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ON THE EXISTENCE AND REGULARITY
OF FUNDAMENTAL DOMAINS

WITH LEAST BOUNDARY AREA

JAIGYOUNG CHOE

Introduction

Let M be a three-dimensional compact smooth Riemannian manifold. Let
Φo be the set of all fundamental domains of M with Lipschitz boundary
in M, the universal covering space of M. Then it is a question of basic
interest to see whether one can find a fundamental domain in Φo with least
boundary area among all fundamental domains in ΦQ. Moreover, passing to
subfamilies of Φo, one can ask similar questions: Let Φi be the subfamily of
Φo consisting of all fundamental domains of M which are homeomorphic to
an open ball, and let Φ2 be the subfamily of Φi consisting of all fundamental
domains of M whose closures are homeomorphic to a closed balL Can one
find a fundamental domain in Φi, or Φ2, whose boundary area (counting
multiplicity) is the minimum among all fundamental domains in Φi, or Φ2?
These problems were proposed by Michael H. Freedman.

In this paper we answer the first problem, the case of Φo, in the affirmative
(Theorem 3). We then discuss the second problem, the case of Φi, and derive
an affirmative answer under the assumption that M is irreducible, that is,
every embedded sphere in M bounds a ball (Theorem 5). The third problem,
the case of Φ2, remains open. Besides the existence of minimizing fundamental
domains in Φo and Φi, we also obtain the regularity of the boundaries of these
minimizing fundamental domains (Theorem 4). If we define a spine to be a
subset of M whose complement in M is homeomorphic to an open ball, then
the second problem is equivalent to finding an area minimizing spine of M.

For a two-dimensional compact Riemannian manifold M 2 the problem is
much simpler to solve and easier to visualize. In fact, any fundamental domain
of M2 with least boundary length among all fundamental domains is always
homeomorphic to an open disk. Furthermore the boundary of a minimizing
fundamental domain consists of geodesic segments of M 2 meeting each other
at 120° angles, and the number of edges and vertices are both 6 - 6χ(M)
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(Proposition). The simplest example is the flat torus T2. A minimizing
fundamental domain of T2 is not the square of Figure 1 but the hexagon of
Figure 2 (see Appendix, 1). This is because a triple point is area minimizing
under Lipschitz map without counting multiplicity whereas a quadruple point
is not.

FIGURE l FIGURE 2

The methods used in this paper are those of geometric measure theory.
In showing the existence of a minimizing fundamental domain for the first
problem, we consider the characteristic functions of fundamental domains
and use the compactness of functions of bounded variation. The existence
for the second problem follows from the compactness of varifolds, viewing the
boundaries of fundamental domains as 2-varifolds.

Throughout this paper we apply the cutting and pasting process exten-
sively. In this process, however, in order not to change the topology of funda-
mental domains, we must assume that M is irreducible for the second problem.
An example, the standard S 2 x S1, indicates that irreducibility is necessary:
A fundamental domain S2 x (0,1) in the universal covering space S2 x R 1 of
S2 x S1 has least boundary area among the elements of Φo (see Appendix,
2). But d{S2 x (0,1)) is also the varifold limit of {dFk}, where the Fk's are
fundamental domains in Φi obtained by cutting out a slanted rod with thick-
ness εfc, Sk —• 0 as k —• oo, which connects S2 x {0} to S2 x {1}, translating
and pasting the rod to S2 x (0,1) along S2 x {1} (Figure 3). {Fk} is also a
minimizing sequence in Φ2.

The main difficulty lies in controlling unbounded fundamental domains.
Indeed if M is noncompact, then the fundamental domains of M may be
unbounded. Moreover, since an unbounded thin spike may have arbitrarily
small boundary area, we can have a minimizing sequence of fundamental do-
mains which are unbounded in M. This bad minimizing sequence is to be
replaced by a uniformly bounded one by applying a cutting and pasting pro-
cess (Theorem 2). To do so, we should verify that both ΦQ and Φi are closed
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FIGURE 3

under cutting and pasting process, and that the boundary area of fundamen-
tal domains does not increase substantially after cutting and pasting. These
are verified through an appropriate adaptation of [4] to our setting. This
adaptation requires a great deal of care.

Once we have uniform boundedness of the minimizing sequence we can get
the desired regularity results for the first problem as in [13]. For the second
problem, we need to modify carefully the arguments in [13] to preserve the
topology of fundamental domains. Thus we show that the projection into
M of the boundary of a minimizing fundamental domain consists of minimal
surfaces meeting each other at equal (120°) angles along Holder continuously
differentiable curves, like compound soap films, and four such curves meet
each other at isolated points at which six sheets of minimal surfaces meet at
equal angles. It should be mentioned that from [8] we can obtain analyticity
of the singular curve in case M is isometric to a Euclidean 3-space R3, and
higher regularity in general.

Now we mention two outstanding problems: (i) What is a fundamental
domain of a flat cubic torus T 3 with least boundary area? (See Appendix 3.)
(ii) If the curvature of M is nonpositive, does the minimizing fundamental
domain of M in Φo or Φi also belong to Φ2? Is the minimizer star-shaped?

Finally, we wish to express our sincere gratitude to Richard M. Schoen, who
introduced us to geometry and analysis. Also we would like to thank Michael
H. Freedman and Leon Simon for their interest and helpful discussions.

1. Terminology

In general, we will use the definitions and notation of [7] and [13] through-
out.
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(1) Let M be a three-dimensional compact smooth Riemannian manifold,
M the universal covering space of M, and p the projection map from M onto
M.

A fundamental domain of M is an open set F in M satisfying

Vol(F) = Vol(p(F)) = Vol(M).

Let Φo denote the set of all fundamental domains of M with Lipschitz
boundary and let Φi denote the set of all fundamental domains in Φo which
are homeomorphic to an open ball. Then, for any F G Φi, M ~ p{dF) is
homeomorphic to an open ball. A subset S of M will be called a spine of M
if M ~ S is homeomorphic to an open ball. Note that, for any F G Φi, p{dF)
is a spine of M and conversely, for any Lipschitz spine we can find F G Φi
with p(dF) = S.

A fundamental domain F G Φi will be said to be reducible if there exists a
proper subset S of p(dF) such that S has Lipschitz boundary and M ~ S is
still homeomorphic to an open ball. Let Φ denote the set of all fundamental
domains in Φi which are not reducible.

A fundamental domain F G Φ will be said to be adequate if F is homeo-
morphic to a closed ball, otherwise F will be said to be inadequate.

Consider the subset Rp of dF which consists of q G dF with the property
that there is an rq > 0 such that for any geodesic ball Gr(p(q)) with center
p(q) and radius r < rq, p(F)Γ\Gr(p(q)) consists of two components only. Each
component of Rp will be called a face of F. Any subset of dF ~ Rp which is
homeomorphic to an open interval (0,1) will be called a multiple curve of F.
Any point of dF ~ Rp at which at least three distinct multiple curves of F
meet each other will be called a multiple point of F.

For F G Φo, δF denotes p(dF). The image under p of face, multiple curve,
or multiple point of F will be called face, multiple curve, or multiple point of
δF respectively.

For any set K C M, define K = {xeM: p{x) G K}.
(2) Bn(p,r) and Un(p,r) will denote respectively the closed and open

geodesic balls with radius r and center p in Mn or R n . B, B° will denote
£3(0,1), f/3(0,1) in R 3 respectively.

We define D = {x G R 2 : |x| < 1}.

(3) For each r > 0 we define μr: R n -> R n, μr{x) = rx, x G Rn, and for
each p G R n we define rp: R n -• Rn, τp(x) = x - p, x G R n .

(4) We say that 5 is area minimizing in an open set U C Mn under a
Lipschitz map provided

Hm{S) < Hm{φ{S))
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whenever φ is a Lipschitz map on Mn such that φ maps U into U and leaves
M ~ U fixed, where i/ m denotes the ra-dimensional Hausdorff measure.

A varifold V in Mn is said to be area minimizing under diffeomorphism
provided

M{V) < M{φ#V)

whenever φ is a diffeomorphism of M n , where M denotes the mass.
(5) Define F 1 C R 2 to be a union of three half-lines joining at the origin

with 120° angles to each other. Define Y C R 3 by Y = (Y1 x R 1) Π B3(0,1)
(see Figure 4).

Define T C R 3 as the intersection with B3(0,1) of an infinite cone from
the origin through the 1-skeleton of a regular tetrahedron with its center of
mass at the origin (see Figure 5).

FIGURE 4 FIGURE 5

(6) For S a 2-rectifiable set, define σ(S) as the singular set of S, that is,
σ(S) is the set of points in S at which there is no approximate tangent plane
to S in G(3,2), or Θ 2 (# 2

L S, x) is not one. Define σγ(S) C σ{S) as the points
of density 3/2, and στ(S) C σ(S) as the points of density π~13cos~1(—l/3).
Define R{S) = S~σ{S).

If V is a 2-varifold we define σγ{V) = σγ(spt ||VΊ|), στ{V) = στ(spt ||V||),
R(V) = Λ(βpt IIVJI), and σ(V) = σ(spt ||V||).

(7) Suppose S is a surface homeomorphic to D or 92?. A compound Jordan
curve in S is a connected union of a finite number of Jordan curves in 5.
Given a compound Jordan curve C in 5, a Jordan curve Ci C C is said to
be an individual Jordan curve of C if there exists a set X C S ~ C with
X & D and <9X = Ci. In case 5 « .D, a subset C2 of C is said to be an
outermost Jordan curve of C if there exists an annular domain Y C S ~ C
with C2 = dY ~ dS.

(8) Recall that Φo consists of fundamental domains of M with Lipschitz
boundary. Hence, given F E Φo, there exists a family {Si}te/ °f pairwise



628 JAIGYOUNG CHOE

disjoint subsets of 6F (= p(dF)) with \JieI S t = δF such that for all i G /, $

is C1 up to its boundary and dSi is a Lipschitz curve. Let X be a C 1 surface

in M. Then we say that δF is transversal to X if«% and dSi are transversal to

X for all i G /. It follows from Sard's theorem that for almost all r < i(M),

the injectivity radius of M, δF intersects dB3(p,r) transversally and each

component of δF Π dB3(p, r) is a compound Jordan curve on dB3(p, r).

2. Replacement theorem and rectifiability

The following theorem guarantees that if U is an open convex subset of M,

then we can always replace F eΦo (respectively Φ) by F G Φo (respectively

Φ) in such a way that δF satisfies an isoperimetric inequality in U.

Theorem 1 (Replacement Theorem). (1) Given U « B° with C1 bound-

ary dU in M, and F G Φo with δF intersecting dU transversally, there exists

F G Φo such that

(1) δF~U = δF~ U]

(ii) δF Π U C dU and H2{δF ΠU) < c{Hι{δF n dU))2 for some c > 0

depending on U.

(2) Suppose M is irreducible. Given U « B° with C1 boundary dU and

F G Φ with δF intersecting dU transversally, there exists F G Φ such that

(1) δF~UcδF~U;

(ii) δF ΠU is a disjoint union of surfaces homeomorphic to D\ if U is

convex, then

(ii)' δFΠU is a disjoint union of area minimizing surfaces homeomorphic

to D;

(iii) H2{δF ΠU)< c{H\δF Π dU))2 for some c > 0 depending on U.

For the proof of Theorem 1 we need the following two lemmas.

Lemma 1 (Isoperimetric Inequality). (1) Let CQ be a union of compound

Jordan curves on a C1 surface S « dB in M and let YΌ, ••• ,Yι be open

components of S ~ Co. Suppose m a x o < i < / { ^ 2 ( ^ ) } = H2(YQ). Then there

exists c> 0 depending on S such that H2(S - Yo) < c(Hι(C0))2.

(2) Let C be a compound Jordan curve on a C1 surface S w dB in M

and let Xo, ' ,Xn be the open components of S — C where every X{ is

homeomorphic to D. Suppose maxo<i<n{H2(Xi)} = H2(X0). Then there

exists c>0 depending on S such that H2{S - Xo) < c{Hι(C))2.

Proof of Lemma 1. Croke [5] showed that there exists a constant c depend-

ing on S such that whenever E is a region on S with E « D, then

m\n{H2{E),H2{S - E)} < c{Hι{dE))2.
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We prove (2) first. Let β = H2(S) and a = H2(X0). First suppose a < β/2.
Then

In case α > /?/2,

< c{Hι{dX0))2 < ciH

(1) Suppose Y C S is a multiply connected open set with H2(Y) < β/2.
First, assume there exists a component Z of S ~ F such that Z & D and

> /?/2. Then

i/2(S ~ Z) < c(Hι(dZ))2 < c(H\dY))2.

Second, assume H2(Zi) < β/2 for each component Z; of 5 ~ Y. Then

Therefore, in either case, H2{Y) < c{Hι{dY))2.

Let c*o = H2{YQ) and suppose αo < β/2. Then, as in (2), we have

2

)

Since H2{Yi) < c(Hλ(dYt))2 for all i = 1, • ,/, we have

Yo) < c (\

If a0 > β/2, then

Yo) < c (\
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where {Z3} is the set of all components of S ~ Yo Since Zj « D and

H2(S ~ Y0) <

Lemma 2. (1) Let F G Φo, and assume U « B° has C1 boundary dU
which is transversal to δF. Then there exists F G Φo with δF ~U = dF ~U,
δFΠU CdU such that dU ~ (δF Π V) is a component of dU ~ δF.

(2) Assume M is irreducible, F G Φ , and E is a piecewise C1 surface
in M with E « D. If δF Π E is a compound Jordan curve disjoint from
dE, then there exist F e Φ and a set W & B° in M such that E C dW',
δFΠdW = δFΠE, andδFc(δF~W)UE.

Proof of Lemma 2. (1) Let Y be a set in F such that p(Y) is a component
of dU ~ δF. Let U C M be a component of U with Y C dΐl. Define
F = (F ~ U)\JU\JY. Then we see that F is a fundamental domain of M in
Φo. Obviously δF~U = δF~TJ and δFΠU = dU ~ p(Y).

(2) Since <5F Π 9£; = 0 and M - <5F « B°, there exists a set J « ϋ
in M such that δF Π J = 0, 9 J = d£, and J Π £ = dE. Then J U £ is
homeomorphic to a sphere, and hence by the irreducibility hypothesis there
exists a set W « B° in M with dW = J U E. Note that <5F Π dW = 5F Π ̂ .
Now let W\ be the component of W with 9M î D \FΠ J | , and define Fi G Φo by
F x = (F ~ IV)UW'iU(FndW'i). Then, since each component of F - p~ι(dW)
is homeomorphic to B°, so is each component of F\. Let us assume that ί/o is
the component of F\ containing F Π dW\, and ί/i, , Um are the remaining
components of F\. Then it is easy to see dW Π p(Ui) « i?, i = 1, ,m.
Hence we can find C/̂ o, a component of p~1(p(t/t))) with 5V î Π ί/i,o ^ Ό for
each ί = 1, , m. We thus paste each Ui$ to f/o along dWi Π ί7i,o to get a
fundamental domain F G Φ with δF C (δF ~ iy) U F, and hence the proof is
complete.

Proof of Theorem 1. (1) Let Y be a set in F such that p(Y) is a component
of dU ~ δF with H2(p(Y)) = max{iJ2(Y;)}, where the maximum is taken
over all components Y{ of dU ~ <5F. Then Lemma 1(1) and Lemma 2(1)
prove (1).

(2) Let Ki, i = 1, ,/, be the components of δF Π U and let Cij, j =
1, ,m^, be the disjoint compound Jordan curves such that Ki Π dU =
U ^ i C i j for each i. Finally let Xijk C dU, 1 < k < n^, be such that
Xijk « -D, 317 ~ Ciy = UΛ=I -̂ tifcj for each i and j . Renumbering if necessary,
one can assume maxi<k<nij{H2(Xijk)} = H2(Xiji) for each i and j . Define
Yy = dU - X^i. Then Y{j « J9. Suppose FαbΠrcd ^ 0 for some 1 < α, c < Z,
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1 < 6 < mα, and 1 < d < mc. Since Cab^CCd = 0, we have three possibilities:

The third case is not possible since otherwise we would get two contradictory
conclusions: H2(Xabl) < H2(Xcdi) and H2(Xabι) > H2(Xcdl). The first two
cases give us a partial ordering in the family {dj}i<i<ι,i<j<mi in a standard
way, i.e., Cab < Ccd if and only if Yab C Ycd- Hence by choosing a minimal
element successively from {C%j} one can get an ordered family {Cα}o<α<n

such that {Cα}0<α<n = {Cij}ι<i<ι^<j<mi and Cα < Cβ only if a < β.
Define Ya = Y^ if Cα = dj-

Let θ = mino<Q?έ^<n{dist(CQ,C/?)}. Then we can find Zo C dU such
that Z « D, Zo D Fo, and HD(Z0,Y0) < θ. We thus apply Lemma 2 with
Zo in place of E, to give F € Φ and a set Wo « #° such that Zo C dW0,
δF Π <9W0 = δF Π Zo, and <5F C (<5F ~ Wo) U Zo. Wo plays the role of
eliminating the piece of δF which lies either inside U or outside U. Hence we
consider the following two cases:

Case 1. Wo eliminates the piece of δF which lies outside t/, i.e., there is an
open set Vo containing Yo such that (δF ~ δF) Π Vo C M ~ U. Taking points
of δF Π Yo into U we obtain 6Fχ, F x G Φ, with <5Fi Π 91/ = (<5F Π dU) - F o

(C (OF Π dU) - Co). Define Ux = U.

Case 2. Wo eliminates the piece of δF which lies inside t/, i.e., there is an
open set Vo containing Yo such that (δF ~ δF) ΠVo C U. Holding the set
δF ~ Fo fixed, and taking points of δFΠYo into U we obtain <5Fi, Fi € Φ, with
6Fi Π dU C δF Π 9t/. Note that if iCo is the component of δF\ Π U containing
Co, then Ko ~ Co = U ^ i ^i,t, where ZlA & D and U ^ i 9Zi,i = Co. Thus
we can find an open set U\ C U such that U\ « B° and <5Fi Π (t/ — t/i) =

U ^ i ^ , i H e n c e δFi n 9t/i = (<5Fi n at/) ~ c 0 c δF n at/ - c 0 .
In either case, note that 6Fχ Π dU\ has fewer components than δF Π <9t/,

more precisely, £Fi Π dUx C (6F Π 9t/) ~ Co. We also have δFx ~ U C 6F ~
t/.

Now that we "eliminated" Co we again apply the same argument (cutting
and slight perturbation) to δF\ Π U\ to eliminate the remaining Cα's. First
δF\ Π dU\ can be viewed as a subsequence of δF Π dU. Let C α i be the first
element of this subsequence. Clearly C α i φ Co. Define 1̂ 1,0 C 5t/i by

( j Q l ~ (αc/ ~ uUi)) U (C7i/i ~ αc/J it r α i D JQ?

y α i it IQ J π i o = = *^

Then 1̂ 1,0 ^ ^ and hence we can find Z\ C dU\ such that Z\ K, D, Z\ D
y α i ) 0 , and HD(Zι,Yauo) < θ. Now we can apply Lemma 2, with Z\ in place
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of E, to give Fi G Φ and a set Wx « B° such that Zi c dWu δF1 Π
όίΊ Π Zi, and 5Fi C (δFi ~ WΊ) U Zi. Here again we consider the following
two cases:

Case 1. (δFi ~ 6Fχ) Γ\V\ C M ~ U\ for some open set Vi containing
Yaι,o- Taking points of 6Fχ ΠYauo into U we can obtain δF2, F2 G Φ with
6F2'n aC/i = {δFx ΠdUi)~ Yaι. Define ί/2 = f/i

Case 2. (tfί\ ~ <5Fi) Π Vι Cί/i In this case holding the set δF1 - YQl

fixed, and taking the points of δFi Π F Q l into U\ we can obtain δF2, F2 G Φ,
with δF2 Π 3ί7i C 5Fi Π dt/i. Now we can find an open set U2 C U\ such
that U2 « B°, and the component of 5F2 Π C/Ί containing CQ l is contained
in Uι - ί/2 Note that δF2 Π (ί/i - C/2) = U S ^2, , where Z2 | < « ΰ and

In either case, δF2Γ\dU2 has fewer components than δF\ ΠdUi, i.e., δF2 Π
C (ίFi Π dUi) - C α i . Note also that δF2 - Uι C ίFi ~ I/i.

Continuing the above procedure we can obtain for each j = 1, , no — 1,

Caj with 0 = a0 < ot\ < < ano-i, n 0 - 1 < n

(i.e., {Cαy}o<7<no-i i s a subsequence of {Cα}0<α<n);

(2.1) Uj+i with ϋi +i « B° and U D C/i D U2 D D f/no;

^ , 0 C at/; with yα > ) 0 « ^ , and

= ί (yβ i - (at/ ~ ac/,)) u ( a ^ - du) if y β i

αj'° \yα. if ^ . 0 ^ . ^ = 0 ;

(2 2) Z j C a ί / >

Fj+i e Φ with <5Fi+i - t/, C δFj - C/̂  (f/0 = £/, F o = F),
such that we have the following additional properties:

i + i+i C
either ί/j+i = Uj or C/j+i is a proper subset of t/ ,̂ and

(2.3) ί F i + 1 (Ί (Uj ~ C/i+1) = ( J Zj+ι<i,

where Z J + l i « Z> and ( J dZj+i^ = Caj.

Note that dF n o Π ί7no = 0, so that

δFno nu = [(δFno - c / n o ) u ( ί F n o n u n o ) ] n u = (δFno - ί7n o)n

- C/no-l) Π C/] U [(5Fno Π (C/no_! - C/no)].
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Using (2.2) repeatedly we thus have

δFno nuc [(«Fn o_i ~ c/no-i)nu]u[δF n o n ( c / n o _ i - uno)]

= [ ( ί F n o - i - C/no-2) Π ϋ] U U [tfFno^ Π (t/no-.-l - tf»0-j)]
i=o

1

C [(6F n o _ 2 - f/no_2) Π U] U U [ δ F n o _ , Π (C/no-,-1 - t^no-i)]

2

= [(<5Fno_2 - C/no-3) Π U] U U [(5Fno_, Π (ί/no-,-1 - ^no-i)]
i=o

n 0 —1

ί/)nl/]U U [δFn^j Π (C/no-j-l - £/no-i)]

n o - 1

i=o

Hence (2.3) gives δFno Π U C U ^ i UΠfi ^ ,<. w h e r e { A . ' - A 1 } = {i: U3

is a proper subset of t/7-1}, ni < no, Zkti is homeomorphic to D, and
fc,t = Cα f c_j. In fact, renumbering j if necessary, one can easily have

δFnύnu=
k=l2=1

where n 2 < n\ and {j: CQJ . J C δFno Π 5C/} = {1,2, , n 2 } . This proves

(ii) if we let Fno = F. (2.1) and (2.2) prove (i).

Now we assume U is convex. The next step in the argument involves

replacing each Z ^ by an area minimizing surface Zk,i « D with dZk,i —

dZk,i- Since the family {Zk,i} is pairwise disjoint, we can get a fundamental

domain F G Φ such that δF ~ U = δFno ~ C7 and

(2.4)
k=li=l

which proves (ii)'.

It remains to prove (iii). Let Xk>% C dU be such that Xk,i « D,

dZkti, and H2{Xkii) < H2(dU ~ Xkyi). Then from the way we defined Ya

from Ca (or Yij from C^ ) we deduce that Xk,i, Xk,2, ,XA;,mfc

 a r e pairwise

disjoint and

/ί2(Xfc,,)<i/2ί5C/~Uxfc,tJ
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for each j = 1, , m*. Hence by (2.4)

^ΣM" 1

This completes the proof of Theorem 1.

The following lemma is a generalization of the Filigree Lemma in [4]. Here

the word "filigree" means (very roughly) a collection of threadlike protrusions

from a surface. For example, if F G Φ satisfies H2(δF Π B3(p,r)) = εr2,

where ε is small, then δF Π B3(p, r/2) would be classified as filigree.

The following lemma will enable us to "cut off" such sets under appropriate

circumstances.

Lemma 3 (Filigree lemma). Let Ut = Bz(p,rt), p G M, r > 0, 0 <t <

1, and suppose Ut is convex for all 0 < t < 1. Suppose also that there is a

constant c < oo such that, whenever E C dUt is a set homeomorphic to D,

then mm{H2{E),H2{dUt - E)} < c{Hι{dE))2.

Finally, suppose F G Φo and ε > 0 are such that

(2.5) H2(δF) < H2(δG) + ε for any G G Φ o .

Then H2{δFΠUt)<ε whenever t < 1 - (2/r)y/c~^/H2{δFΠf/i).

Moreover we can obtain the same result for F G Φ with the additional

assumption that M is irreducible.

Proof. We will prove the lemma in the case of Φ only since the proof for

Φo is basically the same. By Sard's Theorem δF intersects dUt transversally

for almost all t G (0,1). Then for almost all £ € (0,1) we can apply Theorem
1, with Ut in place of C/, to give F G Φ such that

(2.6) δF~UtCδF~ Uu

(2.7) H2{δF ΓiUt) < c{H\δF ΠdUt))2.

By (2.5) we have

H2{δF Π Ut) + H2{δF ~ Ut) < H2{δF Π Ut) + H2{δF - Ut) + ε,

which together with (2.6) implies

H2{δF ΓΊ Ut) < H2{δF Π Ut) + ε.
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Then (2.7) gives

H2{δF Π Ut) < c{Hι {δF Π dUt))2 + ε.

Since (2.6) yields δF Π dUt CδFΠ dUu we have

(2.8) H2{δF Π Ut) < c(Hι{δF Π dUt))2 + ε.

We can now suppose H2(δF Π U\) > ε, otherwise the required conclusion is
trivial. Then let *0 = inf{ί: H2{δF Π t/t) > ε} and define f(t) =
H2(δF Π Ut) - ε, ί G [t0,1]. By the co-area formula we see that (2.8) im-
plies

f(t)<A>(f(t))2 a.e.t€[to,l].

Integrating this inequality (using the fact that f(t) is an increasing function
of £), we obtain

(l - ίo)

However /(I) = H2(δF Π Ux) - ε < H2(δF ΠC/i); hence we deduce

2
1 - t0 < -

r
That is,

to > 1 - -y/cy/H*{δFnY!),

and the required result is proved.
With the above filigree lemma we are now able to get the first regularity

result as follows:
First let {Fk} be a minimizing sequence in Φo (respectively Φ), that is,

H2{δFk) < H2(6G) + εk for any G <Ξ Φo (respectively Φ), where εk -* 0 as
k —• oo. Then we can apply compactness of varifolds and hence assume, by
taking a subsequence if necessary, that there is a 2-varifold Δ in M such that
Δ = limfc-Kx, |<5ίfc|. Δ is of course area minimizing in M under diffeomorphism
because M(Δ) < M(</>#Δ) whenever φ is a diffeomorphism of M. Secondly we
want to show that there is a constant Co > 0 such that whenever p G spt | |Δ| |

(2.9) θ 2 ( | | Δ | | , p ) > C o .

Suppose p G spt | |Δ| | and let c be a constant as defined in the filigree lemma
(obviously such c exists and depends only on M and r). By the filigree lemma
we know that if H2{δFkΠB3{p,r)) < r2/(16c), then H2{δFkΠB3{p,r/2)) <
εk. If there is a subsequence {k1} C {k} with H2{δFk>Γ\B3{p,r)) < r2/(16c),
then we would have spt| |Δ| | Π B3(p,r/2) = 0, thus contradicting the
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fact that p G spt | |Δ| | . Hence for all sufficiently large k we have

H2(δFk Π B3{p,r)) > r2/(16c), from which we deduce

(2.10) \\*\\(&(P,r))>^r*.

Thus we obtain (2.9) with c0 = l/(16c). In particular, Δ is rectifiable by

[1,5.5].

Hence we have proved the following.

Corollary 1 (Rectifiability). Suppose {Fk} is a minimizing sequence in

Φo Then a subsequence of the corresponding varifolds \Fk\ converges to a

rectifiable 2-υarifold Δ in M which is area minimizing under diffeomorphism

and has Λf(Δ) = inf{H2(δG): G G Φo} Moreover we can obtain the same

result for F GΦ assuming that M is irreducible.

Lemma 4 (Monotonicity lemma). Let A be a rectifiable 2-varifold in

M which is area minimizing under diffeomorphism of M, and p G spt | |Δ| | .

Let p be the injectivity radius of M. Then there exists a function ξ(r) =

crm, c,m > 0, such that the function g: (0, p/2) —• R 1 defined by g(r) —

r""2||Δ||(JB3(p,r))e^^r^ is monotonically nondecreasing.

Proof. Let p^(spt | |Δ| |ndi? 3(p, r)) be the set of all geodesies from p to the

points of spt ||Δ||Γ\dB3(p, r). Then there exists a sequence {ψn} of "shrinking"

diffeomorphisms of M such that ψn(x) = x for all n and x £ M ~ Bs(p,r),

and

spt || lim W>n#Δ)|| Π B3(p, r) = p*(spt | |Δ| | Π dB3(p, r)).
n—•oo

Since Δ is rectifiable, there is a positive H2-measurable function θ on N =

spt | |Δ || such that

(2.11) Δ(S) = ί θdH2 for any immeasurable S.
JSΠN

Thus, as in [11, §15], we adapt the notation Δ = v(ΛΓ, 0), which is character-

ized by (2.11). Note that for almost all r > 0, N Π dB3{p,r) is rectifiable.

Hence a 1-varifold Δ Π dB3(p, r) defined by

AΓ)dB3(p,r)=v(NndB3(p,r),θ\dB3{Pir))

is a rectifiable varifold for almost all r.

Define p * ( Δ Π dB3(p,r)) = v{p*(N Π dB3(p,r),θ)), where fl(ί) = ff(x)

whenever ί lies on the geodesic from p to x E N Π dB3(p,r). Then we can

deduce that for almost all r,

B3(P,r) x G(3,2)) = p # ( Δ n dB3(p,r)).

Define m(r) = | |Δ| |(5 3 (p, r)). Since Δ is area minimizing,

m(r)<\\ψn#A\\(B3(p,r)).
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Taking the limit as n -» oo, we have ra(r) < M(p#c(A Π dBz(p, r))).
Now we can find a function ξ(r) = crm, c, m > 0, depending on M such

that
3 ) ) ) < (1 + ξ(r))^ M(Δ Π

Hence m{r) < ±(1 + ξ{r))r M(Δ Π dB3(p,r)). Since m'{r) exists and
M(Δ Π dB3(p, r)) < ra'(r), for almost all r, we get

m(r) < 1(1 + ^ ( 0 ) ^ ( 0 , i.e., r-m'(r) - m(r)(l - £(r)) > 0.

It follows that rm(r)-^ log g{r) > 0 and hence g'(r) > 0.
Corollary 2. Let Δ 6e an area minimizing 2-varifold in M obtained as

above and p G spt | |Δ| |. Then tangent cones to Δ exist at p; the tangent cones
are cones in R 3 and are area minimizing under diffeomorphism in R 3 .

Proof. By the Nash embedding theorem we can assume that M is isomet-
rically embedded in R n for some n > 3. For convenience of notation we will
assume p = 0. Let {r̂ } be a sequence of positive radii with liniΐ—oo r; = 0.
By Lemma 4 the varifolds

),r<)xG(n,2))

all have bounded masses; since their supports also all lie in a bounded region
of Rw, the varifolds {Δi} have a convergent subsequence and a limit varifold
μ. By definition μ is a tangent cone. Now μL(Bn(0,1) x G(n, 2)) is stationary,
since any diffeomorphism of R n which would decrease the mass of μ would also
decrease uniformly the masses of the varifolds Δ^ for large i, contradicting the
area minimizing property of Δ. The density ratios of μ are uniformly bounded
away from 0 at each point in spt ||μ|| since they are uniformly so bounded for
Δi by (2.9). Therefore by [1, 5.5] μL(βn(0,1) x G(3,2)) is a rectifiable varifold
and the support of ||μ|| is a rectifiable set [1, 2.8]. μ has density at every point
in its support at least (16c)"1, since each of the varifolds Δ» does by (2.10).
Therefore we may apply [1, 5.2, 6.5] to conclude that μ is in fact a cone.
Finally μ is area minimizing in R n because any diffeomorphism of Rw which
saved mass in μ would also save mass uniformly in the varifolds Δj for large
i. μ is obviously area minimizing in R3 too.

3. Uniformly bounded minimizing sequence

In order to obtain the desired existence and regularity result for both first
and second problems, it is desirable to replace the given minimizing sequence
of fundamental domains in Φo or Φ by another minimizing sequence (with the
same limit) of uniformly bounded ones in ΦQ or Φ without filigrees.
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In this section we use a cutting and pasting argument extensively. In
this process however we have to be very careful not to change the topology
of fundamental domains in the case of the second problem. The following
lemma allows us to cut and paste fundamental domains without changing
their topology.

Lemma 5 (Pasting lemma). (1) Let F be an adequate fundamental do-

main in Φ. // there exists a face X of F which is multiply connected, then M

is not irreducible.

(2) Let M be irreducible. In case F is an inadequate fundamental domain

in Φ, there may exist a face X of F which is multiply connected. But then X

can be replaced by a face homeomorphic to D in the following sense: For any

nonnull-homotopic Jordan curve C on X, there exist F € Φ and U C M with

UκB° such that ΘUΠδF = p{C), δF ~ U = δF ~ U, and δFΓ)U C p(E),

where E is a face of F homeomorphic to D.

Proof. (1) By assumption there exists a face Y φ X of F such that X =
g(Y) for some translation g. Let SΊ and 52 be such that Si, 52 C F, Si,
S 2 « D, dS1 = Si Π dF C X, dS2 = S 2 Π dF C Y, p(dSχ) = p(ΘS2), dSx

and dS2 are not null-homotopic in X and Y respectively, and Si Π 52 = 0.
Then p(5i Π S2) is a closed surface in M homeomorphic to a sphere. Suppose
M is irreducible. Define 5 = p(Si U S2) and let K be the component of
M ~ 5 which is homeomorphic to B°. Then Si U ̂ (52) is also a closed
surface in M homeomorphic to a sphere. Let K be the component of K with
dK = Si U <7(S2). Now since by hypothesis K ~ (Fl) g(F)) is nonempty, we
can find a translation h such that h(F)ck ~(FΌ g(F)). We then have

HZ{M) = H3{h{F)) < H3{K) < HS(M),

which is a contradiction. Thus M is not irreducible.
(2) As in the proof of (1) we can find F, #, Si, 52, and K satisfying

the same properties. Here we assume dS\ — C. Since Si U S2 divides F
into three components, K Π F is either connected or K Π F consists of two
components. Suppose K Π F is connected and let Li, L2 be the remaining
components of F ~ (Si U S2), i.e., F - (Si U S2) = (K Π F) U Lx U L2.
Clearly Lu L2 « B°. Define Z = dF Π K. Then we have H2(Z) > 0 and
p(Z) C K. We thus note that since A", p(Iα), p{L2) are all homeomorphic
to B°, KUp(Lι) Up(L2) Up(Sf) Up(S2°) is also homeomorphic to B°, where
S° = Si - dSi. Note also that

M ~ (KUp(L1)UP(L2) υp(SΪ)υp(SΪ)) =δF~ p{Z),

since p(Z) C K. Hence 6F ~ p(Z) is a spine of M which is a proper subset
of δF. Therefore F is reducible. Since this contradicts the hypothesis that F
is in Φ, K Π F must consist of two components.
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Define again Z = dF Π K and L = F ~ (SΊ U S2 U ΛΓ). Then both
KUp(L)Up(Sf) and KUp(L) Up(5f) are homeomorphic to J5°. Let F{ e Φ
be such that p(Fi) = ff Up(L) Up(S?), t = 1,2. Then we see that 6Fi = M ~
(#Up(L)Up(S°)), 6Fi~Έ = δF~ Έ, δFxC\Έ = p(S2), and<5F2n7Γ = p(Si).
Now we can find U D K with U ** B° and dt/ Π όί; = p(C). Finally let F be
either ί\ or F 2 . Then 17'and F satisfy the desired properties.

Remark 1.(1) One can conclude from the above lemma that Φ is "closed"
under cutting and pasting provided M is irreducible: Any S C F with S & D
and S ΠdF = dS cuts F into two components, V\ and F 2 . Suppose Eu EΪ
are faces of F with £"* C dVi, i = 1,2, and £Ί = g(E2) for some translation
g. We then translate V2 via g and paste <7(V2) to V\ along f^i. The resulting
fundamental domain F = V\ U g(V2) U £i is homeomorphic to B° by (1) of
the above lemma in case F is adequate, and by (2) in case F is inadequate.
Hence F E Φ\. Since F may be reducible, we may have to eliminate the ap-
propriate face (redundant face) of F to obtain a fundamental domain which is
not reducible. Figure 6 illustrates two pathological cases; an inadequate fun-
damental domain with an annular face and a reducible fundamental domain
with a redundant face (review terminology (1)).

(a)

FIGURE 6 (in M)

(b)

Figures 6(a) and 6(b) are basically the same pictures of a part of δF in M
which is topologically a punctured torus with two disks X and Y added. The
two shaded disks, X and Y, are faces of δF. F is inadequate since F has two
solid handles corresponding to the interior and the exterior of the (punctured)
torus. dX Π dY (= {p}) is a multiple point of δF, and dX U dY - {p} is the
union of two multiple curves of δF. The face of δF on which the dotted circle
(= dSo) lies is homeomorphic to an annulus. In Figure (b) So cuts M ~ δF
into two components, U and M ~ (δF U U). So we paste U to M ~ (δF U U)
along dll ~ (X U So) to get a fundamental domain F. But F is reducible
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since the face Y of δF is redundant (i.e., δF ~ Y is still a spine of M). The
fundamental domain F' with δF1 = δF ~ Y will then be not reducible, or
F' € Φ. On the other hand, Si cuts M ~δF into W D U and M ~ {δFuW).
Although W has an annular face dW ~ ( X u F u S i ) , we can paste W to
M ~ (δF\J\V) along the annular face and eliminate (i.e., fill up) X and Y to
obtain F e Φ with δF = [δF ~ (<?W U Y)] U SΊ This illustrates Lemma 5(2).

(2) Unlike Φ, Φ2 is not closed under cutting and pasting: Let F be a
fundamental domain of M in Φ2. Suppose E C F, E & D, and dE C <9F.
Then E cuts F in two components U and F. Suppose X,Y, Z,W are faces
of F with X,Y CdV andZ,W C dU such that Z = τ(X) and Ĥ  = r(Y)
for some translation r. Then U U r(V) U Z is a fundamental domain in Φ but
not in Φ2 since the closure of UUr(V) U Z is topologically a solid torus, as is
illustrated by Figure 7.

FIGURE 7 (in M)

Theorem 2 (Boundedness theorem). Suppose {Fk} is a sequence in Φo
such that H2(δFk) < H2(δG) + εk for any G € Φo, where εk -> 0 oθ A: -^ ex).
ΓΛen {Fjt} can 6e replaced by another minimizing sequence {F^} in Φo which
is uniformly bounded in M. Moreover we can obtain the same result for a
minimizing sequence in Φ if M is irreducible.

Proof of Theorem 2. We will prove this theorem in the case of Φ only, and
then we will be able to see that the same argument is valid for the case of Φo
since the cutting and pasting method in Φo (Lemma 2(1)) is much simpler
than that in Φ (Lemma 5, Remark 1(1)).

In this proof we concern ourselves mainly with homothetic expansion and
the cutting and pasting argument. Therefore we prove the theorem first as-
suming that M is locally isometrically in R3, and later we shall see that the
theorem in general can be proved similarly by using the exponential map.

Suppose p = 0 for convenience. We write

Kp,σ = {x € £3(0, p): dist(x, spt ||μ||) < σ}.
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By definition of μ, we know there is a sequence {r^} —• oo such that μ r f c # Δ —•

μ as k —• oo. By (2.10) it is then clear that for any σo £ (0,1) we can find r

such that

(3.1) B3(0,1) Π spt | | μ r # Δ | | C / C W a .

Define J p , σ = ί/3(0,/>) - /fP)<T and Lδ = {x: x € J i ) σ o / 2 ,d i s t (z ,dJ 1 ) σ o / 2 ) =

0} for 6 > 0. Then from (3.1) and the co-area formula it follows that for

almost all σ € (σo/2,l/2), tfHM^fc) Π L σ _ σ o / 2 ) -> 0 as fc — oo. Thus

for any given ry > 0 we can assert that, for sufficiently large A;, there is a

σ\z E (3/4σo,σo) such that

(3-2) H\μr{δFk)C\Lσk_σol2)<η.

We can also arrange, by Sard's theorem, that μr(δFk) intersects L σ f c_ σ o/ 2

transversally. Now we claim the following lemma.

L e m m a 6. For any σo € (0,1) there is an r > 0 such that every filigree,

or spike, of μr(δFk) passing through Ji-σk+σo/2,σk

 c a n ^e eliminated to make

a new minimizing sequence {δF%} with the same varifold limit Δ. (That is,

every filigree of μr(δFk) passing through J\-σk+σo/2,σk can be cut off without

changing varifold limit Δ.)

Proof of Lemma 6. Choose r as in (3.1). Note that

Lσk-σo/2 = d(Ji_ σ f c + σ o / 2 ,σfc).

Hence we apply Theorem 1 repeatedly with μr(δFk) in place of <5F, μr(Fk) in

place of F, and each component of «/i_σjb+σo/2,σfc

 m place of U. Then we get

F ^ E Φ and Zi, Z 2 , , Znk which are homeomorphic to D such that

Π J i _

(3.3) μr(<5ίfc) ~ J l - σ f c + σ o / 2 , σ f c C μr(δFk) ~ Jl-σfc+σ0/2,σ fc.

Hence, as in the proof of Theorem 1, we have {Ca} with

\JCa = 0 dZi = μ r (ίίfc) Πiσ f c-σ0/2 C μ r (5F Λ ) ΓΊ L σ f c _ σ o / 2 ,
α ι = l

and the corresponding {yQ} with Ya C L σ f c _ σ o / 2 and F α « J9. The next

step involves a slight perturbation of |JΓ=i Z^ holding the set μr{δF%) ~

Ji_ σ f c + σ o / 2 ) < T f c fixed, and taking points of UΓ=i zχinto βr(M) ~ Ji-σ f c + σ o/2,σ f c

in such a way that each Z{ is taken closely to some Ya. In this way we can



642 JAIGYOUNG CHOE

obtain Fj* € Φ such that

l Π UΆ{\ -σk+ σo/2) C K

(3.5) H2{μr{δF2) ~ M W ) < tf 2 MJ YΛ + δ,

(3.6) H2{μr(δFl)) < H2(μr(δFk))

for any preassigned δ > 0. Since | J α d Y a c\JaCa = μriδF^) Π L σ f c _ σ o / 2 we

have by (3.2) and (3.3),

(3.7)

where ap depends on the point p and is finite because, for fixed σo > 0,

L σ f c _ σ o / 2 cannot have an arbitrarily sharp vertex. Thus, taking δ and η

arbitrarily small, we deduce from (3.6) and (3.7) that

lim H2(μr(δF%)) < lim H2{μr(δFk)).
k—κx> fc—>oo

It follows from (3.5) that limfc_>oo \δFk\ = l i m * - ^ \6Fk\. This proves Lemma

6.

Now choose pk with 7/8 < pk < 1 - σk (assuming 0 < σo < 1/8) such that

μr{δF%) is transversal to dB3{Q,pk). Note that by (3.4)

μr{δFl) Π dB3{0,pk) = μr{δFl) ΓidB3{0,pk) Π Kx^k.

Hence μr(δFj*)ΠdB3(0,pk) = \JiLi C/[> where each C{ is a compound Jordan

curve on dB3(0,pk). Let Yjf be the open disk in dB3(0,pk) corresponding to

C\ as defined in the proof of Theorem 1. Assuming σo is taken small enough,

we can deduce that if C\ is null-homotopic in dB3(0,pk) Π #i,σfc> then

(3.8) Y£cdB3(0,pk)nKhσk.

Let {Q\, , Qa

k

k} be the set of all components of μr{δF%) Π B3(0, pk). Then

each component Q^ falls on one of the following two cases:

Case I. All components of Q3

kΠdB3(0, pk) are null-homotopic in <9B3(0, pk)

Case II. A component of Q3

k Π dB3(0,pk) is not null-homotopic.

Now we claim the following.

L e m m a 7. Every component of μr(δFk)Γ\B3(0,pk) of Case I can be dis-

carded to produce another minimizing sequence {δFk} with the same varifold
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limit Δ. (That is, every filigree of μr(δFk) passing through KPki<Tk can be cut

off without changing varifold limit.)

Proof of Lemma 7. Notice that if Ck is null-homotopic in dB3(0,pk) Π

K\,σk and Ck is not null-homotopic, then Y£ cannot be a subset of Yk. More-

over if C{ C Q\ Π dBs{0,ρk) and C j c Q ^ n dB3{0,pk), where Q\ is the

component of Case I and Qj. is that of Case II, then Yk cannot be a subset

of Yk. Therefore we can find a suitable order Ck < Ck < < C[fc, and

renumber {Q3iς}i<j<ak in such a way that

(i) U?=i Ci = (Jί=i Qί Π 3B3(0, pit), where {Qj, , Q*k} is the set of all

Q3

k's of Case I;

(ϋ) U U + i . C ΐ = U?=Λfc+iQΪ πaB 3(0,pΛ), where {Q^ + 1 , . ,Q«*} is

the set of all Qj(.'s of Case II.
Similarly if we assume μr(δF%) is transversal to dB3(0,t) and let

Π 5B3(0,0 = (J

* , it J.

then we can find a suitable order Ck < < Ck

k* such that

(J ak

t=l i=l i=Lι

k+l j=Ak+l

Obviously CJ "* = C£, Zg* = /fc> and L"k

k = Lk.
We then apply the process used in the proof of Theorem 1 (with μr(δF%) in

place of δF and t/3(0, ί) in place of U, and so on) only for {Cl'\ •• • , c£*'*}

(i.e., cutting off the components Qj. of Case I only) until we get μτ(δF%),
2 ) > ,/*r(Wfci(«))' and C/3(0,ί) D ί / ^ D O f/̂ L(t) such that

(o.yj flr\P*k Lit)' ~ \yi*) C-flr\y rk) ~ U (U,ί),
ak

( ) mα

(3.11) μr(ίFfc

2i(t)) Π (ί73(0,0 ~ ϋί f L ( t )) = U U Z M '

where L(t) < L(ί), Zk'β is an area minimizing surface homeomorphic to D,

and

M dZk'ί = Cfc0"* for some 1 < na < Lf

k.
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By Lemma 6 we have

(3.12) H2{δFl) < H2{δG) + εfc, for any G e Φ,

where ek —*• 0 as k —• oo. T h u s

H2(μr(δF>) Π B3(0, t)) + H2(μr{δFl) ~ B3(0, ί))

< H*(μr(δF2

k?m) ΠB3(0,t)) + H\μr{δF^(t)) ~ B3(0,ί)) + r2ε fc,

which together with (3.9) implies

H\μr{δFl) Π B3(0,0) = Jί 2Ur(δF f c

2 l ( t )) Π B3(0, t)) + r2ε fc.

Hence by (3.10) and (3.11) we have

or
Ak T(t) ma

(3.13) ^ i 7 2 ( Q i n β 3 ( 0 , ί ) ) < E 2 i ί 2 ( Z ^ ) + r2εfc.
i=l α=l/?=l

Next we claim that | [jf^ Qj

k Π B3(0,3/4) | vanishes as k -+ oo. Note first

that there are connected subsets R\, , β£ ( p A^ of μr(δF%) such that

(3.14)
α=l j=l

and 5Λ? = U?=i ^ ^ T (= C D
To justify the above claim we show that there exist nonnegative numbers

4 . ,£?P t ) with

(3.15)

such that

(3.16) H2(R% ΠV)< H2{E) + ε£,

whenever F c M and i? C dV are such that

V « B° ,dV Π /?^ is a nonempty compound Jordan curve in E,

(3.17) V Π yfc

Wtt = 0, and {μr{δFj}) - (Λ£ ΠF))U£; = μr(«G)

for some G € Φ.
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Suppose (3.16) fails; then we must have

sup{#2(β£ n V) - H2{E)} = 0£,

where a = 1, ,T(pk), Σί l f ί* ^ΐ > r 2 ε*> a n ( ^ ̂ e supremum is taken over
all V and E satisfying (3.17). Choose Vu , t%(pfc), Eu ,% ( p f c ) with

(3.18) # 2 (Λ£ Π Vβ) - H2{Ea) > Tk,

(3.19)

and define Λ^'Q = (Λ£ - Vα) U £?α. Then (3.18) implies

(3.20)

Now we assert {Rk'a}i<a<I(p ) C3;n b e r e P l a c e d by a pairwise disjoint family

satisfying (3.20). The proof of this assertion is by induction on a. The

result is trivial if T(pk) = 1. Hence take T{pk) > 2 and assume that

{/?i'Q}1<rΛl^τrΛ \ i is pairwise disjoint. Let i??'α be the subset of Rba

homeomorphic to ~D with dβfc'α = 5yfc"
α. Applying Lemma 2 of [9] to

{Λfc'α}i<α<I(^) w e δ e t a Pairwise disjoint family {R3

k'
a}•1<β<χ(M) with

dJ$ β = θβfc 01 and H2{Rl'a) < H*(lή.'a). It is obvious from the proof

of this lemma that {βfclOI}i<<,<!(„*) gi y e s r i s e t o {Rk'a}i<a<L(Pk)
 w h i c h i s

pairwise disjoint and satisfies

thereby proving our assertion.

Replacing {Rk}i<a<Z(Pk)
 b v iRt'a}i<a<L(Pky we obtain a new funda-

mental domain G e Φ ; that is,

βΛSFt) ~ I U Λ? I 1 U I U R4

k'
a I = μr(6G)

for some G G Φ . Therefore

ff2(,xr(όFfc

2))-tt20/r(δG)) =

Hence (3.19) and (3.21) give H2{μr{δF^))-H2{μr{δG)) > r2εk, contradicting
(3.12). Thus (3.16) follows.
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Now let us justify the above mentioned claim. If we define fk{t) =

H2{R% Π £3(0,*)) - ε£, t e [t%,pk], t% = inf{«: /£(*) > 0}, then (3.16)

with Έ = U™=i ̂ * J implies /£(t) < (2π)-1(^/j?(ί))2 because

U Zk,β \ <H Kγk ) ^ ό^itf

Proceeding as in the proof of Lemma 3 (Filigree lemma) we deduce that

(3.22) whenever t < pk - y/2ftyjH2(R% Π B3(0, pk)j.

Now by using (3.8) and (3.16) we have

Since H2(dB*(p,pk) ΠK^ σ k ) < 2σkθ
2(μ,p)2πpk, we deduce

H2(R% Π £ 3(0, pθ) < 4τrPjtσfcθ
2(μ,p) + ε% < 5πσoθ2(μ,p)

for sufficiently large k (remember |σo < σk < GQ and p^ < 1 — /̂fc) Thus
(3.22) implies H2(R% Π B3(0,3/4)) < εg provided σ0 is sufficiently small.
Therefore from (3.14) and (3.15) we have

( Ak λ L(pk)

Hence | U^=i θi ^ -^3(0)3/4)| vanishes as k —• oo, provided σo is sufficiently
small, as claimed above.

Perturbing μr(6F%) slightly, if necessary, we can assume that μr(SF%) is
transversal to <9£3(0,3/4). Choose a point q e J3/4,i/4 (= 6r3(0,3/4) ~
K(3/4,1/4)) and let πq be the radial projection map from q onto <9£3(0,3/4).
Then clearly we have for some cq < oo

^ ί U Qin β 3 ( °- 3 / 4 ))) ^ ̂ ^ (LJ ̂ n β 3(°'3/4) I
Since _

(^(3/4) mQ \ /L(3/4)

U U ^Q;l/4 U W U C"8

α = l ^ = 1 y \̂  α=l
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Ak

U Yk C7ΓQ\{jQknB (°^3/4) I »
α=l \j = l

we have, by the above inequality,

(^(3/4) mQU U^i / 4]=o
α = l /3=1

It follows from (3.9), (3.10), and (3.11) that

Define Fk = FkL(t/4)^ w n i c n completes the proof of Lemma 7.

Finally we cut off the filigrees arising from components Qj's of Case II in

the following lemma.

L e m m a 8. {Fk} can be replaced by another minimizing sequence {Fk}

with the property that l i m ^ α \SF%\ = Δ, and μr(F%) Π B3(0,3/4) lies in a

bounded set in μr(M). (That is, every filigree of d(μr(Fk)) in μ r (M) passing

through K^/A,σk

 c a n be cut off.)

Proof of Lemma 8. In this lemma we assume without loss of generality

that no component of U£=Λfc+i Ql n ^Bs(0, £), 0 < t < pk, is null-homotopic

in 9B 3 (0, t) Π K\,σk since such bad components can be eliminated by cutting

(Lemma 2) and slight perturbation, thereby decreasing the area of μr(8F^).

By Corollary 2, the slice of μ in dJ3 3(0,l), as defined in [3, 1.3(3)] and

denoted by (μ,dist, 1), is stationary in <9JB3(0, 1) and hence by the structure

theorem [2] the number of components of di?3(0,1) ~ spt | |μ| | is finite, say

cp < oo. Therefore dB 3 (0, i) — ̂ i,σ fc has at most cv components for all

t < Pk- Let Li, ,£d fc, dk < cp, be all components of cλB3(0,pk) ~ ^i,σ f c ?

and L3

kfl, , L3

k h, k^ all components of <9£3(0, pk) ~ Q^ Then each L m ,

1 < ^ < dfc, is a subset of L^ Z for some 1 < I < b(j\ fc), and each dVk x is

an individual Jordan curve of the compound Jordan curve Q3

k Π 9J53(0, p/t).

Renumbering L3

kl, , L?k b^ k^, if necessary, we can assume that for b(j\ k) +

1 < / < 6(Λ*). L{ι C dB3{0,pk) Π # i , σ f c and for 1 < / < b(j,k), Vkl Π

(dB*(0,pk) - K1%σ[) φ 0 . Hence b(j\k) < dk < cp. Let O ' M , ,O f̂c ^ f c )

be the set of all components of £ 3 ( 0 , Pk) ~ Q3^ ^k + 1 < j < a>k, which are

numbered in such a way that 6(j, fc) < 6(y, fc) < b(j, k) and dB3(0, Pk)^O3

kl D

VkX for 1 < / < 6(j, k). We then note that, for each b(j, k) -h 1 < / < 6(j, * ) ,

Q i ^ O ^ / is the image under the projection map p of a filigree of d(μr(δFk)) in

μ r (M) passing through KPkyσk> We are to cut off these filigrees by attaching
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each OJ

kι, b(j, k) + 1 < / < b{j, k), to an appropriate θ{ z, 1 < I < b(j, k). To

do so, define Oi = U S ^ ) + 1 O ^ .
In our cutting and pasting arguments so far, cutting has taken place inside a

set X CC Y whose boundary dX is the outermost Jordan curve of μr(δF)Γ\Y
(Lemma 2). This time, however, applying the methods of Remark 1, we cut
μr(p(F%)) along dB3(0,t) Π OJ, 0 < t < pk. Let /* be the family of all
components of (dB3(0,t) ~ QJ

k) Π OJ

k. First, suppose X e I1 and note that
μr(p(F%)) ~ X is the union of two disjoint open sets V\ and V2 which are
homeomorphic to B°. Hence we paste V\ to V2 along a subset of dV\C\dV2 ~ X
which is a common face of V\ and V2 other than X, to get a new fundamental
domain homeomorphic to B° (Lemma 5 assures that this pasting does not
change the topology of fundamental domain).

Secondly, more generally, μr(p(Fk)) ~ U x . € / t X{ is a disjoint union of
open balls for any subfamily / ^ of /*, and hence it can be pasted appropriately
to give a new fundamental domain Fk'*m € Φ. Here we can arrange this
cutting and pasting process in such a way that the resulting fundamental
domain Fk'*m € Φ satisfies the following properties:

(3.23) μr(δFξ:lm~μr(δF*)c \J

(3.24) μr(δFξ) ~ μr(δF3

k;lJ D O^m Π d&k ΓΊ C/3(0, ί), 1 < m < b(j, k).

Furthermore it is not difficult to arrange the above cutting and pasting process
so that

(3.25) U [μr{δFD ~ μΛSF^J] D Q{ Π O\ Π f/3(0, ί).
m=l

Now Lemma 7 implies that H2{6F%) < H2(δG) + εk for any G € Φ, where
ε* -» 0 as k - oo, so that H2{μr{δF%)) < H2(μr{δFξfjm)) + r2εk. Thus

H2{μr{δFl) ~ μr(ίF f c

3

:;m)) < H2{μr{δF^m) ~ μr(«5F3)) + r2ε fc.

Hence (3.23) and (3.25) give

(3.26) H2 (Qi (Ί Oί Π C/3 (0, t)) < b(j, k) ί H2 I ( J X, j + r2ε f c j .

Since b(j, k) < cp we can replace b(j, k) by cp in (3.26).
Define

/ί(0 = H2(Q{ ΠO{ Π C/3(0,ί)) - cvr
2εk,t e [t?k,Pk\A = inf{ί: /ί(0 > 0}.
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Then by (3.26) we have f3

k(t) < c p ί ί 2 (Uχ < € /^ χi)- From the isoperimetric
inequality on dB3(0, t) and the co-area formula it follows that

£ {ί
By applying the same method as in Lemma 3 (Filigree lemma) we obtain

H2(Q{ ΠO{Π C/3(0, t)) < cpr
2εk

whenever

t < pk - yj2cp/πyjH*(Qj

k Π O{ Π ί/3(0, pk).

Now using (3.26) we get

H2(Q{ Π O{ Π C/3(0,p*)) < cpH
2(Khσk Π dB3(0,pk)) + cpr

2εk.

Hence H2{Q{ Πθ3

kΠ U3{0,pk)) < 4πcppkσkβ
2{μ,p) + cpr

2εk. Therefore for
sufficiently large fc, we have

H2(Qj

knO3

knU3(0,pk)) < 5τrcpσoθ
2(μ,p).

Thus we obtain H2(Qj

knO3

kΠU3(0,3/4)) < cpr
2εk, provided σ0 is sufficiently

small. Hence \Q3

k Γ\OkΠ C/3(0,3/4)| vanishes as k —• oo. Then, by using the
projection map πq as in the proof of Lemma 7, we see that

(3.27) H2{0{ n<9£3(0,3/4)) -+0 as fc -f cx>.

By the assumption at the beginning of this proof each component of

is homeomorphic to D. Hence μr(p(F%)) ~ {\JjO{ Π d£3(0,3/4)) « U» ^
K « B°. Now, pasting IJ^ O{ Π U3 (0,3/4) to f/3 (0,3/4) - \Jάθ{ in an
appropriate way and performing, if necessary, more pastings inside μ r(M) ~
C/3(0,3/4), we can get F£ eΦ such that

(3.28) μr(δF£) ~ μr(δF3) C \Jθ3

k Π 553(0,3/4),

(3.29) (μr(έf,4) nB3 (o, I ) ) u ί g o ΐ ndB (o, I ) J
encloses no domain in ί/3(0, | ) . Note however that {μr{δF%) Π J53(0,3/4)) U

(Uj O^naB3(0,3/4)) encloses domains which are subsets of U, O^ΠB3(0,3/4).
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By (3.27) and (3.28) we have lim^oo \δF%\ = lim^-co \δF%\. Thus we see that
no spike, or filigree, of d{μr(F£)) in μ r(M) can come into t/3(0,3/4). Hence
B3(0,3/4) ~ μr(δF£) has only finite components, and therefore μr{F%) Π
£3(0,3/4) lies in a bounded set in μr{M). This completes the proof of Lemma
8.

Finally we are in a position to finish the proof of Theorem 2. In Lemma 8
r depends on p, say, r = rp. By compactness of M there exists a set / of a
finite number of points in M such that {U3(q,3/(4rq)}qeI covers M. Hence,
applying Lemma 8 repeatedly at all points of /, we deduce that {F£} must
be uniformly bounded in M provided f]k F% φ 0.

Now remember that we assumed at the beginning of the proof of Theorem
2 that M is locally isometrically in R 3. However we can easily see that if M is
not locally in R3, all the methods we have used so far are directly applicable to
the images under the exponential map (i.e., exponential image of the tangent
cone μ, exponential image of KPt(n etc). Hence the proof is complete.

The following corollary says that Δ (= lim^oo \δFk\) is an area minimizing
integral varifold in M and is regular in a neighborhood of any point of spt | |Δ||
where there is a varifold tangent with support contained in a plane. (By
rectifiability there is such a tangent plane at almost all points of spt ||Δ||.)

Corollary 3 (α.e. smoothness). If Δ is the varifold limit of a mini-
mizing sequence in ΦQ ( or Φ), and has a varifold tangent μ at p G spt | |Δ| |
with spt ||μ|| C H, where H is a plane, then there is an r > 0 such that
| |Δ| |Lβ3(p,r) = | |n|S| | | , where n is a positive integer and S is a smooth
(analytic if the metric of M is analytic) oriented connected minimal surface
containing p.

Proof Since spt ||μ|| is a plane we deduce from (3.29) that each com-
ponent of μr(δF%) Π B3(0,3/4) is homeomorphic to a disk, and hence each
component of μr(δF£) Π dB3(0,3/4) is a circle which is not null-homotopic
in dB3(0,3/4) Π K\,σk- Then by using the arguments in [4, Theorem 2], we
conclude the required result.

4. Fundamental domains with least boundary area

Since now we have a uniformly bounded minimizing sequence of fundamen-
tal domains, we can show the existence and regularity of fundamental domains
of M which minimize boundary area among all fundamental domains in Φo

Given a continuous map g on M we define g to be a map on M satisfying
pg — gp. Of course g is not unique, but its uniqueness is not necessary in our
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setting. For a function h on M we define the function hM on M by

hM(x)= Σ %)' xeM'

Thus hM is well defined only for a restricted family of functions h on M. If
F is a fundamental domain of M, then ( X F ) M = 1 almost everywhere in M,
where XF is the characteristic function of F on M. Also if H2(dF) < oo,
then we can easily see that XF is a BV function on M. Since d*F represents
"actual" boundary of F, we may think of \DχF\{M) as the boundary area of
F (recall \DχF\{M) = H2{d*F)).

Let / = inf {H2(d*F): F € Φo} and let {Fk} be a sequence of fundamental
domains in Φo such that H2(d*Fk) —• /. Then by compactness of BV func-
tions [11, 6.3] there are a subsequence {XF^} C {XF*} and a BV function u
on M such that

χF.k^u mL\oc{M), |J9u|(M)<liminf|Z?χFί |(Af) ( = / ) .

u is obviously a characteristic function XF of some set F on M. By Theorem
2 the sequence {F^} can be assumed to be uniformly bounded in M. Hence

1 = ( X F ; ) M - ( X F ) M inLfoc(Af).

It follows that F itself is a fundamental domain of M and H2(d*F) = /.
Now the following questions about F arise:

(a) Is p(d*F) locally area minimizing under a Lipschitz map on M?
(b) Is F connected?

If both questions are answered affirmatively, then F is the desired fundamental
domain with least boundary area.

Question (a). Let k be a C1 map on M (or M), and h a function on M
(or M). Define the function hk on M (or M), by

hk(x)= Σ ω(y)h(y),

if k is orientation-preserving at y,

if k is orientation-reversing at y,

if Jk(y) = 0, where Jk is the Jacobian of k.

Note that even if k is Lipschitz, hk is defined almost everywhere. Let g be a
Lipschitz map on M such that {x: g(x) φ x) U g{x: g(x) φ x} is contained
in a small ball in M. Then by the above definition it is not difficult to check
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that {(XFY)M = {{XF)M)9 = lg = 1 a.e. on M, and therefore also to show
that there exists a fundamental domain Fg of M such that

Since spt \D(χF)°\ = g(spt \DχF\) = fif(3*F), we have

H\p{d*Fg)) < H2(p(~g(d*F))) (= H2{g{p{d*F)))),

or H2(p{d*F)) < H2(g{p(d*F))). Therefore p(d*F) is locally area minimiz-
ing.

Note. J. Taylor's arguments in [13] might be true even if one assumes that
all the Lipschitz maps in [13] are nowhere orientation-reversing. In this case
the interior of g(F) is clearly a fundamental domain of M.

Question (b). Suppose F is not connected. Then there are two com-
ponents £/, V of F and subsets X, Y of dt/, dV respectively such that
p{U) Πp{V) = p{X) = p{Y) and H2(p{X)) > 0. Hence there must exist
a translation r on M for which τ(X) - Y. It follows that (F ~ U) U r(l7)
is a fundamental domain with less boundary area than F. This contradiction
proves the connectedness of F.

Let ί/bea diffeomorphism from Bs(p,r) C M, p G 5F, to B3(0,r) C
R3, and let F be the measure over R 3 corresponding to H2 over M un-
der i/, i.e., F(i/(5)) = /ί 2(5) for any i/2 measurable subset S of M. Then
v{δF) (= i/(p(9*F))) is locally F-minimizing under Lipschitz deformation
in the sense that for any Lipschitz map φ on M with {x: φ(x) φ x} U
φ{x: φ(x) ψ x) C B3(p, r) we have

On the other hand one can find a function ξ(r) = Cra with 0 < C < oo and
0 < a < 1/3 such that

#V(<5F Π W)) < (1 + ξ(r))H2(v{φ{δF Π W))),

where VK = {x: 0(x) ^ x} and r = diam(^U0(VΓ)). Hence v(δF) is (M, ί,ί)
minimal as defined in [13, I. (8)].

Thus by [13, II.4, II.6, IV.5, IV.8] we get the following theorem.
Theorem 3. There exists a fundamental domain F € Φo with least

boundary area among all elements of Φo. Moreover,
(i) δF = R{δF)Uσγ{δF)Uστ{δF);

(ii) στ{δF) consists of isolated points;
(iii) σγ(δF) is a one-dimensional C 1 > α submanifold;
(iv) R(δF) is a smooth minimal surface;
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(v) for every p G σγ(δF) (respectively σχ(δF)) there is a neighborhood

Nofp and a C 1 ^ / 2 diffeomorphism f . B ^ N such that δFΠN = f(Y)

(respectively f(T)).

Remark 2. Suppose M is a covering space of M which is not necessarily
the universal covering space M of M. We define a "fundamental domain" F
of M in M as we did in M. Then we can again conclude that there exists
a fundamental domain F in M with least boundary area and satisfying the
regularity results (i)-(v) of Theorem 3. Obviously the proof of Theorem 3
remains valid for fundamental domains in M.

As for the two-dimensional compact Riemannian manifold M2, we get the
following proposition concerning the existence, regularity, and topology of
fundamental domains with least boundary length.

Proposition. There exists a fundamental domain F of M2 which mini-
mizes boundary length among all fundamental domains of arbitrary topological
type with the properties that

(i) F is homeomorphic to a closed disk,
(ii) F is a polygon such that the edges of F are geodesic segments in M,

interior angles of vertices of F are 120°, and if χ(M2) < 0 then the number
of vertices of F (= the number of edges of F) is equal to 6 — 6χ(M2).

Proof. Note that a minimizing sequence of connected fundamental do-
mains of M 2 must be uniformly bounded if they have nonempty intersec-
tion. Therefore we can proceed as above, using characteristic functions of
fundamental domains, to conclude that there exists a connected fundamental
domain F with least boundary area. Suppose F is multiply connected, and
Ji « D is a component of M2 ~ F with H2(J\) < oo. Then there exists a
translation n on M2 such that r\ (F) C J\. Since τ\ (F) is multiply connected,
we have a component J 2 « D of J\ ~ τ\ (F) and a translation r2 such that
τ^(F) C J 2 . Continuing this process we can get translations ri, r2, 73, such
that the fundamental domains ri(F), T2CF), r3 (F), are subsets of J\ and
pairwise disjoint. This is not possible since H2(Jχ) < 00. Therefore F « D.

The first part of (ii) follows from the fact that 6F is locally area minimizing
under a Lipschitz map. Now we note that a straight line and Y1 are the only
area minimizing (under the Lipschitz map) 1-varifolds up to rotation (see [13,
Π.3.]). Hence we deduce the second part of (ii). For the third part of (ii) we
recall the Gauss-Bonnet formula,

n

αi - π) + 2τr,
ί ί
/ KdA = - /Cp

JF JdF
where K is the Gaussian curvature of M (or M), κg is the signed geodesic
curvature of dF, and αi, , α n are the interior angles of vertices of F.
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Since fFKdA = JM2KdA = 2πχ(M2) and κg = 0, we obtain 2πχ(M2) =
—nπ/3 + 2τr, which gives the last part of (ii).

5. Regularity of singular set

In this section we show the existence and regularity of a fundamental do-
main in Φ with least boundary area. Without loss of generality we assume,
in Lemma 9 and Corollary 4, that M is locally isometrically in R 3 and that
for any p € spt | |Δ| | we choose p to be the origin in R 3.

So far we have not ruled out the possibilities that μr(δF£) Π B3(0,3/4)
might have more than one component, and that the tangent cone μ of Δ at
p £ spt | |Δ| | might be other than |2}|, |Y|, or \T\. The following lemma rules
out these possibilities.

Lemma 9. For anyp E spt | |Δ| | the tangent cone μ of A atp is \D\, \Y\,
or |Γ|.

Proof. Suppose μr(δF£) Π J33 (0,3/4) has more than one component for
sufficiently large k. Then we can find a component Qk of μr(δF£)Γ\B3(0,3/4)
for each k and a cone r such that lim r_O O ) f c_o o |<3fc| = r, spt ||r|| C spt ||μ||,
and τ ψ μ. If spt | |r| | were not a plane, then we could construct a diffeo-
morphism of B fixing dB which would decrease not only the mass of r but
also the area of μr(δF£) for large r and A;, an obvious contradiction. Thus we
conclude that if μr(6F£) Π B3(0,3/4) has more than one component for large
fc, then μ = ra|D|, m > 1.

Next assume that μr{δF%) Π B3(0,3/4) is connected for large k. Then
we know from the construction of μr(δF£) (Lemma 8) that μ = | spt ||μ|| |.
Assume that spt \\μ\\ φ £>, Y, T. First, if spt \\μ\\ is one of those seven cones
which are proven to be not area minimizing under Lipschitz deformation in
[13, II.3], then we note that every Lipschitz map ψ constructed in [13, II.3] for
each non-area-minimizing cone v satisfies the property that each component
of ί/3(0,1) ~ ^(spt ||μ||) is homeomorphic to B° and

# 2MsPt HI) n B3(o, i)) < //2(spt HI n B3(o, i)).

Hence it follows that for large r and A;, we can similarly construct the Lipschitz
map ip on μr{M) which leaves μr{M) ~ B3(0,1) fixed such that

ί μ r (M)~V(M<5^ 4 ))«B° and

I H*(ψ(μr(δF<))) < M(/i r #Δ) < H*{

an obvious contradiction. Second, if spt ||μ|| is different from those cones of
[13, II.3], that is, its intersection with dB3(0,1) is a 1-varifold with multiple
points other than triple point (i.e., quadruple point, etc.), then, in view of a
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Lipschitz map on cλB3(0,1) which squashes a quadruple point to become two
triple points and decreases the length of spt ||μ|| (Ίdi?3(0,1), we can construct
ψ satisfying (5.1) more easily than in the above case. Therefore spt ||μ|| must
be equal to D, Y, or Γ, and hence, we deduce that μ = |D|, |Y|, or |Γ| in
case μr(δF%) Π i?3(0,3/4) is connected for k large.

We now note that by Corollary 3 the density of R{Δ) is constant in a
component of /2(Δ), and the boundary of this component contains the points
of σy(Δ). Hence we deduce that if μ = m\D\ along a component of i?(Δ),
then m must be equal to 1. Therefore we conclude that μr(δF£) Π B3(0,3/4)
is connected for large fc, and μ = \D\, \Y\, or |Γ|.

The following corollary and its proof are almost similar to [13, II.6].
Corollary 4 (C° regularity of multiple curve). (1) σχ(Δ) consists of

isolated points.
(2) oγ (Δ) is a one-dimensional C° submanifold.
(3) Suppose p G σy(Δ) (resp. στ(Δ)). Then for some r > 0, #(Δ) Π

B3(p,r) consists of three (resp. six) components, each of which is a smooth
manifold.

Proof. (1) This conclusion follows from monotonicity (Lemma 4) and the
weak convergence to tangent cones as varifolds.

(2) It is not difficult to see that Lemma II.5 of [13] holds in our setting
with μt(spt ||Δ||) in place of S{. Hence

(for some φ G SO(3) depending on p) goes to zero as r goes to oo for each fixed
p G Oγ (Δ) and is uniformly small as a function of p in small compact subsets
of σy(Δ) for fixed r > 0. Therefore the set σγ(Δ) satisfies Reifenberg's
condition in §4 of [10], and is hence a one-dimensional C° submanifold.

(3) This follows from Corollary 3 and [13, 11.6(4)].
An epiperimetric inequality is an inequality which gives us an upper bound

to the area of area minimizing surface. This upper bound of area gives us
C 1 > α regularity of area minimizing surface at its singular set. The statement
and the proof of epiperimetric inequality basically follow [13]. Before stating
the following lemma we should note that the competing surfaces of Δ are not
only the images of Δ under diffeomorphisms but also all the varifolds Γ with
Γ = lim/c—oo \δF'k\, F'k G Φ. We note also that M is no longer assumed locally
isometric to R 3. However, using the diffeomorphism from B3(p)r) C M to
B3(0,r) C R 3, we equip M Π Bz(p,r) with the metric v*g, where g is the
Euclidean metric of R 3.

Lemma 10 (Epiperimetric inequality for Δ). There exist ε > 0, ς > 0,
and k > 0, such that if
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(i) p e σy (Δ) (respectively σ τ(Δ));
(ii) for some r > 0,

r~2H2(spt | |Δ| | Π S3(p,r)) - πθ 2(Δ,p) < ε,

and
HD(μ1/rτp(spt | |Δ | | Π 5 3 ( p , r)), ΘY) < ζ

(respectively, replace ΘY by ΘT) for some θ 6 SO(3), then there exists a 2-

varifold Γ with Γ = limfc_>oo |<5F |̂ for a sequence {F'k} in Φ such that

(1) spt||Γ|| ~ B3(p,r) C spt| |Δ| | ~ B*(p,r) and

(2)

fΓ3(spt| |Γ| |nB3(p,r)) < (1 - */2)(r/2)ίΓ1(8pt | |Δ|| ΠdB3(p,r))

+ (fc/2)πr2θ2(Δ,p).

Proof. First, we prove the lemma under the assumption that spt | |Δ|| Π
9B3(p, r) consists of a finite number of Lipschitz curves and is homeomorphic
to Y Π dB (resp. T Π dβ). Define J = spt | |Δ|| Π dB3{p,r). Let {0n} be
a sequence of shrinking diffeomorphisms in B3(p,r) with φn(x) = x, x £
dB3(p,r) for all n such that limn_>oo0n#Δ = |p*fJ|. From [12, Chapter 3]
and [13, III.5] one observes that there exist ε > 0, ζ > 0, and fc > 0 such
that if (i) and (ii) are satisfied then one can find a diffeomorphism ψ with
{x: xj)(x) φ x) Uψ{x: ψ(x) φ x) C B3(p,r) such that

H2{ψ(p#J)) < (1 - k)(r/2)Hι{J) + fcπr2θ2(Δ,p).

In fact, the Lipschitz maps in [12, Chapter 3] can be replaced by diffeomor-
phisms since the Lipschitz maps there count multiplicity of area. Since by [3,
1.2.6] the mapping of the sequence of varifolds {φn#A} by ψ is continuous,
we have

lim ^ # 0 n # Δ = <φφ lim 0 n # Δ = ψφ\p&J\.
n—•oo n—κx>

Hence

lim | |(^n)#Δ||(ί/3(p,r)) < (1 - k)(r/2)Hι(J) + kπr2θ2(A,p).|
n—•(»

Therefore for sufficiently large n,

| | (^ n ) # Δ| |(C/ 3 (p,r)) < (1 - \k){r/2)H\J) + f fcπr2θ2(Δ,p).

This proves conclusion (2) with k replaced by |A;, Γ = (ψφn)#A, F'k = ψφnFk,
and conclusion (1) follows from the choice of ψ and φn.

Secondly, we prove the lemma under the assumption that spt ||Δ||fΊdi?3(p, r)
(= J) consists of a finite number of Lipschitz curves. Let K be the subset
of J as defined in [13, III.4] such that K is homeomorphic to Y Π dB (resp.
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TΠdB). Then we get open components U1, U2, U3 (resp. U1, ••• ,U4)

of ί/3(p, r) ~ (p$£/Γ). Now we apply a replacement argument as in The-

orem 1 to each Uι and ί*. For this lemma we make one alteration to

the proof of Theorem 1. For each Uι we define K\, Cι

i3 as in Theorem 1.

But we let X\^λ be the component of dUι ~ C^ which contains the set

Zι = {xe dUι: άtet{x,p»K) > f}. Then we define *£. = dUι ~ X ^ and

proceed from here exactly as in Theorem 1. Hence we get Fk(= Fk), Fk, Fk,

F3 (resp. F£, , F f c

4 ) e Φ w i t h

(5.2) δFι

k~Uι CδFι

k~
ι ~U\ Z = l,2,3 (resp. 1, ,4).

Also, if we define Uι

η = {x G C/4: dist(x, ^C/4) < 77}, we can arrange replace-

ment procedure in such a way that δFι

k Γ\Uι C Uι

η for any η > 0. Hence

letting 77 —• 0 we obtain

spt II lim \δFι

kΠUι\\\ CdU1.
k—>oo

Moreover we may assume that for each component E of δFι

k Π Uι, H2(E) is

arbitrarily close to ΐΓ 2 (Z), where Z is the subset of dUι with dZ = dE and

Z Π Zι = 0 . Then it follows from (5.2) that since Δ has density 1 almost

everywhere the varifold limfc_>oo \δFk\ also has density 1 almost everywhere

for each /.

Let Δ ; = limfc—oo \δF%\ (resp. limfc—cx> \δFk |). Note that the boundary of

spt IIΔ'H nt/ 3 (p , r) is K. Hence the arguments of the first case is applicable to

spt | |Δ ' | | Π U3(p, r) and therefore there exist diffeomorphisms φn and φ such

that

(5.3) | | ( ^ n ) # Δ ' | | ( C / 3 ( p , r ) ) < (1 - \k){r/2)H\K) + | f c π r 2 θ 2 ( Δ , p ) .

On the other hand, [13, 111.4(4)] implies

(5.4) # 2 ( s p t | |Δ ' | | Π dB3{p,r)) < 25[i/ 1(J) - Hι{K)]2.

We note however that for any set E in a thin strip with width 2ςr we can use an

isoperimetric inequality H2{E) < ςrHι(dE) instead of H2{E) < [H^dE)]2.

Hence (5.4) can be replaced by

(5.5) //2(spt ||Δ'|| Π dB3(p,r)) < $ζr[H\j) - Hι(K)\.

Since | spt | |Δ ' | | | = Δ', (5.3) and (5.5) yield

H2(spt\\(φφn)#A'\\ΠB3(p,r)) < (1 - \k){r/2)Hι(K)

(5.6) + $ςr\Hι{J) - Hι(K)] + |A:πr2θ2(Δ,p).

Let us assume without loss of generality

(5.7) 5f < (1 - !*)£.
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Then (5.6) gives us

/ | | Π5 3(p,r)) < (1 - \k){r/2)H\j) + f

which proves conclusion (2) with F'k = φφnFl (resp. ψφnF£). Conclusion
(1) follows from (5.2) and the choice of ̂ , φn.

Finally it remains to prove the lemma with no assumption, i.e., without the
assumption that J is piecewise Lipschitz. So J needs to be approximated by a
finite number of Lipschitz curves. By Corollary 4, there exists rq > 0 for each
q e σγ(A)Γ\dB3{p,r) such that σγ(Δ)ndB3(p,r)ΠB3(q,rq) = {q}. Let Jq be
the component of spt ||Δ||fΊ<9i?3(p, r)Γ)B3(q, rq) containing q. Then we replace
Jq by the union of three geodesic curves G\ UG2 UG3 in dB3{p, r)Γ\B3(q, rq)
connecting q to the three points {qι)q2^Qs} = JqΓ\ dB3(q, rq). We assume rq

to be appropriately small so that for sufficiently small η > 0,

(5.8) H*(\JZq)<η,

where Zq is the small region on dB3(p,r) enclosed by Jq and Gj U G2 U G3,
and the union is taken over all q G σγ(Δ)Γ\dB3(p, r). Let V̂ 1, V̂ 2, V3 be open
components of p*[dB3(p,r) Π U3(q,rq) ~ {G\ U G2 U G3)] - dB3{p,r). By
cutting off filigrees of {δFk} (applying Lemma 6 repeatedly at suitable points
of spt ||Δ||) we can find three open balls Wq, Wq, W

3, which are disjoint from
for all k such that

wι

qndvι

q * D , wι

qndvq

ιndB3(P,r)ndB3(Qirq) Φ<a, i = 1,2,3.

Then we apply the replacement argument of Theorem 1 to each Vq

ι and Fk

with the same alteration as in the second case: For each component Cij of

δFk Π dVq\ define Y^ to be the subset of dVq

ι - W\ such that Y^ « D and

^y^ is the outermost Jordan curve of Cij in SV̂  ^ Wq. Then, as in Theorem

1, we obtain F«>°(= Fk), F<?'\ F^'2, Ffc

9'3 with

έ F ^ ^ y J c ^ - 1 ^ ^ , / = 1,2,3.

Using the same arguments as in the second case we can assert that

and that the density of lim^—co \δF%'ι\ is 1 almost everywhere for each / =
1,2,3.

Continue the above process for the sequence of points {q, , P} — σy (Δ)Π
dB3(p, r) until we obtain Δ = limfc—oo \δF^i3\. Then we note that the bound-
ary J' of spt | |Δ|| Π ί/3(p, r) is piecewise Lipschitz. By finding the subset K1
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of J' which is homeomorphic to YΠdB (resp. TΠdB) and using the replace-
ment argument as in the second case above, we can construct a 2-varifold A
such that A = Hindoo \6Fk\, δFk G Φ, A has density 1 almost everywhere,

spt ||A|| ~ B3(p,r) c spt |

the boundary of spt ||A|| Π U3(p,r) is K', and lastly, from (5.8),

(5.9) i f 2 (spt | |A|| Π dB3(p, r))<η + ^r[Hx(J) - H\K%

Hence, as before, we can find diffeomorphisms φn, ψ such that

(5.10) \\{ψφn)#L\\{U\p,r)) < (1 - \k){r/2)Hι{K') + f fcτrr2θ2(Δ,p),

which together with (5.7), (5.9) implies

# 2 ( s p t | | ( ^ n ) # Δ | | n B 3 ( p , r ) ) < (1 - k/2)(r/2)H\j) + (fc/2)7rr2θ2(Δ,p),

where η is absorbed by replacing |λ; by k/2. This completes the proof of
Lemma 10.

Recall the diffeomorphism v from B3(p, r) C M to £ 3(0,r) C R 3 which
was introduced in §4. If M is given the Euclidean metric which is pulled
back by v, then one can find a function ξ(r) = Cra with 0 < C < oo and
0 < a < 1/3 such that

if2(spt | |Δ|| Π W) < (1 + £(/•))#2(spt ||Γ|| Π W),

where Γ is as defined in Lemma 10, W = (spt | |Δ|| - spt ||Γ||) U (spt ||Γ|| ~
spt ||Δ||) and r = diamW. This property of Δ is similar to (M, £,<$) mini-
mality. Therefore we note that the above epiperimetric inequality holds, as
[13, III.l], for Δ having this property (not just for area minimizing Δ). The
following epiperimetric inequality is similar to [13, III.l] and slightly weaker
than Lemma 10.

Lemma 10'. There exist 0 < ε < 1/2, 0 < ζ < 1/100, 0 < k < α/(l+α),
and 1 < I < oo, such that if

(i) peσγ(A) (resp. σΓ(Δ));
(ii) for some r > 0, r"2i/2(spt ||Δ||nS3(p,r))exp(£ζ(r)) -πθ 2(Δ,p) <

ε, and HD(μ1/rτp(spt \\A\\ Π B3(p,r)),ΘY) < ς (resp., replace ΘY by
ΘT) for some θ G SO(3),

then there exists a 2-varifold Γ with Γ = limfc_>oo \6F'k\, F'k G Φ such that
(1) spt IIΠI ~ B*(p, r) C spt | |Δ|| ~ B3(p, r) and
(2) r- 2i/ 2(spt | |Γ| |Πβ 3(p,r))exp(3e(r)/α)- 7rθ 2(Δ,p) < (ί-k/2)E(r) +

lζ(r), where

E(r) = (2r)-1/ί1(spt||Δ||n5β3(p,r))exp(3e(r)/α) -πθ 2(Δ,p).
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Proof. Multiplying conclusion (2) of Lemma 10 by exp(3ξ(r)/α), we get

//2(Spt| |Γ| |n£3(p,r))exp(3ξ(r)/α)

< (1 - fc/2)(r/2)i/1(spt | |Δ| | Π dB3(p,r)) exp(3ξ(r)/α)

+ (fc/2)τrr202(Δ,p)exp(3£(r)/α).

The above conclusion (2) is equivalent to

tf2(spt||Γ||n53(p,r))exp(3£(r)/α)

< (1 - fc/2)(r/2)ίΓ1(spt | |Δ| | n dB3(p,r)) exp(3ξ(r)/a)

Hence it suffices to show

(fc/2)πr2θ2(Δ,p)exp(3£(r)Λ*) < (fc/2)πr2θ2(Δ,p)

Since ex < 1 + Ax for A = 3 1 0 and 0 < x < 10, we have

exp(3£(r)/α) < 1 + A(3ξ(r)/a) for 3/10 < a < 1/3 and 0 < r < 1.

Therefore

< (fc/2)πr2θ2(Δ,p)

for / = 32Λ, and hence the required result is proved.
Theorem 4 (C1 | Q ί regularity of singular set). (1) At every point p in

spt | |Δ||, Δ has a unique tangent cone.
(2) σy(Δ) is a one-dimensional C1)Q! submanifold.
(3) In a neighborhood of p G σy(Δ) (respectively στ(Δ)), spt | |Δ|| is the

union of three (respectively six) C1?Q!/2 manifolds with boundary.
Proof Chapter IV of [13] proves the above regularity for sets which are

(M, £, δ) minimal under the Lipschitz map. Remember however that compet-
ing surfaces of spt | |Δ| | are not the images of spt | |Δ|| under Lipschitz maps
but are the varifolds which are the limit of \δFk\ for some sequence {Fk} in
Φ. We outline below the alterations to the proof in §IV of [13] that need to
be made to accommodate this.

First notice that [13, II. 1, II.2, II.4, II.6, and III.l] correspond to Lemma
4, Corollary 2, Lemma 9, Corollary 4, and Lemma 10' respectively. [13, II.5]
holds in our setting if we replace 5 t by μt(spt | |Δ||).

[13, IV.1]: Use (M, ξ,δ) minimality of spt | |Δ|| as is described right before
Lemma 10', and then apply Lemma 10'.

[13, IV.4(2)]: Lipschitz maps / and g can be replaced by diffeomorphisms
with the same property.
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[13, IV.7(1)]: Lipschitz maps considered here can be replaced by a Lips-
chitz map ψ which preserves the topology of Fk, i.e., M ~ ψ{δFk) & B°,
limfc-<χ> \δFk\ = Δ.

Theorem 5. If M is irreducible, then there exists a fundamental domain
F in Φ with least boundary area among all elements of Φ, i.e., δF = spt | |Δ| |.

Proof. In view of Theorem 1. (2) (ii)', it is clear that, for any convex
domain U C M disjoint from the singular set of spt| |Δ||, each component
of spt| |Δ| | Π U is an area minimizing disk. Since spt| |Δ| | is C1 > α/2 up to
its singular curve, there exists a d > 0 such that there is a C1 retract ξ
of Δd = {x G M: dist(x,spt ||Δ||) < d} onto spt| |Δ| |. Then we can apply
Lemmas 6, 7, and 8 repeatedly at an appropriately chosen set of finite points
of spt | |Δ| | (using a finite open subcover of M) in such a way that for each k
we obtain J ^ G Φ with

(5.11) δFl C Δ1/k and lim \δF%\ = Δ.

Letting k —• oo, it follows from (5.11) that

ΰ(πi(M ~spt | |Δ| |)) = 0,

where i is the inclusion map into M. Hence M ~ spt| |Δ| | = p(F), or
spt | |Δ|| = δF for some fundamental domain F in Φo Let κk be a map
from B onto M with κk{dB) = δF%. Then, for k with 1/fc < d, ξκk maps
dB into spt | |Δ||. From (5.11) we know that ξκ,k is surjective. Now we claim
F is in Φ. First suppose F is not connected and a component of F is not
homeomorphic to B°. Then, since dB is mapped onto spt | |Δ||, there exists a
connected subset X of spt | |Δ| | such that two disjoint subsets X\ and X2 of
δF% are mapped onto X by ξ. Assume X is the largest such component. If
X is a point or a curve, then the tangent cone of Δ at any point of X cannot
be \D\, |V|, or |Γ|. If X is a surface, then the tangent cone at any interior
point of X is a plane with density 2 (= 2|J5|). Since this contradicts Lemma
9, each component of M ~ spt | |Δ| | must be homeomorphic to B°.

Suppose M - spt | |Δ|| = U?=i W, n > 2, Wτ « B°, and W{ Π W3 = 0 if
i φ j . Then, using irreducibility of M, we paste WVs to each other in such a
way that we can obtain W « B° with UΓ=i WiCW and 9VK C spt | |Δ||. This
is a contradiction since W gives rise to a fundamental domain F E Φ with
p[F) — W and H2(δF) < M(Δ). Hence M ^ spt | |Δ|| must be homeomorphic
to B°. Clearly F is not reducible. Therefore F eΦ.
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FIGURE 8 FIGURE 9

Appendix

1. Given a flat T 2 , not necessarily a square torus, we know from the

proposition of §4 that a hexagon is a minimizing fundamental domain of the

T 2 . Cut this hexagon along the dotted lines AB and AC (Figure 8).

After translating and pasting, we get another fundamental domain which

is a parallelogram ABCD (Figure 9). Note that the boundary length of the

minimizing hexagon is twice the sum of the lengths of EB, EC, ED, and

that E is a triple point joining the vertices of the acute triangle BCD. Since

there exists one and only one triple point in an acute triangle we conclude

that there exists a unique minimizing fundamental domain of flat T 2 up to

translations.

2. The standard projection map π from S2 x S1 onto S2 is an area-

decreasing map: for any H2-measurable set X C S2 x S 1,

Moreover, for any fundamental domain F of S2 x S1 in Φo, TΓ maps p(dF)

onto 5 2 . Hence

H2{p{dF)) > H2(π(p(dF))) = H2(S2) = H2(p(d(S2 x (0,1)))).

Thus S2 x (0,1) is a minimizing fundamental domain of S2 x S1.

3. 100 years ago, Sir William Thomson [14] considered a similar problem,

periodic minimal partitioning of R 3 . His construction gives a candidate for

the periodic division of R 3 with minimum partitional area. But it has never

been proved that his partitioning is the minimum. This candidate is a 14-

faced domain whose boundary consists of six quadrilateral faces and eight

hexagonal faces. This domain can be roughly obtained by truncating all



FUNDAMENTAL DOMAINS WITH LEAST BOUNDARY AREA 663

vertices of regular octahedron. Here quadrilateral faces are flat, hexagonal
faces are a monkey saddle, and each edge is a plane curve. The faces meet
with the correct 120° angles along the edges and with the correct tetrahedral
angles at the vertices. It turns out that Thomson's domain is a fundamental
domain of a skew torus which is spanned by 4~1/3(2,0,0), 4"1/3(0,2,0), and
4~1/3(1,1,1). We should mention that R. Kusner showed 14 is a lower bound
for the number of faces of a minimizing fundamental domain of any flat torus.
Notice that minimal partitioning of R 3 is more general than periodic minimal
partitioning of R3, and these two partitioning problems are more general
than the problem of finding a minimizing fundamental domain of a specific
flat torus.
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