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THE GEOMETRY OF LOOP GROUPS

DANIEL S. FREED

Abstract

The space ΩG of based loops on a compact Lie group admits a
Kahler metric. Its curvature is expressed in terms of Toeplitz opera-
tors, and we define Chern classes by analogy with Chern-Weil theory in
finite dimensions. In infinite dimensions extra geometric structure—a
Fredholm structure—must be imposed before characteristic classes are
defined. There is a natural Fredholm structure on ΩG induced from the
family of Toeplitz operators. We use the index theorem for families of
Fredholms parametrized by a group (proved in [20]) to show that the
Chern classes of the Toeplitz family agree with the Chern classes de-
fined by curvature. Explicit formulas for ΩSU(n) are obtained. We also
prove that the real characteristic classes of ΩG vanish for any group
G. Extensions to more general groups of gauge transformations are
considered.

Infinite dimensional geometry has received much attention recently, par-
ticularly due to motivations from physics. Rigorous consideration of infi-
nite manifolds originated in the 1960's, when the foundations were carefully
laid. Examples arising directly from variational problems in geometry and
Lagrangian field theories in physics are manifolds of maps, and these can be
modeled on Hubert spaces. Exterior differential calculus, de Rham Theory,
Riemannian connections, and all basic features of finite dimensional manifold
theory generalize to Hubert manifolds, but with one notable simplification:
Hubert manifolds are always parallelizable. This contrasts sharply with finite
dimensionsm where twisted tangent bundles are ultimately due the nontrivial
topology of GL(n; R). The structure group of a Hubert manifold—the general
linear group GL(^) on Hubert space—is contractible, and the parallelizabil-
ity of Hubert manifolds is an immediate consequence.

Fredholm structures are reductions of the frame bundle to the topologically
nontrivial group GL c p t (βί?) of invertible operators which differ from the iden-
tity by a compact operator [18]. This extra geometric structure was created
to introduce twisting in the tangent bundle of a Hubert manifold, but there
seem to be few examples. Existence is not the issue, as a Hubert manifold
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admits many Fredholm structures. Rather, one needs a geometric method
to distinguish one [29]. Fredholm manifolds carry nontrivial characteristic
classes, which in finite dimensions form a basic link between geometry and
topology. Only with a Fredholm structure can one hope to generalize these
deep connections which comprise the index theorem.

Roughly speaking, the study of the mapping space Map(M, N) involves the
geometry of the target N and analysis on the source M. As the manifold with
the simplest geometry is a compact Lie group G, since geometric quantities
can be expressed in terms of its Lie algebra, and the manifold with the sim-
plest analysis is the circle S1, since Fourier series are available, the simplest
manifold of maps is the loop group LG = Map(51, G). The based loop group
ΩG admits a Kahler metric, which is our main object of study. In §2 we
derive a formula for its curvature in terms of Toeplitz operators. Ricci curva-
ture in infinite dimensions is computed by an infinite sum, which diverges in
general. For the Kahler curvature of ΩG that sum is conditionally convergent
(the absolute sum diverges logarithmically), and there is a natural order of
summation. Furthermore, in finite dimensions Chern-Weil theory endows the
Ricci curvature with topological meaning—it represents the first Chern class
of the complex tangent bundle. By analogy, we define the first Chern class
of ΩG to be the trace of the curvature. The second cohomology of ΩG is one
dimensional, and this geometric first Chern class is 2ΎΪG times the positive
generator, where ΠQ is the dual Coxeter number of G. (The dual Coxeter
number of SU(n) is n.) Higher Chern classes of ΩG are defined by traces of
powers of the curvature, which converge absolutely, but direct calculation is
too difficult.

Our main thesis is: The holonomy bundle of the Kahler connection pro-
vides a natural Fredholm structure on ΩG. This is the topological origin of the
Chern classes which, a priori, are absent on a Hubert manifold. Unfortunately,
there are obstacles of a technical nature which prevent us from rigorously con-
structing the holonomy bundle in infinite dimensions. In finite dimensions the
Ambrose-Singer Theorem determines the holonomy group from curvature, and
this theorem also resisted our attempts at infinite dimensional generalization.
We rigorously construct the Fredholm structure on ΩG by other means, in
§5. The holonomy construction motivates our considerations in [20], where
we study subgroups of G L ( ^ ) . The structure group of a Fredholm manifold
is G L c p t ( ^ ) , but there are more delicate subgroups with summability prop-
erties, and for these we prove a Chern-Weil Theorem. If the holonomy bundle
could be constructed, this theorem would identify its topological Chern classes
with the geometric Chern classes calculated from curvature.
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Although we consider the Fredholm structure abstractly as coming from
the holonomy bundle, there is a more concrete approach that not only pro-
vides a rigorous construction of the Fredholm structure, but also gives greater
insight into its geometry. Fredholm structures, which are reductions of the
GL(J%?) frame bundle to the group G L c p t ( ^ ) , are classified topologically by
homotopy classes of maps to G L ( ^ ) / G L c p t ( ^ ) . Furthermore, there is a fi-
xation Fredo(^) -* G L c p t ( ^ ) with contractible fibers, so that Fred o (^)
also serves as a classifying space. Therefore, a Fredholm structure can al-
ways be specified, at least up to topological equivalence, by a family of index
zero Fredholm operators. The problem of choosing a geometrically relevent
Fredholm structure can be rephrased as the problem of choosing a family of
index zero Fredholm operators relevant to the intrinsic geometry. Our choice
of a particular family on ΩG is based on a new index theorem [20] for special
families of Fredholms parametrized by a group ©. Let Lp{βf) denote the pth
Schatten ideal, which roughly consists of operators whose pth power is trace
class. We consider families of operators T: 0 —• Fredo(<^) which are homo-
morphisms up to Z/^F); i.e. T(g)T{g') - T(gg') <E L p μF) for all g,g' G 0.
Then the Chern character classes ch; (T) of the families index are represented
by invariant differential forms on 0 for / > p. (There is a version for graded
Hubert spaces which relates to work of Connes and Segal. However, our ap-
plication to loop groups requires the full, ungraded version.) We review these
ideas in §5.

The index theorem gives a formula for the Chern character of special fami-
lies of Fredholms. On the other hand, the Chern-Weil Theorem gives a formula
for the Chern character of a manifold in terms of curvature. In §5 we construct
a family of operators parametrized by ΩG so that the index theorem formula
for its Chern character matches exactly the Chern-Weil formula for the Chern
character. Thus the Chern classes of this family are the Chern classes of ΩG
that we define in §2 via curvature. Furthermore, since ΩG is a torsion-free
space, the Chern classes uniquely determine the Fredholm structure. There-
fore, the Fredholm structure that we rigorously construct from the family of
Fredholms is the Fredholm structure abstractly determined by the holonomy
construction. There is an obvious homotopy of the family we construct to
the usual family of Toeplitz operators (in the adjoint representation). One of
the Atiyah's proofs of Bott periodicity demonstrates that the stable version
of this family is a homotopy equivalence, from which we determine the higher
Chern classes of ΩG. We carry out the calculation for G = SU(n), and prove

Chern(ΩSU(n)) = exp{2n{y2 + j/6/3 + ylo/δ + + 2/4m-2/(2m - 1)}),

where y2ι G i/2ί(ΩSU(n); Z) are certain generators, and m = [n/2].
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The Fredholm structure which we distinguish on ΩG is one of many pos-
sible, and in §4 we present evidence which indicates that it is the correct
geometric choice. The based loop group fits into the Kac-Moody theory as a
flag manifold for a central extension of the free loop group. Many years ago
Borel and Hirzebruch explored the relationship between characteristic classes
and homogeneous spaces in finite dimensions, and they expressed the Chern
classes of flag manifolds in terms of the roots of the Lie algebra. We verify that
their group theoretic definition of the first Chern class formally agrees with
the value we calculate from curvature. Our value of the first Chern class can
also be tested in an index problem. For a finite dimensional complex manifold
X, the space of based holomorphic maps / : C P 1 —> X is finite dimensional,
and the Riemann-Roch Theorem expresses its (complex) dimension at / as
f*(cι(X)) [CP1]. Recently, Atiyah and Donaldson proved that the moduli
space of based holomorphic maps C P 1 —• ΩG is also finite dimensional and
is diffeomorphic to the moduli space of based G-instantons on S 4. We for-
mally apply the Riemann-Roch Theorem to the infinite dimensional based
loop group, substituting our value of ci(ΩG), to obtain 4/CΠG — dim(G) as
the real dimension of the moduli space of unbased A -instantons. This is the
correct dimension. The higher Chern classes of ΩG can be tested indirectly
through the Pontrjagin and Stiefel-Whitney classes. On complex manifolds
these real characteristic classes are derived from the Chern classes, and we
prove in §5 that for ΩG they all vanish. As a real manifold ΩG is a Lie
group, and the vanishing of the real characteristic classes is consistent with
the geometry of finite dimensional Lie groups.

Mapping groups Map(M, G) for higher dimensional M are not complex
manifolds, and we cannot define Chern classes. Still, they admit a natural
family of Sobolev metrics, and in §1 we compute the curvature of these metrics.
On the basis of these curvature formulas we define a real Fredholm structure
via a family of real Fredholm operators, and in §6 we prove that the resulting
reduced frame bundle is trivial. Again this fits finite dimensional theory, since
Map(M, G) is a Lie group. At the end of §6 we speculate about a possible
source of nontrivial characteristic classes for these more general groups of
gauge transformations.

The curvature formulas of §2 can be applied to the homogeneous Kahler
manifold Diff(S1)/T, where T is the group of constant rotations of the circle.
This was carried out recently in an intriguing paper of Bowick and Rajeev
[15]. They propose that perturbations of the natural homogeneous Kahler
metric on Ώ\S(S1)/Ύ define a field theory of closed strings.

This paper is culled from the author's Berkeley Ph.D. thesis. Parts of
this material already appeared in [19] where it was described from a slightly
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different point of view. The author would like to thank his advisor, Professor
Singer, for many valuable suggestions. He also thanks Raoul Bott, Martin
Guest, Victor Guillemin, Victor Kac, Bert Kostant, Shrawan Kumar, Andrew
Pressley, and Dan Quillen for useful conversations about various aspects of
this work.

1. The curvature of Map(M, G)

The space Map(M, G) of maps from a compact n-dimensional Riemannian
manifold M into a compact Lie group G is an infinite dimensional mani-
fold. As such there are foundational points in its Riemannian geometry which
merit special attention, which we briefly administer before taking up curva-
ture computations. These foundations were worked out in great detail by
many mathematicians, and the reader may wish to read the expositions in
[17], [28], [29].

We first recall the differentiate structure of mapping spaces. Infinite di-
mensional manifolds, like finite dimensional manifolds, are topological spaces
which are locally homeomorphic to a model flat space, and on which a sys-
tem of differentiably compatible coordinate charts is specified. But whereas
the finite dimensional models are unique, once the dimension is fixed, infinite
dimensional topological vector spaces exhibit a wide variety of behavior. For-
tunately, mapping spaces admit differentiate structures modeled on Hubert
spaces, and we need not tangle with terrible topologies. Mapping groups en-
joy an even richer structure—they are Hubert Lie groups, that is, Hubert
manifolds which are groups and for which the group operations are smooth.

The local model for Map(M, G) is a completion of the Lie algebra of
(smooth) maps Map(M,g), where 9 is the (finite dimensional) Lie algebra
of G. Let Δ denote the Laplace operator d*d on M, and ( , )g the inner
product on g given by minus the Killing form. Then for any real number s
the Sobolev Hs metric on Map(M, g) is defined by

(1.1) {X,Y)H.= f ((l + A)sX(x),Y(x))βdx, X,y
JM

where dx is the Riemannian volume form on M. The Hubert space com-
pletion of the smooth maps in this inner product is denoted i/s(M,g). The
Hs maps are continuous for s > n/2. In this range there are corresponding
completions HS{M,G) which are Hubert manifolds modeled on Hs(M,g). To
construct them, embed G smoothly in some R N , and define HS(M,G) to be
the subspace of H3(M,ΈlN) consisting of maps whose image lies in G. This
makes sense since H9 maps are continuous. Furthermore, the space HS{M, G)



228 DANIEL S. FREED

is independent of the embedding G —> R^ for s > n/2. The exponential map
exp: 9 —> G induces Exp : Hs(M,g) —• H3(M, G), which gives a local chart
near the identity. Left translation by smooth / € HS(M, G) provides a system
of coordinate charts covering the entire manifold; the Sobolev Composition
Lemma ensures that the transition functions are smooth. Finally, the Sobolev
Multiplication Theorem guarantees that the (pointwise) group operators are
smooth. Altogether,

Theorem 1.2. HS(M,G) is a Hilbert Lie group for s > dim(M)/2.
(See [22, Appendix A] for further details.)
There is a slight simplification if we treat the subgroup Mapo(M, G) of

maps which take a fixed point on M into the identity element of G. Then the
Laplacian Δ has no kernel on the corresponding Lie algebra, and we replace

(1.1) by

(1.3) {X,Y)H. = [ (AsX(x),Y(x))9dx, X,y GMaPo(M,g).
JM

The basepoint condition o n l G Mapo(M,g) requires that X vanish at the

basepoint of M.

A Riemannian metric ( , ) on a Hilbert manifold Jί is a smooth choice

of inner products in the tangent spaces. We do not require that the tangent

spaces be complete in these inner products, but only that the inner products

be continuous. In other words each tangent space is continuously embedded

in its dual, but the embedding is not necessarily onto. For finite dimensional

manifolds the Levi-Civita Theorem states that there is a unique torsion-free

connection compatible with the Riemannian metric. It is determined by the

formula

2(vxr, z) = x(γ, z) + Y (x, z) - z(x, Y)
+ ([x,y],z) + ([z,x],y)-([y,z],x)

for vector fields X, y, Z. This theorem persists for infinite dimensional Rie-

mannian manifolds on which the tangent spaces are complete with respect to

the Riemannian metric. Equation (1.4) defines a continuous linear functional

on each tangent space mapping Z to the right-hand side, and for these met-

rics there is a unique tangent vector VxY which satisfies (1.4). For weak

Riemannian metrics (the incomplete case) the existence of a covariant deriva-

tive satisfying (1.4) is not guaranteed; not all continuous functionals on a

pre-Hilbert space are realized by the inner product, although any functional

so realized has a unique such realization. In this case a torsion-free metric

connection, if defined, is unique.

The space of maps Map(M, N) from a compact Riemannian manifold M

into a Riemannian manifold TV, completed as above using Sobolev space,
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inherits a natural family of Riemannian metrics—the Sobolev Hs metrics
themselves. The Hs Riemannian metric is defined on Ht(M, N) for any t > s,
so long as t > n/2. Recall that the tangent space to Map(M, TV) at a map /
is the space of Ht sections of the pulled back tangent bundle f*(TN) —> M.
Define the Hs metric using the metric on M and the pulled back metric and
connection on f*(TN). Of course, the Hs metric is strong in the Hs topology;
that is, the tangent spaces are complete. For t > s the Ht tangent spaces are
incomplete with respect to the Hs metric.

The L2 (or H$) metric has the simplest geometry—it simply reflects the
geometry of TV pointwise. (This is a weak metric on any Ht completion, for t
in the Sobolev range t > n/2.)

Proposition 1.5. The L2 curvature R(°\X,Y) of Map(M,N) at f is
the endomorphism of f*TN given pointwise by the curvature R(N)(X,Y) of
N.

The easy proof can be found in [21, Appendix A]. In our situation N = G
is a group, and the L2 metric plays the role of the Killing form.

When TV is a group we replace the Hs metrics above left invariant metrics,
i.e., with metrics defined first on the Lie algebra Map(M,g) which are then
extended by left translation. These metrics are given by (1.1) in the case of
free maps and by (1.3) for based maps. We understand the Hs metric to live
on the H9 completion for s > n/2, and on ϋfn/2+ε for 0 < s < n/2 and some
ε > 0; usually we omit explicit reference to these completions. For s > n/2
the Hs metrics are strong, and the Levi-Civita connection is determined by
(1.4). Even though the Hs metrics for s < n/2 are weak, and the existence
of the Levi-Civita connection does not follow from general considerations, the
formula in our next proposition makes clear its existence.

Proposition 1.6. Let ( , •) be a left invariant metric on a (Hilbert) Lie
group. Then for left invariant vector fields X and Y we have

(1.7) VXY = ±{adχY - ad^F - ad^X},

where ad^ is the adjoint of adx in the given metric.
The proposition follows directly by specializing (1.4).
For convenience we will calculate with the space of based maps

Mapo(M, G), though our formulas remain valid for Map(M, G) with (1 + Δ)
replacing Δ. The transformation adx is defined by bracketing pointwise in
the Lie algebra g. Then for smooth X,Y,Z G Mapo(M,g),

= [YMχZ)Ha = / (ASY,[X,Z))9 = - ί
J M JM

(1.8) ad^ = - ( Δ - s a d χ Δ s ) .

M

from which
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Equation (1.8) is also valid for Sobolev maps. The formula for the Hs con-

nection now follows from Proposition 1.6:

(1.9) V^ } = ±{adχ + Δ ~ s a d x Δ s - Δ" s ad(Δ s X)}.

The curvature of the Hs metric is given by

(1.10) RS'\X,Y) = [VW.VW] - V[ί>y].

The exact formula for the curvature is not crucial at this stage. For now

we are content to show that for smooth maps the curvature R^(X^Y) is

a pseudodifferential operator on M, and we compute its order as a function

of s.

Theorem 1.11. For smooth X, Y G Map(M,g) and s > 0 the curvature

R(S^(X,Y) is a pseudodifferential operator acting on the Sobolev completions

o/Map(M,g). Its order is ord R^{X,Y) = max(-l,-2s).

Proof. For convenience of notation we continue to consider Map0 (M,G)

in place of Map(M, G); the results are the same. The transformation adx is

essentially a multiplication operator, and so is a pseudodifferential operator

of order 0. Furthermore, by Seeley's analysis [33], Δ θ and Δ~ s are pseudo-

differential operators of order 2s and —2s, respectively. It follows from (1.9)

that V ^ is a pseudodifferential operator of order zero. Let q = min(l,2s).

We claim that

(1.12) V^ } = a d x + (order - q).

To see this, simply observe that [adx, Δθ] has order 2s-1 , since Δ s has scalar

symbol. So

Δ " θ - adχΔ θ = adx + Δ" s [adχ, Δ5] = a d x + (order - 1).

The last term in (1.9) is of order -2s, whence (1.12). The theorem now follows

from the fact that X —+ adx is a homomorphism of Lie algebras:

β ( s ) (X, Y) = [adx + (order - <?), ady + (order - q)]

- {ad[χ,y] + (order - q)}

= (order — q).

It is not hard to show that R(3\X, Y) is a compact operator for any X, Y €
Ht{M, G) if s > 0 and t > n/2, t > s.

The Ricci curvature of a Riemannian manifold is the symmetric bilinear
form

(1.13) Ric(X,y) = Trace{Z - • R{s){Z,X)Y}.

In infinite dimensions this is the trace of an operator on Hubert space, which
makes sense only for operator of trace class.
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Proposition 1.14. For smooth X,Y G Map(M, g) the operator Z —•
R(S\Z,X) is pseudodifferential of order max(—1, -2s).

Proof. Rearranging (1.9) slightly, we see that Z —• V%Y is the operator

(1.15) Z -* | {-ady - Δ" sad(Δ sY) + Δ " s a d y Δ s } .

The first and third terms sum to Δ~θ[ady,Δ s], which we saw above is
pseudodifferential of order —1. Therefore, the operator (1.15) has order
—q — max(-l, —2s). Now each term of

(Lie) R{S){Z,X)Y = v^(v^y) - v^v^θ)y - v g x ] y

is easily seen to be of order —q as a function of Z.

A pseudodifferential operator of order -q in n dimensions is trace class only
if q > n. Hence the Ricci curvature never exists without some modification.

Our main concern is a Kahler metric on Mapo^ 1 , G), and for this metric we
compute the Ricci curvature in the Kahler sense, that is, as Trace(i2(X, Y)).
The next proposition will enable us to make sense of this trace. Observe that
the Hubert space Ht(M,g) on which the curvature operators can be written
as the tensor product Ht(M,g) = Ht(M,lH) 0 g. Then for any operator A
on Ht{M,g) we can take the trace over the Lie algebra g to obtain a new
operator Trace0(A) on Ht(M,R).

Proposition 1.17. For smooth X,Y the operator Trace0(i?(^(X,y)) is
pseudodifferential of order —(q + 1), where q = min(l, 2s).

Proof We claim that Trace0(V^}) = 0 . Let X = f ® α, / G Ht(M, R),
a G g, be a decomposable vector; then V ^ = Qf ® ad(α) for an operator Qf
on ftt(Af,R). Since Trace(ad(α)) = 0, it follows that Tracefl(V^}) = 0. The
general element of Ht{M,g) is a finite sum of decomposable elements (over a
basis of g), which proves the claim. If Y = g ® b is also decomposable, then
denoting by Mf the operator multiplication by /, we obtain

ΊVaceg(Λ(β)(X,y)) = [Af/H- (order - q),Mg + (order -g)]®-(α,6) β

-(order -(<? + l)),

since [M/, Mg] = 0 and [M/, (order - q)] = (order - (q + 1)).

Proposition 1.14 implies that the Ricci curvature never exists in the strict
sense. On the circle, however, operators of order —1 have logarithmically
diverging trace norms, so are borderline trace class. The following proposition
shows that the trace is conditionally convergent. By summing the Lie algebras
indices first, we obtain a trace class operator on the circle, and so make sense
of the Ricci curvature for any Hs metric, s > 1/4.
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Proposition 1.18. For smooth X, Y G Map(M, g) the operator

ώ pseudodifferential of order —2q, where q = min(l, 2s).

Proof. We use the notation from the previous proof. By (1.15) and the
discussion following we deduce that {Y —• V%Y} has the form Rg 0 ad(6)
for an operator Rg of order —q. The first term of (1.16) vanishes when we
take Trace0. Using the face that Qf = Mf + (order — q), as in the proof of
1.17, we have

Ίraceβ{Z - R^(Z,X)Y} = {QfRg - RgMf} (α,6)β

= {[M/, i?J + (order - g) Rg} (α, 6)0

= (order — q — 1) + (order — 2<j).

2. The curvature of ΩG

To explore deeper properties of the geometry of Map(M, G), we specialize
to the case where M is a circle. Set

LG = Map(S\G), ΩG = MapoO^G).

LG is the loop group of G, which we now fix to be a compact, connected,
simply connected, simple Lie group, and ΩG is the subgroup of based loops.
The based loop groups exhibit more interesting geometry than their unbased
counterparts, and we concentrate on them. In fact, the #1/2 metric on ΩG
is Kahler and will occupy most of our attention. Nevertheless, any mapping
space Map(M, N) carries the natural family of Hs metrics, in general no single
one is obviously distinguished, so that we are forced to treat all Hs metrics
democratically. As the most accessible mapping spaces are loop groups, ex-
plicit computations being possible, we seize the opportunity to explore the
Riemannian geometry of the whole family. Rather than report somewhat
messy formulas for all Hs , we restrict ourselves to three distinguished cases:
the L2, Hi/2 and H\ metrics. Toeplitz operators appear in the curvature of
the Kahler Hi 12 metric. There Ricci curvature makes sense, and we define
the first Chern class of ΩG to be the cohomology class represented by the
Ricci form. Higher Chern classes are defined analogously by traces of powers
of the curvature.

As we explained in §1, the groups LG and ΩG are Hubert Lie groups with
respect to certain Sobolev completions. When we discuss the H9 geometry
in the continuous range s > 1/2, then we use the Hs completion. For these
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groups the inner product induced on each tangent space is complete, i.e., Hs

(s > 1/2) is a strong metric. For s < 1/2 we use the i?Ί/2+ε completions to

study the Hs metrics, which are then weak metrics on the underlying Hubert

manifold. Here ε is a small positive number. We omit further reference to

these completions.

The Hs metrics on ΩG are invariant under left translation by elements of

the group ΩG, but there is a larger symmetry, and we are well advised to note

this from the start. Let T denote the circle group; then T acts on the space

of free loops LG by rotation. Form the semidirect product T x LG. The

centralizer of T in this larger group consists of T itself together with loops

stable under the action of T, that is, the point loops G C LG. The quotient

is the based loop space

(2.1) ΩG = (T x LG)/{Ύ x G)

as can be seen via the map

TκLG-+ ΩG,

(Of course, we could have written ΩG = LG/G; the T factor plays a role

below when we regard ΩG as a coadjoint orbit.) The Sobolev metrics are

homogeneous metrics for T K ΩG. To see this more explicitly, we describe the

tangent space to ΩG at the identity in this homogeneous representation. (The

tangent space to ΩG regarded as a group is Ωg.) There is a decomposition

Lie(T tx LG) = R tx Lg = ( R 0 g ) Θ (Lfl)0 = ί)θm,

where m = (Lg)o consists of loops on g whose integral over the circle is zero.

In terms of Fourier series, the sum of the Fourier coefficients of a loop in

Ωg vanishes, while a loop in m has a vanishing constant term in its Fourier

expansion. There is then an identification

Ωg *-> (£g) 0 ,

(2.2) χ{.)-+χ(.)-

X(-)-X(0) «->*(•).

We will often use these formulas to convert between the two representations

of the tangent space.

Passing to the complexified Lie algebra of T K LG, the complete decompo-

sition under the action of T x G is
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Here we denote z — eιθ. Essentially this is the expansion of a loop into its

complex Fourier series, with the positive and negative powers of z collected.

The complexified tangent space to ΩG is identified with m+ 0 m_. The L2

metric pairs zngc nontrivially only with z~n$c and is minus the Killing form

on gc; the Hs metric restricted to these spaces is | n | 2 s times the L2 metric.

Manifolds which are quotients of a group by the centralizer of a torus are

called flag manifolds, and they can be embedded in the dual of the Lie algebra

as an orbit of the coadjoint action. Our based loop group ΩG is an infinite

dimensional example, and the adjoint embedding is

Atiyah [4] and Pressley [31] observed that there are distinguished metrics on

coadjoint orbits. The simplest is the homogeneous metric coming from the

Killing form on the group; in our case this is the L2 metric on ΩG. Then there

is the submanifold metric induced by the embedding in the Lie algebra, which

is given the flat metric defined by the Killing form. On Lg the I? metric plays

the role of the Killing form, and the induced submanifold metric on ΩG is the

Hi metric. Finally, when the coadjoint orbit has a complex structure (e.g. for

compact groups), it admits homogeneous Kahler metrics. On ΩG there is (up

to a constant) a single homogeneous Kahler metric—the Hι/2 metric.

The Riemannian curvature of the L2 metric on ΩG is quite easy to com-

pute, for example directly from Proposition 1.5 once the curvature of the

bi-invariant metric on G is known. Alternatively, the same argument which

computes the curvature of G (from Proposition 1.6) applies to the bi-invariant

L2 metric on ΩG. Either way, we find

(2.5) RW(X,Y) = -±Άά[XΎ].

The sectional curvature of a Riemannian metric is defined by

Kχ,γ = (R(X,Y)Y,X).

For the L2 metric, omitting dθ from the notation for convenience,

(2.6) [
2π JSι

This sectional curvature is nonnegative. (Quite generally, for mapping spaces

Map(M, TV) the sectional curvature of the L2 metric is given by integrating

over M the sectional curvature of TV (cf. Proposition 1.5). Thus if TV is non-

negatively curved, then so is the mapping space.) The Ricci curvature, which

we defined in (1.13), is the trace of an operator of order zero, by Proposi-

tion 1.18, which diverges. Therefore, the scalar curvature is also infinite. We

summarize (2.5) and (2.6) in
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Proposition 2.7. For the L2 metric on ΩG the Riemann curvature is
R(°Ϊ(X,Y) = - | a d [ χ y ] . The sectional curvature is nonnegative and the
Ricci tensor diverges.

The L2 metric is the only Hs metric which is bi-invariant. It follows from
the next proposition that the L2 metric is the only symmetric metric among
the Hs metrics. Recall that a Riemannian manifold is said to be symmetric
if the map X —> -X in each tangent space extends to a global isometry.

Proposition 2.8. A left invariant metric on a Lie group & which is
symmetric is necessarily bi-invariant.

Proof. The hypotheses imply that g —• g~ι must be an isometry of <5f,
since this is the endomorphism on & whose induced endomorphism on the
Lie algebra is X —> X. This, together with the fact that left translation is
an isometry, implies that right translation is an isometry; i.e., the metric is
bi-invariant.

Next we study the H\ metric. The first point to verify is that the metric
induced from the "Killing form" o n R κ L g via the embedding (2.4) is the H\
metric. The constant metric

plays the role of the Killing form. Then the pulled back metric on ΩG is left
invariant, since this metric on R x Lg is ad-invariant and the embedding (2.4)
is induced by the adjoint action. Differentiation of (2.4) at the identity in ΩG
yields

Ωg -+ R tx Lg,

X(0)-(O,-X'(0)>.

So the induced metric on Ωg is indeed the Hi metric

/ (x'(«),y'(0))g.
sι

The induced Riemannian covariant derivative V is the orthogonal projection
of the (flat) covariant derivative on RKLQ to the tangent plane to ΩG, and the
second fundamental form II is the projection onto the normal plane. We com-
pute using the vector field on ΩG defined by the action of an element Y G Lg.
At the point (AdexpL\Γ)(l,O), X G Lg, it is given by (AdexpLV)((0, - F ' ) ) ,
and taking d/dt we obtain DXY = (0, -[X, Y']) for the flat covariant deriva-
tive. Since the normal projection is given by integration over S1 (this picks
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out the constant term in the Fourier expansion), we obtain

VxY = (θ,-[X,Y'] + ±. f [X,Y']\
(2.9) ^ J s l '

The Gauss equation of Riemannian geometry, which reads

, Z)M(Y,W))

since R x Ly is flat, yields the formula for the Hi curvature.

Proposition 2.10. The curvature of the H\ metric on ΩG is

forX,Y,Z,W eΏg.

It is interesting to observe that, in contrast to the L2 case, the sectional
curvature of the Hi metric,

(2.Π)

- hi
2τr JS

takes both signs. Fix α, b € 0 with [α, b] φ 0. Then for X(θ) = (cos(β) - l)α
and y(fl) = sin(^)6 the first term in (2.11) vanishes, and K^γ < 0. On the
other hand, for

X(θ) = (cos(fl) - ΐ)a + sin(0)6,

y ((9) = (cos(2fl) - ΐ)a + s

we compute K^γ = 2|[α,6]|2 > 0.

It follows from Proposition 1.16 that the Ricci curvature of the Hi metric
is finite if we take a two-step trace, since operators of order —2 on the circle
are of the trace class. Observe that the curvature formula in Proposition 2.10
is unchanged when we pass to the homogeneous representation (2.2). We
calculate Ricci^(X, Y) on decomposable complex basis elements X = zna
and y = zmb, a,b G Q. The trace vanishes unless n = —m, and in that case,
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using the Hermitian inner product on the complexification,

Ricci(1) (X, Y) = Σ ( i ϋ ( 1 ) (*', c, zna)z~nb, z~ιc)Hl

c

The scalar curvature of this metric is finite and positive.
By far the most interesting metric on ΩG is the Hχ/2 metric. It turns out

to be homogeneous Kahler [31], and so its study is facilitated by exploiting the
special properties of homogeneous manifolds and of Kahler manifolds. The
Kahler structure on ΩG is most easily described by exhibiting its complex
and symplectic structures, and then observing that the metric produced by
combining these is the i/1/2 metric. The almost complex structure on ΩG
is evident from the decomposition (2.3). The complexified tangent space is
identified with m+ 0 m_, with m+ the holomorphic tangent space and m_ the
antiholomorphic tangent space. Alternatively, we can give a J operator on
the real tangent space Ωg, that is, an operator whose square is —1. From now
on we adopt the notation

d . d
dθ dz

Then D has no kernel on based loops Ωg, since the kernel of D on all loops
consists of constant loops, and the only loop based at zero which is constant
is the zero loop. Noting that \D\ is the square root of the positive Laplacian
—d2/dθ2, we see that J = D/\D\ has square minus the identity. The torsion
tensor defined by the almost complex structure vanishes since m+ is closed
under bracketing. We would like to conclude that ΩG is a complex manifold
by applying an infinite dimensional Newlander-Nirenberg Theorem. The ver-
sion stated by Penot [30] requires that the data be real analytic, which it is
in our case (cf. the discussion in [31]). Alternatively, we can realize ΩG di-
rectly as a complex quotient of a complex group. Let LGc denote the group
Map(51, Gc) of loops in the complex Lie group Gc corresponding to the com-
pact group G. Let & be the subgroup of loops which extend to holomorphic
maps from \z\ > 1 to Gc; then

ΩG = L G c / ^

This representation of ΩG amounts to a factorization of loops in LGc > anal-
ogous to the factorization of a complex matrix as the product of a unitary
matrix and an upper triangular matrix. In finite dimensions this is the Gram-
Schmidt process. From a more sophisticated point of view it reflects the fact
that the unitary group acts transitively on a certain Grassmannian, or flag
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manifold, and this approach generalizes to the loop group case [32, §8]. We
emphasize that ΩG is not a complex Lie group.

The other aspect of the Kahler structure of ΩG is the symplectic form
ω. Like the almost complex structure J, it is left invariant, and so can be
described on the Lie algebra Ωg:

(2.12) ω(X,Y) = ± [ {X\Y\.
lπ JS\

Here X and Y are to be interpreted as elements of Ωg. Alternatively, using the
correspondence (2.2), we can take X and Y to belong to m+ φm_ the formula
for ω is unchanged. This shows that ω is invariant under the larger symmetry
group T K ΩG. The form ω is nondegenerate since D has no kernel on based
loops. A simple computation [31] shows that ω is closed. Alternatively, the
form ω arises from the Kostant-Kirillov construction of symplectic structures
on coadjoint orbits, and thus it is closed by general principles. Therefore, ΩG
is an infinite dimensional Kahler manifold, and ω is the Kahler form for the
Kahler metric

Comparing with (1.3) we see that we have recovered the i/χ/2 metric.
The curvature for this metric can be obtained as a special case of a general

formula for flag manifolds. We adapt the general argument in [19] to our
particular situation.

Corresponding to the global action of T x LG on ΩG is an infinitesimal
action which assigns a vector field ξz to each element Z E RxLg. (Notice that
the vector field ξz is the right invariant extension of Z to T K L G , in contrast to
the left invariant extensions of §1.) Evaluation at the identity in ΩG (under
complexification) gives the map which identifies me = τn+ Θ τn_ with the
complexified tangent space to ΩG. Let V denote the Kahler connection and
-S* the Lie derivative. Then for any Z G g the difference Vξz -«2£z is tensorial,
and so defines a linear transformation on m. Since both Vξz and Jϊ?ξz preserve
the complex structure, under complexification this transformation separately
preserves πι+ and m_. Thus we obtain a map

(2.13) <p: (RκLg) c

as the C-linear extension of

We express the Hι/2 connection by giving an explicit formula for φ, after
introducing Toeplitz operators.
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Classicially, Toeplitz operators are defined on the Hubert space of L2 holo-

morphic functions on the circle, that is, L2 complex functions whose Fourier

expansion consists entirely of nonnegative powers of eτθ. For a smooth func-

tion / on S1 define

where (/•</>)+ is the holomorphic part of the product f-φ. In terms of Fourier

series, we expand f-φ = Σ n € Z
 cnZn\ then (f-φ)+ = Σn>o cnZn The Toeplitz

operators we need are a generalization. Let m+ = i/t(51;gc)shoi {t — n/2+ε)

be the Hubert space of strictly holomorphic Lie algebra valued functions,

i.e., functions whose Fourier expansion consists entirely of positive powers of

etθ. For any Z: S 1 -^ 9c we define the Toeplitz operator

Tz πτ_i_ —• tτι_j_,
(2.14) + +

Y^[Z,Y}+.

The bracket is computed pointwise, and now " + " denotes projection onto the

strictly positive components of the Fourier series.

We compute the Kahler connection in terms of Toeplitz operators.

Theorem 2.15. (a) <p(H) = TH for H e ϊ)c;

(b) (

The Toeplitz operator in (a) is simply a multiplication operator—there is no

projection. In (b) the identification m+ ~ (m_)* displays Toeplitz operators

as the coadjoint representation of m_. Here the identification is via the L2

metric. In (c) the adjoint is taken with respect to the Hχ/2 metric on m+ .

We compute

(2.16) tp(X) = D-χTxD for X e m+.

Tx is a multiplication operator since X is holomorphic.

Before giving the proof of Theorem 2.15 we recall some basic facts about the

Kahler connection [25]. A Kahler manifold is first of all a Riemannian mani-

fold, and so has a unique torsion-free metric connection—the Levi-Civita con-

nection. On the other hand, the tangent bundle is holomorphic, and any holo-

morphic bundle with a Hermitian metric has a unique metric connection—the

Hermitian connection—which agrees with the 3 operator in antiholomorphic

directions. In particular, it vanishes on holomorphic vector fields in antiholo-

morphic directions. Finally, the Kahler condition is satisfied precisely when

the Levi-Civita connection and the Hermitian connection coincide. These

facts are valid in both finite and infinite dimensions.
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Proof of Theorem 2.15. (a) This is the isotropy representation which de-

fines the holomorphic tangent bundle. More explicitly, denoting the identity

of ΩG by e, f/j(e) = 0 so that VξH = 0 at e. Also, the map X —• ξπ

is an antihomomorphism of Lie algebras ([£χ ,fy] = — £[x,y]), from which

<p(H) = ad H is immediate.

(b) For Y € m+ let (ξy)+ denote the (1,0) component of the vector field

ξy. It is a holomorphic vector field, and we use it to compute <p(X)Y. By

the remarks preceding the proof,

V ^ ( f y ) + = a ( ( ί y )+)(&) = 0 ate,

because ξχ(e) is of type (0,1) and {ξγ)+ is holomorphic. As noted in the

previous paragraph, we have J2|_£y = —ζ(χ γu and since £γ preserves holo-

morphic vector fields, «Sξ_(ξy)+(p) = — £rχ yi as desired.

(c) Both the Kahler covariant derivative V^z and Lie derivative «5£z pre-

serve the metric and complex structure for real Z. Therefore, φ maps the real

Lie algebra R K Lg into skew-Hermitian transformations, whence (c).

The curvature of the Kahler metric is

(2.17) R(X, Y) = [φ(X\ φ(Y)} - <p([X, Y}).

R is an invariant 2-form which, on real vectors, is a skew-Hermitian transfor-

mation of the holomorphic tangent space at each point; (2.17) is the expression

for R at the basepoint e. It is a quite general property of Kahler metrics that

the curvature is of type (1,1), a fact which also follows immediately in this

case from 2.15.

Theorem 2.18. For X e m+ and 7 G m _ ,

R(X,Ϋ) = [D-'TXD,TY] - T [ χ F ) h c θ m _ -D-'T[χyu+D.

On a Kahler manifold the Ricci tensor, which in Riemannian geometry is

expressed as the symmetric bilinear form (1.13), is realized as the (1,1) form

(2.19) σ(X,Y) = Trace R{X,Ϋ).

Furthermore, by Chern-Weil theory iσ/2π has cohomological significance in

finite dimensions it is a representative of the first Chern class of the mani-

fold in de Rham cohomology. In infinite dimensions there is no guarantee that

the Ricci form (2.19) is defined, much less has topological significance, since

the trace of a general operator in Hubert space is undefined. For the Hχ/2

metric on ΩG, though, not only does the Ricci curvature make sense, but it

also has topological significance. To see that Ricci makes sense, we observe

from Theorem 1.16 that R(X,Y) is a pseudodifferential operator of order - 1

on the circle if X, Y are smooth. (Theorem 1.16 was derived for the real cur-

vature, that is, for R(X,Y) acting on m+ 0m_. However, the curvature acts
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diagonally, and the operator on m_ is minus the Hermitian conjugate of the
operator on m+; hence each operator separately is of order —1. Alternatively,
the order of R(X,Y) can be extracted directly from Theorem 2.18 by using
basic properties of Toeplitz operators, which we exhibit in §5.) A pseudodif-
ferential operator of order —1 on the circle is not quite trace class; its trace
norm diverges logarithmically. But the operator Traceg(iϊ(X, Y)), obtained
by contracting the Lie algebra indices, is of order —2 by Proposition 1.16,
hence is of trace class. We use this two-step trace to make sense of the Ricci
curvature of ΩG, and we denote it with a tilde.

Theorem 2.20.

We emphasize that the sum of the eigenvalues of R(X, Y) is not absolutely
convergent. Rather, it is conditionally convergent, and we specify the order of
summation by first summing over a basis of g and then over a basis of functions
on S 1 . Theorem 2.20 implies that ΩG is Kahler-Einstein. We remark that
after removing the Lie algebra what is left is the trace of a Toeplitz operator
and its adjoint. Such a trace is well known in the Operator Algebra literature
(see [23], for example) when the adjoint is taken with respect to L2. What
we show is that the i/1/2 adjoint gives the same answer.

Proof. Clearly it suffices to verify 2.20 on basis elements X = zna and
Y = z-rnfr for α ^ £ 0> Then one easily sees that Trace(Λ(X,F)) vanishes
unless n = m. In that case the third term of 2.18 is zero, and the second term

T[zna,z-nbUcΘm_ =ad([α,6])

vanishes after taking Trace0, since ad maps into traceless operators. The only
surviving term is

[D-ιTznaD,T2-nb\{zιc) = δι>n (i^j zι[a[bc}} - (j^j zι[b[ac}},

where <5/>n indicates that the term appears only if / > n. Performing Trace0c

we obtain

since Trace{c -• [a[bc]]} = Trace{c -• [b[ac]]} = -(α,6) g c is the Killing form.
Finally, we sum over / > 0 to compute the Hubert space trace:

) } (a, 6 ) β c

= -iω(zna,z~nb).
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The Ricci form σ = ΊYace(iϋ) is a closed 2-form on ΩG, and we now de-

termine its cohomology class. By our assumption that G is simply connected

and simple we have πi(G) = τr2(G) = 0 and π 3(G) = Z, whence the based

loop group ΩG is connected, simply connected, and has π2(ΩG) = Z. Hence

H2(ΩG) = Z by the Hurewicz Theorem, and then H2(ΏG; Z) = Z by the uni-

versal coefficient theorem in cohomology. We determine an explicit generator

for this group as an invariant form on ΩG. Since H2(ΏG; Z) ~ H3(G] Z) by

transgression, we must first produce a generator of the latter. Fortunately,

Bott and Samelson [14] already solved this problem many years ago (cf. the

discussion in [7, p. 453]). Any root space of a Lie algebra g determines an

inclusion su(2) <—• g, hence a homomorphism SU(2) —• G by exponentiation.

Bott and Samelson proved by Morse theoretic techniques that for a highest

root space of g, this map represents a generator of ?Γ3(G). Now for SU(2) we

can easily verify that the 3-form

represents a generator of i/3(SU(2); Z), where ( , )«u(2) is the killing form of

su(2). Comparing the Killing form of g to that of su(2), and denoting by ΠQ

the reciprocal square length of the highest root (relative to the Killing form

transferred to g*), we conclude that

represents a generator of H3(G; Z). The integer ΠQ is termed the dual Coxeter

number of G, and is given in the following table.

G

no

SU(n)

n

Spin(n), n > 5

n-2

Sp(n) G 2

n + ί 4

F4

9

E6

12

E7

18

Es

30

The transgression of βo to the based loop group is calculated from the evalua-

tion map ε: 5 1 x ΩG —• G by pulling back βo via ε and then integrating over

S1. The resulting form is not invariant, but is cohomologous to the invariant

form [34, p. 328]

(2.21)
1 f2π

' Y) = - / (
Sπ2nG Jo

)9c >

We can also interpret ηnc as an invariant form on m (cf. the discussion follow-

ing (2.12)). This form represents the desired positive generator of i/ 2(ΩG; Z).

We compare (2.20) and (2.21) to conclude
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Proposition 2.22.

represents 2ΠG times the generator of H2(ΩG;Z).
By analogy with finite dimensions we are led to the following definition.
Definition 2.23. The first Chern class of ΩG is defined to be 2nG times

the positive generator of H2(QG : Z).
Powers of the curvature operator are trace class, whereby the usual Chern-

Weil formulas define cohomology classes in every even dimension. We define
these to be the higher Chern classes of ΩG. The most direct expression is for
the Chern character classes ch/(ΩG), which we define to be the cohomology
classes represented by

(2.24) (J-J iΊYace(i?<)

Direct computation of these classes form the curvature formula seems beyond
reach. Even if explicit formulas are obtained, the identification of the co-
homology classes represented would be quite difficult. Rather, we will use
topological methods in §5 to identify these classes.

3. Characteristic classes in finite dimensions

The characteristic classes of a finite dimensional manifold M are topolog-
ical invariants of its tangent bundle. There are many ways to express them,
and in this section we briefly review the facts relevant to our study of ΩG.
The topology implicit in the tangent bundle is carried by its bundle of frames,
whose classifying map induces cohomology classes on M—the topological char-
acteristic classes. We discuss the geometry of the frame bundle at some length,
as it provides motivation for our infinite dimensional considerations. Geomet-
rically, there is a definition of characteristic classes (over the reals) through
the curvature of a linear connection. The Chern-Weil Theorem states that
the geometric characteristic classes agree with those defined by topology. On
homogeneous manifolds there is a third, group theoretic definition of charac-
teristic classes due to Borel and Hirzebruch, which coincides with the previous
two.

This section is largely expository. Our purpose in collecting these known
finite dimensional results is to provide the proper perspective for the discussion
in §5.

The frame bundle of a smooth real n-dimensional manifold is constructed as
follows. At each point x G M consider the set Fx of frames of the tangent space
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TXM. A frame at x is an invertible map / : R n -» TXM, and any two frames
fu h a r e related by /2 = /i g for the invertible map g = /f V2: R n —• R n .
Thus the group GL(Rn) of invertible transformations of R n acts simply tran-
sitively on Fx. We denote the collection {Fx}xeM by GL(Λf). There is an
obvious projection GL(M) -^ M sending a frame at x to the point x. A
cover of M by coordinate charts C/α identifies π " 1 ^ ) with ί/α x GL(Rn),
and transition functions for GL(Λf) can be constructed from those on M.
Hence GL(M) inherits a smooth structure, and the fibration GL(M) —• M is
a principal GL(Rn)-bundle, the frame bundle of M. The same construction
works for complex manifolds, only the group GL(Cn) of invertible transfor-
mations of the modeling space C n replaces GL(Rn).

Extra intrinsic geometric structure on a manifold is encoded as a reduction
of the structure group of the frame bundle. For example, a Riemannian metric
also reduces the structure group. The subgroup of GL(Rn) which fixes the
standard metric on R n is the orthogonal group O(Rn) = O(n), and the
reduced O(n) bundle of frames is formed by the orthonormal bases in each
tangent space. The salient feature of the orthonormal frame bundle O(M)
is that it admits a unique torsion-free connection. We already discussed the
infinite dimensional version of this Levi-Civita Theorem in §1. A Hermitian
structure on a complex n-manifold M is a Hermitian metric on each tangent
space. There is a corresponding bundle of unitary frames U(M) with structure
group U(Cn) = U(n). The Hermitian metric is Kahler if this frame bundle
U(M) admits a torsion-free connection.

Arbitrary linear connections, that is, connections on GL(M), provide a
different kind of geometric structure on M. Here the corresponding reduced
bundle of frames does not have a direct local description. Rather, observe in
general that if Q is a subbundle of a principal bundle P, then a connection
on Q always extends uniquely to a connection on P, whereas a connection on
P does not necessarily restrict to a connection on Q. Given a connection on
P it makes sense to ask for the smallest bundle Q to which the connection
restricts. Let p G P be a fixed basepoint, and consider the union Q' of
all curves starting at p whose tangents are horizontal relative to the given
connection. Clearly Q1 C Q. On the other hand, it is possible to show
that Q1 is a principal bundle, called the holonomy bundle, to which the given
connection reduces. Thus Q = Q1 is the bundle we seek. The holonomy
bundle depends on the basepoint p only up to equivalence, so we are justified
in referring to "the" holonomy bundle of a connection. For a linear connection
on the frame bundle GL(M), the holonomy bundle is the reduced bundle of
frames which best describes the associated intrinsic geometry. The holonomy
construction, so to speak, points to the relevant geometry. For example,
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if we choose a Riemannian connection on GL(Άf), the holonomy bundle is
contained in the orthonormal frame bundle O(M) of the Riemannian metric.
If the metric happened to be Kahler, then the holonomy bundle would lead us
to the unitary frame bundle U(M). There is even a finite list, due to Berger,
of the possible geometries that can arise from a Riemannian connection in
finite dimensions.

Let Q be the holonomy bundle of a connection on a G-bundle P -^ M, and
denote the structure group of Q by H. This holonomy group can be identified
with the set of points in the fiber at p which are hit by horizontal curves
through p, i.e., by horizontal lifts of loops based at π(p). The Ambrose-Singer
Theorem identifies the Lie algebra of H in terms of the curvature R of the
connection, which is a g-valued 2-form on P.

Theorem 3.1 (Ambrose-Singer [1]). For a finite dimensional principal
G-bundle P —• M with connection, the holonomy algebra of the holonomy
bundle Q is the subspace f) ofg spanned by the curvature Rq(X, Y) as q ranges
over Q and X, Y over TqQ.

Notice that if the holonomy algebra is an ideal in g, then we can let q range
over all of P, since curvature changes by conjugation as we move in a fiber.
The standard proof of 3.1 runs roughly as follows. We may as well assume that
P = Q, since we can always replace P with its holonomy bundle. Consider the
distribution on P given by all horizontal vectors together with vertical vectors
belonging to f) C g. An elementary computation shows that this distribution
is integrable, and the Frobenius Theorem constructs an integral manifold P'.
It is not hard to show that P' contains all horizontal curves through p, and
now the construction above implies that P = Pf. Then f) = g is immediate.

We turn now to the topological definition of Chern classes. Let M be an
n-dimensional complex manifold, and for simplicity of exposition assume that
M is Kahler. Then the bundle of unitary frames U(M) is classified (up to
homotopy) by a map /: M —• B\](n). The characteristic classes of M are the
elements in f*(H*(B\J(n)). Recall that the space B\](n) is torsion-free, and
its integral cohomology is

(3.2)

The ct are the universal Chern classes. So the Zth Chern class of M is /*(c/).
We remark that for many purposes it is better, when working over the reals,
to replace the generators c\ in (3.2) with certain generators ch/ whose sum
is the Chern character. There are integral classes σ\ whose image in real



246 DANIEL S. FREED

cohomology is /! ch// and the σ\ are related to the c\ by Newton's formulas:

(3.3) ^=ci-2c2,

σt - σt-ici + σ*_2c2 -f ( - l ) ' " 1 / ^ = 0.

There is an inclusion U(n) —• O(2n), reflecting the fact that any complex

manifold may be viewed as a real manifold, and the pullback H*(BO(2n)) —>

H*(B\J(ή)) on cohomology, induced from the resulting map BXJ(n) —>

SO(2n), expresses the Stiefel-Whitney and Pontrjagin classes of a complex

manifold in terms of its Chern classes. As a result,

W21 — c\ (mod 2),

(3.4) w2ι-i=0,

Pi = c ? - 2 c 2 ,

etc. The first relation states in particular that u>2 = c\ (mod 2). It is well

known that a real orientable manifold admits a spin structure if and only if

its second Stiefel-Whitney class vanishes, which for complex manifolds then

translates to the condition that the first Chern class be divisible by two. A

glance at 2.23 shows this to be true for our defined value of ci(ΩG), and we

are led to state that ΩG is a spin manifold.

A second approach to Chern classes is geometric, rather than topological.

For convenience we again restrict ourselves to Kahler manifolds, although

the theory applies in much greater generality. Recall that the curvature of

a Kahler manifold M is a differential form of type (1,1) whose value at each

point is a skew-Hermitian transformation of the tangent space. Ordinary

differential forms are constructed by taking higher traces of the curvature.

Theorem 3.5 (Chern-Weil). Let M be a Kahler manifold with curvature

R. Then the inhomogeneous differential form det(l + (iR/2π)) is closed, and

its de Rham cohomology class [det(l + (iR/2π))] is the image of 1 +cχ(M) +

C2(M) -f in real cohomology.

Equating the two dimensional cohomology classes in 3.4, we find in partic-

ular

(3.6) cx{M)= [ ^ ( ) ]

Equation (3.6) was the motivation behind our definition of ci(ΩG) in §2. Also,

equation (2.24) is the Chern-Weil form for the Chern character.

There is a third approach to characteristic classes in terms of group theory,

which applies to homogeneous manifolds [10]. Our interest is in flag manifolds
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(cf. [19]). A flag manifold is the quotient of a compact Lie group G by the
centralizer of a torus in G. It can be realized as a coadjoint orbit of G. We
first study the generic orbit—the full flag manifold. Let T C G be a maximal
torus of G, and consider the adjoint action of T on the Lie algebra g. Since
T is abelian, under complexification there is a decomposition

(3.7)

into one dimensional root space ga, collected into positive and negative roots
(relative to a fixed Weyl chamber). The complexified tangent space to the
quotient G/T at a fixed basepoint can be identified with n+ 0 n _ , which
gives an integrable almost complex structure. Because n+ splits into a direct
sum of one dimensional spaces under T, the holomorphic tangent bundle to
G/T splits into a direct sum of line bundles. The first Chern class of G/T
is then the sum of the Chern classes of these line bundles. Consider the
fibration G —• G/T with fiber T. If we assume that G is simply connected,
then transgression gives an isomorphism Hι(T: Z) ~ H2(G/T;Z), which
can be described explicitly using differential forms. More relevant to us is the
identification of H1 (T; Z) with the weight lattice in t* = H1 (T; R). Therefore,
cχ(G/T) E H2(G/T;Z) is identified with an element of the weight lattice.
The same holds for the line bundle associated to the root space ga, and it is
practically a tautology that its first Chern class is a € t*. Therefore,

Theorem 3.8. The first chern class of the flag manifold G/T is the sum
of the positive roots 2pc = Σc*>o a'

The factor of 2 is inserted because po, defined to be half the sum of the
positive roots of G, is also the sum of the fundamental weights. This al-
ternative characterization of ci(G/T), as twice the sum of the fundamental
weights, makes sense for the Kac-Moody algebra and is our link with the
infinite dimensional situation.

The topology of the real frame bundle of G/T is essentially trivial. G/T
is the full flag manifold of G, and is realized as the principal coadjoint orbit
of G in 0*. We computed c\{G/T) above by expressing the holomorphic
tangent bundle as the homogeneous bundle associated to G —• G/T via the
representation of T on n+. Now we observe that the (real) normal bundle to
G/T in g* can be identified with the homogeneous bundle associated to the
adjoint representation of T on t*. But this bundle is trivial, since T is abelian.
Furthermore, the sum of the (real) tangent bundle and normal bundle to G/T
is the restriction of the tangent bundle of g*, which is also trivial. This proves

Proposition 3.9. The real tangent bundle to G/T is stably trivial.
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As a consequence, all of the Pontrjagin and Stiefel-Whitney classes of G/T
vanish. The simplest case is G — SU(2). Then G/T is the 2-sphere, and our
argument is the standard one (for all spheres) which proves that the tangent
bundle is stably trivial. Nongeneric coadjoint orbits do not have stably trivial
tangent bundles in general. The first example is G = SU(3), where C P 2

occurs as a coadjoint orbit. The second Stiefel-Whitney class w?(CP2) Φ 0
since C P 2 is not a spin manifold. Also, the first Pontrjagin class pi(CP 2) φ 0
since C P 2 has nonzero signature.

The Chern classes of an intermediate flag manifold, these nongeneric coad-
joint orbits, can also be computed in terms of roots. Such manifolds are ho-
mogeneous spaces G/H for H the centralizer of some torus in G. The generic
orbit occurs when H is the maximal torus, but more general orbits are ob-
tained from centralizers of subtori. Under the action of H the complexified
Lie algebra decomposes as

(3.10) gc = ί ) c θ m + θ m _ ,

where m+ is the sum of the positive complementary root spaces, and m_ is
the sum of the negative complementary root spaces. The maximal torus T
is contained in iϊ, and the complementary roots are those roots of Q which
do not occur in the decomposition of f)c under T. The submanifold G/H is
complex, as is evident from (3.10), and now

Proposition 3.11. The first Chern class of an intermediate flag mani-
fold G/H is the sum of the positive complementary roots.

In the proposition H2(G/H) is identified with a subgroup of Hλ(T) via its
image in H2(G/T) under the pullback from G/T —• G/H using the trans-
gression alluded to above. The holomorphic tangent bundle to G/H splits
when pulled up to G/T (this is the "splitting principle" in the theory of char-
acteristic classes), and exactly the positive complementary roots occur in the
splitting.

We summarize the various definitions of Chern classes.

Theorem 3.12. Let M be a finite dimensional complex manifold. The
following definitions for the Chern classes of M are equivalent:

Chern I: The Chern classes of M are the topological characteristic classes
of its frame bundle, obtained by transgressing certain cohomology classes in
GL(Cn).

Chern II: // M admits a Kάhler metric with curvature R, then the sum of
the Chern classes of M is represented by the differential form άet(l + (iR/2π)).
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Chern III: The first Chern class of a flag manifold G/H is the sum of the
positive complementary roots. For the full flag manifold G/T the first Chern
class equals twice the sum of the fundamental weights.

4. The first Chern class of ΩG

The smooth structure of an infinite dimensional manifold does not carry
nontrivial topological information. In finite dimensions nontrivial topology in
the frame bundle determines characteristic classes, but a theorem of Kuiper
asserts that for Hubert manifolds the frame bundle is always trivial. Ex-
tra geometric structure must be imposed before nonzero characteristic classes
appear. The based loop group ΩG carries extra structure—it is a Kahler
manifold. We compute its curvature in §2. Chern classes for finite dimen-
sional Kahler manifolds can be defined in terms of curvature 3.12 (II), and
this definition makes sense on ΩG. We calculated that according to this defi-
nition ci(ΩG) is 2ΠG times the generator of H2(ΩG). Now we check this value
against the group theory definition of Chern classes 3.12(111). The based loop
group is an intermediate flag manifold for an aίfine Kac-Moody group. The
full flag manifold ^ fibers over ΩG with fiber G/T, and our curvature for-
mulas lead to its (geometric) first Chern class, which turns out to be the sum
of ci(ΩG) and c\{G/T). This agrees with twice the sum of the fundamental
weights of the corresponding Kac-Moody group, which defines the group the-
oretic first Chern class. The first Chern class of the full flag manifold in finite
dimensions is also the sum of the positive roots, and from this point of view we
have "regularized" the sum of the positive integers to be 2riG/dimG. Applied
to the complementary roots associated with ΩG, this regularization computes
the correct value of Cχ(ΩG). Pontrjagin and Stiefel-Whitney classes for ΩG
and & are derived from the Chern classes by standard formulas (3.4), and
we prove in §5 that these (geometric) real characteristic classes vanish. The
fact that ΩG as a real manifold is a Lie group suggests that these real classes
on ΩG should vanish, and so provides some verification of the higher Chern
classes. Furthermore, the triviality of these classes for finite dimensional full
flag manifold G/T is consistent with their vanishing for ^.

Since characteristic classes in infinite dimensions depend on extra geometric
structure, the defined values could conceivably vary with the geometry; there
is no underlying topology which remains fixed, as there is in finite dimensions.
Therefore, these classes should be checked in geometric problems. Kac-Moody
groups provide one geometric setting in which to verify the Chern classes
of ΩG; instantons on the 4-sphere provide another. The first Chern class
of ΩG is related to the instanton equations through their algebro-geometric
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interpretation. By a formal argument our value of c\ (ΩG) predicts the correct

dimension of the moduli space.

Fundamentally, Chern classes in finite dimensions arise from the nontrivial

topology of GL(Cn), reflected in the twisting of the frame bundle 3.12(1).

Kuiper's Theorem states that the structure group of Hubert manifold, the

group GL(^c) of all invertible transformations on a complex Hubert space, is

contractible. This leads to the triviality of the frame bundle, as noted above.

On ΩG we have a Kahler metric, which reduces to the group of unitaries

C/(^c), but this group is still contractible. The extra geometric structure

that yields a nontrivial reduced frame bundle is the Levi-Civita connection.

In §3 we argued that the holonomy bundle of a linear connection picks out

the reduction of the frame bundle relevant to the geometry of the connection.

Although we are unable to generalize the holonomy bundle construction and

the Ambrose-Singer Theorem to infinite dimensions, our intuition still derives

from their application to ΩG. We conclude this section with a discussion of

these ideas (cf. [19, §3]).

Kac-Moody algebras are defined from a general algebraic point of view by

Cartan matrices, generators and relations, etc. The first examples are of finite

type, and are the finite dimensional (simple) Lie algebras. The next class is the

set of affine algebras. Algebraically one constructs these affine algebras from

a finite dimensional simple algebra gc by considering the gc -valued Laurant

series gc Θ C[z, z~1]. The operator D = zd/dz operates as a derivation, and

leads to the semidirect sum

(4.1) CDxigc^Clz.z-1}}.

The complex Lie algebra (R tx Lg) c which we studied in §2 is the completion

of (4.1) in a Hubert space topology. There is also a one dimensional central

extension, represented by the Lie algebra cocycle (2.12). The corresponding

group extension is a circle bundle over T tx LG. This group is a "compact

form" for the affine Kac-Moody algebra. "Compact form" should be taken

quite seriously. Not only loop groups, but all loop spaces Map(S1,ΛΓ) behave

in most respects like compact, finite dimensional manifolds. We will see some

manifestations of this phenomenon shortly.

To apply (3.8) to the Kac-Moody group T tx LG (we ignore the central

extension temporarily), we must first specify a group which plays the role of

the maximal torus. This turns out to be T x T, the torus T C LG sitting

inside as point loops. Under the action of T x T the complex Kac-Moody

algebra decomposes into a direct sum of one dimensional spaces:

(4.2) (RtxLg)c = (R Θ t ) c θm+ 0 m_,
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where

lα>0

lα>0

We read off the positive roots of the Kac-Moody algebra from m+. It is the
set

{(0, a): a > 0 is a positive root of g}

(4.3) UdimT {(n,0): n = 1,2,3-••}

U {(n, a): n = 1,2,3, and a is a root of g}

sitting inside ί f 1 ( T x T ) = R x t * . The quotient manifold

& = (T ix LG)/{Ύ x T)

is the full flag manifold of the Kac-Moody group. Our based loop group ΩG
is an intermediate flag manifold, as is clear from (2.1), since T x G is the
centralizer of T. The set of positive complementary roots is the union of the
second and third sets in (4.3); this follows from the decomposition (2.3). If
Proposition 3.11 were true in infinite dimensions, we could compute the first
Chern class of ΩG as the sum

(4.4) Σ dimT (n,0) + ̂ ( n , α ) = / dimG ^ n,0 ) .
n=l \ a J \ n=l /

Of course, this sum diverges, and the easy computation of the first Chern
class of flag manifolds in finite dimensions fails here. Similarly, to compute
the first Chern class of the full flag manifold ^ we sum all of the positive
roots, and an analogous computation yields

(4.5) ί di
\ n=l

which is also infinite. Now in finite dimensions the first Chern class of the full
flag manifold is also twice the sum of the fundamental weights. Fundamental
weights do make sense for the Kac-Moody situation, there is a finite number
of them, and their sum is readily computable.

Proposition 4.6. The sum of the fundamental weights of the affine Kac-
Moody Lie algebra R t< Lg is (riG,p)

This is [24, Exercise 7.16]. The weights of the Kac-Moody algebra lie in
i / ^ T x T), where T is the circle of the central extension. The roots lie in
HX(T x T), where T is the circle of the derivation D. For the purposes of
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our heuristic arguments these circles must be identified. Combining (3.8) and
(4.6) we conclude that the group theory definition of Chern classes (3.12(111))
yields ci(i^) = (2riG,2p). Now we can make sense of the divergent sum in
(4.4). For comparing (4.6) with (4.5), we see that we have set

(4.7) dimG
n = l

Plug (4.7) into (4.4); then the group theory definition of Chern classes for-
mally gives ci(ΩG) = 2nc, which agrees with the geometric definition from
curvature.

This argument is somewhat convoluted, so we repeat it for clarity. The
first Chern class of a finite dimensional manifold can be computed in terms of
positive roots, and for the full flag manifold G/T it can be expressed as twice
the sum of the fundamental weights; this is the content of (3.8) and (3.11).
The sum of the positive roots of the Kac-Moody algebra diverges, whereas
twice the sum of the fundamental weights makes sense. Thus we defined the
(regularized) sum of positive roots to be twice the sum of the fundamental
weights. Then the sum of the complementary roots for the intermediate flag
manifold ΩG is also regularized, and its regularized value agrees with our
curvature computations in §2. Therefore, definitions 3.12(11) and 3.12(111)
make sense for ΩG, and they coincide for ci.

To see that the geometric and group theoretic definitions of the first Chern
class agree on ^", we compute the Ricci curvature of ^ in a homogeneous
Kahler metric. A geometric definition for c\ {^) follows, as in §2, and it agrees
with the group theoretic definition above. The full flag manifold ^ fibers
holomorphically over ΩG with fiber G/T. Furthermore, since LG ~ ΩG x G
topologically, it follows that & ~ ΩG x G/T as topological spaces. This
product decomposition does not hold in the holomorphic category. Never-
theless, as (4.5) suggests, the first Chern class of LG is the sum of the first
Chern class of ΩG and of G/T, where we mean the Chern classes defined by
curvature. This is hardly obvious and requires calculation. Now we remarked
earlier that our curvature formula (2.18) holds for any (Kahler) flag manifold
[19]. For & we merely need to substitute the decomposition (4.2) for (2.3).
Then Theorem 2.15 remains valid, the operators Tz still defined by (2.14),
but now with projection onto the m+ of (4.2). In fact, with respect to the
splitting m± = m ^ φm£' given by (4.2), the operators <p(Z) are block trian-
gular. If the curvature were block diagonal, then & would be a Riemannian
product. The situation is not quite so simple, but the trace of the curvature
still behaves like a product.
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Proposition 4.8. For the full flag manifold ^ the Ricci curvature, writ-
ten as an invariant (1,1) form on m_|_ 0m_ (cf (4.2)), is

Proof. First we compute the curvature of G/T (cf. [19]). Homogeneous
Kahler metrics are parametrized by the interior of a Weyl chamber, and we
fix a choice μ G t*. Let Hμ be the dual element in t. Then DG/T = ad(i/μ)
replaces DΩG = izd/dz in (2.16) and (2.18). The curvature formula (2.18)
applies, but the "Toeplitz operators" are denned with respect to the decom-
position (3.7). Only the second term of (2.18) contributes to the trace, which
is

(4.9) Trace(fl(G/τ)(X,F)) = - £ a([X,Y]lc)

for X G n+ and Y €n_. Notice that (4.9) is independent of μ.
On ^ we use the homogeneous Kahler metric determined by μ and the

fixed scale factor of the inner product on ΩG. The Ricci curvature is again
independent of μ. Using (2.15) we calculate the φ operators for SF. Thus

(4.10) <p(Z) = Az + Ez,

where Ez is the diagonal matrix

of the φ operators for G/T and ΩG, and Ez is the error term. We write
P+ : 0c —* n + for the projection onto the positive roots and π 0 : φ n € Z zn0c
—> 0c for projection onto the zero component. Then using the decomposition
m± = m±' φnij.1 as above,

EH=0,

(O P+τr oad(X ( 1 )Λ

(4.12) Lχ~[θ ad(X(0)) J '

F - (

where H,X,X are in f)c,πx+,m_ respectively, relative to (4.2). Now plug
(4.10) into the curvature formula (2.18). The terms involving Aχ are diagonal,
and taking Trace yields the sum of the Ricci curvatures of G/T and ΩG. This
is the result stated in the theorem, so we must prove that the terms involving
E do not contribute.
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Observe that because Tracefl(ad(α)) = 0 for a G g,

(4.13) ΊYaceg(£^) = Tracers*) = 0.

Thus the second and third terms in (2.18) do not contribute to the error term.
There are three error terms which arise from the first term in (2.18):

[Aχ,Eγ], [Ex, Ay], [Eχ,E¥].

The diagonal part of the first term is

\Aχ, Eτr] I (1) = [DnGTχ{i)DςiG >&&(y ) ] l m

( 1 ) *m + +

Its trace is zero, since there are no diagonal entries relative to the usual basis
of nVj. . The second term [£oc, A r̂] behaves similarly. Only the third term
[Eχ,Ey] requires computation. Explicitly,

(4.14)

[Eχ,Eγ} =

+[ad(X(°)),ad(F(0))]

Now

Trace9 = 0

is obvious. Fix basis vectors X^ = zna and Y^ = z~nb. Then the upper
left square in (4.14) operates on m ^ = n+ C gc, and for c E n+

)

The trace over n+ equals

(4.15) --Trace f l c (F+ad(6)ad(α)ad(i/μ)).

The lower right square in (4.14) operates on m ^ , and only contributes to the

trace on the finite dimensional space zn2c C m ^ . Then for c € 9c?

-

Trace0c of this expression is

(4.16) -Trace0c

Hence (4.15) and (4.16) cancel.
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Therefore, the error terms Ez do not contribute to the Ricci curvature,
and the proposition is proved.

We have now checked the first Chern class of both ΩG and SF, calculated
from curvature, against the value predicted by the positive roots in the Kac-
Moody algebra. The first Chern class of the full flag manifold also enters
the representation theory of compact groups, particularly through the Weyl
character formula. There is an analogous Kac character formula for represen-
tations of Kac-Moody groups, and our value of Ci(J^) fits in here as well, as
we explain in [19]. There seems to be no geometric problem against which to
directly check the higher geometric Chern classes. However, we prove in §§5
and 6 that the Pontrjagin classes, which are certain combinations of Chern
classes, and the Stiefel-Whitney classes, which are mod 2 reductions of the
Chern classes, all vanish for both ΩG and ^. The vanishing of these real
characteristic classes of ^ fits the facts in finite dimensions; the real classes
for the corresponding full flag manifold G/T in finite dimensions vanish by
Proposition 3.9. The based loop ΩG is a real Hubert Lie group, and by anal-
ogy with finite dimensional groups we expect its real characteristic classes to
be zero. Interestingly, ΩG plays two roles as a flag manifold—it is a factor
in the full flag manifold ^ , and by itself is an intermediate flag manifold. In
finite dimensions the real tangent bundle to intermediate flag manifolds (like
projective spaces) tends not to be stably trivial, as we observed in §3. There-
fore, in contrast to its complex geometry, with respect to its real geometry
ΩG behaves more like a group, or a factor of the full flag manifold, than it
does like an intermediate flag manifold. Notice, too, that flag manifolds of
compact Lie groups are never themselves groups, so the based loop groups is
quite special in this regard.

The first Chern class of ΩG can be checked in another branch of geometry—
the instanton equations on S4. The setting for Yang-Mills is a principal bundle
P —• S 4 with group G. Such bundles are classified by an instanton number
k, which is the four dimensional characteristic class of P. (For SU(n) bundles
k is minus the second Chern class of the associated complex vector bundle.)
Instantons are connections A whose curvature FA satisfies the self-dual Yang-
Mills equations

(4.17) FA = * F Λ .

Recall that FA is a 2-form on S4 with values in the adjoint bundle associated
to P, and *FA is the dual 2-form given by the Hodge star operator. There is
an infinite dimensional symmetry group of these equations, the group % of
based gauge transformations, i.e., automorphisms of P covering the identity
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map on S4, which we normalize to be the identity on the fiber at the north
pole. Then the moduli space Λ^SD(G, k) of self-dual connections is the space
of instantons modulo ^o The self-dual equations (4.17) are elliptic transverse
to the ^o action, so the moduli space is finite dimensional. For the standard
metric on S4, ^#SD(G, A:) is a smooth manifold, and its dimension is computed
in [7] as the index of a certain Dirac operator on S4. The result is

(4.18) dimRΛfsD(G,fc) = 4fcnG,

where ΠQ is again the dual Coxeter number of G. (The dimension of the
moduli space of unbased instantons differs by dim(G).)

Many mathematicians have studied the Yang-Mills equations, starting in
the mid 70's, and it was quickly realized that these equations have an inter-
pretation in algebraic geometry. The state of the art in that development is
a recent theorem of Atiyah [5] and Donaldson [16], which they prove only for
classical groups. Consider C P 1 with a basepoint, and let */^hOi(G, k) denote
the space of all based holomorphic maps C P 1 —• ΩG of degree fc, that is, holo-
morphic maps which send the basepoint to the constant loop at the identity
and induce multiplication by k on second homology.

Theorem 4.19 (Atiyah-Donaldson). The moduli space Λ^SD(G, k) of k-
instantons modulo based gauge transformations is diffeomorphic to the moduli
space <s$ho\{G,k) of degree k based holomorphic maps C P 1 —» ΩG.

We next compute a formula for dmiΛ€hOi(G, k) and compare it with (4.18).
Consider first a finite dimensional complex manifold X and the space of based
holomorphic maps / : CP 1 —• X. This space may not be a smooth manifold,
but we restrict our attention to regular points / .

Proposition 4.20. At a smooth point f: CP1 —• X the complex di-
mension of the (tangent space to the) moduli space of based holomorphic maps
CP 1 -+X isΠdiX^lCP1}.

Proof. The tangent space to the moduli space at / consists of holomor-
phic sections of f*(TX) -> C P 1 . By Grothendieck's Theorem f*{TX) splits
holomorphically into a direct sum of line bundles φ ^ ( ^ ) , with <f(d) the
dth power of the (positive) hyperplane bundle. Our regularity assumption is
d{ > 0. (This is the generic case if X has positive first Chern class.) Holomor-
phic sections of tf(d) are homogeneous polynomials on C 2 of degree d, and we
require our sections to vanish at a fixed point, since we consider deformations
of based maps. The dimension of the space of based degree d polynomials is
d, so the tangent space to the moduli space at / has complex dimension
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This calculation only describes the tangent space to the moduli space. A
separate argument, which by now is standard (see [7], [22, §3] for the argu-
ment in the instanton setting) is needed to show that these deformations are
integrable, which leads to the manifold structure of the moduli space. Since
we are only interested in the formal aspects of Proposition 4.20, we do not
pursue this analysis.

Take X to be the infinite dimensional based loop group ΩG, and apply
(4.20), arguing now by analogy, to conclude that at a degree k map /,

(4.21) dimc^hoi(G,fc) = /• (ciίΩGJJICP1] = 2knG.

This agrees with dime *^SD(G, k) by (4.18), which we expect from the Atiyah-
Donaldson Theorem, and provides additional confirmation for our value
of ci(ΩG). Incidentally, it gives a small bit of evidence that Atiyah and
Donaldson's result is valid for the exceptional groups.

The dimensions we have equated were both calculated by the index the-
orem. For the instanton space we computed the index of a certain Dirac
operator on *S4, and for the space of holomorphic maps we used a 8 opera-
tor on C P 1 . In fact, there is a further index problem, a family of Toeplitz
operators parametrized by ΩG, which defines the Chern classes of ΩG topo-
logically, and ultimately it is Bott periodicity that relates the three indices.
That the dimensions of the two moduli spaces are identical is a linearized ver-
sion of Atiyah-Donaldson, an isomorphism of the tangent spaces. Therefore,
the Atiyah-Donaldson Theorem, which identifies the solution space of a non-
linear 8 operator on the 2-sphere with the solution space of a nonlinear Dirac
operator on the 4-sphere, should be regarded as a nonlinear Bott Periodicity
Theorem.

We may hope to define Chern classes for other infinite dimensional complex
manifolds, say for CP°°. However, there are several arguments which suggest
that ci(CP°°) = oc. In other words, there seems to be no finite value which
makes sense geometrically. For example, we may view CP°° as a limit of finite
dimensional projective spaces, behave as a bad analyst, exchanging limits with
anything in sight, and thereby conclude that

C l(CP°°) =Cl( lim CPn >) = lim ci(CP n ) = lim (n + l)x = oo,
\jι—•oo J n—κχ> n—• oo

where x is the generator of H2. Alternatively, we may believe that Proposi-
tion 4.20 holds for CP°°, so that if m is the dimension of degree one based
holomorphic maps C P 1 -• CP°°, then ci(CP°°) = mx. But there is an
infinite dimensional space of such maps, since it at least contains the infinite
dimensional space of complex 2-planes through a fixed line in an infinite com-
plex Hubert space, the whole situation viewed projectively. Again we are led
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to believe ci(CP 1) = oo. The behavior of infinite projective space reveals its
true infinite dimensional nature, whereas the loop space exhibits finite dimen-
sional features. The difference lies in the groups controlling the geometry. For
CP°° it is the full group of unitary operators on Hubert space which plays a
crucial role. This very large group has many associated infinities. But the in-
trinsic geometry of the based loop group is tied up with a much smaller group
of operators for which corresponding quantities are finite. These remarks re-
fer to the topological interpretation of Chern classes in infinite dimensions, to
which we now turn.

Suppose that J£ is an infinite dimensional smooth Hubert manifold. As
in finite dimensions there is a tangent space TxΛί at each x G «/#, now
modeled by a separable Hubert space J^, which we allow to be either real
or complex. The notion of a basis makes sense for Hubert spaces, and we let
Fx denote the space of bases of TXJ£'. Formally, Fx is the set of topological
linear isomorphisms / : βf —• TxJl', and the group of bounded invertible
transformations on %? acts simply transitively on Fx by composition. Let
GL(^) denote this group. We collect {Fx}x£J? into a space GL(</#), and as
before GL(«/#) is in a natural way a principal bundle over */# with structure
group GL( T).

The starting point for our topological discussion of characteristic classes
in infinite dimensions is a theorem of Kuiper, which states that the group
GL(^) is contractible. Kuiper's Theorem holds for both real and complex
(even quaternionic) Hubert spaces. One immediate consequence of Kuiper's
Theorem is the parallelizability of Hubert manifolds. Kuiper's Theorem seems
to preclude the possibility of characteristic classes, at least in a straightforward
way from the topology of the frame bundle.

Let us return now to the Kahler metric on ΩG. The Kahler metric re-
duces the general linear frame bundle GL(^) to the bundle U(ΩG) of unitary
frames. An easy corollary of Kuiper's Theorem states that its structure group
U ( ^ ) is contractible, so we still lack characteristic classes from a topological
viewpoint. The crucial observation at this stage is Theorem 1.11 (cf. Propo-
sition 5.16), which implies that the curvature operators of the Kahler metric
span a subspace of compact operators in u ( ^ ) . (In fact, at smooth loops the
operators are almost trace class. This summability is crucial to our consider-
ations.) We expounded at length about finite dimensional frame bundles to
convince the reader that the corresponding proper subgroup in U ( ^ ) is the
key to the intrinsic geometry and topology of ΩG. If we could apply the holon-
omy bundle construction and the Ambrose-Singer Theorem in this context,
then we would conclude that the holonomy group of the Levi-Civita connec-
tion is contained in this subgroup. Furthermore, this subgroup has nontrivial
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topology, so the reduced frame bundle could carry nontrivial characteristic
classes.

Unfortunately, we are unable at present to extend the construction of the
holonomy bundle and the Ambrose-Singer Theorem to our infinite dimen-
sional situation. The crucial ingredient for both is the Frobenius Theorem,
but the usual version of the Frobenius Theorem for Banach manifolds stated
in the literature requires that the integrable distribution consist of closed sub-
spaces (of the tangent spaces) which have closed complements [27], [30]. These
restrictive hypotheses confine us to closed subgroups of the structure group
U ( ^ ) . Even if we were willing to compromise on this point, which we could
conceivably do, the Lie algebra of the closed subgroup we are interested in is
the closed ideal of compact skew-Hermitian operators, and it does not have
a closed complement in u ( ^ ) . So the standard machinery of infinite dimen-
sional manifold theory does not apply. Still, we are confident that there is an
extension of Ambrose-Singer powerful enough to accomodate our situation.

5. The geometric frame bundle of ΩG

At the end of §4 we argued that the holonomy bundle of the Kahler con-
nection is a reduction of the GL(^) frame bundle to the group G L c p t ( ^ ) ,
the group of invertible operators on an infinite dimensional complex Hubert
space %f which differ from the identity by a compact operator. (The reduced
group is actually smaller—it consists of unitary operators with summability
properties—but for now GL c p t is good enough.) However, our argument was
formal, since we could not construct the holonomy bundle rigorously. Reduc-
tions to G L c p t ( ^ ) are classified topologically by homotopy classes of maps
ΩG -+ GL(^r)/GLc p t(;F) = S^^F). Since there is a homotopy equivalence
Fredo(<^) —• Z/(βf), where Fredo(^) is the space of Fredholm operators
of index zero, these reductions are also classified by families of index zero
Fredholm operators on ΩG. Reductions of the frame bundle to G L c p t ( ^ )
are termed Fredholm structures [18]. As a finite dimensional analogy, con-
sider a real n-manifold M. If the frame bundle GL(Λί) is endowed with a
Riemannian connection, then the holonomy bundle is an abstract reduction of
GL(M) to O(n). A concrete reduction is provided by the Riemannian metric:
the reduced bundle consists of bases with respect to which the metric is the
standard metric on R n . Similarly, a Fredholm family / —> T(f) on ΩG gives
a concrete reduction of GL(ΩG) to GL c p t, once a trivialization of GL(ΩG) is
fixed by choosing a distinguished basis bf at each / G ΩG: the reduced frame
bundle consists of frames b'j such that the matrix of T(f) with respect to bf
in the domain and b'j in the range is in GL c p t .
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In this section we construct a particular Fredholm structure on ΩG, and
we call the resulting reduced bundle the geometric frame bundle. Our choice
of a family of Fredholms is motivated by the curvature formula (2.18) and by
the index theorem proved in [20]. The latter provides an explicit formula for
Chern character forms of families of Fredholm operators parametrized by a
group of homogeneous space. We first review this index theorem. We then
construct an explicit family so that the Chern character forms for the index
agree with the curvature forms of §2. Because these (left-invariant) forms are
identical, the Chern classes defined topologically by the Fredholm structure
are the Chern classes defined geometrically by curvature. We calculate the
higher Chern classes via a simple homotopy and Bott periodicity. We carry
out computations for ΩSU(n). Finally, we prove that the real characteristic
classes of ΩG vanish for any G.

To describe the index theorem we introduce L1 ( ^ ) , the space of trace class
operators, and L 2 ( ^ ) , the space of Hilbert-Schmidt operators. (From now
on we often delete " ^ " from the notation.) There are corresponding groups
GL1 (resp. GL2) which consist of invertible operators A such that A - 1 is
trace class (resp. Hilbert-Schmidt). The GLP are Banach Lie groups; they can
be defined for any p > 1 using Schatten ideals of operators. Recall that GL
denotes the group of all invertibles. Set &p = GL/GLP. Since GLP is normal
in GL, the quotient &p is a group. However, GLP is not closed in GL—its
closure is GLcpt—so that the induced topology on &p is not Hausdorff. Hence
we consider <§p as an abstract group.

Let £jl denote the Lie algebra of all bounded operators on %*'. There is
an isomorphism from &p onto the identity component of the invertibles in
gϊ/Lp. Furthermore, the inverse image of the invertibles in $l/Lp under the
quotient map gl —• gi/Lp is the space of Fredholm operators. Thus we obtain
a surjection π: Fredo —> &p', where Fredo is the set of Fredholms of index
zero. Now Fredo is homotopy equivalent to BGL(oo), so its real cohomology
has primitive generators ch/ in dimension 21. These are the universal Chern
character classes. For special families of Fredholms there is an explicit formula.

Theorem 5.1 [20]. Let 0 be a Banach Lie group. Suppose that T: 0 —•
Fredo is a smooth family of index zero Fredholms such that

<& -£> Fredo - ^ &p

is a homomorphism of (abstract) groups; i.e.,

Assume further that (g,g') —• T(g)T(g') — T(gg') is a smooth map into Lp.
Let T: Lie((S) —> gl be the differential ofT at the identity, and define the left
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invariant Lp-valued 2-form

(5.2) Ω(X,Y) = [T(X), f(Y)} - T([X,F]), X,Y e Lie(β)

on 0 . TΛen /or I > p the cohomology class T*ch/ is represented invariantly

by the form

(5.3) 7 2 ί = - ( i ) i

We understand elements of Lie (g) to be left invariant vector fields which,

in the definition of Ω, are evaluated at the identity. Our hypotheses imply

that the trace in (5.3) exists.

There is a universal GLP bundle over Fredo, which is given explicitly as

the semi-direct product GL x Lp —• Fredo, where GL acts on Lp by left

multiplication. By pullback T induces a GLP bundle 0 —• 0. Furthermore,

since π o T is a group homomorphism, © is a group. Now the minus sign

in (5.3) is unfortunate, but it is eradicated by replacing 0 —• 0 with the

"opposite GLP bundle", obtained by exchanging left and right multiplication

in 0 and (8.

There is a corollary of Theorem 5.1 for homogeneous spaces, which applies

to ΩG = LG/G.

Corollary 5.4. In the situation of Theorem 5.1, suppose that 0 is a

Lie subgroup of 0 such that T restricted to S) is a homomorphism into GL.

Assume also that

(5.5) T{hghΓι) = T(h)T(g)T(h)-\ g E 0, h e Si.

Then the invariant forms 72; of (5.3) are pullbacks via σ: 0 —> 0 / ή of

invariant forms 72/ on &/S), and 72/ represents the Ith Chern character of the

induced GLP -bundle over 0/f).

The GLP bundle over 0/f) is constructed using the splitting of

1 -> GLP -> 0 -> 0 -> 1

over ή—divide out by the image of S) in 0.

We exploit the similarity between (5.2) and (2.17). Recall that the curva-

ture of ΩG = LG/G is expressed in terms of the decomposition (2.3)

Lie(LG)c = Lgc = 9c θ m+ θ m_.

These spaces are completed in appropriate Sobolev metrics, so that m + and

m_ are Hubert spaces. The Kahler connection was described in Theorem 2.15

by a map φ\ Lgc —• 9K m +) given explicitly in terms of Toeplitz operators
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(2.15), (2.16). Furthermore, the curvature (2.17) is the gl(m+)-valued left-

invariant 2-form (2.17)

Although the curvature is not quite trace class, we made sense of its trace, by

a two-step procedure. Powers of the curvature are trace class, and we defined

the geometric Chern character classes of ΩG by the formula (2.24)

ch((ΩG) = ̂ - j k-

(We have equated a cohomology class with a representative differential form.)

Both the curvature and index theorem describe invariant forms on ΩG.

Below we construct a smooth family of index zero Fredholms T: LG —•

Fredo(m+) parametrized by the loop group satisfying:

T 1

(i) LG —• Fredo (tn_(_) —• S^ (m+) is a homomorphism;

( aλ (ii) T restricted to the constant loops G C LG is a
{o.Ό)

homomorphism into GL(m_(_);(iii) T(gofgol) = T(gomf)T(go)-\ goeG,feLG.

As in (5.2) define the Lx-valued 2-form

(5.7) Ώ(X, Y) = [f(X),f(Y)} - f([X, Y})

on LQ. Then by Theorem 5.1 and Corollary 5.4, the Zth Chern character

class of the induced GL1-bundle S over ΩG is represented by the invariant

differential form

(5.8) (j^j

(We use the opposite bundle to get the correct sign.)

Comparing (2.15)-(2.17) with (5.7)-(5.8) we arrive at the following con-

clusion.

Proposition 5.9. Suppose that we construct a family of Fredholms T^

satisfying (5.6) and also

(5.10) Γ ' 1 ' = φ,

for φ given in (2.15), (2.16). Then the Chern classes of the induced bundle

(§ —+ ΩG agree with the Chern classes defined by curvature.

If the holonomy bundle &1 —• ΩG could be constructed, then by the infinite

dimensional Chern-Weil Theorem proved in [20] its Chern character would be

represented by the forms (2.24). This is enough to identify the putative bundle



THE GEOMETRY OF LOOP GROUPS 263

& with €. First we recall that the cohomology of QG is torsion-free and is
concentrated in even dimensions [11].

Proposition 5.11. / / the GW-bundles S,@' over ΩG have the same
Chern character, then & and {§' are topologically equivalent bundles.

Proof. GLP bundles over finite complexes can be thought of as stable
complex vector bundles, i.e., elements of if-theory. Then the proposition
follows from the fact that the Chern character homomorphism from if-theory
to rational cohomology is injective for torsion-free spaces having the homotopy
type of a CW complex. (The proof for finite complexes is [6, Corollary 2.5].
The extension to infinite complexes in [2, Lemma 4.9].)

We next define a one-parameter family of maps T^s>): LG —• Fredo(m+),
0 < s < 1. Each T^ satisfies (5.6), but with &2 replacing <§?. (If we restrict
to smooth loops, then T^ is a homomorphism modulo L 1 + ε for any ε > 0.)
Only T^1) satisfies (5.10). The homotopically equivalent T^ is simpler than

\ and we will be able to recognize it in terms of Bott periodicity. Also,
does define a homomorphism into &x. To construct T^ consider the

adjoint embedding G —• Ad(G) C GL(g) which induces

LG-»L(AdG)cL{GL(g)},

/-Ad/.

Since GL(g) c gl(g) is a group of matrices, there is a Fourier expansion
CO

Ad/= £ fne*nθ, /n
n = —co

Set

(Ad/)_=

Now m+ C LQC is the subspace of strictly holomorphic loops, and L{gi(gc)}
acts on m+ by the Toeplitz construction, combined with the natural action of
gί(0c) on Qc In other words, if π+ : LQC —• m + denotes the projection onto
the strictly holomorphic loops, then

(5.13) 7> = π+(Ad/)

is the Toeplitz operator for /. Let T/+ and Tj_ denote the Toeplitz action of
(Ad/)+ and (Ad/) — , respectively. Set

(5.14) T
(s)
(/) = T

f
_ + D-

9
T

f+
D

s
,



264 DANIEL S. FREED

where D = d/dθ acting on m+, as usual. Note that T^(f) = Tf is the usual

Toeplitz operator associated to / (via the adjoint representation).

To verify (5.6) (i) we must use all Sobolev loops, not just smooth loops. For

the case s = 0 we have (cf. [32]).

Proposition 5.15. Let %?+ denote the Hubert space of strictly holomor-

phic Ht functions on S1, t > 1/2. Let Tf denote the Toeplitz operator on <%+

corresponding to f. Then for /, g G HtiS1), the operator TfTg — Tfg is trace

class.

We have stated this proposition for functions f. In our application to maps

/ : S1 -• G we require t > 1/2 in order to define HtiS1^).

Proof Write HtiS1) = %?+ Θ %f- according to positive and nonpositive

Fourier series. Then multiplication by/ is the matrix

A b

c D

and we prove that b and c are Hilbert-Schmidt. It follows easily that

T: HtiS1) -+ g 1 ^ ) is a homomorphism.

Let

We use the orthonormal basis {zι/(l2 + I)*/2} for Ht. Then

Z

n+l

The expression in brackets is the l,n + l entry of Λf/, say M^n+ι. Thus

n = y \Mln+ιγ

n+KO

n<0

"!0"!2^"/!^./^ 11/11*. < 0 0

n<0

Similarly

/ 2

n+l>0 rι>Q -n<l<0 V ^ ;

Z<0

n > 0
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Our next result treats T^ for s > 0. Now we must replace trace class by
Hubert Schmidt. (We thank David Jerison for pointing out that our Hilbert-
Schmidt estimate for Ht functions, t = 1/2 + ε, is best possible, in the sense
that no smaller Schatten class can be used.)

Proposition 5.16. Let %?+ denote the Hilbert space of strictly holomor-
phic Ht functions on S1, t > 1/2. Set D = d/dθ. Then for s < 1 and
any f G <^+, the operator D~s[Mf,Ds] is Hilbert-Schmidt on J%+. Conse-
quently, for Ht loops f,g e LG the operator T^(f)T^{g) - T^(fg) is
Hilbert-Schmidt.

Proof. We use the orthonormal basis {zι/lt}fl1 for ^ _ . Let / =
, anz

n and denote A = D-s[Mf,D
s). Then

= o.
zι+n

l + n)*

So the expression in brackets is Aι+nj. The Hilbert-Schmidt norm squared is

l>0 n>0 ί>0
n>0

This increases in s, and it suffices to treat the case s — 1. Then the sum over
/ is

^ 1

^ (1 + Z/n)2-2ί(i/n)2t ~ Λ (1 + i/n)2-2ί(a;/n)

Therefore,

n = l

which proves the first assertion in the proposition. Now

(5 17) T
= Tf + D~s[Tu, Ds] =T/ + (order - 1).

The lemma implies

Γ<β>(/)Γ(θ>(ff) - T^(fg) = TfTgTfg + (order - 1) = (order - 1),

as desired.
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Proposition 5.16, together with the fact that T^ maps the constant loop
at the identity into the identity operator on m+, proves the homomorphism
property (5.6) (i), for &2 replacing &1. The Toeplitz family T^ defines a
homomorphism into &1{m+), by Proposition 5.15. Fix a constant loop go G
G C LG. Then T^(g0) = {Aάg0) defines a homomorphism G -• GL(m+),
whence (5.6)(ii). Condition (5.6)(iϋ) holds because (Aάgo) commutes with
π+ and with D:

= (Adgo)Tf_(Adg^) + D~s(Adgo)Tf+ (Adg^

= (Adgo){Tf_ + D - ° T f +

1

Finally, the Fredholm family T^ was chosen precisely to satisfy (5.10).
We summarize the discussion in
Theorem 5.18. For each loop f e LG define the operator T^{f) =

Tf_ + D~sTf+Ds on m+. Then T^{f) is Fredholm of index zero, and the
composition

L G II^ F r e d o _+ 5-2

is a homomorphism. In addition, the Toeplitz family T^ defines a homomor-
phism into &1. The GL2 -bundle &^ over ΩG induced by these families are
all isomorphic, and their Chern classes agrees with the Chern classes defined
by curvature.

These results apply to the full flag manifold ^ — LG/T with one small
modification-we must replace the decomposition (2.3) with (4.2). We can
use the Toeplitz family, now projecting to the new m+, to compute the Chern
classes of .Ψ, and this simplifies the calculation of Proposition 4.8 somewhat.

Returning to the based loop group ΩG, we recall the relationship between
the Toeplitz family T^ and Bott periodicity. For this we introduce a stable
Toeplitz map as follows. Let ^ denote the Hubert space of strictly holo-
morphic maps S 1 —• C^ in some Sobolev completion. The usual Toeplitz
construction defines a map

aN: ΩGL(TV)

Furthermore, ajγ and αyv+i a r e compatible with the obvious inclusions. Since
Fredo(^) - BGL(oo), and the inclusion F r e d o ( ^ ) -> F r e d o ( ^ + i ) is a
homotopy equivalence, there is an induced limiting map

(5.19) a: ΩGL(oo) -> BGL(oo).
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Proposition 5.16 implies that each ajy determines a homomorphism ΩGL(iV)
-> &{%N) = G L ( ^ v ) / G L c p t ( ^ ) by composing with the projection
Fredo(^) —• ^ ( ^ Λ Γ ) . It follows that α v̂, hence α, is a homomorphism of
i/-spaces. Atiyah [3] proves that (5.19) is a homotopy equivalence. It follows
that a induces an isomorphism π/(GL(oo)) —• τr/_2(GL(oo)). This is Bott
periodicity.

We can factor the Toeplitz family T^ on LG through a. To pass from
free loops to based loops we observe that the composition of the inclusion
ΩG —• LG with the projection LG —• LG/G = ΩG is a homotopy equivalence.
This means that the GL(oo)-bundle over LG/G induced by T ( o ) is equivalent
to the bundle induced by restricting T^ to ΩG C LG. That said, identifying
Fredo(m+) with £GL(oo), and setting TV = dim(G), we see that Γ(o) is the
composition

(5.20) ΏG ^ Ά ΩGL(7V; C) Λ ΩGL(oc; C) -^ £GL(oo; C).

Here Ω(Ad) is the map on based loops obtained from the adjoint representa-
tion G —• Ad(G) C GL(ΛΓ; C), and we have inserted "C" in the notation for
emphasis. Theorem 5.18 states that the Chern classes of ΩG, as defined by
curvature, can be calculated from (5.20).

It suffices to calculate over the reals, in view of the fact that ΩG is torsion-
free. Since ΩG is a group, if*(ΩG;R) is a Hopf algebra with primitive gen-
erators given by τr*(ΩG) ® R. Furthermore, τrn(ΩG) = τrn+i(G), and the real
homotopy groups π n + i(G) <S> R are well known. Namely, attached to each
compact simple group G are certain odd integers 2πii — 1, the number of
which is the rank of G, and τrn+i (G) ®R = R f o r n + l = 2mτ - 1 and is zero
otherwise. The mτ are called the exponents of G. For simple groups, πiχ — 2.
Therefore, the real cohomology of ΩG is a symmetric algebra on generators
Y2mι_2 in dimension 2mτ - 2, where mτ are the exponents of G.

For SU(n) the exponents are 2, 3, , n, and

(5.21) iΓ(SU(n);R)=R[j/2,y4, ,Sfen-2].

Let

(5.22) e: Sι x ΩSU(n) — SU(n)

be the evaluation map. We fix the generators of i/*(ΩSU(n);R) by setting

(5.23) 2/21-2 = / e*ω2ι-v
Js*

where ω2ι-i is defined in (3.8). The integral in (5.23) is to be interpreted as
the slant product of e*cj2/-i with the homology class [S1]. We remark that
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the multiplicative structure of the integral cohomology is somewhat subtle
[12]. For example, the integral generator of #2ί(ΩSU(2); Z) is (y 2)7' !

The Toeplitz family (5.20) defines a homomorphism of /f-spaces by Propo-
sition 5.21, and so the induced map on cohomology takes primitive generators
to primitive generators. Since {ch/} is a basis for the primitive cohomology
of J3GL(oo) (cf. [9]), for any group G we conclude

Proposition 5.24. ///-hi is an exponent ofG, thench/(ΩG) = n/(G) y2/
for some integer nι(G). If I + 1 is not an exponent of G, then ch/(ΩG) = 0.

We will prove later (Corollary 5.32) that ch/(ΩG) = 0 for / even, no matter
what the exponents of G.

The integers nι{G) can be computed from (5.20), at least in principle. For
example, we compute rt\{G) = 2ΠG by understanding the primitive generator
of //3(G), as in §2. Of course, this agrees with the result from the curvature
computation. We carry out the computation of higher ch/(G) only for the
unitary group. Now

i

iΓ(ΩGL(oo);R)=R[z 2,z 4, ],

where as in (5.23) we specify z2/ to be the transgression of ω2/+i in the path
fibration. Recall that we defined σx = l\ ch/ in /P(BGL(oo);R).

Proposition 5.26. a*((-l)z~V/) = z2/.
Proof The inverse periodicity map β: £?GL(oo) —»• ΩGL(oo) is defined in

if-theory by tensoring with the Bott class 1 — H. Furthermore, ΩGL(oo) ~
Ω2BGL(oo), and there is a commutative diagram

S2 x BGL(oo) i 2 £ , s2 x Ω2BGL(oo)

u

Here ε is the evaluation map, and φ is the classifying map for the universal
bundle tensored with 1 - H. Let z G H2(S2) denote the generator; then
ch(l — H) = — z. The homomorphism property of the Chern character yields

On the other hand, ε* is essentially transgression in the double fibration

Ω2£GL(oo) - ΩGL(oo) > *

1
ΩGL(oo) - GL(oo)

βGL(oo)

1
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Since chj+i transgresses to (-I)zu;2j+i//! in the universal fibration, and ω2/+i
transgresses to x2i in the path fibration (cf. (5.23)), we obtain

Recalling that σ\ = l\ ch/, the previous equations give the desired result.
At the next stage in (5.20) we have trivially

(5.27) *(*») {
v I o if / > TV.

The remaining step in the computation of the Chern classes is the action
of Ω(Ad)*. This depends on more detailed knowledge of H*(G), and we
illustrate with G = SU(n).

Proposition 5.28.

Γ V A Λ W A ί 2ny21 l<l<n~h I odd;
Ω(Ad)*(z2ί) = \

\ 0 otherwise.

Proof. The vanishing of Ω(Ad) * (X21) for / > n is a consequence of (5.24).

For / < n — 1 we have

Ω(Ad) * (x2t) = Aιy2ι

for some integer Aι, since Ω(Ad)* preserves primitivity. The evaluation map
(5.22) and the slant product commute with Ad: SU(n) —• U(n2 - 1), from
which

Ad*(α;2/-i) = A/_iα;2/_i.

Then since a fixed multiple of chf represents a transgression of ω2j_i in the
classifying spaces BS\J(n) and B\](n2 — 1),

β(Ad)*(chί) = ^4;_ich/ + (terms involving lower order ch^).

It will be convenient to replace SU(n) by U(n). Then relative to the usual basis
{εi}"=1 of HX(T), T the maximal torus of U(n), the roots are ε« — ε7, i φ j .
The cohomology of B\J(n) is identified with the symmetric algebra on ε», and
ch/ is represented by a multiple of the power sum

2 = 1

The pullback under the adjoint representation is

-Σ(-')*(i){Σ« Σ '--Σ '}
α = 0
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This vanishes for / odd, and for / even the coefficient of ^ ει is

2n-J>l)»(')=2n.

Therefore, A\ = 2n for / odd and 0 for / even, / < n - 1, as claimed.
For any manifold M we set

Chern(M) = 1 + ci(Af) + c2(M) + • •

to be the total Chern class. Something (5.26), (5.27), and (5.28) we obtain

Theorem 5.29. The total Chern class o/ΩSU(n) is

Chern(ΩSU(n)) = exp(2n{y2 + yφ + ylo/5 + + 2/4m-2/(2m - 1)}),

where m = [n/2].

Proof. The Newton formulas (3.4) can be written consisely as

Chern = exp

The theorem is now immediate.

We next examine the real geometric frame bundle of ΩG. It is, of course,
the realification of the complex GL(oc; C)-bundle we have been discussing.

Theorem 5.30. The real geometric frame bundle of ΩG is trivial.
Corollary 5.31. The Pontrjagin and Stiefel-Whitney classes ofΩG van-

ish.
Corollary 5.32. The even Chern character classes ch2fc(ΩG) vanish.
We prove Theorem 5.30 below. Corollary 5.31 is immediate.
Proof of Corollary 5.32. The relationship between the Chern and Pontr-

jagin classes (cf. (3.4)) is universally expressed by the map
(5.33) r: £GL(oo; C) -> £GL(oo;R),

obtained from the inclusions GL(iV C) —• GL(27V : R) by stabilizing and
passing to the classifying spaces. This is a map of i/-spaces, and so r* maps
the primitive real cohomology of i?GL(oo; R) into the primitive real cohomol-
ogy of £?GL(oo; C). Now over the reals i3GL(oo; R) has primitive generators
in dimensions 4,8, which comprise a "Pontrjagin character"—and these
pull back via r* to the even Chern character classes ch2, ch4, . By the previ-
ous corollary the Pontrjagin character of ΩG is trivial, whence ch2/c(ΩG) = 0.

The topology of the real geometric frame bundle is determined by the
Toeplitz family (5.20), after composing with (5.33). The key to the proof of
Theorem 5.30 is the observation that the adjoint representation is real. This



THE GEOMETRY OF LOOP GROUPS 271

leads to a factorization of (5.20):

(5.34)
ΩGL(TV R) ΛΩGL(oo R)

ΩG Ω ( A d ))ΩGL(7V;C) Λ ΩGL(oo; C) A BGL(oo C) Λ BGL(oo R).

Theorem 5.30 follows from

Proposition 5.35. The composition

ΩGL(oo; R) Λ ΩGL(oc; C) A £GL(oo; C) -^ £GL(oo; R)

is homotopically trivial

Proof. This is a corollary of Bott's original proof of the Periodicity

Theorem [13]. Of course, we can replace GL(oc R) and GL(oo C) in (5.36)

by O(oo) and U(oo), respectively. Furthermore, the homotopy equivalence

a: ΩU(oc) —• BXJ'(oo) may be replaced by any homotopy equivalence. One

step in the proof of periodicity for the orthogonal group is the equivalence

.BO(oo) ~ Ω(U(oo)/O(oo)). We assert that the diagram

£U(oo) -^ ΩU(oc)

(5.37) ir

is homotopy commutative, where q is the natural quotient map, and the hor-

izontal arrows realize periodicity. It will then follow that (5.36) is equivalent

This composition maps ΩO(oc) to a point, and therefore is homotopically

trivial.

Bott constructs the periodicity maps in (5.37) by analyzing the Morse

Theory of the energy function. Consider the space of loops homotopic to the

closed geodesic

0 \
~ , 0 < θ < 2τr,

(5.38)
0

in U(2Λ0 = (U(2ΛΓ) x U(27V))/U(27V). Then the little group U(27V) acts

transitively on the set of all closed geodesies in this space, the stabilizer is

U(7V) x U(iV), and the periodicity map β\ is the stable version of the inclusion

U(2ΛQ /U(2AQ xU(2ΛQ\

\]{N) x U(7V) "^ V \J{2N) ) '
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We can lift (5.38) to U(27V) x U(27V), and then project to a closed geodesic in

U(47V)/O(4iV). Again the little group acts transitively on all closed geodesies

in its homotopy class, and the inclusion

O(4iV) ^ n

0{2N) xO(27V) \0{4N)J

stabilizes to the homotopy equivalence /?2 From this description, we see that

there is a commutative diagram

U(2AQ /U(2AQxU(2AQ\

V(N) x V{N) * V U(27V) )
(5.39) I 1

O ( ) / (

O{2N)xO(2N) \O(4N)J

where the vertical map on the left is induced by realification and that on the

right by inclusion. Diagram (5.37) is the stabilization of (5.39), which proves

our assertion that (5.37) commutes.

We give an alternative proof of Theorem 5.30 in §6.

6. The real geometric frame bundle of map (M, G)

We return to the general situation of §1 and apply our techniques to the

real frame bundle of Map(M, G) for any compact Riemannian manifold M.

Here we can take either based or unbased maps. Theorem 1.11 implies that

the curvature of any Hs metric, s > 0, on Map(M, G) is a compact oper-

ator. Our analogy to finite dimensions suggests that the holonomy group

of the Levi-Civita connection consists of orthogonal operators which differ

from the identity by a compact operator. This group, O c p t , has nontrivial

topology, which potentially gives rise to nonzero real characteristic classes on

Map(M, G). As in §5, we introduce a family of Fredholm operators to rigor-

ously construct this real Fredholm structure. There is a homotopy to a family

of invertible operators, which is automatically null homotopic. We conclude

that the real characteristic classes of Map(M, G) vanish.

In §1 we computed the formula

(6.1) V^ } - ±{ad x + Δ - s a d x Δ s - Δ" s ad(Δ s X)}

for the covariant derivative associated to the Hs metric, operating on left

invariant vector fields. These vector fields are identified with the tangent

space at the identity, β^ = Ht{M,g). We work with based maps Mapo(M, G)

so that Δ is invertible; our considerations remain valid for unbased maps by

replacing Δ with (Δ + 1). The H9 curvature is given by the usual formula

(6-2) R^ (X,Y) = [V£>, V^] - V[Ίγ].
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Motivated by §5 we define a family of operators on «ί?R, parametrized by
Map0 (M,G) as follows. For / G Mapo(M, G) let Mf denote the adjoint
action on / on *?R, defined pointwise. Also, since Ad/ G Mapo(M, AdG) C
Mapo(M,gl(g)) maps into matrices, it makes sense to take its Laplacian,
and so we define MΔ*/ to be the multiplication operator corresponding to
Δ s(Ad/). Set

(6.3) ΓW(/) = \{Mf + A~sMfA
3 - A " S M A V } .

Proposition 6.4. For smooth maps /, g G Mapo(M, G) the operator
Γ ( β )(/)Tw(ff) - T^{fg) is pseudodifferential of order max(-l,-2s). In
particular, for s > 0 it is compact.

Proof Let — q = max(—1, —2s). Then as in §1

T ( β ) ( / ) = M / + (order -q).

The proposition is immediate from the fact that MfMg = Mfg.
It is not hard to see that T^{f)T^{g) - T^(fg) is compact for all

/,g G Ht{M,G). Since T^ sends the constant map at the identity to the
identity operator, we conclude that T^ maps into Fredo(^R.), and defines a
homomorphism

Mapo(M,G) - ^

Note that T ( o ) also defines a family of Fredholm operators. The families Γ ( s )

for different values of s are homotopic. In the case M = S1 and s — 1/2 we
recover the realification of the family used in §5 to define the reduced complex
frame bundle of ΩG.

The family T^ determines a reduction of the real G L ( ^ R ) frame bundle to
a G L c p t ( ^ ) frame bundle. We assert that this reduction faithfully replaces
the holonomy construction. Our argument in §5 relied on the formula for
the Chern classes and the fact that the Chern classes completely characterize
a bundle over ΩG. That argument breaks down here for several reasons.
First, in the real category there are Z/2Z characteristic classes—the Stiefel-
Whitney classes—which are not accessible by curvature. Also, even when s
is large the curvature only has order - 1 , and so is in L n + ε for n = dim(M).
This means that the lower Pontrjagin character forms, defined by traces of
low powers of the curvature, will diverge. (This is not a serious problem,
though, since the curvature could be regulated using the Laplacian on M.)
Finally, it is no longer true in general that the characteristic classes classify
GL(oo;R)-bundles over Mapo(M, G).

In spite of these negative considerations, we use (6.3) to introduce a real
Fredholm structure. The real geometric frame bundle of Map0 (M,G) is the
GL c p t (^)-bundle induced from T ^ . This reduced frame bundle is trivial.
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Proposition 6.5. The maps T^ are null homotopic.

Proof. As all T^ are homotopy equivalent, it suffices to prove the asser-

tion for T ( o ) . But T ( o ) (/) = \Mj maps into invertible operators G L ( ^ R ) .

Since G L ( ^ R ) C Fredo(^R) is contractible, T ( o ) is homotopically trivial.

Proposition 6.5 is consistent with finite dimensional theory. As a real man-

ifold Map(M, G) is a Lie group, and in finite dimensions Lie groups are always

parallelizable. If we are to define a reduced frame bundle in infinite dimen-

sions with geometric significance, then we expect that the reduced bundle will

still be trivial.

These methods also apply to the full flag manifold & = LG/T of the loop

group.

Proposition 6.6. The real geometric frame bundle of £F, as defined by

a homogeneous Kάhler metric, is trivial

Proof. Write Lϊe(LG) = t φ m , where t is the Lie algebra of T and

m = m(°) θmt 1 ) with

m ^ = sum of root spaces of G\

(This is the real version of the decomposition (4.2).) Recall that Kahler

metrics on £F are parametrized by elements μ in the interior of a Weyl chamber

(together with a scale factor on d/dθ' which we fix), and Hμ G t is the element

dual to μ. Let D = D^ + D^ be the diagonal operator

'ad if.

0

0

d/dθ,

on m. D is invertible on m. For / G LG and 0 < s < 1 define

(6.7) T^(f) = \{Mf + D-sMfD
s - D-sMdsf).

The families (6.7) are the realifications of the families used in §5 to describe

the complex geometric frame bundle. The real version of Corollary 5.4 gives

an induced GL c p t (^)-bundle over LG/T. The T^ are all homotopic, and

T(°) is a homomorphism into the invertibles, hence is null homotopic. There-

fore, the reduced real frame bundle is trivial. We reiterate that the complex

geometric frame bundle of J?~, which is pinned down by its Chern classes,

determines the real geometric frame bundle. Therefore, there is no problem

interpreting Proposition 6.6 in terms of our original Kahler curvature compu-

tation (for <9~). It states that the even Chern classes ch2fc(^), as defined by

curvature, vanish mod 2, and that those combinations of Chern classes which

define the Pontrjagin classes also vanish (cf. (3.4)).
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As the real geometric frame bundle of Map(M, G) is topologically trivial,
we are led to speculate about where to find nontrivial topology in the case
whereM is no longer a circle. Philosophically, whereas loop groups behave
like compact Lie groups, the groups Map(M, G) for dim(M) > 1 behave like
noncompact Lie groups. For these groups spin geometry replaces complex
geometry, for example in the construction of representations [8]. Assume
now that M is an odd dimensional spin manifold. Let βf denote the space
of (Sobolev) g-valued spinor fields on M, and decompose %? = J*+ 0 %?-
according to the positive and nonpositive spectrum of the Dirac operator. Let
7Γ+: %? —• <̂ + denote the projection. An element / G Map(M, G) defines
an operator M/ G gί [%") which acts by the adjoint action on the Lie algebra
indices of the spinor fields. Set

Then Tf is Fredholm of index zero, and there is a family

(6.8) T: Mapo(M,G)-+Fredo(^+).

Note that (6.8) reduces to the Toeplitz family on Lg when M — S1. When
M = S2n~ι, (6.8) again factors through Bott periodicity; the homotopy class
for T for general M is determined by the Atiyah-Singer Index Theorem for
Families. Segal [35] studied this family in the context of "anomalies." We
suggest it here as being relevant to the spin geometry of Map(M, G), possibly
in the supermanifold framework.
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