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1. Introduction

In an earlier paper [10], a construction was described which produced fam-
ilies of 4-dimensional hyper-Kahler manifolds (one family for each finite sub-
group of SU(2)), the members of which were asymptotically locally Euclidean
(ALE). Our purpose here is to demonstrate the completeness of this construc-
tion: we shall show that every ALE hyper-Kahler 4-manifold is isometric to
a member of one of the families obtained in [10].

For us, a Riemannian 4-manifold is ALE if it has just one end and if
some neighborhood of infinity has a finite covering space V diffeomorphic to
the complement of the unit ball in R4; the Riemannian metric glJ on V is
required asymptotically to approximate the Euclidean metric δ%3 on R4, so
that in the natural coordinates X{ one has

g* = διj + aij

with dva%3 = O(r~ 4 " p ), p > 0, where r2 = Σx2 and d denotes differen-
tiation with respect to the coordinates X{. We recall that a hyper-Kahler
manifold carries three complex structures /, J, K and that these give three
(closed) Kahler 2-forms ω\,ω2,ωz- With this notation, the main result of
[10] is the following. Let Γ be a finite subgroup of SU(2) and let X be the
smooth 4-manifold underlying the minimal resolution of the complex quotient
singularity C2/Γ.

Theorem 1.1. Let three cohomology classes αi,α 2 ,α3 G H2(X;Έl) be
given which satisfy the nondegeneracy condition

(*) for each Σ G HziX Z) with Σ Σ = -2 there exists
ie {1,2,3} withai(Σ) ^ 0.

Then there exists on X an ALE hyper-Kahler structure for which the coho-
mology classes of the Kahler forms [û ] are the given α .̂

The results of this paper were announced in [10]. They comprise the fol-
lowing two theorems, which will be proved in §§2 and 3, respectively.
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Theorem 1.2. Every ALE hyper-Kάhler 4-manifold is diffeomorphic to

the minimal resolution of C 2 /Γ for some Γ C SU(2), and the cohomology

classes of the Kάhler forms on such a manifold must satisfy condition (*).

Theorem 1.3. If X1 andX2 are two ALE hyper-Kahler 4-manifolds and

if there is a diffeomorphism X1 —• X2 under which the cohomology classes of

the Kάhler forms agree, then X1 and X2 are isometric by an isometry which

respects I,J, and K.

The author owes several ideas in the proofs of these results to conversations

with N. J. Hitchin. Theorem 1.2 was essentially known to him, while Theorem

1.3 generalises a conjecture made in [6], from which this work originated.

Following the description given there, we can give a more concrete version of

Theorem 1.3. If a basis Σ i , , Σ r for the lattice H^X' , Z) is chosen, then for

each hyper-Kahler structure, one can form the period matrix Ω whose entries

are obtained by evaluating the three Kahler forms ω{ on the cycles Σj\

nt3 = ί ωi.

What the theorem says is that the hyper-Kahler structure is determined once

the period matrix is known; this is the sense in which it relates to the classical

Torelli theorem for Riemann surfaces. A closer cousin is the corresponding

result for hyper-Kahler metrics on the K2> surface; the most significant differ-

ence here is that, whereas the compactness of the K3 surface forces the three

cohomology classes [ωi] to be orthogonal, the period matrix for an ALE space

is constrained only by the nondegeneracy condition (*). Of course, Ω is well

defined only to within an isometry of the homology lattice.

At many points in §2 our proof runs parallel to the proof given in [1] that

every finite-action, self-dual solution to the Yang-Mills equations on R 4 arises

from the monad construction of Atiyah, Drinfeld, Hitchin and Manin. Since a

hyper-Kahler 4-manifold is an (anti)-self-dual solution to Einstein's equations,

the results of this paper constitute, perhaps, a gravitational analogue of the

ADHM classification.

2. The twist or space

Throughout this section, X will denote an arbitrary ALE hyper-Kahler

4-manifold (we do not assume that X is one of the spaces constructed in [10])

and X will denote the topological one-point compactification X = X U {oo}.

Although it is not a manifold, the ALE condition allows us to give X the

structure of an orbifold (or V -manifold'in Satake's terminology [12]) as follows.

Let U' be a neighborhood of infinity in X having a finite covering U' with
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coordinates X{ as in §1, and let U and U be obtained from these by adjoining
{oo}:

U = UfU{oo}, /7 = ί/'u{oo}.

We will have U = U/T where Γ is the finite group of covering transformations.
Since U' is Euclidean at infinity, the space U is a topological manifold, and we
can make it a smooth manifold by declaring the coordinates yi = Xi/r2 to be
smooth. The Riemannian metric on U1 extends to U after a conformal change:
we put Ίj = φ2g where φ: X —* R + is smooth and equal to 1/r2 outside some
compact set; then in the coordinates yi this metric has components

and therefore extends to U as a metric of class C 3 (there being similar decay
in the derivatives). The action of Γ on U preserves the metric and is therefore
of class C 3 ' α for a < 1 (since harmonic coordinates are of this class).

Thus X is an orbifold (of class C3'**, though this is hardly important) with
a finite quotient singularity at oo modelled on U/T; we may regard g as an
orbifold metric on X.

The Riemann curvature tensor of a hyper-Kahler 4-manifold is anti-self-
dual with respect to the orientation associated with the complex structures.
This means that the metric is Ricci-flat and conformally anti-self-dual (that is,
the Weyl tensor is anti-self-dual [2]). Since this last condition is a conformally
invariant one, it is satisfied also by <7, and one sees that X is a conformally
anti-self-dual orbifold.

In the coordinates yi on t/, the extra point oo is at the origin, and by
means of its action on the tangent space at this point, we may identify Γ with
a subgroup of SO(4). Let U be given the orientation appropriate to the ori-
entation of X and let the ^-spin bundles be labelled V+ and V~ accordingly.
We should remark that the hyper-Kahler condition ensures that X is a spin
manifold and that V+ is flat and globally trivial.

Lemma 2.1. The group Γ lies in the subgroup SU(2) C S0(4) which acts
trivially onV~ and nontriυially onV^ at the fixed point.

Proof. To leading order, Γ acts linearly on the coordinates Xi and yi by one
and the same representation p: Γ —• S0(4). Since X is hyper-Kahler, the | -
spin bundle V+ is trivial on Uf and the trivialization is invariant under Γ. So
ρ(T) acts trivially on V+ at the origin of the x coordinates. The y coordinates
differ from the x coordinates by an orientation-reversing diffeomorphism, so
that in the orientation appropriate to X, the group p(T) acts trivially on V~
at the origin of the y coordinates.
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To study the spaces X and X we shall exploit Penrose's nonlinear gravi-
tation construction. What we need can be found in [2] for the conformally
anti-self-dual case, and in [8] for the case of hyper-Kahler manifolds.

Recall that when X is a conformally anti-self-dual 4-manifold with a spin
structure (as it is in our case), its twistor space may be defined as the pro-
jectivized |-spin bundle Z = P(V+). This Z carries an integrable complex
structure and an anti-holomorphic involution τ: Z —• Z which depend only
on the conformal class of the metric. The fibers of the projection P ( F + ) —• X
are the twistor lines: they are holomorphic rational curves in Z which are pre-
served by r. The dual of the tautological bundle on P(V+) is a holomorphic
line bundle on Z whose sheaf of sections we denote by <^(1).

The same constructions can be made when the conformally anti-self-dual
space is an orbifold rather than a manifold. For example, the twistor space of
U = U/T can be defined to be the complex orbifold W = W/Γ, where W is the
twistor space of U. (Note that Γ will act on W biholomorphically.) In this way
one may construct the twistor space Z of the compactification X = l U {oo}:
it is a complex orbifold containing a singular line /^ lying over oo € X. If
loo C W denotes the nonsingular twistor line over o o G ί / ( a copy of CF 1 ) ,
then we will have /^ = /QO/Γ, and it follows from Lemma 2.1 that Γ acts on /^
by the standard action of SU(2) on CPι. The complex manifold Z = Z\loc
is the twistor space of X, and the sheaf ^(1) can be extended from Z to Z
by defining its local sections on W/Γ to be the Γ-invariant local sections on
W.

To summarize, Z is the twistor space of the conformally anti-self-dual man-
ifold (X, #), and Z is the twistor space of the orbifold {X,g). The following
vanishing theorem is the key to the structure of these two complex spaces.

Lemma 2.2. Hι(Z,@(-ΐ)) = 0.

Proof. Suppose not. Then by the Penrose transform (see [7]), we obtain
on X a nonzero solution ψ to the orbifold Dirac equation Dψ = 0. (Here D
is the Dirac operator acting on sections of V~. We remark that the Penrose
transform needs no modification for orbifolds.) By conformal invariance [7],
the spinor ψ gives rise to a nonzero solution of the Dirac equation on X
satisfying the decay conditions

\φ\ = O{r~% \Vφ\=O{r~i).

The Weitzenbock formula for the Dirac operator says that

D*D = V*V + iS,
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where S is the scalar curvature. Since S = 0 on ΛΓ, we have V*Vψ = 0. So,
following the usual Bochner vanishing argument, we find

0= ί (V* V</>, Φ) = ί I Vt/f + f ( W , </>) = f I V^|2 + O(/r 4 ).

Letting R —• oo one sees that V-0 = 0 and hence t/> = 0, a contradiction.
The twistor space of a hyper-Kahler 4-manifold possesses two additional

structures which are not present when the manifold is merely conformally
anti-self-dual. The first is a holomorphic fibration TΓ : Z —• C P 1 of which the
twistor lines are sections. If one identifies C P 1 with S2 C R3, then for each
a = (01,^2,03) € S2, the fiber Za = τr~1(α) is the complex surface obtained
by equipping Z with the complex structure

Ia = ail + CL2J + dzK.

For each of these complex structures, there is a holomorphic symplectic form
on X (unique to within a complex scalar multiple) which is a linear combina-
tion of the three Kahler forms. (For the complex structure /, the holomorphic
2-form is ω<ι + iω^.) Globally these fit together to give a holomorphic section

[8]

where Tp is the tangent space to the fibers, the kernel of dπ. This twisted
vertical 2-form is the second piece of additional data.

Let A(Z) denote the graded ring

k>0

and let A(Z) and A(Zoo) be similarly defined. By Hartog's theorem, sections
of &(k) on Z extend to Z, so that A(Z) = A(Z), and there is therefore a
restriction map A(Z) -+ A(loo). Via the holomorphic fibration TΓ: Z —• C P 1 ,
we can pull back a basis u, v for /f°(CP1,^>(l)) to obtain two sections of

on Z, also denoted by u and i>, which generate an ideal / C A(Z).
Proposition 2.3. The following sequence is exact:

0 _> / _> Λ(Z) ^ A(Zoo) - 0.

Proo/. Let us first prove that the sequence is exact at the middle term. Let
^ C @{k) be the subsheaf consisting of sections which vanish on l^. What
we want to prove is that ^ is generated by u and v, or that ^ is the image
of

(s,t) H-> us + vt.
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Since u and v are nonvanishing on Z, we need only look at a neighborhood

of Zoo. For this purpose we may take the neighborhood W to be the twistor

space of U C X, so that W = W/T, where W is the twistor space of U. Then

u and v lift to sections ύ and v of (?(k) on W, and we must show that they

generate the ideal sheaf of Zoo

This is a matter which depends only on the values of ύ and v and their first

derivatives at points of Zoo. It is therefore enough to look at the case X = R 4 ,

for since ύ and v are determined by the metric alone, they will resemble the

flat case to fourth order near infinity. (To see how u and v are related to the

metric, observe that in the hyper-Kahler manifold X they can be interpreted

as the two covariant-constant sections of ( F + ) * . In this conformal model the

Christoffel symbols have order r~5, and so u and v are Euclidean to order

r~4.) Now, in the R 4 case, X is conformally the 4-sphere, its twistor space

Z is C P 3 , and Z is CP3\Zoo. In suitable homogeneous coordinates [u, υ, s,£],

the projection π: Z —• P i is given by

[u,v,s,t] *-> [u,v],

and ZQO is the line defined by u = v = 0, which is what we wanted to prove.

So the sequence is exact at the middle term.

Now we must prove the surjectivity of the restriction map A(Z) —> A(Zoo)

By the above arguments we have two short exact sequences of sheaves on Z:

(B) 0 -• 0{k - 2) Λ 0{k - 1) Θ <9{k - 1) A fk -+ 0,

where λ : s ^ (vs, —us). To prove surjectivity we must show that

= 0. In fact we shall prove two assertions for all k > 0:

Since H0(Zia^k) = 0 for k < 0, the long exact sequence in cohomology coming

from (B) gives

<£/,_! => Φfc_2, A; < 0.

By Lemma 2.2 we already have Φ_i, so Φ^ holds for all k < 0. Since the

canonical sheaf of the orbifold Z is ̂ ( - 4 ) (see [1]), Serre duality yields

H2(Z,0{k))=O, fc>-3.

(Serre duality for orbifolds is proved just as it is proved for complex manifolds:

one chooses a Hermitian metric and then exploits the Hodge theory. The

'canonical sheaf is in the sense of orbifolds; see [3].) Using the long exact

sequence of (B) again, we deduce
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Now /QO is the quotient of a projective line by a finite group, so H1 (Z^ ,&(k)) =

0 for k > — 1. The long exact sequence of (A) therefore yields

Using the last two implications and induction, one sees that Φk and #& hold

for all k > 0. This proves the proposition.

The ring A (Zoo) is the Γ-invariant part of J4(ZOO), and since the latter is just

a polynomial ring in two variables (the affine coordinate ring of C 2 ) , it follows

that A(ZQO) is the affine coordinate ring of C 2 /Γ, the Γ-invariant polynomials.

If Y is the affine variety whose coordinate ring is A(Z), then Proposition 2.3

can be interpreted as saying that there is a map φ: Y —> C 2 whose fiber

φ~1{0) is C 2 /Γ. Since A(Z) is flat over C[u,v], this Φ is a deformation of

C 2 /Γ. The grading of A(Z) gives an action of C* on Y, making φ a C*-

deformation in the sense of [13]: that is to say, φ is C*-equivariant, and the

fiber φ~λ(0) is equivariantly isomorphic to C 2 /Γ with its obvious C*-action.

We can give a more concrete definition of Y. According to Klein [9], the

ring A(Zoo) is generated by three homogeneous elements x, y, z subject to one

relation /(x, y, z) — 0:

Group

ck
Dk

T
O
I

xU
X2

X2

X2

Relation
xy -

-V2z

+ y3

+ y3

+ 2/3

zk=0

+ Z4 =
+ yz3 =

+ z5 =

—
0

= 0

0

Thus the exact sequence of Proposition 2.3 shows that A(z) is generated by

elements {x, y, z, zx, v} subject to a relation

(2.4) / ( x , y , z ) + u - g{x,y,z,u,v)+v h { x , y , ^ , u , υ ) = 0

for some polynomials ^ and h. This equation defines a hypersurface 7 c C 5 ,

and the map φ = (u, v): Y —• C 2 is a deformation of C 2 /Γ. If rfi, c?2, <̂3 are

the degrees of x, y, 2r, then the action of C* on C 5 given by

(x,y,2,i*,u) ^ (λdίx,\d2y,\d3z,λu,λv)

leaves Y invariant and makes φ a C*-deformation.

The quotient of C 5 \0 by this action of C* is a certain compact variety,

a weighted projective space. Let ~ZS — (Y\0)/C* be the image of Y in this

weighted projective space, and define Zs = Z V ^ where Z^ = {u = υ = 0} C

Z θ . The functions x, y, 2, ̂ , Ϊ; induce maps
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The map χ takes a neighborhood of l^ in ~Z isomorphically onto a neighbor-
hood of /^ in ~ZS, while the map χ commutes with the projection to C P 1 :

Z Λ Zs

•i i
C P 1 = C P 1

On each fiber Za = π~1(α), the restriction χa: Za -+ Z* is proper and bira-
tional because χ is an isomorphism near l^. Furthermore, since each surface
Za has zero first Chern class, there can be no exceptional curves of the first
kind in Zα, and it follows that χa: Za —• Z% is the minimal resolution. We can
summarize the situation by saying that the diagram above is a simultaneous
resolution of πs: Zs —+ C P 1 (see [5] for a definition) inducing the minimal
resolution of each fiber.

What we have seen is that the twistor space Z of an ALE hyper-Kahler
4-manifold has a singular model Zs which is obtained from the total space of
a deformation φ: Y —• C 2 by removing the fiber φ~x{0) = C2/Γ and then
dividing by a C*-action. (In the case in which Γ is cyclic, this is essentially
the description of the twistor space given by Hitchin [6], and was the starting
point for the twistor construction of the multi-Eguchi-Hanson gravitational
instantons.) This concrete description of Z, together with some results from
the deformation theory of C2/Γ, will lead easily to the proof of Theorem 1.2
and 1.3.

Being a deformation of C2/Γ, the map φ will be the pull-back of the semi-
universal deformation Φ: y —• Ψ" by some map t: C 2 —• ^\

Y > y

(2.5) Φ[ j

As in [10], we take for Φ the C*-semi-universal deformation, so that all the
maps in this diagram are homogeneous and globally defined [13].

Corollary 2.6. X is diffeomorphic to C2/Γ, the minimal resolution of
C2/Γ.

Proof. It is a special property of the singularities C2/Γ that their semi-
universal deformations admit simultaneous resolutions [5], [13]. From this
property it follows that the minimal resolution of every fiber of Φ is diffeo-
morphic to C2/Γ; and because of the diagram (2.5), the same is true for the
fibers of Y. But the latter are the spaces Z^ whose minimal resolutions are the
surfaces Za, and by the nature of the twistor space, each Za is diffeomorphic
toX.
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The exceptional set in the minimal resolution C 2 /Γ is a union of rational

curves, each with self-intersection —2, whose configuration is the dual of a

certain simply-laced Dynkin diagram Δ(Γ), one of Ar,Dr,E§,EΊ or E% ac-

cording as Γ is cyclic, binary bihedral, tetrahedral, octahedral or icosohedral

(see [13], for example). The second homology H2{X',Z) is therefore isomor-

phic to the corresponding root lattice in such a way that the classes Σ with

Σ Σ = —2 correspond to the roots; and the cohomology H2(X;C) can be

identified with the complex Cartan algebra hc.

Lemma 2.7. There are only finitely many points a G CP1 for which Z%

is singular.

Proof. Notice first that for any given (—2)-class Σ G H^X Z), there is

at most one complex structure Ia (a G S2) for which Σ may be represented

by a holomorphic curve in X. To see this, suppose for example that Σ is

represented by a holomorphic curve P with respect to /. Then the Kahler

form ω\ must be positive on P, while the form ω2 + iωs must be zero because

it is a holomorphic 2-form. Thus [wi](Σ) > 0, while [ω2)(Σ) = [ω3](Σ) = 0,

and it is clear that the corresponding conditions cannot hold for any other

complex structure.

It follows that the number of points a G CP1 for which Za contains a holo-

morphic (-2)-curve does not exceed the number of roots. The singularities in

the fibers Zs

a all have the form C 2 / f for some f c SU(2) (this follows from

the corresponding property for the fibers of Φ; see [13]), and their minimal

resolutions therefore contain (—2)-curves. So we deduce that the number of

points a G CP1 for which Z% is singular is also bounded by the number of

roots. This proves the lemma.

Being the twistor space of a hyper-Kahler manifold, Z carries a holomorphic

section

Taking the homology class of ω on each fiber gives an element of ϋ f ^ C P 1 , /ιc<8>

<^(2)), or alternatively a map p: C 2 —• hc which is homogeneous of degree 2.

Composing p with the projection hc —• hc/W gives a map

(2.8) p :C 2 -+hc/W.

Now ω also gives rise to a twisted vertical 2-form on the nonsingular part of

Z9 via the map χ. From Zs we can lift it to Y where it gives a vertical 2-form

on the deformation φ: Y —• C 2 . So p is nothing other than the period map

for φ in the sense of [11].

Proof of Theorem 1.2, completed. It remains to show that the cohomology

classes of the Kahler forms on X satisfy the nondegeneracy condition (*).

Suppose on the contrary that there is a Σ on which all three cohomology
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classes vanish. Then the image of p lies in the kernel of a root, and the image
of the period map p lies in the branch locus of the quotient map hc —> hc/W.
As is explained in [10], there is an isomorphism pψ: "V —» hc/W (in fact,
the period map of the semi-universal deformation) with the property that
p = p φ O ί, where t is the map in (2.5). Furthermore, this pψ carries the
discriminant locus 2J C T^ onto the branch locus in hc/W. It follows that
the image of t lies in 2'. But by the definition of the discriminant locus, this
means that all the fibers of φ: Y —• C 2 are singular, and this contradicts
Lemma 2.7.

3. Proof of Theorem 1.3

Let X1 and X2 be hyper-Kahler manifolds satisfying the hypotheses of
Theorem 1.3. We aim to prove that they are isometric, and our strategy is to
show that they have the same twistor space carrying the same real structure
r, the same family of twistor lines, and the same twisted 2-form. This will
suffice, for it is a feature of the Penrose construction that the twistor space,
together with these auxiliary structures, gives complete information about the
metric (see [8] for the hyper-Kahler case).

So let Z1 and Z2 be the twistor spaces and let the holomorphic fibrations
be

πι:Zi-^CP1 (2 = 1,2).

From the results of §2 we know that these are simultaneous resolutions of
certain singular models

which in turn are quotients of two C*-deformations of C2/Γ,

φi:Yi^C2 (ί = 1,2).

Since the cohomology classes of the three Kahler forms on X1 and X2 are
equal, the deformations φι and φ2 have the same period map (2.8) and are
therefore isomorphic by [10, Proposition (4.5)]. It follows that (TΓ5)1 and (τrs)2

are isomorphic too, and that TΓ1 and τr2 are simultaneous resolutions of one
and the same map which we shall now denote by πs: Zs —• C P 1 . So the
picture is as follows:

z ι 2<U Zs Z2 -^ Zs

1 1 1 1
C P 1 = C P 1 C P 1 = C P 1

Both maps χι extend to the compactification obtained by adding the line l^.
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Simultaneous resolutions of singular maps are not always unique and we
cannot deduce from these diagrams alone that Z1 and Z2 are isomorphic. We
could settle the question by appealing to the results of [4] to show that there
can only be one simultaneous resolution compatible with the known Kahler
classes; but we shall not pursue this line, as the singular model contains all
the information we need.

Via the maps χ%, the space Z3 obtains two real structures r 1 and r 2, two
twisted vertical 2-forms ω1 and ω2 (at least on the complement of the singular
set), and two families of twistor lines ^ x and ^" 2 , each of which fibers Z8 in
some neighborhood of infinity.

The composite σ = r 1 o r 2 is a holomorphic transformation of Z3 and
therefore produces an automorphism A(σ) of the graded ring A(Z9). Since
σ respects the holomorphic fibration over GP 1 , the automorphism A(σ) fixes
u and v. Further, since r 1 and r 2 both give the antipodal map on Zoo, the
automorphism of A(loo) which σ induces is the identity. Applying the 5-lemma
to the short exact sequence of Proposition 2.3, we deduce that A(σ) = 1 and
hence τι =τ2.

The ratio of ω1 and ω2 is a holomorphic function on the nonsingular part
of Z3 which extends, by Hartog's theorem, first to Zs itself and then to Z .
Since Z is compact, this ratio is constant, and since the cohomology classes
of ω1 and ω2 agree, the ratio must be 1. So ω1 = ω2.

For i = 1,2, let Uι be a neighborhood of {oo} in X , let Uι be its nonsingu-
lar branched covering, and let W% and W% be the twistor spaces of Uι and Ux.
We may view Wι and W2 as neighborhoods of Zoo in the singular model Zs,
and by shrinking them somewhat, we may take it that they coincide. Since
each Wι restricts to give the universal covering of W™\Zoo? there will be a
diagram

W1 A W2

\ /
W

in which v is an isomorphism.
Being the twistor space of U\ each W{ has a real structure f\ and we

must show that v preserves these: that is, f1 = v~xτ2v. Now if these two
differ at all, then they differ by a covering transformation 7 G Γ, for we
already know that r 1 and r 2 are the same on W. Furthermore, since both
real structures give the antipodal map of ZQO, the covering transformation 7
must leave Zoo pointwise fixed. So the only possibility is Γ = — 1, this being
the only nontrivial element of SU(2) which acts trivially on CP1. To rule out
this last possibility we recall from [8] that the twisted vertical 2-form on a
twistor space must be compatible with the real structure in a strong sense,



696 P. B. KRONHEIMER

for it must give rise to a metric on X which is not only real but also positive
definite. The point is that if the two real structures did differ by the action of
— 1 £ SU(2), then they would give rise to 'metrics' of opposite sign. (One can
check this explicitly in the flat case when Z = CP 3.) These considerations
show that v must preserve the real structures r\

The twistor lines of Uι form a smooth family St% in Wι depending on four
real parameters (i = 1,2). The line l^ belongs to both families, and being a
twistor line, it has normal bundle < (̂1) Θ<^(1). A theorem of Kodaira implies
that the universal deformation of /<*> in W% is a smooth family of four complex
parameters (see [2]), and it follows that ^% consists of all those members of
the universal family which are preserved by r\ Since v carries /<» to l^ and
preserves the real structures, it therefore follows that v carries the family J?"1

to the family &"1'. Near ί^, the twistor lines in Z belonging to the families
J?"1 and &"1 are just the images of the families 9^1 and &2\ so these coincide
also.

It now follows that in the hyper-Kahler manifolds X 1 and X2 there will be
open neighborhoods of infinity, say V1 and F 2 , on which there is an isometry
η: V1 —• V2. If we choose an a G C P 1 for which Z* is nonsingular, then the
maps χι give isomorphisms on the fibers Zι

a = Z* (i = 1,2); and since Z\ and
Z2 are just the manifolds X1 and X2 equipped with the complex structure
7α, we conclude that η extends to a global diffeomorphism ηa: X1 —* X2

which is holomorphic with respect to Ia. Since this map is an isometry on the
open set V1, it is an isometry everywhere by analytic continuation and will
be holomorphic with respect to all the complex structures.
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