X~KU 1 τrdx9

J (1 - x){\ + x)(x - μ\)bι(x - μi)b2 (x ~ βι)bι

where q = -2λ/(a{ H h ΛΓ) is a constant.
Using the method of the partial fraction for the integration of the right

side, we have that this integral is of the form In Q(x) for a polynomial
Q(x) if and only if b\ = b-χ = = bι = 1 and μ, Φ ±1 . Furthermore in
this case Q(x) is of the form

(4.29) Q(x) = a(\- x)Λ(\ + x)B(x - μ x ) B ^ (x- μ ι )
B >

with suitable constants a,A,B,B{, ,Bh
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On the other side we have

M i m ( θ 2 / {{φ'λ)
2)' (Q(cosr)Y

1 '™} θ 2 ( ^ ) 2 + β(cosr) '

T(cosr) = (φf

λ)-?{r)Q(cosr) = (1 - cos2 r)~ι(P'(cosr))-2Q(cosr),

and so

(4.31)
'"(x-Ar) ^"r ίJ{x-μ\)~ι "--{x-μιΓι "9

where K[ Φ μ ; and Kt Φ ± 1. So, if some multiplicity α, were greater than
1, then -2(fl, - 1) < 0 and thus T(x) would not be a polynomial. This
proves completely the remaining statement

d\ — CLΊ = - - = ar — 1.

Now we turn to the examination of the roots of the polynomial T(x).
The values +1 and - 1 are roots of T as the Θ2(r) = Γ(cosr) vanishes at
r = 0 and at r = π. The multiplicity of these roots is denoted by A (resp.
DλD )

Let 7i, , yι be the other roots of T(x) with the respective multiplicities
G\9..., G/. So Θ2(r) is of the form

Θ2(r) = c(\ -cosr)Λ(cosr + \)B(cosr - γ{)
G[ •• -(cosr- γι)Gι,

Θ2(r) = csinp r(l - cosr)q(cosr - γ{)
Gι •• -(cosr- γι)Gι,

with p = 2A and q = B - A.
Lemma 4.5. All the roots y, Φ ±1 of T(x) are also the roots of the

polynomial P'λ(x), λ e {A/}Λ/«

Proof From the equation

(4.33)

we have

(4.34) i ( l - j c 2 ) ^ ^ ^ ^ ) = -AP(x) + xP'(x) - (1 - ,

and thus from (4.31) the function

(4.35) 1 ( 1 -
-x (1+χ) \χ-y\) (χ-y

is a polynomial. This is possible if and only if the roots yz are also the
roots of P'λ(x). q.e.d.

The following lemma is much more important for these considerations.
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Lemma 4.6. All the roots Ku ,Kr ofPλ and all the roots μ{, , μ,_ i
ofP'λ are real numbers lying in the interval (-1,1), i.e.,

(4.36) - 1 <K{ <μ{ <K2 < μ2 < < μ r _ 1 < Kr < 1.

Proof. By formula (4.24) we have

(4.37) (Θ2(φ'λ)
2)f = -2λθ2φλφ'λ,

and so

(4.38) ((1 - x2)T(x)Pf(x)P'(x)Y = -2λT(x)P(x)P'(χ).

The roots of the polynomial (1 - x2)T{x)P'{x)P\χ) are exactly the
values + l , - l , μ 1 ? ,μ r _ l 5 and the roots of T{x)P{x)P'{χ) are exactly
the values +1, - 1 , K{, , Kr, μx, , μr_x by the above lemmas. As the
roots of a derived polynomial lie in the convex hull of the roots of the
original polynomial by Lucas' theorem, we have

(4.39) ,μr~ι} C conv{+l,-l,μ l 5

We show that this situation is possible only in the case where all the roots
Kx, , Kr of Pλ (and consequently also all the roots μ{, , μr of P'λ) lie
in the interval (-1, + 1). In fact, the convex hull of the roots Ku , Kr

of Pλ also contains the roots μΪ9 , μr_x of P[. As the multiplicity of any
root Ki is exactly one, the vertices Kiχ, , Ku of c o n v ^ , , Kr} are dif-
ferent from the vertices μjn - , μjk of conv{//1? ••• ,μjk}. So if g is such
a line on the complex plane, which is not orthogonal to any of the sides
of conv{A:l5 ,Kr}, then the orthogonal projection of conv{A:l5 ,Kr}
onto g is an interval.[K'^Kfl which properly contains the orthogonal pro-
jection [μ'vμ'2] of conv{μ1? . ,μr-{}, i.e., in which K[ < μ\ < μ'2 < K'2
holds.

- 1 ' μ'2
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Now, if the roots Ku ,Kr did not lie in the interval (-1, + 1), then
it would be possible to choose such a line g which has the following ad-
ditional property: The orthogonal projection [—1', + 1'J of [—1, + 1] onto
g does not contain the orthogonal projection [Λ^Λ ]̂ of conv{Λ î, ,Kr}.
So at least one of the points K[, K'2 (say K[) is not contained in [-1', + 1'].
In this case we have

Kip < £ c o n v { + l , - l , μ u ,μr-\},

where Kip is the root of Pλ, whose orthogonal projection onto g is just the
point K[. This contradicts the property (4.39), so all the roots Ku , Kr

are contained in (-1, + 1) indeed. The arrangement (4.36) of the roots
follows immediately from the fact that the multiplicity of any root Ki is
one. q.e.d.

Now we return to the roots of the polynomial T(x).

Lemma 4.7. The polynomial T(x) has only the roots +1, - 1 , so the
density function θ(r) of a compact normalized harmonic manifold is of the
form

(4.41) θ(r) = D sinp(r)(l - cosr)*.

Proof If T(x) had a root μ different from ±1, then μ would be the
root also of P'λ{x) by Lemma 4.5. Using Lemma 4.6, μ would be real
with - 1 < μ < 1. So if 0 < r0 < π were the value for which cos r0 = μ
holds, then we would have Θ2(ro) = Γ(cosr0) = T(μ) = 0, which is a
contradiction, as Θ2(r) is strictly positive on the interval 0 < r < π and
vanishes only at the endpoints 0 and π. So T(x) has only the roots ±1
and θ(r) is of the form

(4.42) θ(r) = D(\ -cosr)A*(l +cosr)* =Dsinpr(l -

where p = 2B* and q = A* - B*.

Remark. In the case of two-point homogeneous spaces we have
S": θ = Z)sinπ"1r;P / l(C): θ = Dsinr(l - cosr)("-2)/2; Pn(H): θ =
Z)sin 3 r(l-cosr)^- 4 )/ 2 P 1 6 (Caj;): θ = Dsin 7 r ( l -cosr) 4 . It should be re-
marked that these are the only possibilities for a compact strong harmonic
manifold. In fact from (4.41) and θ(r) = rn~ι + {higher order terms} we
get: p + 2q = n - 1; D = 2lq = Aq. On the other hand the Bott-Samelson
Theorem [5] (which describes the cut locus of a Blaschke manifold) im-
plies 2q = dim (cut locus) = 0; n - 2; n - 4 or 8 and in the last case n = 16.
(We do not use this remark in the following considerations.)
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Lemma 4.8. Any normalized (1L = 2π) compact strongly harmonic
manifold has a Laplacian eigenfunction of the form

(4.43) φλ = Bcosr + A, A + B=\,

whose eigenvalue λ is the least nontrivial eigenvalue of the Laplacian. The
spectrum {without multiplicity!) is: {λn = n(n +p + q)}neN-

Proof From Θ = D sin77 r( 1 - cos r)q we have

θ' pcosr qsmr _{p + q)cosr + q

θ ~ sin rθ ~ sin r 1 - cos r ~~ sin r '

and therefore, for the function u = cosr + (q/(p + q + 1)),

&
(4.45) u" + —u' = - c o s r - ((p + q)cosr + q) = -{p + q + l)w,

i.e., the function u = cosr + (<?/(/? + ^ + 1)) is an eigenfunction with the
eigenvalue λ = p + q + 1.

It can be seen easily that for any n e R+ an eigenfunction of the form

(4.46) cos" r + A{ cos""1 r + •• + ̂ 4Π_i cosr + Λ,,, ^, e R,

exists, and its eigenvalue is

(4.47) λn = n(

which proves the lemma completely.

Lemma 4.9. Let r: Mn -^ Vλι be the Nice Imbedding of a compact nor-
malized harmonic manifold with respect to the first nontrivial eigenfunction
cosr + A. Then the geodesies ofτ(Mn) are circles of radius 1 in Vλι.

Proof Let r(r) = r(y(r)) be the image set of a geodesic y(r). Then
by formula (3.21) and Lemma 4.8 the function (r(0),r(r)) is of the form
B cos r 4- A - B, A, B e R, so for any r we get

(4.48) (r(0),r"' + r') = 0.

As r(0) is arbitrary on the geodesic r(y), and the vectors r"' + r7 lie in the
subspace spanned by the vectors {r(y)}, we get

(4.49) r"1 + r' = 0.

From the Frenet formulas it follows that r(γ) is a plane curve of constant
curvature -hi, i.e., it is a circle, q.e.d.

The following lemma completely proves the conjecture for the compact
harmonic manifolds with finite fundamental groups.
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Lemma 4.10. Let Mn c Rk+n be a submanifold such that all the geo-
desies of Mn are circles in Rk+n. Then Mn is a symmetric space and is
further a two-point homogeneous space.

Proof Let Np be the orthogonal complement of the tangent space
Tp(Mn) at a point p e Mn in Rn+k, and let

(4.50) Rn+k Rn-\-k

be the reflexion with respect to the subspace Np. Then τp is an isometry
of the euclidean space Rn+k.

As the curvature vectors x"p of the geodesies through p lie in Np, τp

leaves these geodesies together with the whole submanifold Mn invariant.
Thus the τp induces an isometry on Mn, which is obviously the geodesies
involution at p. So Mn is a symmetric space. It has the rank one, because
all the other symmetric spaces have nonclosed geodesies on a maximal
torus. This proves the Lemma and the conjecture completely.
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