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ANALYTIC EXTENSIONS OF THE ZETA
FUNCTIONS FOR SURFACES OF

VARIABLE NEGATIVE CURVATURE

MARK POLLICOTT

0. Introduction

The purpose of this note is to prove that for a compact C°° Riemannian
surface of (variable) negative curvature the associated zeta function ς satisfies:
ς{s) is nonzero and analytic on a half-plane Re(s) > h - δ (h,δ > 0) except
for a simple pole at s = h.

The result is well known in the special case that the surface has constant
negative curvature (cf. [3], for example). For constant curvature surfaces one
can use the Selberg trace formula, whose very existence seems to depend
strongly on the Lie group construction of the surface. More generally it ap-
pears different techniques are required.

We adopt a dynamical viewpoint and study the associated geodesic flow.
By an earlier result of the author (on more general Axiom A flows) we know
that ς(s) can be extended meromorphically to a domain of the above form [9].
The difficulty is to show that no poles (other than at s = ft) actually occur.
For variable curvature geodesic flows we give a simple necessary condition
for the occurrence of poles in this region (Lemma 4). The result follows by
showing this condition is void (Lemma 5 and Theorem).

The proof that we give works at a slightly more general level than for
geodesic flows. Our main result remains valid for the case of any transitive
weak-mixing three-dimensional Anosov flow for which the stable and unstable
horocycle foliations are continuously differentiable.

I would like to thank the Institute des Hautes Etudes Scientifiques for their
hospitality and support during the preparation of this paper.

1. Definitions and basic constructions

We begin by introducing basic material we shall need for the proof.

Let φt: M -• M be the geodesic flow on M, the unit tangent bundle of

a compact C°° Riemannian surface S of strictly negative curvature. This
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flow is of Anosov type, i.e., TM = E° Θ Eu Θ Es where E°,EU and Es

are continuous D0rinvariant one-dimensional sub-bundles with E° tangent
to the flow, and C,λ > 0 such that \\Dφtv\\ < Ce-χt\\υ\\ for υ G Es, t > 0,
and \\Dφ-tv\\ < Ce- λ ί |M| for v G Eu, t > 0 [1].

Let h > 0 be the topological entropy of the flow. The flow φ is (topo-
logically) weak-mixing, i.e., there are no nontrivial solutions to Fφt = eιatF,
α>0, FeC{M).

Given ε > 0 we denote the ε-local stable and unstable manifolds through
x G M by

W9{x) = {yeM\d(φux,φty) < ε V* > 0,d{φtx,φty) -* 0 as t

^εu(^) = {2/ € M [d{φ-tx, φ-ty) < ε Vί > 0, d(^-*x, 0-ty) -> 0 as ί ^ +oo},

respectively. These are C°°-embedded one-dimensional discs with TxW^(x) =

E% and TxW^(x) = E^. These are neighborhoods of x in the (global) stable

and unstable manifolds through x denoted by

Ws{x) = {yeM\d(φtx,φty) -+ 0 as t — +oo},

Wu(z) = { y € M | d(0_tx, 0- ty) -> 0 as ί -> +oo},

respectively. These form C1-foliations of M which we denote by ^s,&~u\
Let Si (i = 1, ,n) be parallelograms (cf. [10] for full definitions). In

particular, each Si is a flow box which is the C1-embedding of a set {(x, y, ί) G
[0,1] x [0,1] x R10 < t < r(y)} where r: [0,1] -• R is a strictly positive C1-
function. We denote the embedding map by τr2. The sets T{ should satisfy

(i) 7Γi(a:,y,(0,r(y))) = 5< Π 0[-e,e]7Γt(x,y,O) and πi(x,y,t) = φtπ%(x,y,0)
(0<t< r(y)).

(ii) πi([0,l],y,0 = ft Π W7(^(0,y,i)).
(iii) φg.{Xίyit)πi(x,y,t) G H^ε

u(πi(x,0,ί)), where ^ is C 1 .
We assume throughout that diam5^ C e « 1.

The family of parallelograms {Si} forms a partition if the «% have mutually
disjoint interiors and M = UΓ=i *%• We call {S }̂ Markovian provided:

(a) if τri((O,l),t/,r(t/)) n ^ ( ( 0 , l ) , y , 0 ) ^ 0 then τrf ([O, l],y,r(»)) C
^•([0,l],»;,0);

(b) if 7Γi(x,(0,l),0) Ππk(x',y,r(y)) φ 0 for some 0 < y < 1 then

TΓt(z, [0,1], 0) C Uye[o,i] ̂ ( χ / ' 2/' r(2/))
Let J = LJΓ=i[ '̂ ϊ] ^ e indexing corresponding to the parallelograms. We

define / : J —• J by /(x) = x' (as in (b)). This map is C 1 . We can always
choose smaller parallelograms to make this true, if necessary. Let A be an
n x n matrix with (i,j)th entry 1 if (a) is satisfied and 0 otherwise.

L e m m a 1. For the geodesic flow φt: M —* M there exists a Markovian

partition of C1 parallelograms.
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Proof. This is a standard result due to Ratner [10] and Bowen [2]. The

only additional observation is the Hirsch-Pugh result that the foliations ^ u

and &~9 are C 1 implies that the embeddings π* can be chosen C 1 [4].

Lemma 2. For each i — 1, ,n, 0 < y < 1, 0 < t < r(y) there exists

a measure μ*(j/jt) supported on TΓ QO, l],y,t) such that Φt^(yΛ) = eht> μ\y^tt)

forO<t,t + t' < r{y). / / < ^ ( [ 0 , l],y,*) C π,([0, 1], </",*")>' then

ΦtΨ\y,t) = β * M(^>t//) Ut#ίΓί([o,i],y,*)

Furthermore, if f: Si ^ C is C1, then (y,t) -+ $ fdμ\yt) is also Cι.

Proof. We can construct μ\yt\ from the Margulis measure μw This

is a transverse measure to the foliation !FU which transforms as φ\μM =

e f t ίμM [5]. To define μ\ tΛB) for a Borel set B C π^([0, l],y,ί) we consider

0[_^5](JB) . This lies in the transverse section φ[_β^π{([0^ l],2/,£) to ^ u . We

define

μ\ytt)(B) = Jim μM{Φ\-δ,δ]B)lδh"

This is well defined by the property ^*JUM = ehtμM> By construction μV tx

transforms in the way described.

For the final part we observe that for fixed (y,ί):

(*, 2/, t + t') dμi

{y^tf) = j[f{x, 2/, t

/ fix, V + y', t) dμ\y^y^t) = J[f{x, y + 2/', t

Hence (y;, ί') ^ / /(x, y + y;, ί + ί ;) d μ z

( 2 / + 2 / V + ί O is

2. Zeta-functions and their poles

We define the zeta function ς(s), s E C, by the Euler product ς(s) =

Π r ( l - e"""5^7"))"1, where r denotes a closed geodesic of length λ(τ). This is

well defined for Re(s) sufficiently large.

For general Anosov flows we can define ζ(s) in a similar fashion where r

now denotes a closed orbit for the flow of least period λ(r).

To characterize the poles we proceed as follows: Let Cλ(J) denote complex

C^-functions on J with the norm | |/ | | = \\f\\n + | |/' | |oo. We define a Perron-

Frobenius-type operator Ls: Cι(J) —• Cι{J), s G C, by

^: fz—x^: fz—x

where / : J —• J is as defined in the previous section. The dual operator

L*9: Cl{JY - C V ) * is (LV)(Λ) = i/(LβΛ).
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Lemma 3. (i) ζ(s) is nonzero and analytic for Re(s) > h\
(ii) ς(s) has a nonzero meromorphic extension to Re(s) > h — δ for some

>0;
(iii) If s = so is a pole for ς(s) with Re(s) > h - δ, then L*sv = v for some

Proof Parts (i) and (ii) follow directly from [9]. For part (iii) the original
condition was that 1 should be an isolated eigenvalue for Ls acting on Holder
continuous functions on a subshift of finite type Σ. The space CX{J) corre-
sponds to a strictly smaller space in the space of Holder continuous functions
Ha (the correspondence being the injection induced by the semi-conjugacy
TΓ: Σ —• «/, i.e., π*: CX(J) <—+ i/ α ), where a > 0 is some Holder exponent
related to the foliation.

The (generalized) eigenspaces for the isolated eigenvalues of LSo: Ha —•
i/Q, which are disjoint from the essential spectrum, lie in the subspace Cι{J).
To see this consider the eigenvalues ordered by modulus. Assume that A is
a unique eigenvalue of maximum modulus, having eigenprojection P\. Then
the eigenspace V\ is contained in CX(J) since for any h €E Cι{J) the iterates
L"Qh/λn remain in Cι(J) but converge to Pχh E V. If there are two, or
more, eigenvalues of equal modulus we can modify this simple argument using
Cesaro averages. We can then proceed inductively, replacing LSo by L3Q —XP\,
dealing with successive isolated eigenvalues.

We can conclude that if 1 is an isolated eigenvalue for LSo: Ha —+ Ha

then it is also an isolated eigenvalue (of finite multiplicity in both cases) for

By duality the spectrum of LSo acting on C1 (J) is the same as the spectrum
of L*o acting on Cι{J)*. In particular, 1 is an eigenvalue for L*o: CX(J)* —*

of finite multiplicity. Thus we can choose v G Cι(J) such that

For the remainder of this section we shall assume that s is a pole for the
zeta function.

Let Cι{M) denote the C^-functions / : M —• C. This is a Banach space
with norm | |/| | = ||/||oo + | |/ | | i , where \\f\\x = sup{p x / | | ' | x G M}; here || ||'
is the norm of Dxf G L(TXM, TfxM). We can construct linear functional on
Cι(M) by the following:

Lemma 4. If'L*v = v, v G CX(J)*, then there exists m e CX(M)* such
that φϊm = e{3~h^m.

Proof We define m by

JL / My) r

Mf) = E ^ (Jo

 e~stJ f*i*(*ii*kt
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To show φ\m = e^s~h^m we shall assume (without loss of generality) that
0 < t = T < inf r. We can write:

rr(y)
" dt

fi = ίo V eSt [f fπi{x^yt)d^μ\y
t [j ^ ^ dt

Σ
r{y)-T p

eaT J eat | y fin(X,y,t + T)(e-
hTdπ*μly<t)(x)ή dt

e~at

dt

where pj is the local inverse to / : J —• J,

My)-T r /•
f?(y) = y eat y fn(x,y,t+T)dtfμ\ytt)(x))\ dt,

/

*{y) I

eat //ir<(*,»,ί + Γ)d«μ{ V i t ) (x)) Λ.
(y)-T U J

Thus

where v(Lsf}) = ί/(/t) by assumption and by comparing definitions: /°+// =

{fΦτ)i> q e.d.
The functional m is nonzero. This is a consequence of the functional v

being nonzero and having full support on J in a distributional sense, i.e.,
for any open interval I Q J there exists φ € Cι{J) with supp(^) C / and
u{φ) φ 0. This simple condition can be deduced from the identity L*9Qv = v.

We can derive estimates for the spectrum of the induced action of the flow
on C^-functions, i.e., for φ*: Cι{M) -> Cι{M) by ( # / ) = / o φt.
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Lemma 5. There exist 0 < λi < λ2 < 1 < μi < μ2 such that
is contained in the union of: (i) the unit circle K\ (ii) the annulus A\ with
inner and outer radii λ2, Ai, respectively, and (iii) the annulus Aμ with inner
and outer radii μ2,μi, respectively.

Proof. Since constant functions are ̂ -invariant, consider the induced op-
erator φ\\ C1{M)/C -> C1(M)/C on the quotient space C1(M)/C, where
C denotes constant functions. C1(M)/C is a Banach space with the quotient
norm ||/ + C|| = | |/ | | i . We can identify this space with continuous sections
s: M -> TM, which we denote by C°(M,TM). Since TM = E° Θ Eu ®
E9 we can decompose C°(MyTM) into ^-invariant spaces: C°(M,TM) =
C°(M,E°) Θ C0(M,£:u) Θ C°(M,£;θ). We can complexify each of these
spaces; we denote, for example, the complexification C°(M,TM) Θ R C by
C°(M,ΓM).

By definition, Dφt \ E* is uniformly expanding; thus by the spectral radius
theorem applied to Dφt\E* and Dφ-t \ #u we have sp(0J" |C°(M, Eu))
C Aμ for appropriate expansion bounds 1 < μi < μ2. Similarly,
sP(Φt I C*°(M, E9)) C Aλ for appropriate contraction bounds 0 < λi < λ2 < 1
on Dφt I E* - For φ\ \ C0(M, E10) we observe that φ*t preserves the norm and so

t I C°{M,E°) C K. The spectra are related by:

(i) sp(« I C^M)) C sp(^ IC) U sp(# I C1(M)/C);

and

Thus sp(0*) c A λ U i μ U i f , as claimed.

3. Main result

We are now in a position to prove the following:
Theorem. Let S be a compact C°° Riemannian surface of {variable)

negative curvature. Let ς(s) be the associated zeta function. There exists
ε > 0 so that ς(s) is nonzero and analytic for Re(s) > h — ε, except for a
simple pole at s = h.

Proof. For Re(s) = ήwe know that there is exactly one pole on Re(s) = h
(which is a simple pole at s = h) since φt is weak-mixing (cf. [6]). Thus
by Lemma 3, parts (i) and (ii), the theorem can only fail if there exists a
sequence of poles sn = σn + itn with σn < h and σn —• h. If this were
true then for each sn there exists mn e Cλ(M)* with φ\mn = e ( θ n~ / ι ) tran,
by Lemma 3, part (iii), and Lemma 4. In particular, e (Sf l~/ ι ) ί €
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where φt*: CX{M)* - CX{M)* by (φt*m){f) = m{fφt), since e^~h^ is an
eigenvalue with eigenfunction mn. However, since φt* is the dual operator to
Φt we have sp(^) = sp{φt*), and in particular e^8n~h^ G sp^J1). However,
for sufficiently large n, e^Sn~h)t £ KϋAχ\jAμ (since |e ( β n~Λ)*| = e^n~h^ -• 1
but |e ( θ Λ " / ι ) ί | φ 1). This contradicts Lemma 5.

Remark. Unfortunately, it is not possible to give effective estimates on
the value ε in the above theorem. The major problem is that ε depends on
the value δ occurring in Lemma 3(ii). The methods used in [9] to prove this
result do not yield good estimates on the size of δ.

Corollary 1. Let Z{s) = ΠnΓoΓU 1 - e"( θ + w) λ( r)) be the Selberg zeta
function for a compact C°° Riemannian surface of {variable) negative curva-
ture. There exists ε > 0 so that Z(s) is nonzero and analytic for Re(s) > h—e,
except for a simple zero at s = h.

Let m be the unique measure of maximal entropy for the flow. Let F, G €
C°°{M,) and define p(t) = f FφtGdm - fFdmfGdm. We consider the
Fourier transform p(s) = / ^ ~ p(t)eist dt (s € C).

Corollary 2. The Fourier transform β(s) has an analytic extension to a
strip |Re(s)| < ε for some ε > 0.

Proof There is a direct correspondence between the domains of ς(s) and
p(s) (cf. [8] and [11] for details). This, together with the theorem, proves the
corollary.

The above theorem and its corollaries should have important consequences
for the asymptotic behavior of the geodesic flow. We shall postpone a consid-
eration of these aspects until a later date.

The proof we have given of the above results is valid in a slightly more gen-
eral setting. In particular all the above results remain valid for any transitive
weak-mixing three-dimensional C1 Anosov flow for which both the stable and
unstable manifold foliations are of class C1.

Remark. The C1 condition on the foliations is assumed so that the
(eventually fictitious) functional m lies in C1(M)*. The reason that we prefer
to work with C 1 functions is that this is the most convenient space in which
the effects of the hyperbolicity of the flow can be detected (cf. Lemma 5).
One reason for dealing only with surfaces is that the C1 condition on the
foliations is automatic, whereas for manifolds of negative sectional curvature
the Cι condition generally requires additional pinching assumptions. A sec-
ond advantage of surfaces is that the boundaries of Markov partitions are C1.
This Condition is convenient in the definition of m. For manifolds of higher
dimension the boundaries to the Markov partition are generally not C1.
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We believe the above results should be true at the level of generality of
Axiom A attractors. A proof in that context should make use of Holder
continuous functions rather than C1 functions.
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