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STABILITY OF SINGULARITIES
OF MINIMIZING HARMONIC MAPS

ROBERT HARDT k FANG-HAU LIN

1. Introduction

Singularities of energy minimizing harmonic maps may occur with 3-
dimensional domains. Perhaps the simplest example is the map x/\x\ which
has least energy [2] among all finite energy maps from the 3-ball B to the 2-
sphere S2 having boundary values given by the identity map of S2. Moreover,
in dimension 3, singularities are, by the work of R. Schoen and K. Uhlenbeck
[10, Theorem], [11, 2.7], at most isolated. As the boundary data varies the sin-
gularities presumably move. In [5] was noted the impossibility of a sequence
of minimizing configurations in which a pair of oppositely oriented singular-
ities come together and cancel, leaving a singularity-free configuration. This
followed from the strong convergence of minimizers and the basic small en-
ergy regularity theorem [10, 2.6]. These arguments left open the possibility
of three singularities, two oppositely oriented, merging and leaving a single
singularity. This is not precluded by either topological degree considerations
or by the monotonicity of energy [11, 2.4]. However, the estimates of the
present paper, in particular, rule out any such cancellation. Our results are
based on the following:

Perturbation Lemma. There exist positive constants δo,co, and a so
that z/v?€Lip(S2,S2), δ = ||<p-idS2 | |LIP < δ0, and u G i f ^ B ^ 2 ) ώ energy
minimizing with ιt|S2 = φ, then u has only one singular point α,

|α| < coδ1/2 and

for some orthogonal rotation θ o/R3 with \\θ — idR3 || <

This leads to the following general
Stability Theorem. Suppose Ω is a smooth bounded domain in R 3,

ψ £ Lip(<9Ω,S2), and v is the unique energy-minimizing map from Ω to S 2

with v\dΏ = ψ. There exists a positive number β and, for any positive ε, a
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positive number 8 so that for any φ G C^^iβΩ, S2) with \\<p — ψ\\up < δ
for any energy-minimizing u £ H1(Ω, S2) with u\dΩ = <p, one has

\\u — vor]\c& < ε

for some bi-lipschitz transformation ηofΩ with \\η — id^ | |LΪP < ε. In partic-
ular, η maps the singularities of u onto the singularities of v.

The uniqueness hypothesis may be obtained by restricting a minimizer to a
proper subdomain. For examples of nonuniqueness, see [7], [1], and §5 below.

Our proof of these perturbation estimates is based on the regularity theory
of energy minimizing maps ([10], [11], §2), the classification of minimizing
tangent maps into S 2 by H. Brezis, J. M. Coron, and E. Lieb [2] and asymp-
totic estimates of L. Simon [12], [13]. The latter works provide a description
of the behavior of a minimizer in a punctured ball based only on information
concerning its behavior on an annular region and its energy density at the
center.

The Stability Lemma implies an interior estimate on the distance between
singularities. Along with the uniform boundary estimate (2.1), it leads readily
to global estimates on the number of singularities in terms of the Lipschitz
norm of the boundary data. F. J. Almgren, Jr. and E. Lieb have in [1]
independently obtained estimates in terms of the energy of the boundary
data.

In our proof of the Perturbation Lemma, decay in an annulus is controlled
by the boundary values. The proof easily generalizes to minimizers of other
functionals as considered in [12]. In §5 we remark how the example of [8] leads
to the existence of a smooth function φ : S2 —> S2 which serves as boundary
values for two distinct energy-minimizing maps, one having singularities and
one completely free of singularities.

2. Preliminary lemmas

We will use Co, ci, . . . to denote universal constants, and let

Br(α) = { i 6 R 3 : |x - α| < r}, B r = B r ( 0 ) , B = Bi(0), S2 = dB.

As in [9] we define, for any C1 function g : R 2 -• R with g(0) = 0 = \Vg(0)\
and Lip£ < 1, the domain

Ωg = {(zi,z2,Z3) € B :x3 < g(x1,x2)}.

Lemma (Uniform boundary regularity). There exists positive numbers po
andσo so that if g is as above with Lip<7 < σo and ifuE i/1(Ωg,S2) is energy
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minimizing with Lip(ιx|B Π dQg) < 1, then u|(BP o ΠΩ3) is Holder continuous
with

I H ( B p o n Π y ) | | C i / a < i .

Proof. Recalling [4, 5.4, 5.5], it suffices to find po so that

(1) Po1 I \Vu\2dx<aQ

for some suitable positive constant c*o Before doing this we will establish an
absolute bound

(2) f \Vu\2dx<cλ.
JBl/2nQg

This is analogous to the interior energy bound [6, 3.1].
First choose, as in [9, 5.2], uniformly bi-lipschitz maps Ύσ : BσΓ\Ωg —• B σ

for σ G [|,1]. Then select, as in [4, 2.3], an extension ωσ G Hι(βσ,S
2) of

u o T " 1 satisfying the estimate

Or \1/2

dBσ )

Transforming with T σ and T " 1 and abbreviating

D(σ)= / \Vu\2dx,

we conclude from the minimality of u that, for almost all σ G [\, 1],

D(σ)< f \V{ωσoΎσ)\2dx

JBσnQg

\VtznU\2dS+ f |VtanU|2dS)

<cs(Όf(σ)+σψ2

for some C3 > 1. This implies that D ( | ) < 4c2. In fact otherwise, for

D(σ) > D ( | ) > 4c2 > 2c3,

D'(σ) > C3 2D(σ) 2 - σ~2 > c^2Ό(σ)2 - 4 > |cJ 2 D(σ) 2 ,

and we could integrate —D'/D2 from ^ to 1 to find the contradiction

-Ό(^)'1 < D ( l ) " 1 - D ( ^ ) " 1 < -\c% 2 and Ό(\) < 4c2.

Having established the bound (2), we now argue by compactness. If the
lemma were false, then, by (1), there would exist sequences # —• 0, σ» —• 0
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and minimizers U{ E H1(Q9i,S
2) where Lip& < σ^ Lip(ui|B Π dΩ9i) < 1,

and

(3) liminfp"1 / |Vι^|2dz > α 0 .

By (2) (applied with g(x) replaced by gi(2pχx)) the sequence of scaled func-
tions Vi{x) = U{(2pix) have bounded energy on B. A subsequence of the
Vi converge weakly in H1 to a function v E i/ 1(B Π {x$ > 0},S2} with
v|B Π {x3 = 0} = constant (= lim^oo tx<(0)). By [9, 6.4, 5.7] and [11, 2.6], v
must be a constant and the energies

1 ί
converge to 0, contradicting (3).

Lemma 2.2. There exist a positive constant δo so that ijφ E Lip(S2, S2),
δ = \\<p — ids2 ||LIP < ô? o,nd u £ /f1(B,S2) is energy minimizing with
u\S2 = φ, then u has only one singular point a and \a\ < c^δχl2.

Proof. First note that the minimality of such a u implies the estimate

< f |V^(^Λ|2dz= ί \V
JB V F I / 7S2

<p\2ds

Assuming now that the lemma is false, we would find a sequence of energy
minimizing maps Ui : B —• S 2 which do not satisfy the conclusion but which
have Lipschitz boundary values (pi = Ui|S2 so that

| L i p -^0 as i —> oo.

By (4), any subsequence of the Ui contains a subsequence that is weakly
convergent in i/ 1(B,S 2). Any limit function, having energy at most 8π and
having boundary values equalling ids2, must be x/\x\ [2]. Thus, our original
sequence U{ converges to x/\x\ weakly, and, in fact, by [10, 4.6], strongly in
Hι.

By Lemma 2.1, the functions are all uniformly Holder continuous with
uniformly bounded energies on some neighborhood of <9(B ~ Bχ/2). For i
sufficiently large, ψi has degree one, and so Sing(ι^), the singular set of Ui,
must be nonempty. Arguing as above using the interior regularity theory [10]
and the Holder continuity of x/\x\ away from the origin, we now find

sup{|α|: a € Sing(ι^)} —• 0 as i —> oo.
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Choose a point α̂  G Sing(ι^), let

Vi B i - |α , | - » S 2 , Vi(x) = Ui(

and note, by the interior regularity theory, that

117

x

C2(B2/3(α,)~B1/3(α))

x — α,
\χ\ \X-(H\ C 2 (B 2 / 3 ~B 1 / 3 )

as i —• oo. As in the discussion in [12, §8], Theorem 1 of [12] is applicable to

Vi. It implies that, for i sufficiently large, 0 is the only singularity of V{, hence

di is the only singularity of U{.

Finally we need to estimate |αt|. For this, we define the function v)χ G

Wi(x) = Ui(2x) for x e B 1 / 2 , Wi(x) = zt(x)/\zi(x)\ for x e B - Bi/2,

where

Noting t h a t ||<£>i — ids2 | |L°° < C6<5i, we readily compute t h a t

ί \Vwt\
2 dx - c7δi < f \Vui\2 dx+ (

JB JB1/2 JB~B1/2

V (±Λ I dx
II

(5) = f
JB

ι/2

= f \Vui
JBι/2

l/2

Areatι<(0B r) dr

= ί \Vui\2dx+ [ f
JBι/2 Jl/ΊJdBr

f |V^|
JB

dx

because degree(ui\d"Br) = 1 for | < r < 1 and i large enough to guarantee

that degree(^t) = 1 and α̂  G Bi/ 2 . Since ^ | S 2 = idS2 and W{ has a single

degree one singularity at α;, we may also infer, using [2], the energy lower

bound

/ \Vwi\2dx>e \ω-a,i\dSω > 8π
JB JS2
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Combining this inequality with (4) and (5), we obtain the estimate

\ai\<cAδl/2,

which contradicts the original choice of U{.

3. Proof of the Perturbation Lemma

By Lemma 2.2, u has, for δ sufficiently small, a single singularity a with
\a\ < c4<51/2. From [2] we infer that

limsupr * / |Vι/|2 dx = 8τr,
rlO JBr(a)

and that any tangent map [10] of u at a must be in the form θ(x/\x\) for some
rotation θ of R 3. Theorem 1 of [12] implies that θ is unique and that

A(r) = (||(0/0r)t;(r )||c.(8») + \\v(v) - β||c»(β«)) - 0 as r - 0,

where v(x) = u(x -f- a). Moreover, by the integrability of the Jacobi fields
of x/\x\ [3], [12, Theorem 1] may here be replaced by the more elementary
alternative argument of [13, §6]. The latter implies, for some positive β < 1
and δ sufficiently small, the estimates

(6) \\θ - id R 3 1| < cqε and A{r) < cqεrβ,

where ε = \\v(x) - X/ |X| | |C 2 (B 2 / 3~B 1 / 3 ) In particular, for any positive a < β,

(7) L _ , Λ £ z £ Λ | < C l o ε .
II V|z-α|/llc°(B

Since, by (6) and the definitions of δ and ε,

LiPa(B~B 1 / 2)

Lipd(B1/2)

standard interior and boundary estimates also imply that
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(8) l- (π)
for 6 sufficiently small. By (7) and (8) it only remains to estimate ε.

For 1/8 < |x| < 1, we find by integration radially and Schwarz's inequality

that

1 10

Squaring and integrating give

(9)

7B M / β
"w-ci dx<%π\\φ-\ά\\2

Loo + 512π [ f^J
JB~B1/S \°PJ

dx

because φ(ω) = ω for some ω £ S2. To estimate the latter term we will use

the monotonicity equality [10, 2.4], [9, 4.1] on the annulus B — Bi/ 8 and on

the ball Ώι/g-\a\(a) C Bχ/g to find that

I (ψ)
iβ~B 1 / 8 \dpj

1/8 dBo

B1
/8

< ί \Vu\* dx - (1 - 8|α|) f Γ 4 ΰ l / I
./B L1-8HJ ^B1/8-|α,(α)

< / |Vι*|2 dx - (1 - 8|α|) lim p " 1 / |Vu\2 dx
JB P^° iBp(α)

From this inequality, (9), (4), and 2.2 we now deduce that

2

LB~B 1 / 8

dx c5δ
2 + 64πc4δ

1/2.
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Hence, by standard interior estimates [12, §1],

\
\CHB3/4~B1/4)

for δ sufficiently small. Thus,

C 2 (B 2 / 3 -B 1 / 3 )

x x — a

IN \χ~a\

which, along with (7) and (8), completes the proof.

3. Proof of the Stability Theorem

Assume that Ui is a sequence of energy minimizing maps from Ω to S 2

which have Lipschitz boundary values <pi = Ui\dQ with

\\<Pi ~ Ψ\\uP -> as i -• oo.

First we note that the energies / Ω |Vιif|2 dx are bounded. In fact the har-

monic vectors hi : Ω —* R 3 with hi\dΩ = <£>i clearly have bounded energies.

The same holds for the maps W{ obtained by suitably projecting, as in [9, 6.2],

the hi onto S 2 . Moreover,

< ί
by minimality.

Next we reason as in the proof of the Stability Lemma and use the unique-

ness of v to deduce that the functions U{ converge strongly in H1 to v. By [10,

Theorem II], [11, 2.7] the set of singularities of v is a finite (possibly empty)

subset A = {αi,α 2, •• ,α/t} of Ω.

For each singularity α j 5 we infer from [10], [13], and [2] that there is a

unique tangent map of v at a,j in the form θ3'(ifr) for some rotation θj of R 3 .

As in the proof of the Perturbation Lemma, we may by [12, Theorem 1] or

[3], [13, §6] find a fixed positive constants r and η (depending on v) so that

r < - mindist(αj, (A
^ 3

{a,j}) U <9Ω},
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(10)

(11)

C 2 (B 3 r / 2 (o J )~B τ / 2 (o J ))
<\δ0,

< ΊP
1/2Q

The uniqueness of υ and a compactness argument now show that

(12) δi = | K - v\\Lip{dBτ{aj)) ->• 0 as i -* oo.

As in the proof of the Stability Lemma, the uniform boundary regularity

Lemma 2.1, and the interior regularity theory now gives the estimate

(13) \\Ui -V
J

f c

= i B r(α,-)) ^
δi ^

C

By (10) and (12) we may, for i sufficiently large, translate,rotate, and scale

to apply the Perturbation Lemma. We obtain single points α^ E B τ(αj) and

rotations θji of R 3 so that

(14) \a3l-a3\ + \\θ3l-θ3\\ + \\ut-θ3l

1/4

We now let

(15)

and define ηi : Ω —• Ω so that

\ = max \a3i — a3\ ' < *'

ηi(x) =x on Ω - ( J BTi(a3),

η%(x) = λ3i(x)ξ3i(x) -f [1 - λji(x)]x on

where

λji = 1 on BT ty 2(%), and λ^ = 0 on Ω — B T i (a 3 ).

Using (11), (13), (14), and (15), we now conclude that

\\Vi - idΩ Hup < C2o^ / 8 and | | ^ -υoηi\\cβ < 1 / 4

for any positive β < ^a and i sufficiently large.
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4. Remark

An easy consequence of the Stability Theorem is that

the number of singularities of an energy-minimizing map u G HX(Ω, S 2) is

bounded by a constant C, depending only on Ω and |M#Ω||Lip

To see this one infers by scaling and 2.1 that there is, for each positive

L, a positive number δ = δ(Ω,L) so that any energy-minimizing map u G

i/ r (Ω,S 2 ) with |MdΩ||Lip < L has no singularities on Ω ~ Ωs where Ωs =

{x G Ω: dist(α;, dΩ) > δ}. On the other hand, any sequence of energy-

minimizing maps Ui G i/*(Ω, S 2) has, by the universal interior energy bound

of [6, 3.1], a subsequence which converges in Hx

oc to a map u$ G HX

OC(Ω, S 2)

which minimizes energy on each compact subset of Ω. In particular UQ has

only a finite number of singularities in Ω^. By the Stability Theorem, Ui has,

for i sufficiently large, precisely the same number of singularities in Ω#.

5. An example of nonuniqueness;

There exists a smooth function φ : S 2 —• S 2 which serves as boundary data

for two energy minimizing maps from B 3 to S2, one having no singularities

and one having at least two singularities.

Here one may choose as in [8] a smooth function Ψ : S 2 —> S 2 of degree 0

so that any energy-minimizing map with boundary data φ must have at least

two singularities. There is a smooth family of smooth functions φ>t : S
2 —> S 2

for 0 < t < 1, so that φ>ι=φ and <po is a constant function. For all sufficiently

small positive £, any energy-minimizer with boundary data φ% must, by the

regularity theory [10], [11], be free of singularities. Let

T = sup{£: every energy-minimizer with boundary data

<Pt has no singularities}.

Then 0 < τ < 1. Choose a sequence Si ] τ and singularity-free, energy-

minimizing maps fi G f/'1(B,S2) with fi\S2 — <pti. Also choose a se-

quence ti [ τ (possibly all U = τ) and singular energy-minimizing maps

g% G i / 1 ( B , S 2 ) with ^ | S 2 = φ^. Passing to subsequences, without changing

notation, fτ and & converge in ίΓ 1 (B,S 2 ) to energy-minimizing maps / and

The map / has no singularities. In fact, any possible singularity a must,

by [10], [11], occur on the interior. For a small positive /p, / |dB p (α) is smooth

and of nonzero degree. The same would hold for /;, for i sufficiently large,

by the interior regularity theory. But this would contradict the continuity of
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Finally the map g must have (interior) singularities because otherwise the
regularity theory would imply the smoothness of &, for i sufficiently large.
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