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ENTIRE SOLUTIONS
OF THE MINIMAL SURFACE EQUATION

LEON SIMON

A solution u of the minimal surface equation

is said to be entire if it is C 2 on all of R", and exterior if it is C2 on
R" ~ U, where U is a bounded open subset of R". In this paper we
present a number of new results concerning asymptotic behavior of exterior
and entire solutions, and in addition we establish the existence of many
new examples of nonlinear entire solutions. Prior to this work, only the
example constructed by Bombieri, De Giorgi and Giusti [3] in each even
dimension n > 8 was known. (To be precise, these were the only nonlinear
examples known modulo the additional examples obtained by scaling, rigid
motions and adding "redundant variables", i.e., writing ύ(xι, ,xn+k) =
u(xι, - - ,xn) to get a solution ύ on Rn+k from a solution u on RΛ.j

The main results about asymptotic behavior are given in §5, and include
some fairly precise upper estimates on rate of growth (given in Theorem
5) under suitable a priori restrictions on the "tangent cylinder at oo"; the
notion of tangent cylinder at oo is discussed in §4. We also obtain corre-
sponding lower growth estimates in Theorem 5. Caffarelli, Nirenberg and
Spruck [7], Nitsche [18], and Ecker and Huisken [8] were already able to
obtain lower growth estimates for entire solutions; while their estimates
are not sharp in general (see the discussion in Remark (5.8) below), they
have the advantage of being applicable to all nonlinear entire solutions,
without a priori restrictions on the tangent cylinder at oo.

The new examples referred to above are constructed in §6. It is proved
that for each of the codimension 1 minimizing cones C in the list of
Lawson [14] or in the list of Ferus and Karcher [10], there is an entire
solution of the minimal surface equation which has C x R as tangent
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cylinder at oo. It is interesting that here we need some of the growth
estimates from §5 in showing that the existence procedure, which, like the
procedure of [3], involves solving the Dirichlet problem on an expanding
sequence of domains, actually does yield entire solutions.

1. Preliminary discussion

We begin by considering a method (proposed by M. Miranda) of con-
structing examples of nonlinear entire solutions of the minimal surface
equation in Rn. To fix ideas, we first take the simplest example (a much
more general discussion appears in §6): take C to be the minimizing cone

{(x,y)eRpxRp: \x\ = \y\} c R" (n = 2p, p>4)

(more general cones are considered in §6) and let

A± = {(x,y):\x\>{<)\y\}ndBι{0),

respectively. Let uk be the bounded C2(B\(0) u A+ u A-) solution of the
minimal surface equation with boundary data

k on A+,
Uk={+-k

Such a uk exists, and is unique (see, e.g., [12, Chapter 16]); of course uk

is discontinuous at dA+ = dA- c dBχ(0). By the symmetries of C and
uniqueness of uk it is easy to check that

(\Duk(0)\ = 0, κ* = 0 o n C n 5 i ( 0 ) ,

I uk(x,y) = -uk(y9x) = uk{-x,-y).

As k —• oo it is easy to check that sup^σ(0) \Duk\ -> oo for each fixed
σ > 0 (see the more general discussion in §6). Therefore we can select
0 < σk < 1 such that

sup \Duk\ = 1, σk | 0 .
%(0)

We then let ύk(x) = σ^ιuk(σkx), x e Bσ-\(0). As k —> oo we can use

standard compactness theory for minimal graphs (see the detailed discus-
sion in §6 below) to ensure that there are an open domain Ω D C and a
subsequence of {uk} converging to a C2(Ω) solution u of the minimal sur-
face equation, where either Ω = Rn or <9Ω has two components F± c R .̂
respectively, where R .̂ are the two components of R" ~ C, and where
u —• ±oo on approach to F±.
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Thus the point is this: While the above direct procedure always gives a
complete minimal graph, we are left with the possibility that it may not
be entire; that is, that u e C2(Ω) with Ω φ R". This difficulty was pointed
out by M. Miranda.

We now briefly explain the approach (carried out in detail in §6 for a
general class of examples) to prove that Ω = Rn. Assuming on the contrary
that Ω φ Rn, we consider the components F± of <9Ω introduced above.
Both F± are minimizing hypersurfaces (see Lemma (4.3) below); indeed
by the result of [13], the F± have no singularities and some homothety
of F+ agrees with the smooth minimizing hypersurface in Rn constructed
explicitly in [3] by Bombieri, De Giorgi, and Giusti. Then if ω± are given
points of Sn~ι ΠR± respectively, the rays {λω±} intersect F± respectively
in just one point. Further, F± approach C asymptotically near infinity at
a known rate: specifically,

(1) /Γ±-^j?1(O) = graphct;±,

where υ± e C2(C ~ K) for suitable R\ > 0 and bounded K c C, and
where

(2) rγiv±(rω) -+cφθ as r -+ oo

with

here graph v± = {ζ+υ±(ξ)η±(ξ): £ e C~BR2(0)}> with η±(ξ) (= η±(ξ/\ξ\))
the unit normal of C pointing into Rίj. respectively. These facts are
extended to general minimizing cones in [13]—such a generalization is
needed in §6, and in earlier sections of the present paper; see (5.5) below.
Notice that (1) in particular means that the part of graph u lying outside
the cylinder BR(0) X R is pointwise close to the cylinder C x R for suitably
large R; precisely, for suitable R\ > 0 and bounded K c C,

(3) graph u - (BRι (0) x R) = graphC x Rw,

where w e C2(C ~ (K x R)) and

g r a p h C x R w = {(rω,y) + w(rω,y)η+(rω): {rω,y) e(C ~ K) x R } ,

with η+ the unit normal of C as above.
Of course since graph u is a minimal hypersurface in Rn + 1, then so is

graphC x Rw, and hence w satisfies the Euler-Lagrange equation correspond-
ing to the area functional for graphs of functions over domains in C x R.
That is, for suitable p > 0, we have

(4) J?CXRW = 0 on G = {(rω,y): r > p/2,ωeCnSn-\yeR},
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where ^#CXR is the minimal surface operator for C 2 functions over do-
mains in C x R. Furthermore because of (1) we have some additional a
priori information: Viz., by (1), (2) and the fact that graph u is C 2 close
to F+ x R near points (ξ9y) of F+ x R with y sufficiently large, we know
that there exist p > 0 such that for any ε,δ > 0 there is y\ = y\{δ) > 1
such that

ί r\~Ά~ε

(5) w(rω,y)>c[-\ w(pω,y)

for p < r < δ~xp, y > yu co e C n Sn~ι. It turns out that solutions
of (4) which satisfy a priori growth bounds of the form (5) automatically
satisfy certain lower growth bounds along vertical rays {(pω,y): y > y\}.
Specifically, in Theorem 1 of §2 below we prove a general theorem about
solutions of equations of the form (4) over domains in C x R, subject to
growth bounds of the form (5); the main result applies in the special case
above to establish that

(6) p γ i ε

dy

with c > 0 independent of y. Now this evidently gives information about
the gradient of the original solution u defined over Ω c R " . Specifically
we note that for any ε > 0

(7) § 7 ( ' ω ' * > = jZJStfji
for given {pω,y) e G, where y = w({) and ξ e Ω is the point

ξ = {pω,y) + w(pω9y)η+(pω)

with ?/+ the unit normal of C as described above. Notice that y approaches
oo as ξ approaches a point of F+ (= <9ΩnR"). However (6) and (7) imply
\D(u(ξ))ι~ε\ is bounded in a neighborhood of any point of F+9 hence u
itself is bounded in such a neighborhood, contradicting the fact that u —• oo
on approach to points of F+. Thus we conclude that Ω = R" and hence
that u is an entire solution. Since by construction sup5 l ( 0) \Du\ = 1 and u
vanishes on C, we know that u is nonlinear; indeed by construction it has
C x R as its "tangent cylinder" at oo. See §4 for a discussion of tangent
cylinders at oo.

Hopefully the above discussion provides adequate motivation for the
rather technical considerations of quasilinear equations over cylindrical
domains in the next section. In actual fact, considerations such as those
in the next section lead to general growth bounds for a class of entire and
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exterior solutions discussed in §5, in addition to their role indicated above
in the construction of the new examples of §6.

2. Quasilinear operators on cylindrical domains

Let C be an (n - l)-dimensional cone in Rn of the form C = {λω: ω e
Σ,λ > 0}, where Σ is a smooth compact embedded (n - 2)-dimensional
submanifold of Sn~ι. We are going to consider, on domains Ω c C x R
with points x represented (rω9y), r > 0, ω e Σ, y e R, a quasilinear
divergence-form operator of the form

(2.1) Jtu = divCXRA(ω,u/r,Vu) + r~ιB(ω,u/r,Vu).

Here A = (A1,-" ,An+ι), and A' = AJ(ω,z,p) and B = B(ω,z,p) are
smooth functions of {ω, z,p) G Σ X R X R Λ + 1 . We assume that Jt(0) = 0
and that the linearization Lu = £^(su)\s=o has the special form

(2.2) Lu = Au + r~2q(ε)u,

where q is smooth on Σ, and Δ is the Laplacian on C x R.
(2.3) Remark. If Jt is the minimal surface operator, i.e., the Euler-

Lagrange operator of the area functional, on C x R, then Jt is as in (2.1)
and in this case (2.2) holds with q(ω) = \A(ω)\2

y the squared length of the
second fundamental form A(ω) of Σ c Sn~ι. For the example discussed
in §1 we have |Λ(ω)|2 = n - 2 (see, e.g., [29]).

We are going to assume that there exist positive solutions of the equation
Acu + r~2qu = 0 (Acu = Laplace-Beltrami operator on C) over the whole
cone C. This is equivalent to

where, here and subsequently, λ\ is the minimum eigenvalue of the opera-
tor LΣ = ΔΣ + q on Σ. In fact if (2.4) holds, we get positive solutions of the
form u - r~~y\φ\, where φ\ > 0 is the eigenfunction of LΣ corresponding
to λ\, and

this notation will be used subsequently. We shall also use the notation

The main theorem of this section concerns solutions u oϊJίu = 0 which

are defined over domains of the form

(2.5) G = {{rω,y): r > p{y)/2,ωe Σ} c C x R,
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where p is a given positive Lipschitz function on R satisfying

(2.6) (i) Lip p<δ, and (ii) spi(y)p'(y) > 0 a.e. yeR,

where δ e (0,1] is to be specified later.
Concerning the solution u we assume always that, again for ί G (0,1]

to be specified,

(2.7)

*S{r/p{y))-e £ J * £
where (rω,y) e G, θ e (0,1), and

(2.8) ^.{r(Oyy)>0 inG.

Theorem 1. Given any a, ε,μ, θ e (0,1), with a < ε < β in case β > 0
and 0<a<ε<lin case β = 0, there is δ = δ(ε,^, μ, θ) > 0 such that if
Jίu = 0, i/(2.2), (2.4), (2.6), (2.7), am/(2.8) hold, ifh(rω,y) = u(rω9y)-
u(rω,-y), if ρ*(y) = mdx{p(y),p(-y)}, and if there is yx = y{(δ) > 1 so
that

δ?ι+ah(p*(y)ω,y) for β > 0,

z)ω, z) > μh{p*(y)ω,y)

for all y >y\ and all ω e Σ, ίΛe/t

(**) \y\εrγiυ(rω,y)>c for all y G R, ω e Σ, y > r > p(y),
fitJ

where υ(x,y) = — (x,y) anrf wΛere o O i s independent ofy and r.

Furthermore δ can be chosen so that there is a sequence yj —• oo with

lim \yj\-εp*(yj)nv(ρ*(yj)ω,yj) = 0,

Urn | ^ r β - V (yy)7|A(^(yy)ω,y;) = 0.

(In particular the lower bound in (**) is best possible up to a factor \y \2ε

(2.9) Remarks. (I) If p = const, then the theorem gives

v(pω,y) >c\y\~ε,

so that for ε < I

u(pω,y) ^φl 1 -*

for all y > yx. (In particular, if ε < 1 and p = constant, then u cannot be
bounded.)
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(2) Note that if C is the minimizing cone considered in § 1, and Jt is the
minimal surface operator as in Remark (2.3) above, then λ\ = -{n - 2)
and hence γ\ is as in §1 (and β > 0). One should keep this in mind
when checking that hypothesis (*) of the above theorem is satisfied in
the application already discussed in § 1. In later applications of the above
theorem to the minimal surface equation (discussed in §5 and §6) condition
(*) causes us no problem, provided the "tangent cylinder at oo" of the graph
of the solution is C x R with sing C = {0}, and with C strictly minimizing
and strictly stable. (See the discussion in §5.)

(3) Unfortunately it is not possible to do without hypothesis (*) of the
theorem. For example if n = 8, C is the cone of §1 with p = 4 (i.e., C =

{x = ( * ! , . . . , * 8 ) : Σ t i ( ^ ) 2 = Σ?= 5(*/) 2})> P=ι> *nd^u = Au + 6u/r2

(this is just the linearization of the minimal surface operator on C x R;
note φ\ = 1, λ\ = —6, y\ = 2 in this case), then we have solutions

u = ar~3 arctan(y/r),

a > 0 being an arbitrary constant, so that v = ar~2/(r2 + y2), hence
v(p(y),y) = α/(l + y2), thus violating the conclusion of the theorem.
It is worth noting that in this case we can write down a large family of
solutions of Jίu = 0; in fact if ψ is any bounded (or sufficiently slow
growth) measurable function on R, then

is a solution of Jίu = 0. This general formula comes as an application of
the Poisson integral formula for the Laplacian operator in the half space;
see the discussion in §3 below. One can write down a similar general
Poisson formula (with kernel depending on β) in the general case.

For the proof of Theorem 1 we shall need two technical lemmas con-
cerning solutions of linear equations on subdomains of C x R.

We in fact need to look at solutions w of linear equations of the form

(2.11) Lw = Vi(aij(

on open subsets Ω of G, where V, = eι•- V and

(2.12) r|V/fll7(x,j0| + \au(x9y)\ + M * , y ) | + \a(x,y)\ < δ

(δ e (0,1] a parameter to be specified) for all (x9y) = (rω9y) e Ω.
(2.13) Remark. Notice of course that u itself and also the functions v

and h of Theorem 1 satisfy an equation of the form (2.11) over G, and
that for these choices (2.7) implies (2.12) with cδ in place of δ, where c
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depends only on J(. Before beginning the proof of Theorem 1 we need to
record the following lemmas; the proofs will be given in §3.

Lemma 1. Suppose ε > 0. There are constant δ = δ(ε) e (0,1/2) and
b = (ε,L)>2 such that i/(2.6)(i) holds, y0 e R, (2.11) and (2.12) hold on
the region Ω = Gn{(rω,y): r < R,\y-yo\ < R} for some R > 2bδ~ιp(y0),
and w > 0 in this region, then

w(rω,y0) < b-^+εw{b-ιrω,y0), Vr e [bδ~ιp(yo),R/2], ω e Σ.

For the second lemma we need a slight strengthening of (2.12) for β = 0
(in line with condition (2.7)); we replace (2.12) by

ί δ in case β > 0,

ii.ii/ ΓIV^I + M + N * MS { ;
on the domain Ω.

Lemma 2. Suppose M, K > 4, a, ε > 0 are given with a < ε < β if
β > 0 and a < ε < 1 if β = 0. There are δ = δ{ε,a,K,M,μ,θ,β) > 0
and b = b(ε,L) > 2 such that if (2.6) holds, p*(y) = max{p(y),p(-y)},
z satisfies z > bδ~ιp*(z), and (2.11) and (2.12)' hold in the domain
Ω = {(x9y): p*{y)/2 < r < Kz,\y\ < Kz} together with the additional
conditions

(i) — > 0, w(x, -y) = -w(x,y) on Ω,

,.., , .-i , , , ^ ί δ?i+«w(p*(z)ω, z) ifβ > 0,
(n) w(δ ιp+(z)ω,z) > <
{ } K μ { ] ; ~ I (logδ-ιrδnw(p(z)ω,z) ifβ = 0
for each ω e Σ;

(iii) P*(y)γιw(p*{y)ω,y) < Mp*(z)γiw(p*(z)ω,z)

for each y e [z, Kz] and ω e Σ, and

(iv) p*(Kz)<Mp*(z),

then

w(rω,z)>b-γι-εw{b-{rω,z) Vr e [bδ~ι p*{z),Kz/2], ωeΣ.

(2.14) Remark. Note that by iterating the inequalities of Lemmas 1 and
2 and using Harnack's inequality (see (2.15) below) we get the inequalities

w(r2ω,y0) <cl — j w(r{ω9y0)9 δ~ι p(y0) < rx < r2 < R, ω e Σ,

w(r2ω,z) >c ί — J w(rχω,z), δ~{p+(z) <rx<r2 <Kz/2, ωeΣ,
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respectively; by applying the lemmas with ε/2 in place of ε and modifying
the choice of δ accordingly, we can always arrange to get c = 1 in case
?2 > bτ\ for suitable b = b(ε) > 2 in the above inequalities.

(2.15) Remark. For later reference we here make some remarks about
estimates for solutions of equations of the form (2.11) and (2.12). Specif-
ically if (2.6), (2.11) and (2.12) hold with δ < 1 small enough to en-
sure uniform ellipticity of the equation, then for any σ > 0, by scaling
(x,y) ι-> σ~{(x,y) and applying standard Harnack theory (e.g. [12, Chap-
ter 8]), we have

sup t i ι < c inf iy, c = c(L),

for any positive solution of (2.11) on B2a(xo, yo), provided B2σ(xo, yo) c G.
In particular, by connecting any point (JCO>)Ό) with a point (x,yo) via a
sequence of balls Bσj(Xj,yo) c G with σ$ = σ, σJ+\ > CGJ (c > 1 fixed) and
Xj G Bσ._{ (Xj-1, yo) Π /, / the line segment joining x0 to x, we deduce that,
if |*o| < |*|, then

< c ( ^ J w(xo,yo), Q = Q(L),

provided w is a positive solution of (2.11), (2.12) on all of G. Thus given
any pair of points (xo,yo),(x,y) € G with p(y0) < \xo\,p(y) < \x\, and

< 1*1 w^ have

for suitable Q = Q(L) > 1, provided again that w is positive on all of G.
Proof of Theorem 1. Take any η > 0 with a + η < β in case β > 0

and a + η < 1 in case β = 0, and P, K > 2 also arbitrary for the moment,
and let δ\ = δ\ (e, α, η, θ, K, P, L, β, μ) be the smaller of the constants δ of
Lemmas 1 and 2, in case ε = η in Lemma 1 and in case M — Kp,ε = a + η
in Lemma 2. Also let δι > 0 be small enough to ensure the inequalities of
Remark (2.15) in case (2.12) holds with δι in place of δ. For the remainder
of the proof, take δ = min{<5i,<J2}> so that δ = δ(ε,a,η,θ,K,P,L,β,μ).
Assume y\ = y\(δ) is such that (*) holds with this choice of δ. Define

σ(y) = h(r,y) = / h(rω,y)φ{{ω)dω, ϋ(r,y) = / v(rω,y)φ{(ω)dω
JΣ JΣ

and define sequences {yj9 07, τ ;} inductively as follows: y\ as above and
for; = 1,2, •• define
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a yj+{ = Kyj if σ(Kyj) < Kpσ{yj) and p^Kyj) < Kpp*(yj), and yj+ϊ =
inf{y > yj\ σ(y) > Kpθj or p+(y) > KpXj) otherwise. Thus either

(i) yj+ι = Kyj and both σ(Kyj) < Kpσ(yj), p*(Kyj) < Kpp*(yj),

or

(ii) yj+{ < Kyj and either σj+\ = Kpσj or τ, +i = KpTj.

Now by Remark (2.15), we have h(yj+\ω,yj) > K~Qh(yjCo,yj). Then in
case of alternative (ii) we have

(1) h{yj+uyj) > i^Y ( ψ y hyj,yj)

for any η > 0, provided P = P(η,L,μ) is sufficiently large, which we
subsequently assume; notice that here we used <7/+i > μσj from hypothesis
(*). In case of alternative (i) we can use Lemma 2 (and in particular the
remark following it) with z = y ; and ε' = a + η in place of ε to give

(1)' kyj+uyj)(^r)
\ yj J

where γ = y\ + ε'. So in any case, regardless of which alternative holds, if
K = K(η, L) is sufficiently large we get

(2) ψYψ
\ σj / \ yj /

where άj = GJXJ. On the other hand by Remark (2.15) we have

c~ιϋ(r,0) < h!MA < cϋ(r,0) for r > yj, c = c{L)\

hence, choosing K = K{η,L) sufficiently large, we see that (2) implies

γ ψγ v{yj,0),
σj \ yj

where γ' = y\ + a + 2η, η1 — 2η. Iterating (2) for j = 1,2, , we conclude

^j ϋ(yu0) V ; > 1 .

By hypothesis (*) and Remark (2.15), we then conclude that for each r > y\

,„ e(f,o)>c(

where c > 0 is independent of r.
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Now on the other hand by Remark (2.15) and Lemma 1 we have

v(r, 0) < cv(r, r) < c(r/s)~γi+ηϋ(s, r), dp{r) <s<r,

where d = d(η). Applying Harnack again this gives

v(r, 0) < c(r/s)-γi+ηϋ(s, r), c = c(η), p(r) <s<r.

Similarly

ϋ{r,0) < c(r/s)~γi+ηϋ{s,-r), p(-r) <s<r.

In view of the arbitrariness of η, and the fact that p*(y) < p(0) + δ\y\
by (2.6) and \h(p*(y),y)\ < 2δ\y\ by (2.7), the proof is now completed
by combining inequality (3) and the last pair of inequalities. (We choose

For upper bounds, we let zk —> oo be a sequence satisfying

(4) sup p*(y)yihp*(y),y) < κpp*(zkyιh(P*(zk),zk),
ye[zk,Kzk]

p*(Kzk)<Kpp4zk).

Notice that there must be such a sequence for K sufficiently large, otherwise
we would deduce that ρ*(y)γι+ιh(P*(y)>y) > cyP/1 f°Γ all sufficiently large
y, thus contradicting the fact that h(p*(y),y) < cyQ by Remark (2.15).

Then for sufficiently large k, Lemma 2 applies to give

h(zk,2zk) > (-§—,) h(p.(2zk),2zk),
\p*(2zk)J

where γ = γ\ -f a + η, while on the other hand (2.15) and Lemma 1 tell us
that for any η > 0 and sufficiently large k

zk

with c independent of k.
Hence

(5) (

where ε1 = a 4- 2η. Thus, writing y = zk we have

y-{(h(p,(2y),2y) -h(P*(2y),y)) < cyε'P*

and hence by the mean value theorem
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for some θ e (1,2). Since p+(2y) < Kpp*(y) < Kpp*{θy) we get, by

Remark (2.15),

v(p*(yf),yf)<c(yΎ'p*(yrΆ,
where y' = θy.

Finally by combining (4) and (5) and using p*{y)yχh{p*(y),y) <
cp*(2yyιh(p.(2y)92y) (by (2.15) and (4)) we deduce that

In view of the arbitrariness of η, the final limit statements of the theorem
are now proved.

3. Proof of Lemmas 1 and 2

Before beginning the proofs, we need some preliminary observations.
First note that in terms of the coordinates (r, ω, y) G (0, oo) x Σ x R we can
express the operator L as

T 2 n d ( n 2 d u \ d l χ i 2r
Lu = r ΊΓr\r dT) + W + r LΣU'

where LΣ is as in §2. Then letting

u(r,y) = I u(rώ,y)φι(ω)dω, f{r,y) f f{rω,y)φ{dω,
JΣ JΣ

where φ\ > 0 is the first eigenfunction of LΣ, we see that if Lu = f then

so that if w(r, y) = rγύ, then after a straightforward computation we obtain

(3.1) r-<

In particular, if γ = y\ as in §2, and β is also as in §2, then

In view of these facts it is not surprising that solutions of the equation

where β > 0 is a given constant, will play an important role in the proofs
of Lemmas 1 and 2. Note that w = 1 and w = r~β are solutions of this
equation. Concerning solutions of (3.3) we need the following lemmas:
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(3.4) Lemma. (1) If w is a positive C2 solution o/(3.3) on 0 < r <
2,\y\ < 1, then

w(t, 0) < cw(s, 0), 0 < s < t < 1,

where c depends only on β. In case f0<r<ι. ^ \Dw\2rx+2β drdy < oo the

conclusion holds for all t,s9 0 < t,s < 1.

(2) If-;— > 0> w(r,y) = -w(r, -y), 0 < r < 2, M < 2, and in addition
dy

/o<r<i,w<i

Proof First note that if w is as in (2) then δ~ι(w(r,y + δ) - w(r,y))
is a positive solution on 0 < r < 2, \y\ < 2 - δ for 0 < δ < 1, and so after
a change of scale we can apply the first part of the lemma. One readily
checks that this leads to the required inequality. Thus it remains to prove
(1). For this we need the monotonicity result of the following lemma.

(3.5) Lemma. Let P denote the operator on the left of (3.3). Then

fDι{Q)\Dw\2rι+2Pdrdy < oo and Pw > 0 (< 0) in A(0) imply that

P~3~β fD ,Qwrι+P is an increasing (resp. decreasing) function of p, 0 <

p < 1 - \ζ\. HereDp(ζ) = {(r,y): r > 0,(r-ξ)2 + (y-η)2 < p2}, ζ = (ξ,η)

with ξ < 0, > 0 according as Pw > 0, < 0 respectively.

Proof First note that

^ * ! dwdv\ϊ+β

dr dr dy dy) v J

for each nonnegative C2 function υ on 0 < r < 1, \y\ < 1, with v vanishing
near \y\ = 1 and near r = 0,1. Using a sequence of v approximating the
characteristic function of Dp(ζ) in the appropriate sense, we get

j^r1^ > 0 (< 0 resp.),

where dw/dη denotes differentiation in the outward unit normal direction
of Γ, Γ = dDpΠ{r > 0}. Notice that there is no boundary term over {r = 0}
because of the assumption fD ( 0 ) \Dw\2rx+2β < oo.

Now using polar coordinates p, θ with r = ξ + p cos θ,y = η + p sin θ,
we see that this last inequality can be written as

/ ^-{ξ+pcosθ)β+ι >0(<0resp.), ω(p) = cos-ι(-ξ/p)e[0,π],
J-ω{p) °P
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which implies (since signω'(p) = -signed)

£- /
dp J-

rω{p)

/ w{peiθ)(ξ + pcosθ)ι+β dθ>0(<0 resp .) ,
J-ω(p)

l-ω(p)

f(O{p)

X
' -ω(p)

which in turn can be written

- ° ( - ° r e s p°*
Thus p~2~β fΓw(r,y)rι+β is increasing (respectively decreasing) as a func-
tion of p on (0,1 - |ζ|), and the required monotonicity follows from this
by integration.

Proof of Lemma (3.4)(1). By the usual Harnack theory for uniformly
elliptic equations in R2 there is a constant K > 1 such that for any fixed
s e ( 0 , l ) , M < l / 2

(*) κw(s, ζ) > w(r,y) > κ~xw{s, ζ), \y - ζ\ < s/3, \r - s\ < s/2.

Let WK = min{w,Kw(s,0)}, K > 1. Since min{t,K} is a concave increas-
ing function of t, we have that WK satisfies PWK < 0 in the appropriate
weak sense, and fD ( 0 ) \Dwκ\

2rx+β < oo for p < 1, so by Lemma (3.5)

(i) w(s,0) >s~3~β ί wκr
ι^drdy > Γ3~β ί wκr

ι+β

JDS(S,0) JDt{s,0)

foτs<t< 1. Now substituting t in place of s everywhere in (*), we have

wκr
ι+β drdy>cw(t,0)[

Dt(s,0)

for sufficiently large K, which by (i) gives the required result. This com-
pletes the proof of the first part of Lemma (3.4)(1).

To prove the second inequality of Lemma (3.4)(1), we first note, by (*)
above, for s e (0,1/2), \z\ < 1/2,

(ii) w(s9 z) < cs~3~β f wrι+β drdy < cΓ3~β ί wrι+β drdy
JDS(0,Z) JDt{0)

(by (3.5)) for 0 < t < 1 (and in particular supD ( 0 ) w < oo). On the other

hand, for any θ e (0,1), t e (0,1),

Γ3~β I wruβ drdy < cθ sup w + Γ3~β / wrι+β drdy
(iii) -*Dί{0) Dt{0) JDtn{r>θt)

< cθ sup w + c'w(t, 0) by (*),
Dt(0)
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where c' depends only on θ and β. The proof now follows directly from
(ii), (iii), and (*).

Proof of Lemma 1. Evidently it is enough to prove the lemma with
yo = 0 and p(0) = 1. If the lemma is false for a given b, ε, by (2.15) we get
solutions W£ of (2.11), (2.12), with£ = k~ι andRk in place of R, such that
wk(rkω,0) > cb~γι+εwk(b~ιrkω,0) for some rk satisfying bk <rk < Rk/2
with c = c(L). Then let wk(r,y) = fΣwk(rω,y)φ\ dω and

By the Harnack inequality and the related continuity estimates a subse-
quence (henceforth denoted simply ψk) converges locally uniformly to a
positive solution ψ of

S ds

satisfying

ψ(l,0)>cbεψ(b-{,0).

However this contradicts the first part of Lemma (3.4)(1) for suitably cho-
sen b = b(e,L).

Proof of Lemma 2. We first consider the case β > 0. Let a,ε,K,M
be given to satisfy the conditions stated. Suppose there are b > 4 and
solutions wk of (2.11), (2.12)' such that hypotheses (i)-(iii) of Lemma 2
hold with δ = k~x and

Ω = Ω* = {(rω,y): p.(y)/2 < r < Kzk, \y\ < Kzk},

where bkp*(zk) < zk, and /?* depending on k satisfies (2.6) with δ — k~ι.
Further, let

Uk = {(r,y): p.(y)/2 < r < Kzk, \y\ < Kzk) c R2,

&k(r,y) = ry I wk(rω,y)φι dω, (r,y) G Uk, γ = γ{ + ε,
JΣ

where εk = Mι+εwk(p*(zk),zk). Notice that then wk = 0 in a neighbor-
hood of the segment {r = p*(y), \y\ < Kzk] by hypotheses (iii), (iv). Also,
let {yk} be a given sequence in [-Kzk/2,Kzk/2] and for R > 0, z e R

DR(z) = {(r,y): \y-z\< R,p.(y) < r < /?},

and abbreviate DRk = DR(yk).
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Let yk e [-Kzk/2,Kzk/2], 0 < Rk < zk. First note that by (3.1) and
Remark (2.15) wk satisfies on DRkk an equation of the form

(1) -μr~2wk + r-'-β — [ r ^ - ^ J + -^ = r

 2akwk,

where μ = -(γ2 - (n - 3)y - λ{) = ε(£ - ε) > 0, where β' = β - 2ε, and
where \ak\ < ck~{. Then we take a C 1 function ζ with ζ = 1 on DRk/2ik,
ζ = 0 outside i ) ^ ^ , 0 < C < 1, and |Z)ζ| < ci?^1, and substitute into the
weak version of the equation. This gives

(2) ί (μr-ι+P'w2 + r{+P'\Dwk\
2)<c f w2rx^'\Dζ\2drdy.

^DRk/2,k Rk>k

Replacing ζ by ζQ and using Young's inequality, this leads directly to

— I k I ' I ' k k

with c = c(Q) and hence, using Remark (2.15) again, we conclude

(3) f
jDRDRk/2,k

Now let rfc G [bkp*(zk),Kzk/2] be the first value of r such that strict
inequality in wk(r,zk) > wk(b~ιr,zk) fails to hold. We assume such rk

exists and proceed to get a contradiction. Then by definition of rk and by
hypothesis (ii) of Lemma 2 we obtain

M) ™k{rk>Zk) = wk{b-{rk,zk) >wk{kp*(zk),zk)

> ck*-«wk(p*(zk), zk) = ck£-°M-ι-εεk.

Hence if we use Rk = 2rk/K and yk e [~Kzk/2,Kzk/2] in the above
computations, we conclude from (2.15) and (4) that

(5) wk(Rk, zk) < c{K)wk{rk, zk) and ίk -> 0,
wk{Rk,zk)

so that (2.15) and (3) give, for sufficiently large k,

(6) / r-^\w2 + r2\Dwk\
2) < c(M,K)w2(rk,zk)r^.

J°rk,k

Define ψk(s,η) = wk(rks,rkη)/wk(rk,zk), and note by (4) that
ψk(l,zk/rk) = ψk(b~{,zk/rk); also note that then ψk is defined over
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ρ*{rkη)/{2rk) < s < Kzk/(2rk), \η\ < Kzk/rk, and, by (5),

(6)' / (s-ι+β'ψ2+sι+β'\Dψk\
2)<c(M,K),

J\η—yk/rk\<l> P*(rkrl)/rk<s<l

where ψk = (ψk - ek/wk(rk, zk))+. Note that εk/wk(rk, zk) -• 0 by (5) and
(2.15).

Then define ζ - liminf^oo zkjrk e [2K~ι,oo], and consider the cases:

(a) C < oo, (b) C = oo.

In case (a) we define

ψk(s,η) = ψk(sζ,ηζ),

while in case (b) we define

In either case (by (6)') we get a subsequence of ψk converging to a solution
ψ of

s1 ds \ ds J dη2

with

= 0

)

in case (a), and

in case (b), and in either case, again by (6)',

\Dψ\2sι+β' dsdη<oo,
lDx{z)

valid for all z e R in case (b) and for all \z\ < K/2 in case (a). But then
by (3.1), ψ = s~εψ satisfies

d2ψ

and (7) and (7)' contradict the result of Lemma (3.4) for b = b(ε,L)
sufficiently large. This completes the proof in case β > 0.

To handle the case jί = 0we first note that the obvious modifications of
the argument leading to (3) above (using /?' = 0, γ = y\ in all arguments)
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establish only that

I r\Dwk\
2ζ2 < cRk{ε2

k + w2

k(Rk, zk))

(8) D*k'k

+ ck~ι / ζ2r-ι(r/pky
θwkwk,

where c = c{M,K) and pk = p*(Kzk). Since dwk/dy > 0 and wk < εk in
a neighborhood of the boundary segment r = /?*(y), -Kzk < y < Kzk, we
have

DRk,k Π {(r,y): wk(r,y) > 0} c Z ) ^ Λ n {(r,y): r > /? }̂.

Using the fact that

for any / with compact support in the region r > 0, we thus conclude
(using this with / = {wkζ)2) that

Rk,k Pk

<cf r ( f ) \Dwk\
2ζ2

Then by (8) and Young's inequality we obtain

(9) ί r\Dwk\
2 < cRk(ε2

k + w2

k(Rk, zk))
jDRk/2,k

(cf. (3)). Now in particular this guarantees that, by selecting yk = zk,

(10) / r\Dwk\
2<c(M,K)(ε2

k + w2

k(Rk,zk))Rk.
J pk<r<Rkμ,\y-zk\<Rkμ

Suppose now that Rk > kp{zk) (> K~pkpk) and

(11) liminf % ( J R / ^ } = Mx<oo.
k^oo εk

(We give a barrier argument to contradict (11).) First note that by (10)
we can select ζk with zk < ζk < zk + Rk/4 such that

(12) fk r\Dwk(r,ζk)\dr<c(εk + wk(Rk,zk))Rk, c = c(M,K).
JPk

Let Λfc denote the region of R2 defined by

Λfc = {(r9y): pk<r< Rk/4, zk - Rk/4 <y< ζk}.



ENTIRE SOLUTIONS OF THE MINIMAL SURFACE EQUATION 661

By (2.15) and the definition of εk we would have d = d(M,M\9K) > 1
such that

(13) wk(r,y) < dεk on r = pk, Rk/4, zk - Rk/4 < y < ζk.

Keeping in mind (11), (12) and the fact that dwk/dy > 0, it is then
evidently possible to select φk on 0 < r < Rk/4, zk - Rk/4 < y < ζk such
that m i n ^ = Mεk\φk > wk on 0 < r < Rk/4, y = zk - Rk/4, ζk, φk =
cMxεkRk > wk on {r = Rk/4,zk - Rk/4 < y < ζk}\ dφk{r,y)/dr < 0 for
0 < r < Rk/4,y = ζk, zk - Rk/4, and

r(Φk(r, Ck) + Φk(r, zk - Rk/4)) < cεkR%, c = c{M,K).
Pk

Then since the operator

can be interpreted as the Laplacian operator on R3 when applied to func-
tions expressed in terms of the cylindrical coordinates (r,y), where r = \x'\,
y = x3 for x = (jc1,*2,*3) = (x',x3) e R3, we can use a Green's func-
tion representation to obtain a solution υ of the equation Pυ = 0 on
{(r,y): 0 < r < zk,zk - Rk/4 < y < ζk} such that the following hold:
v = v(r9y)9 v > dεk everywhere, (rdv/dr)(0+,y) = 0, and v = φk on
{r > 0} Π d{(r9y) :0<r<zk,zk- Rk/4 <y< ζk}.

Notice that, since rdv/dr satisfies the same equation as v, by the max-
imum principle we have dv/dr < 0. Then, by direct computation, for
sufficiently large k the function ϋ = (2 - (r/pk)~θ)υ is a supersolution on
Ak of the equation (having the form (1) with ak = -cθ2{r/pk)~~θ). Then
by the appropriate version of the maximum principle (see e.g., [20, p. 73])
we conclude that wk < ϋ on Λ^ for all sufficiently large k, and in particular
wk(r,zk) < cεk for pk < r < Rk, with c independent of k, thus contra-
dicting the hypothesis (ii) of Lemma 2 (with δ - k~ι). Hence we have
established (contrary to (11)) that εk/wk{Rk,zk) —> 0. The remainder of
the proof is now as for the case β > 0.

Note. The above proof (for the case β = 0) would be valid if in hy-
pothesis (ii) we replace (logδ~ι)a by any function φ{δ) | oo as δ [ 0;
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the choice (logδ~ι)a happens to be convenient from the point of view of
applications to exterior solutions in §5 and §6.

4. Tangent cylinders at oo for exterior solutions

The minimal surface operator / on Ω c R" is the Euler-Lagrange
operator of the area functional /Ω y/\ + \Du\2, so that

(4.1)
i=\

or, alternatively,

Our main purpose in this section is to derive a sufficient condition for
the existence of a unique tangent cylinder at oo for exterior solutions of
JKu — 0. The terminology is explained below. This will be of fundamental
importance in our discussion in the next section of asymptotic behavior
of exterior and entire solutions.

To begin we need some technical preliminaries concerning solutions of
(4.1), including some compactness results slightly extending previous work
of Miranda [16].

(4.2) Lemma. Suppose n > 2, and Gk - graph uk is any sequence of
graphs of solutions uk e C2(Ωk) of the minimal surface equation, with Ωk

open in R" and either

(i) ΩkDBRk(0)~BPk(0) with Rk]oo and pk[Q

or

(ii) Gk is minimizing (as a current) and closed (as a set) in Rπ + 1.

Then there are a subsequence Gkι and a multiplicity 1 minimizing current
H in Rn+ι, with Gkt — H in the weak sense of currents in R"+1 - { 0 } x R
and Gkι —• spt H locally in the Hausdorff distance sense on RΛ+1 ~ {0} x R,
where spt// denotes the support of H. Furthermore, for any H obtained in
this way, either

(*) H = Hi x R with Hx = <9|[£i]| minimizing in Rn

for some open Eλ c R " , or

(**) reg// = graph w,
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where w e C2(Ω), Ω an open connected subset ofRn, with graphic a closed
subset ofRn+ι (so sing/f = 0 in this latter case), and \uv\—κx> uniformly
on compact subsets ofRn ~ (H\ U{0}) in case (*), and uniformly on compact
subsets ofW ~ (Ω u {0}) in case (**).

Ifyμ E R" is such that {u^iyk')} is bounded and y^ —> y e R" ~ {0},
then, in case (*), y e sptH[ and

lim sup \Duv\ = oo for each p > 0,
k'-+ooBp{y)

while //(**) Ao/ώ ί/zê  y e Ω

lim sup sup |Z)Kfc/| < oc ybr some p > 0.

Here and subsequently [Zϊ1]! denotes the current obtained by integration
over the set E of smooth A2-forms with compact support in R".

Remarks. (1) Notice that hypothesis (i) allows the possibility that each
Ωfc omits a neighborhood of the origin; in case each Ω^ contains all of Bnk,
the convergence of G^ to H is actually in all of Rn+\ as it is in the case
of hypothesis (ii). We emphasize that in any case H is a current in R"+1

which minimizes in RΛ+1.
(2) It is an open question whether or not it must automatically be true

that each Ω^ = Rn in case (ii); notice that in case (ii) we must necessarily
have u —^4-ooorw—• — ooon approach to any point of 9Ω^ by virtue of
the closedness of G> and the openness of Ω^.

(3) Case (*) includes the possibility H = 0, which will be the case if
inf Uk —> oo for example.

The following lemma gives us precise information concerning Ω in case
w is as in Lemma (4.2).

(4.3) Lemma. Suppose n > 2 and w e C2(Ω) is such that graph w is
closed in Rn+ι (as a set) and minimizing in Rn+ι (as a current). Then Ω is
connected and exactly one of the following three alternatives holds:

(i) Ω = Rn.
(ii) Rn — Ω has exactly one component, <9|[Ω]| is minimizing in Rn,

spt<9[Ω] = <9Ω, and either limx^yxeQw(x) = +oo Vy e <9Ω or
limx^yiXeΩ w(x) = -oo Vy e Ω.

(iii) Rn — Ω has exactly two components F+,F- with Γ+ = <9[/v] and
Γ_ = dlF-l minimizing in Rn, 0[ΩJ = -T+ - Γ_,spt<9[[Ω] = <9Ω =
spt Γ+ U spt Γ_, spt T+ Π spt Γ_ = 0, and l i m ^ ^ ^ w(x) = +oo Vy e
sptΓ+, lim;c_+);;cGΩw(-*) = -oo Vy e sptTL, where sptΓ denotes support
ofT.
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Proof of Lemma (4.2). In case (ii) we are assuming that Gk is mini-
mizing, hence

(1) \GknBp(ξ)\<cp» V£eR"+1, p>0.

In case (i) we need to recall (see, e.g., [25]) that each Gk minimizes in
Ωfc x R so that (1) holds for p < dist{£', dΩk}/2, ξ1 denoting the projection
of ξ onto its first n-coordinates. Define, for p > 0,

!

p ifu>p,

u if \u\ < p,

- p if u < -p.

Multiplying by up in (4.1), and using the divergence theorem over the set
Bp(0)~BPk(0)9 we obtain

\Gk Π {(x,y): pk < \x\ < p, \y\ < p}\ < cpn

for sufficiently large k. Thus in case (i) we get

(2) \GknBp(ξ)\<cpn V£eR"+1, p > 0,

where Gk = GkΠ {(x,y) e Rn x R: pk < \x\ < Rk} with pk | 0,Rk T oo.
Of course (2) is trivially implied by (1) in case (ii), so we may use (2)
in both case (i) and case (ii). Then by the standard compactness and
regularity theory for codimension 1 minimizers (see, e.g., [24], [9]) there
is a subsequence Gkι such that Gk> -* H in Rn+ι ~ {0} x R, where H is
minimizing on Rw+1, Gkι —• spti/ locally in the Hausdorff distance sense
in R"+1 - {0} x R, and H = d p i for some open E c R"+1. Actually, we
first get that H is pnly minimizing on R"+1 — {0} x R, but in view of the
bounds (2) it is straightforward to check that H is minimizing on all of
Rn+ι and that

(3) MBp{y)H<cpn Vp>0,yeRn+l,

where MB denotes mass taken in B\ we emphasize that (3) also holds for
y e {0} x R.

Next we recall [5] that regί/ is connected. Since the Gk are graphs,
reg// has smooth unit normal v such that v en+\ > 0. But since Av en+\ +
\A\2v en+\ = 0 on reg//, where A denotes the second fundamental form
of reg// (see, e.g., [4]), we then have by the Hopf maximum principle and
connectivity of reg// that either v en+\ = 0 or v en+\ > 0 everywhere
on reg//. In the former case (since dH = 0), the homotopy formula for
currents gives (*) as required. In the latter case, since Gkι converges in the
C2 sense locally near points of reg// ~ {0} x R and the Gkι are graphs, we
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see that reg/7 = graphs for some w e C2(Ω), Ω c R " open. Note that
in either case the required uniform convergence of \uk>\ follows directly
from the fact that Gkι converges to spt H in the Hausdorff distance sense
on Rn+ι ~ {0} x R.

To prove graph w is closed, take Xo G dΩ arbitrary, and assume w is
bounded in a component Ωσ of Bσ(xo) Π Ω for some σ > 0. If also

then we would have <%*n~ι(singH) > 0 thus contradicting the regular-
ity theory for codimension 1 minimizing currents. On the other hand
βPn~ι(Bσ(xo) Π dΩσ) = 0 together with boundedness of w on Ωσ implies
(by the Poincare inequality) that Ωσ is the unique component of Bσ(x0)Γ\Ω
and (by a well-known argument based on an idea of R. Finn [1 l]-see, e.g.,
the appendix of [22]) that w extends to give a C 2 solution of the minimal
surface equation on all of Bσ(xo), contradicting the fact that xo Φ reg/ί.
Thus w is unbounded on Ωσ for each σ > 0. Now we can show that there
is no sequence y, —> Xo, yj G Ω with w(yj) bounded. If there were such
a sequence, the unboundedness of w shown above would imply that there
are sequences σ, | 0, Zj —• xo with

\u(zj)-u(yj)\>2 and zhy^Ah

where Aj is the component of Bσj(xo) n Ω containing yj. Since GJ [ 0,
it follows that H contains a line segment of length 1 in the vertical line
{(xo, 0) + λen+x: λ e R}. We evidently have inf5σ(z)Πreg7/ v en+\ = 0 for
each z in this line segment. But then, since Au - en+\ < 0 (as we already
mentioned above) the Harnack theory of [5] implies v - en+\ = 0, thus
contradicting the fact that v en+\ > 0 on reg/ί. Hence there is no sequence
yj —• XQ with w(yj) bounded, and we conclude that graph w is closed, as
required.

Finally, suppose that {w^'Ov)} is bounded, with yk, ->y φ 0. By virtue
of the convergence of Gkι to spt// in the Hausdorff distance sense locally
in R" ~ {0} x R, we evidently have y e spt Hi in case (*) and y e Ω in
case (**). Further in case (**) the Allard-De Giorgi regularity theorem
implies that G^ converges in the C 1 sense to reg// (= graph w) locally
in Ω x R ~ {0} x R. Thus in particular limsup^/^^sup^^) \Dukf\ <
oo for some p > 0 as required in this case. In case (*) we must have
liminffc/^oo sup^Q,) \Duk/\ = oo for any p > 0, otherwise s\xpBp^ \Dukr\ is
bounded for some p > 0, and then by the regularity theory for quasilinear
equations, some subsequence of Gk/ converges in the C2 sense to a C 2

graph near a point of {y} x R, thus contradicting (*).
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Proof of Lemma (4.3). Let H = graphs. H and hence Ω are con-
nected by [5], so R"+1 ~ H has exactly two components H+, H-, where H+
contains {(x9y): x e Ω,y > w(x)} and H- contains {(x9y): x e Ω,y <
w(x)}. Indeed assuming H is appropriately oriented, we have 9[[i/+]| =
-H = -d\H-\. Likewise if H±(t) = {(x,y ± ten+ϊ): (x9y) e H±}9 then
^ I ^ ± ( 0 I = ±graph(u>±t). Also H+(t) evidently converges to H+ ~ Ω x R
as £ —• oo in the L/oc sense. Thus by the usual compactness theory for min-
imizing currents, H+ ~ Ω x R = 0 or else d[#+ ~ Ω x R] is minimizing
on Rw+1. Likewise //_ - Ω x R = 0 or else <9[[i/_ ~ Ω x R]| is minimizing
on Rπ + 1. (Notice that here we use the area estimates \H n Bp(ζ)\ < cρn

Vξ € RΛ+1, /? > 0, which holds since graphs is minimizing in RΛ+1.)
Notice also that H± ~ Ω x R are cylinders F ± x R where F± c R " , each

F± being a closed connected subset of Rn — Ω and F+nF- c <9Ω. Then
Γ± = ^ [ F i l are minimizing in R" and, since graphs is closed,

spt T± = dF±, dΩ = sptT+U spt Γ_.

Since T+ lies on one side of Γ_ in the sense that the interiors of F± are
disjoint, by [28] we also have

F + Π F _ = 0.

Throughout this discussion we allow the possibility that one or both of F±
are empty; in this case of course we do not need the result of [28]. The
remaining claims of (4.3) now follow directly from the definition of F±.

Next we recall (see [27], or [16] for the case U = 0) that the graph of
any C2(Rn ~ U) solution u of J(u = 0, U bounded and open, n > 3,
either has "tangent cylinders" C x R at oo, where C is a multiplicity 1
minimizing cone in R" with singular vertex at 0, or is asymptotic to a
plane at oo. The latter possibility occurs if and only if u has bounded
gradient on R" — U\ see, e.g., [27] for a discussion. The precise meaning
of the former alternative, when \Du\ is unbounded, is as follows: For each
λ > 0 let (A): R*+1 — Rn+ι denote the homothety x •-> λx. Then for each
sequence λ^ | 0 there is a subsequence λk> such that

(4.4) (λ*0#graphκ-> C x R ,

where C is minimizing, C = d^E^ for some open E in R", C is a cone (i.e.,
(A)#C = C VA > 0), 0 € singC. The convergence in (4.4) is in the weak
sense of currents, where graph u is oriented with its upward unit normal
(-Du, l)/y/\ + \Du\2 and is of course assigned multiplicity 1. (4.4) is
a direct consequence of Lemma (4.2) and the monotonicity formula for
minimal hypersurfaces. The fact that 0 e singC, i.e., that C is not a
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hyperplane, requires a little more argument, at least in the case of exterior
solutions. See, e.g., [27] for details.

Notice that it is not clear that C is independent of the choice of se-
quences λk,λkt; the following theorem says that it is so independent if
singC = {0}.

Theorem 2. If graph u has at least one tangent cylinder C x R with
singC = {0}, then C x R is the unique tangent cylinder of graph u at oo;
that is,

(λ)#graphw-^CxR asλ 10.

Remark. Of course this theorem is useful in that it already gives a fairly
precise picture of the geometric shape of graph u near oo. This picture will
be made considerably more precise in Theorem 4 of the next section.

Proof The proof is based on Lemma 1 of §2 and on the theory of
unique asymptotic limits for elliptic evolution equations developed in [23]
and [26]. Let G = graph u be equipped with multiplicity 1 and oriented via
the upward unit normal, so that in the sense of currents spt dG c d U x R.
For 0 < p < R < oo let

U(p,R) = {(x,y) e Rn+ι: p<\x\< R9 \y\ < R},

U0(p,R) = {x eRn: p <\x\ < R}.

We identify U0(p,R) with U(p,R) ΠR" x {0}.
The Allard-De Giorgi regularity theorem (see, e.g., [24] or [1]) guaran-

tees that weak convergence, in the sense of (4.4) above, implies C2 conver-
gence near regC x R; that is, letting μk I 0 be such that (βkhG —> C x R
and letting Rk = μ^1, we have that there is a sequence θk [ 0 such that

GnU(Rk/2,e~lRk) c graphs c G,

where wk e C2(U(Rk/4,2θ~ιRk) Π(Cx R)) with

sup(\x\-{\wk(x,y)\ + \Vwk(x,y)\ + |*| \V2wk(x,y)\) < θk.

Now let S be the slice of G by y = 0; that is,

(1) S = Gπ(Rnx{0}),

and for constants a e (0,1) and δ > 0, and for k > k(β,a), let ψk e
C2(U0(Rk/4,Rk) Π C), with 2θ~ιRk < Rk < oo, be the maximal C 2 exten-
sion of wk\Uo{Rk/4,2θ^ιRk) Π C satisfying the restrictions

S Π U0(Rk/2,Rk/2) c graph ψk c S,

sup(\x\-ι\ψk(x)\ + \Vψk(x)\ + \x 2
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By virtue of (2) and the fact that for each sequence μ ; [ 0 there is a
subsequence μy [ 0 such that (μy)#G converges weakly to some vertical
cylinder C x R and also the fact that the convergence is C 2 near points of
the regular set of CxR, we note that for each θ > 0 and fixed k = k(θ, δ, a),
we can find

(3) wkeC2(Ωk),

Qk = {(x,y): Rk/3 + θ\y\ < \x\ < 3Rk,\y\ < 3Rk}Π(CxR)

with

GnΩ'fc c graph wk c G,

(4) ΩJ, = {(χ9y): Rk/2 + 2θ\y\ < \x\ < 2Rk,\y\ < 2Rk},

sup(\x\-ι\wk(x,y)\ + \Vwk(x,y)\ + |JC| \V2wk(x,y)\) < η(δ),

with η(δ) I 0 as δ | 0. Notice that

(5) Wk\Ωk Π C is an extension ^ of ^

with ^ e C2(Ωk Π C) and

(6) sup(\x\-ι\ψk(x)\ + iV^(x)| + |JC| \V2ψk(x)\) < η(δ).

Furthermore since G is a graph over R" ~ t/, and Σ = C D Sn~x is
connected, after replacing u by -w if necessary, it follows that

(7) vk = dwk/dy > 0 on Ω,k.

Indeed we notice that in fact

(8) vk = l/\Du\(ξ),

where ζ e Rn ~ U is such that £ + u(ξ)en+\ = (x,y) + %(x,y)^c(*)> ^c
being the unit normal for C.

Since G is minimal, i.e., stationary with respect to the area functional,
we know that wk satisfies J C X R % = 0 on Ω^, where ^#CXR is the minimal
surface operator on C x R. Thus by (4) we deduce that both wk and vk

(as in (7)) satisfy equations of the form (2.11), (2.12) on Ω^, with cη{δ)
in place of δ. Then in view of (7) we can apply Lemma 1 to deduce that
for small enough δ and 0, with θ as in (4), and for k = k(δ, θ,a)

(9) vk(x,0) < cθk(r/Rky», Rk/2 < r = \x\ < 2Rk,

for some μ = μ(L) e (0,1). Furthermore by (6) and the Schauder esti-
mates, together with (2.15), we have that

(10) \x\-ιvk(x,y) + \Vvk(x,y)\ + \x\\V2vk(x,y)\ <
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Rk/2 < \x\ < 2Rk, \y\ < 2Rk, where c = c(θ). Thus, along y = 0, the
equation JfcxRWk = 0 c a n be written, after splitting off the y-derivatives
and using (10) together with interior Schauder estimates,

(11) j

where

(12) \x\-ι\f(x)\ + \Vf(x)\ + \x\\V2f(x)\<cθk(\x\/Rk)-^ xeCnΩ'k.

Next we need some estimates on the quantity ξ u(ξ), ξ e G, where v is
the unit normal of G at ξ. First note that by the monotonicity formula,

and therefore in particular for sufficiently large k (> k{δ))

03) / < * •

GnU(Rk,oo) K\ ^

Now at the point ζ = {x9y) + wk(x,y)uc{x) we have (see, e.g., [26, p.
219])

(14) { i/({) = (1 + ^

where w^(x,y) = λ~ιw(λx,λy). On the other hand by homogeneity

^CxRW{λ)(ξ)=λJ?CχRW(λξ)9

so that wk = jχw^\x9y)\χ=\9 (x9y) G Ω'k, satisfies an equation of the form

= i^p γλf
{λ\x,y)\x=x = \x\-2(-f(x,y) + (x,y) Vf{x,y))9

where 2? is the linearization of ^#CXR at wk, so that Jϊ? = 0 has the
general form of (2.11), (2.12) with η(δ) in place of δ. Hence the usual sup
estimates for divergence-form equations guarantee that if (xo9yo) G C x R
with

Ap = {(x,y) G C x R : | x - XO\ < p,\y - yo\ < p} C ΩjJ,

where

Ω£ = {(x,y) G C x R: \Rk + 3β|y| < |JC| < fΛΛ, |y| < \Rk),

then, since ^#CXR^ ( A ) = 0?

/ wk.
Ap/2



670 LEON SIMON

In view of (14) this guarantees that if ξ0 e G and { { G G : | { - { O I < P } C

graph(ώA:|Ω
/

A:), then

sup (ζ • v{ξ))2 < cp~"
ζeG,\ζ-ζo\<p/2 JGn\ξ-ξo\<p

and if in addition & € S, then by (8) and (9)

p~2 sup ({ v\ξ)f < cp-"-2 f (ζ v{ξ)f
sn\ξ-ξQ\<pi2 JGn\ξ-ξQ\<P

p p ({ \ξ)f p f (ζ v{ξ)f
(15) sn\ξ-ξQ\<pi2 JGn\ξ-ξQ\<P

where v1 = (Du,0)/\Du\ is the unit normal of S in Rn x {0}.
By combining (13) and (15) we get

sup _ (\ξ\-ιξ v'(ξ))2<cδ9
SΠU0(3Rk/4,5Rk/4)

f
Js
f

JsnU0(3Rk/4,5Rk/4) l^l"+ '

On the other hand since |x|~2/ in (11) is geometrically just the mean
curvature of SΊΊΩ^, we deduce, from (12) and the monotonicity formula,

r2-n / Mξ\\-R2

k-"ί
Jsn{\ξ\=r} Js

ί (ζu'Ϋ ( r \~μ

( r \
SΠ{Rk<\ξ\<r} \ζ\ \KkJ

for Rk<r< 5Rk/4, which (since |V|{| |2 = 1 - (ξ v'(ξ))2/\ζ\2) gives us
from (16) that

(18) r2~»\Sn {\ξ\ = r}\ < | Σ | + cδ, Rk<r< \ R k .

We now want to show that we can apply the theory developed in [23] and
[26] to show that Rk = oo and ψk(x)/\x\ -*• 0. (Of course this establishes
the required uniqueness of C x R as required by virtue of (3) above, for
example.) We fix k = k(δ, θ,a) so that the above estimates are valid, and
let φkeC2(Cn U0{Rk, 5Rk/4)) be such that

\ (Φk{x)/\x\)2

c graph ψk\Uo (^Rk, ^R^j Π C.



ENTIRE SOLUTIONS OF THE MINIMAL SURFACE EQUATION 671

Then by (11) and (12), φk satisfies

( 2 0 ) I*ΓΊ/(*)I + IV/WI + \χ\ |V2/(*)I < cθk ( ^

for x e Uo(Rk,5Rk/4) n C, where J?c is the minimal surface operator
relative to the "spherical graphical representation" of S given by φk as in
(19) (cf. [23] and [26]).

Note that by virtue of (6)

(21) sup (\x\-ι\Φk(x)\ + \Vφk(x)\ + \x\ \V2Φύx)\) < cη(δ)
U0(Rk/2,3Rk/2)ΠC

for small enough δ and k = k(δ, 0, a). Also by definition of 7ϊk, either

(22) sup (\x\-ι\φk(x)\ + |V^(*)I + \S?2φk(x)\) > cδ«
U0(Rk,5Rk/4)ΠC

or

(23) Rk = oo.

In view of (18), (19), (20), (21), (22), and (23), after a change of variable
t = (log|;c|/ϋ*), ω = x/\x\, we can apply Theorem 5.5 of [26, Part II] in
the case m = - ( / ? - 1) < 0. The reader should note that the term δe~εt

can be replaced simply by δ in inequality 5.3 of [26, Part II]. Indeed by
using the monotonicity (17), which can be written in the form of inequality
2.4 on p. 243 of [26], and inequality (18), which gives an inequality like
5.3 of [26] with δ in place of δe~εt, and by minor modifications of the
relevant arguments on pp. 245-247 of [26], we get an inequality like 2.22
on p. 247 of [26], provided the function υ there has ||v||(ΛA>+2) > δ\ we can
arrange this by working on suitable intervals τ\ < t < t2, with ||v||(ΛAH-2) >
δVp G [τi,T2 - 2] and with ||?;||(T2_2,T2) > />α. The negative exponential in
inequality 5.3 of [26, Part II] is not needed in the remaining arguments
of [26] either. Note also that the extension property 5.4 on p. 266 of [26]
is also valid here by virtue of the argument which we used above to show
that (2) implies (5) and (6). It is of course alternatively possible to modify
the arguments of [23] to the present setting.

Thus we establish that Ίϊk = oo and that lim^i^oo ψk(x)/\x\ exists.
However since lim^oo ψk(RjCϋ)/Rj = 0, we then deduce that
limμi^oo ψk(x)/\x\ = 0 as required.

Note. The reader should be aware that in 2.17, 2.23, 5.3, and 5.9 of
[26], and also in (*) on p. 272 of [26], the quantity 9ί{u{t)) should be
JΣx{tAF -ii-Fu) in case m > 0. This causes no difficulty in the rest of the
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discussion of [26], and in any case only the case m < 0 is relevant to our
present discussion.

5. Main theorems concerning exterior solutions

Let U be a bounded open subset of R", n > 2, and consider an exterior
solution of the minimal surface equation. That is, let u e C2(Rn ~ U)
satisfy the minimal surface equation

on Rn ~ U. Since we are only interested in asymptotic behavior of u
near oo, we could assume without loss of generality that U is an open ball
centered at 0.

We first recall the following theorem, proved in [27] and extending pre-
vious results for entire solutions in [29], [16]. The terminology is as in the
previous section.

Theorem 3. If u is as above, then either Du(x) is bounded and has a
limit as x —• oo, or else all tangent cones of graph u at oo are cylinders of
the form C x R, where C is an {n - \)-dimensional minimizing cone in R"
with C = d p ? ] for some open £ c R " and 0 e sing C.

In particular, since the standard regularity theory for minimizing cur-
rents guarantees that no such cones C can exist for n < 7, we conclude

Corollary 1 [27]. Ifn<7, then Du(x) is bounded and has a limit as
\x\ —• oo.

This extends a well-known result of L. Bers [2] for the case n = 2.
In view of the above theorem and corollary, we henceforth assume n > 8

and that \Du\ is unbounded near oo.
We recall that if C is a minimizing cone in Rn with singC c {0}, then

W1 ~ C has exactly two connected components E+,E-, and there are
smooth embedded complete minimizing hypersurfaces

(5.2) S+CE+, S-CE-, dist(S±,O) = 1, dS± = 0.

Furthermore S± approach C asymptotically near infinity in the sense that
there is Ro > 0 such that

(5.3) S± - BRo c graphυ± c S±9

where υ± are positive C 2 functions on C — BRO/2> and

(5.4) υ±{rω)<cr-a, r > RQ,
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for some a > 0. Here graphυ± = {rω ± v±(rω)uc(ω)}, where vc(ω) is
the unit normal of C pointing into E+. Also S± are, up to homothety, the
unique minimizing hypersurfaces without boundary, which are different
from C and have support contained in Έ± respectively. For later reference
we also note that if C is strictly minimizing, then

Γ cr-* φx as r T oo in case β > 0,

1 cr~^n~^l2{\ogr)φχ as r t oo in case β = 0.

Here γ\,β are given by

(5.6) -'•f-im
where λ\ is the minimum eigenvalue of the operator ΔΣ+|^4(ω)|2 with A(ω)
the second fundamental form of Σ c Sn~ι; thus γΪ9 β are as in Theorem 1
with#(ω) = \A(ω)\2. Notice that in this case λ\ < Oand/li > -((«-3)/2) 2

by virtue of stability of the cone C, so that (2.4) holds. If C is strictly
stable, we have strict inequality λ\ > -((«-3)/2) 2 . See [6] for a discussion.

For further discussion and proofs of (5.2)—(5.5), we refer the reader to
[13].

It will be convenient to introduce the terminology that if S\, S2 are
embedded hypersurfaces and e > 0, then S2 is within ε of S\ in the C 2

sense if

(5.7) S2 = graphsυ = {x + υ(x)vι(x): x e Si},

where v\ is a smooth unit normal for Si, and v £ C2(S{) with

M C 2 < e , \v\C2= sup (\x\

In the following theorem, and subsequently, we let

Sy = Sy(u) = {xeRn~U: u(x) = y}.

Theorem 4. Suppose U is a bounded open subset ofRn, u e C2(Rn ~ U)
satisfies the minimal surface equation on Rn ~ U, and G = graph u has a
tangent cylinder C x R at oo with singC c {0}. Then C xR is the unique
tangent cylinder of G at oo, and the two components ofRn~C can be
labelled E± such that

u(rω) ( +oo ifωeE+nSn-\
(i) i i m _ ! _ 2 = )

r|oo r l^—oo ifcϋGh—Πb ,

where the convergence is uniform for compact subsets ofE± n Sn~ι.



674 LEON SIMON

Furthermore \Du(x)\ —• oo as \x\ -* oo; i.e.,

(ii) lim inf \Du(rω)\ = oo,

and for any given ε>0 there is y{ε) > 0 such that ify > y(ε) (y < -y(ε))f

then, with λy = d i s t ^ , {0}),

(iii) {λ~ι)Sy is within ε ofS+ {resp. S-) in the C2 sense of{5J).

Finally the second fundamental form AofG has length \A\ satisfying

(iv) \A(x,u(x))\ < c/\x\9 xeRn~U,

and the gradient function v = >/l + \Du(x)\2 satisfies

(v) sup v < c inf v

for any Xo e R" and p > 0 such that \xo\ > 2p + diam U, where

Op{xo) = {xeRn -U:\x-xo\
2 + \u(x) - u{xo)\2 < p2}.

In (iv) and (v), c is a constant depending only on u and not on x, XQ, and

Remarks. (1) The theorem evidently gives us a rather precise picture
of how G looks near oo.

(2) The hypothesis that G has a tangent cylinder C x R with sing C c {0}
is automatically satisfied in case n = 8 (unless Du is bounded and has a
limit at oo) by Theorem 2, because for n = 8 all minimizing cones have
sing C c {0} by the standard regularity theory.

(3) In general, for any n > 8 and any u with \Du\ unbounded, the
existence of such a tangent cylinder with sing C c {0} is implied by (and
hence equivalent to, by the theorem) an estimate of the form (iv). Thus
in place of the hypothesis that there is a tangent cylinder C x R at oo with
singC c {0}, we can alternatively require that G is "regular near oo" in
the sense that supxeRn^i; \x\ \A(x9u(x))\ < oo.

(4) In interpreting (v) one should keep in mind that if we let ϋ be the
function on G such that ϋ(x, u(x)) = v(x), then (v) simply says

sup v < c inf ϋ,
Bp(X0)ΠG Bp{XQ)ΠG

where Xo = (x0, u(x0)).
Proof of Theorem 4. The uniqueness of the tangent cylinder is guar-

anteed by Theorem 2, and then the limit statements in (i) follow directly
from the fact that (λ)#G converges to spt C x R in the Hausdorff distance
sense in R"+1 ~ {0} x R.
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Next we prove (iv) and (v). Suppose first that (iv) is false. Then we can
find a sequence {xk} cRn ~ U with \xk\ -> oo and

(1) \xk\\A(xk,u(xk))\ ->oo.

(= {λ~ι(X - μken+x): X e G}).

By Lemma (4.2) we have that some subsequence of Gk converges to a
minimizer H. Also, since G has tangent cylinder C x R, we have H =
C x R in case μ^ is bounded. Also, since the convergence of (λ)#G is
C 2 near points of C x R by the Allard-De Giorgi theorem and elliptic
regularity theory, we know that for sufficiently large Ro the set So ~ BRQ is a
smooth complete hypersurface with boundary in 3BRQ and (λ)#(SΌ ~ ^Λ 0 )

converges locally near points of C in the C2 sense to C as A j 0. Hence
Rn ~ (So U BRQ) has exactly two unbounded components V± with (Λ)#F±
converging with respect to Lebesgue measure to E± respectively. Note that
each level set 5^ also has tangent cone C at oo, and since Σ is connected,
there is only one unbounded component of 5^. But then by the Hopf
maximum principle Sy is connected for all y with \y\ > sup5C/ \u\. Thus
for each such y we have Sy c V± according as ±y > 0. Then, in case
μk —• oo, which we may assume without loss of generality if μk is not
bounded, we evidently must have

(2) s p t / ί c ϊ ? + x R .

By construction, since Gkι —• spt H locally in the Hausdorff distance
sense in RΛ+1 ~ {0}xR, we know that there is a point x e Sn~ι x{0}Πspt H
with |JC7I"1 JCy —• x for some subsequence {j} of {k}. Furthermore as
in Lemma (4.2) H is either a vertical cylinder H\ x R with H{ = d^E^
for some open £ c Rn, or else has the form H = graphs, where w e
C2(Ω) and graph w is a closed subset of Rn+ι. In the first case, H{ is C
or a homothety of S+ in view of (2) and the uniqueness property of S+
mentioned prior to Theorem 4. Thus in any case, x e reg//, and then we
must have that for some p > 0, GktΠBp(x) converges to HnBp(x) in the
C 2 sense by the Allard-De Giorgi regularity theorem. But this contradicts
(1), because (xJ9u(Xj)) e GjΓ\Bp(x). Thus (iv) is established.

Now (v) follows easily from (iv) and the Harnack inequality for so-
lutions of uniformly elliptic equations on domains in R", because φ =
(1 + \Du\2)~ι/2 = en+\ v satisfies the equation Aφ + \A\2φ = 0 on G. Here
we also need the fact that there is a θ e (0,1) with the property that if
pcol > p + diam U, then Gθp(xo) is connected—this follows, for example,
from (iv) and the fact that G is minimizing in R"+1 ~ f / x R .
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Now let ω± be points of Sn~ι Γ\E± respectively, and let ε > 0. Then
there exists K = K(ε, u, ω±) such that

ί &ittβu[χω±)>QΓXSu{τω±) IS Within £ of 5±,
(3) \Du(rω±)\>K=> Λ

{ \Du\ > ε at each point of 5,

where the first implication is to be interpreted in the Cl sense of (5.7).
Indeed if (3) is false for ω+ say, then there exist ε > 0 and a sequence
rk ] oo, with \Du(rkω+)\ > k and such that at least one of the conclusions
in (3) is false with r — rk. In this case let

WjfcCx) = rk\u(rkx) - u(rkω+)), X G R " ~ (r^ι)U,

Gk = graphs, S$ = {x: uk(x) = y}.

Then we have

(*) Duk(x) = (Du)(rkx), xeRn~ {r~l)U,

(**) c* _ /,-he

and, by the same argument as we used in the proof of (iv) above, some
subsequence of Gk converges to a minimizing current H with spt// c E+.

Thus by Lemma (4.2) (keeping in mind that \Duk(ω+)\ —• oo by con-
struction) and the uniqueness result of [13] we have

H = {λ)S+ x R,

where λ > 0 is such that λω+ e S+. Therefore we have shown that a
subsequence of Gk converges, locally in the C2 sense, to (λ)S+ x R, and
hence for any sequence λk | 0, (λk)#Gk converges to C x R in the C 2 sense
near points of C x R. In view of (v) and the invariance of the Cl norm
under changes of scale, it then also follows directly that inf^ \Duk\ -> oo.
By (*) and (**) these facts contradict our definition of rk. Thus (3) is
proved.

Now to prove (ii) we argue as follows. In view of (iv) and (v), if
\Du(xk)\ < c with \xk\ —• oo, then there are θ € (0,1) and neighborhoods
Bk = Bθ\Xk\(xk) on which sup^ \Du\ is bounded, so we would deduce that
there is a ray {rω$: r > 0} with ωo G Sn~ι — C such that

liminf \Du(rωo)\ < oo.
r—•oo

Of course

limsup|<9w(rωo)/<9r| = oo,
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otherwise \u(rωo)\ < cr, thus contradicting (i). Hence for each K >

l iminf^oo \Du(rωo)\ and each k = 1,2,••• we can select rk < sk with

rk — oo,

\Du(rkω0)\ = K, \Du(skω0)\ = k,

\Du(λωo)\ >K, rk <λ< sk.

Now suppose without loss of generality that a>o e E+Γ\Sn~ι (rather than
in E- Π Sn~ι), and let ε > 0 be given. For K large enough (depending
on ε), (3) above ensures that a homothety of the set SU(rQ)Q) is within ε
of S+ in the sense described in (5.7) for any rk < r < sk. Let uk(x) =
r

k

l(u(rkX) - w(r^ωo)) and apply Lemma (4.2) again, together with the
bound (v) which we already established above. Then ψ e C2(Ω), graph ψ
is closed in Rπ + 1, ωo e Ω, ψ(ωo) = 0, ψ(rωo) > 0 for r > 1, and
\Dψ(ra>o)\ > K for r > 1, so long as rωo £ Ω. Furthermore Ω c E+
because if t e R and ψ(x) > t, then r^x(u{rkx) - u(rkωo)) > t, so
that u(rkx)/rk > t + u{rkωo)/rk > 0 for all sufficiently large k. Thus
rkx e {ξ: u(ξ) > 0} for sufficiently large k and hence x e E+ by (i).

Now by Lemma (4.3) and the uniqueness result of [13] we see that there
are only the following four possibilities for Ω:

(a) Ω = E+.

(b) Ω is the component of Rn ~ (Λ)5V not containing C for some λ > 0.

(c) Ω is the region between (λ)S+ and (μ)S+ for some μ > λ > 0.

(d) Ω is the region between C and {λ)S+ for some λ > 0.

Further, in case (b) we evidently have ψ — -oo on approach to (X)S+
from Ω, while in case (c) we have ψ — ±oo on approach to (μ)S+> (λ)S+
respectively, and in case (d) ψ — -oo on approach to C, and ψ -> +oo on
approach to (λ)S+. In all cases we have

(4) lim \Dψ(x)\ = oo uniformly for y in compact subsets of
x >y

\Dψ(x)\>K for |JC| > R = R(K).

These facts are easily checked using (3) and properties (iv) and (v) for u.
In cases (a)-(d), by first extending Dψ/y/l + \Dψ\2 to Ω ~ {0} by

continuity, which is possible by virtue of the curvature estimates (iv), and
then extending it to be constant along the connected segments of the sets
{λω: λ > 0,λω e E+ - Ω} we get a (weakly) divergence-free vector field
v on E+ with v = Dψ/yjl + \Dψ\2 in Ω (so that \u\ < 1 in Ω), and
v — the unit normal of C on approach to points of C. We claim that this
implies that C is strictly minimizing on the side Έ+; C is said to be strictly
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minimizing on the side Έ+ if there is θ > 0 such that for each R > 1

| C Λ | < | S | - 0 (CR = CΠBR(O))

whenever S is a hypersurface with dS = dCR, S - CR = <9[ί7κ] for some
open UR c E+ and S n B\(0) = 0. Of course for such a C the proof of
(5.5) given in [13] applies without change to υ+, so we can (and we shall)
use (5.5) for υ+.

To prove the strict minimizing of C on the side Έ+ take a minimizer
SR among all surfaces S as described above. We know such SR exists by
the compactness theory for codimension 1 integer multiplicity rectifiable
currents; note that sptSR Γ\Sn~ι Φ 0, otherwise SR is locally minimizing,
and then we get a contradiction, because a suitable homothety of S+ can
be made to lie on one side of sptS^ and to touch sptSR in at least one
point. Now if C is not strictly minimizing we have

(5) | S * | - | C Λ | - > 0 a s Λ - o o .

By virtue of (5) and the fact that S+ is (up to homothety) the unique
minimizer contained in E+ by [13], we can select a sequence Rj -> oo such
that SR. —• S+ both in the weak sense of currents and in the Hausdorff
distance sense. Now let ω e S+ n Sn~ι. By rescaling if necessary, we may
assume that ω e Ω. Then by the divergence theorem (with SRj as above,
keeping in mind that SRj contains ω ; , ω ; —• ώ) we have

f v ? . v = [ vv = \CRj\9
JsRj JcRj

while \i/RJ -v\ < 1 - ε in a fixed neighborhood of ω independent of j , thus

\CRj\ < (1 - ε)\SRj ΠBp(ω)\ + \SRj ~ Bp(ω)\

< \SRj\ - ε\SRj Π Bp(ω)\ < \SRj\ - cεpn

for fixed constant c > 0. This contradicts (5), hence we have proved the
strict minimizing of C in Έ+ as required. Using this we want now to show
that Theorem 1 can be applied to establish (ii).

First consider the possibilities (c) and (d). In this case we can take
p = p0 > 0 where po is a constant. By virtue of (3) and (4) it is clear that
there is a bounded positive function w e C2({(jc,y) € C x R: |JC| > po/2})
such that graphCxRit; c graph ψ provided K and po are sufficiently large.
Furthermore in view of (3), (4), and (5.5), it is clear that, for any given
δ > 0 and ε < min{/?, 1} or 0 < ε < 1 in case β = 0, the hypotheses of
Theorem 1 hold with q(ώ) = \A(ω)\2 and p = p0, again provided K and
Po are sufficiently large. Notice that in case β = 0 we need to use Lemma
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1 to check hypothesis (2.7). However this contradicts Remark (2.10)(l),
so the proof of (ii) is complete in this case.

Next we consider the possibilities (a) and (b). Take ω 0 € E+9 let T =
(λ)S+ in case (b) and T = C in case (a), and let

(6) Sy = {xeΩ: ψ(x)=y}.

Also let po(y) > 0 be such that po(y)coo € Sy. In view of (iv) and (v),
the weak convergence of graph u^ to graph ψ is actually C2 convergence
locally near points of graph ψ. Since ψ(ωo) = 0 and \Dψ(rωo)\ > K for
r > 1 by construction of ψ, using (3) and (4) it follows that if ε > 0 is
given and K > Ko, Ko = K0(ε), then

(7) Po(y)~ιSy is within ε of S+ in the C2 sense of (5.7),

- 1(8) inf \Dψ\ > ε
sy

for all y > 0. Using this facts in combination with (5.5), we can again
check that there is a positive w e C2({(x,y) e C x R: pc| > p(y)/2}) with

graphC x Rtϋ c graphs,

and the hypotheses of Theorem 1 are satisfied for any δ > 0 provided we
take p(y) = μpo(max{y,O}) and provided we select y\ and μ sufficiently
large. We again need to use Lemma 1 here in the case β = 0 in order to
check (2.7). Then, since dw/dy = l/\Dψ\, Theorem 1 implies that, for
suitable fixed ω0 € E+, \Dψ{rωo)\ < cr^\ψ\\ which implies l^l^l 1" 6 ! <
crγι. For ε < 1 this contradicts the fact that ψ(rω0) —• -oo as r | 0 in case
(a) and as r [ λo in case (b), where λo is such that Λoωo € (λ)S+. (λ as in
(b).) This completes the proof of (ii).

Finally we note that (iii) follows directly from (ii) and (3) above. This
completes the proof of Theorem 4.

To conclude this section we want to establish some growth estimates for
exterior solutions u. For this we need to assume that graph u has tangent
cylinder C x R at oo with sing C c {0} as in Theorem 4 above, and in addi-
tion we must here assume that C is strictly minimizing in the sense of [ 13]
and strictly stable in the sense that the strict inequality λ\ > -(n - 3)2/4
(or equivalently β > 0) holds. All presently known examples of codimen-
sion 1 minimizing cones C with sing C = {0} are strictly minimizing and
strictly stable. See the discussion in the final section, where many new
examples of nonlinear entire solutions are discussed.

Theorem 5. Suppose U is a bounded open subset of Rn, u e
C2(Rn ~ U) satisfies the minimal surface equation on Rn ~ U, and suppose
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graph u has tangent cylinder C x R at oo, with sing C c {0} <zm/ C strictly
minimizing and strictly stable. Then for each ε > 0 ίAere αre constants
c = c(ε, ύ) > 0 am/ i?o = i?o(β> w) such that

\Du(x)\ < c\x\γι+ε, \u{x)\ < c |x |* + 1 + e

for all \x\ > Ro, and there is a sequence {XJ} with \XJ\ —• oo and

\Du(xj)\ > c-ι\xj\*-, \u(xj)\ > c-χ\Xj\^χ-*

for each j = 1,2, •• .
The latter inequalities guarantee that the upper growth bounds are best

possible, modulo factors of order |x|ε.
(5.8) Remark. By a result of J. Simons [29, 6.1.7], we have always,

since C cannot be a hyperplane by Theorem 3, that λ\ < ~{n - 2). This
means that the growth exponent y\ of \Du\ given in the above theorem
satisfies

n - 3 \ 2

— 2 ~ J -(n-2)./ι - 2 V V 2
Some of the examples of entire solutions constructed in the next section

have "minimum growth"

n-3 fn-3

2 V V 2

but some have faster growth. Notice also that

n-3

) -(n-2),

" 2 2
so that the lower growth bounds of [7], [18], [8] are never sharp in the case
considered here (when the tangent cylinder C x R satisfies singC c {0}
and C strictly minimizing and strictly stable).

Proof of Theorem 5. Let ε > 0. By Theorem 4(iii) we know that if
ω± e Sn~ι Π E± respectively, then there is yo = yo(ε,ω±) > 0 such that
for each y e R with ±y > j/o the ray {λω±: λ > 0} intersects Sy at a unique
point po{y)co± respectively, and

(po(y))~ιSy is within ε of some homothety of S±

in the Cl sense of (5.7),

according as ±y > yo respectively, and by Theorem 4(ii)

(2) \Du\ —> oo as \x\ —> oo.
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By virtue of (1) and (2) we then have

(3) Lip po\(z, oo), Lip/?o|(-oo,-z)->0 as z -> oo,

and for sufficiently large μ and y0writing βo(y) = maz{po(y)9po(yo),Po(-yo)}

(4) G Π {(x,y) e Rn+ι: \x\ > μβo(y)/4} = graphC x Rw,

where w e Cι(V) for some open set V c C x R with V D {(x,y) e
C x R: |* | > (μ/2)po(y)} (w, V depending on μ) and

lim \w\Γ2 = 0,
(5) ^ ° °

where |tu|C2 = sup(|x| !|W;(JC)| H- |Viί;(x)| + |JC| |V2tί;(jc)|).

Notice that we are able to assert that the C^-norm, rather than merely the
Cj-norm, is small by virtue of the standard interior regularity theory for
uniformly elliptic quasilinear equations.

In view of (3), (4), and (5), for any given δ > 0 we can select μ and j>o
so that if p is defined by p(y) = μβo{y), then

(6) Lip p < δ, y sgn p'{y) > 0 a.e. y e R,

(7) Gn{{x,y): \x\ > p{y)/4} c graphw c G, \w\ci <δ.

By virtue of (6), (7), and (5.5), after selecting y{ sufficiently large, we
can apply Theorem 1 with w in place of u and υ = ̂ . Notice that

where, for given (x,y) G V,ξ e Rn ~ ί7 is such that j ; = w({) and ί =
(x,y) + i/cW«ι(xj), with vc the unit normal of C pointing into E+9 so
that the first conclusion of Theorem 1 implies

(8) \Du(ξ)\<c\u(ξ)\'\ξ\κ,

provided \u(ξ)\ is sufficiently large, and \ξ\ > μdist(Su{ξ),{0}) for a suffi-
ciently large constant μ. But by virtue of parts (iii) and (v) of Theorem 4
this gives

(9) \Du(x)\ < c{\ + |K(jc)|)e|x|yi, | * | sufficiently large.

This can be written

\D{\ 4- \u{x)\γ~ε\ < c\x\7^ \x\ sufficiently large,

and by integration this yields
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By substituting this back into (9) we then have the required upper bounds.
Finally, the required lower bounds follow in a similar way from the final

two limit statements in Theorem 1.

6. Examples of entire solutions

In this section we use the terminology that a cone C is an isopara-
metric cone if Σ = C Π Sn~x is minimal and part of a smooth family of
isoparametric hypersurfaces in Sn~x\ see, e.g., [17], [10] for a discussion
and terminology. Any homogeneous codimension 1 minimal cone C with
singC = {0} (for a list of such see [14]) is automatically such a cone.
Some examples of nonhomogeneous minimizing isoparametric cones with
singC = {0} are given in [10].

We also note here that all the examples of minimizing cones given in
[14] are also strictly minimizing. See the discussion in [13]. The list in
[14] includes all homogeneous isoparametric minimal cones. Concerning
which of these cones are minimizing, most cases are settled in [14]; note
that the classes 6, 7, 9, 10 of Table 1 of [14] are all unstable, hence not
minimizing. Also, to be compatible with the text of [14], V2 for class 5 of
Table 1 should be written ((xy)5(x2 -y2)4)2. Simoes [30] proved that the
cone over Sι x S5, which is not settled in [14], is not minimizing, and F.
H. Lin [15] proved that the cone over S2 x S4 is strictly minimizing. Of
the remaining cases not explicitly settled in [14], each is either unstable
or strictly minimizing. (Private communication of B. Solomon.) Thus all
homogeneous minimizing cones C with singC = {0} are automatically
strictly minimizing. Furthermore, by virtue of the alternate characteriza-
tion of strictly minimizing given in [13, Theorem 3.2(v)], the argument
used in [10] to prove minimizing is easily modified to prove strictly mini-
mizing; that is, the isoparametric cones shown in [10] to be minimizing are
all strictly minimizing. We note also that since any isoparametric minimal
hypersurface Σ c S""1 has second fundamental form of constant length
whose square is given by p(n - 2) where p = 0,1,2,3,5 (see, e.g., [19]
or [17]), and since there are no integer solutions n > 3 of the equation
p(n -2) = (n- 3)2/4 for the cases p = 1,2,3, 5, we thus see that all stable
isoparametric cones C with singC = {0} are automatically strictly stable.
In particular this means that all the minimizing isoparametric cones C
with singC = {0} are strictly stable. Hence in particular all the examples
of minimizing cones in [14] and [10] are both strictly stable and strictly
minimizing.

Our main aim here is to prove the following:
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Theorem 6. Suppose C is a strictly minimizing isoparametric cone in
Tϋn with singC = {0}. Then there is an entire solution u of the minimal
surface equation in R" having CxRas tangent cylinder at oo. Furthermore
it can be arranged that graph u inherits all the symmetries of C; that is,
u o g - u for each isometry g ofW with g(C) = C.

Remarks. (1) In view of the discussion preceding the theorem we thus
show that entire solutions with tangent cylinder C x R exist for any ho-
mogeneous minimizing cone C with singC = {0}, and for any of the
isoparametric minimizing cones C shown to exist in [10].

(2) Of course the growth estimates of Theorem 5 apply to all these
examples because they are automatically strictly stable by the discussion
preceding the theorem.

We shall need the following technical result.

(6.1) Lemma. Suppose C is strictly minimizing and strictly stable, with
singC = {0}, and let w e C2(Ω) be as in Lemma (4.3) with O E Ω and
<9ΩnC = 0. Then Ω = Rn (so that the alternatives (ii) and (iii) of Lemma
(4.3) cannot occur).

Remark. The above lemma suffices for our present purposes, but it is
perhaps worth mentioning that with only minor modifications of the ar-
gument below we could prove the same conclusion without the hypothesis
0 G Ω, provided we assume a priori that either dΩπC = 0 or C is a com-
ponent of <9Ω. Also, in this more general case it is enough to assume that
C is merely minimizing in case Ω c one of the components of R" ~ C,
because in this case we can use an argument as in the proof of Theorem
4(ii) to deduce that C is automatically strictly minimizing on one side of
C; recall that this argument did not require strict stability.

Proof of Lemma (6.1). The proof involves an application of Theorem
1 similar to that in the proof of Theorem 4(ii). Assume Ω Φ W. Without
loss of generality we can assume that <9Ω Π E+ Φ 0 . Since <9Ω n C = 0
and 0 G Ω, in view of the uniqueness result of [13] there are only the two
possibilities:

(1) Ω is the region between (μ)S- and (λ)S+ for some λ,μ > 0;

(2) Ω is the component of Rn ~ (λ)S+ containing C.

Replacing w by -w if necessary, we may also assume that w —> +oo
(rather than -oo) on approach to (λ)S+. Notice that in either case (1) or
case (2) C x R is the unique tangent cylinder for graph u at oo. Then an ex-
amination of the proof of Theorem 4 will show that, with only minor mod-
ifications to the arguments (applying Lemma (4.2) under hypothesis (ii)
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instead of (i)) for each ε > 0 and each ω± e E± there is K = K(ε,w9ω±)
such that

(3) IB*™*), > K { (diSt<5" 0 ) Γ '* " Withi" ' ° f S±1{ Γ
I |Z)tι;| > ε" 1 everywhere on Sy,

whenever rω± e Ω and y = w(rω±) respectively. (Cf. (3) in the proof of
Theorem 4.) Also by making the appropriate minor modifications to the
proof of Theorem 4(ii), we have

(4) \Dw(x)\ -> oo as \w(x)\ + \x\ -> oo, x e Ω.

Note that by combining (3) and (4) we deduce that for each ε > 0 there is

yo = )>o(β) such that

(5) Sy is within ε of 5± in case ±y > yo respectively.

Then let po(y) be such that Po(y)ω± e Sy whenever ±y > y0 respectively,
and note that (4) and (5) imply that

(6) Lip/>o|(z,oo), Lip pol(-oo,-z) -• 0 as z-^ oo,

and hence, with po(y) = max{/>0(y), Po{yo), Po(~yo)}> for any given δ > 0
we can choose μ such that

(7) G - {(x,y): \x\ > 2μpo(y)} C graphs c G

for some φ on {(x,y) G C x R: |JC| > μpo{y)} with |0|C2 < δ. Then, in
view of (4), (5), (6), and (5.5), we can apply Theorem 1 with w - φ and
p = μβo as in the proof of Theorem 4(ii) to contradict the fact that w —• oo
on approach to dΩ. Thus Ω = R" as required.

Proof of Theorem 6. Since it is slightly simpler, we first consider the
proof for the case where C is a homogeneous minimizing cone with sing C=
{0}, so that C is either isometric to the cone over S2 x S4 or else isometric
to one of the examples of [14]. In this case the proof begins by construct-
ing a special sequence of solutions uQ

k of the minimal surface equation on
the unit ball.

Specifically, using the usual notation Σ = C Γ\Sn~{ so that Σ is a con-
nected compact embedded submanifold of Sn~~ι, define u\ to be the solu-
tion of the minimal surface equation on B\ (0) with boundary data

where A± are the components of Sn~{ ~ Σ. It is standard that such
u\ e C2(5i(0)uΛ+U,4-) exists and is unique (see, e.g., [12, Chapter 16]).
By uniqueness u\ inherits all symmetries of C.
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By the argument of [21, pp. 248-249] we have

>°° as k-^oo,ί K
sup|Z>w?|->oo ask->oo

Bp(0)

for each fixed p > 0.
By examining the list of [14] one readily checks that all codimension 1

homogeneous minimizing cones are invariant under the isometry χt-> -x.
Hence either -A+ = A- or -A+ = A+. In these cases we have respectively,
using again the uniqueness of the solution u°k,

( either u°k(-x) = -u°k(x) Vx e Bx(0),

I or κg(-Jc) = u°k(x) Vx G B{(0).

If the first alternative in (3) holds, then it is straightforward to check,
using the invariance of u\ under the isometries which leave C invariant,
that u°k(x) = 0 on C n #i(0), and hence that Du°k(0) = 0 by virtue of the
fact that 0 is a singular point of C. In case the latter alternative in (3) holds
we have Du°k{x) = -Du°k{-x) Vx e Bx{0), and hence again Du°k{0) = 0.
Thus in any event we have Du°k(0) = 0, and we can choose 0 < p^ < 1
such that

(4) sup \Du°k\ = 1 and \Du°k\ < 1 at each point of Bp, (0).
Bpk(0)

Notice that pk -• 0 by (2).
We now define

" * ( * ) = P k l ( 4 ( p k x ) - κ g ( 0 ) ) , x e B - L

Of course u^ satisfies the minimal surface equation on B _i, and

(5) κ*(0) = 0, D ^ ( 0 ) = 0, sup

Since pk —• 0, by (5) and Lemma (4.2) we can find a subsequence {k1}
(henceforth denoted simply {k}), a connected domain Ω c R", and a
C2(Ω) solution ψ of the minimal surface equation on Ω with the properties
uk —* ψ locally in C2(Ω), graph ψ is closed, and

(6) J3i(0)cΩ, y/(0) = 0, Dψ{0) = 0, πmx\Dψ\ =
(

We claim that Ω satisfies <9Ω n C = 0. Indeed this is clear because by
construction Ω is invariant under the set of all isometries which leave C
invariant (this is a transitive set of isometries of Σ), and because by Lemma
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(4.2) each component of dΩ is a minimizing hypersurface. Then the fact
that 0 φ <9Ω would tell us that if dΩn C Φ 0 there would be a minimizing
hypersurface different than C but having the same boundary as C Π BR(0)
for some R > 0, thus contradicting the fact that C Π 95^(0) is a boundary
of uniqueness for minimizing hypersurfaces of multiplicity 1. Hence, by
Lemma (6.1), Ω = R". Finally, we have to show that ± C x R is the
tangent cylinder for graph ψ at oo. This is a consequence of the fact that
ψ is invariant under all isometries holding C fixed, together with the fact
that ψ is not linear—because ^(0) = 0, Dψ(0) = 0, and max^ ( 0 ) \Dψ\ - 1
by construction of ψ. Thus (see the discussion at the beginning of §5) \Dψ\
is unbounded and graph ψ has tangent cylinders at oo. Then let C x R be
any tangent cylinder of graph ψ. C is invariant under all the isometries
which leave C invariant, and regC is connected by [5], so it follows that
either C = ±C or else spt C n spt C = {0}. However since both C and C
are minimizing and singC = {0}, it is standard that the latter alternative
is impossible (see, e.g., [5]). Thus C = ±C as required, and the proof is
complete.

In the general case when C is a strictly minimizing isoparametric cone
with singC = {0}, we first let A± be the two components of Sn~ι — Σ as
before, and

d{ω) = ±dist(ω,Σ), ωeA± resp.,

where distance is geodesic distance measured in Sn~ι. Then (see, e.g.,
the discussion in [17], [10]) the image of d is an interval [α_,α+], and
Γ± = d~x{a±) are "focal submanifolds" of dimension < n - 3. The trans-
formation T: x y-+ y = reiθ, where r = |JC| and θ = d(x/\x\), takes B\(0)
to the sector

D = {reiθ: 0<r< l , α _ < θ < α+},

and the standard Euclidean metric dy\ + dy\ for D pulls back to the stan-
dard Euclidean metric dx\ + + dx\ for B\(0). Thus in particular if
u = voT, where υ e Cι{D), and if V(y) = M"~ 2 ^~ 2 (^~ 1 0 ; /M)), then

(7) / Jl + \Dv\iV(y)dy= f
JD JBι(O)

Thus let vk be a bounded C°°(D) solution of the equation

V D v π

div , = 0

V1 + |Dw|2

satisfying boundary data

, . Γ -k if α_ < θ < 0 ,
^ ( ^ " ) = 1

l + f e if 0 < 0 < o:+.
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We get such a solution by applying standard quasilinear existence theory
for the Dirichlet problem on an increasing sequence of proper subdomains.
Then in view of (7), the function u\ = vk o T is a bounded solution of the
minimal surface equation on Bχ(O) ~ (K+ U ϋΓ_) satisfying the boundary
conditions (1), where K± denote the cones over Γ±. Since v^ is bounded
and βfn-χK± = 0, it is easy to show that u\ extends to give a C2(B{(0))
solution (still denoted u\) satisfying (1). (See, e.g., the discussion in the
Appendix of [22].) Next we need to note that any isoparametric cone is
invariant under the isometry x H - x by virtue of the characterization
given in [17, Satz C]; note particularly that, with q as in [17], if g is odd
then Σ must be given as the zero set of the relevant polynomial. In view
of these facts we can directly modify the argument from the homogeneous
case to show that this solution has vanishing gradient at 0. The remainder
of the argument is similar to the homogeneous case; the proof that the
limit function ψ has domain Ω satisfying dΩnC = 0 follows easily from
the fact that ψ = φ o T (by construction) for suitable φ in D. So again we
can apply Lemma (6.1) to prove Ω = RΛ. In fact that graph ψ has tangent
cylinder C x R follows essentially as in the homogeneous case, except that
we use the fact that ψ can be written in the form φ o T in place of the
previous invariance under a transitive group of isometries.
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