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NEW MINIMAL SURFACES IN S 3

H. KARCHER, U. PINKALL & I. STERLING

Abstract

In this paper we construct new examples of compact imbedded minimal
surfaces in S3. We show some of these provide counterexamples to
the conjecture that imbedded minimal surfaces separate S3 into two
domains of equal volume.

1. Introduction

We begin with the well-known tessellations of S3 into cells having the
symmetry of a Platonic solid in R 3 and dihedral angle 2/?i. Dividing a cell
by its planes of symmetry we obtain as a fundamental region for the group
of symmetries a tetrahedron with dihedral angles τr/2, τr/2, π/2, r/, /?i, βi
(see Table 1). The tetrahedron is determined by its dihedral angles.

π/3,7r/3,π/3
π/4, π/3, π/3
π/3, π/3, π/4
π/3, π/3, π/5
π/3, π/2, π/3
π/3, π/2, π/4
π/3, π/2, π/5
π/4, π/2, π/3
π/5, π/2, π/3

TABLE 1

Cell Type

Tetrahedral (Self-Dual)
Octahedral (Self-Dual)

Tetrahedral (or Cubical)
Tetrahedral (or Dodecahedral)

Tetrahedral
Cubical

Dodecahedral
Octahedral
Icosahedral

# of cells in
tessellation

5
24

16(or 8)
600 (or 120)

2
2

2
2
2

genus of con-
structed surfaces

6
73
17

601
3
5

11
7

19

To construct a minimal surface in S3, we first find a minimal surface with
boundary, called a "patch," within a tetrahedron (from Table 1) which inter-
sects orthogonally all the plane-facrs of the tetrahedron in planar geodesies.
From the patch we obtain a certain piece of the whole surface, called a "bone,"
by repeatedly reflecting "patches" through those plane-faces of the tetrahe-
dron which are not contained in faces of the cell. Finally, we build the complete
surface using reflections through faces of the cells (see Figures 1-3).*
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1A\\ figures are stereographically projected to R3.
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FIGURE l

In §2 we outline our strategy of constructing the mentioned "patch." A
similar construction has been used to obtain complete minimal surfaces in
R 3 [7, p. 66], [8] but in S3 the arguments are more involved. The necessary
control over the construction comes from lemmas based on the maximum
principle (§3). This is enough to prove existence (§4). In §5 we get sufficient
control on the polar minimal surface to prove that the "patch" is a graph in
polar coordinates as in Figure 1; this implies imbeddedness.

Such imbedded minimal surfaces divide S3 into two components whose
volumes were conjectured to be always equal [9]. We have enough control
on our surfaces to ensure in §5 that for some of them these two volumes are
different.

For self-dual tessellations there is a simpler construction. In the case
(τr/3, τr/3, π/3) (resp. (τr/4,π/3, π/3)) one solves the Plateau problem for the
geodesic quadrilateral with all lengths π/4 (resp. π/8) and opposite angles
equal τr/2, π/3 (resp. π/2,τr/4). Repeated reflections through the boundary
geodesies directly yield the entire surface. One fifth (resp. one 24th) of this
surface is a "bone" with boundary on a tetrahedral (resp. octahedral) cell (see
Figures 4-5).
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FIGURE 2

FIGURE 3

These simpler examples do separate S3 into two components of equal vol-
ume. Indeed, the fact that these surfaces contain great circles implies that
they separate S3 into congruent components.
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KIP

FIGURE 4

FIGURE 5

2. Outline of construction

We assume the results of [5], [6]. Explicitly we recall: The conjugate
minimal surface M* of a (simply connected) minimal surface M in a space
of constant curvature is denned by giving its metric and Weingarten map
(second fundmental tensor) as follows: g* = g, S* — D90 o 5, where D90 is
90°-rotation in the tangent spaces of M. Whenever necessary, η is fixed.

We want to find a minimal surface, in the fundamental tetrahedron, in-
tersecting all faces perpendicularly and meeting those edges which have di-
hedral angles π/2, π/2,π/2,ry. Such a patch is conjugate to a minimal sur-
face bounded by a geodesic quadrilateral ABCD with angles τr/2, τr/2, τr/2,77
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at Λ, £, C, D. Such quadrilaterals have two free parameters, e.g. the edge-
lengths I1J2 at A. The other two edge-lengths Si,ί>2 are determined by
cos Si cos l\ = cos S2 cos Z2 and cos Zi cos I2 = cos SΊ cos S2 + sin SΊ sin S2 cos r/.
(see Figure 6).

FIGURE 6

Let M(τ7,/i,Z2) denote the unique (§3) Plateau solution for any such
geodesic quadrilateral. The conjugate minimal surface, denoted M*(η,lι,l2),
determines by its planar boundary arcs a tetrahedron having, at the vertices
>!*,£*, C*,£>* of this "patch", dihedral angles π/2,π/2,π/2,ry. We have to
choose I1J2 in such a way that the other two dihedral angles are /?i,/?2 from
Table 1. These dihedral angles are given as the angles between the nor-
mal planes at the endpoints of the (spherically) planar curves /*, resp. 1%.
These curves are determined by their geodesic curvature function κ>i{η,h,h)
(i = 1,2). We denote by ai{v,li,h) the functions a{(u) which give the turn-
ing angle between the totally geodesic plane through ABC and the tangent
plane of M(r/,Zi,Z2) at the point on k which has distance u from A. Then

Ki = a[ [5, p. 368].

In this way the dihedral angles /?i,/?2 are determined by the geodesic
quadrilateral Q =

Note

/ r v . cos/i tan/2 Λ / Λ , cos/2tan/i
cosa^B) = — / > 0, cosa2{C) = — f——- > 0.

tan 01 tan 02

From [6, Theorem 2] and from the argument in [5, p. 350] we have
Lemma 1. The Plateau solution M(η,lχ,l2) is contained in the convex

hullC(Q) of the boundary quadrilateral. The intrinsic curvature of M is less
than 1, except at D; therefore, all the turning angle functions of the four edges
are strictly monotone. Hence, also, /*,/£ > ^ί > ^2 are locally convex.
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The Frenet frame x, £, n of the curve /* is controlled by the Frenet equations

i x1 = £, ( x' = a cos a + b sin α,

t' = -x + /en, or < α; = -x cos α,

r' = — κ,t, \ b' = — x sinα,
where α = aiiηjiifa), K = <*'•> a~ tcosa — n sinα and b = ί-sinα+n-cosα.
Observe β{ = cos"1 (*(/»), ί(0)).

The second version of the Frenet equations does not need the derivative of
the turning angle function a. This will allow us to prove continuity of the map
(βiί/fe) '-= Fη{h,h) and to establish sufficiently narrow bounds which imply
that the (/?i,/?2)-pairs of Table 1 are in the range of Fη—thus establishing
existence of all the patches.

3. The maximum principle and basic lemmas
Maximum principle [7]. Suppose that Mi,M 2 are two branched minimal

surfaces such that for a point p G Mi Π M% the surface M\ locally lies on one
side of Mi near p. Then the surfaces M\,M<ι coincide near p.

We have already quoted from Lawson [6] that a minimal surface con-
tained in an open half-sphere actually is contained in the convex hull of its
boundary—because, for equator spheres 5, it is clear what is meant by "M
lies on one side of 5." We wish to use the following ruled minimal surfaces
("helicoids") as comparison surfaces in the maximum principle.

A helicoid with constant turning speed r is given as follows: Let c(s) be a
geodesic (called an axis) and ei(s), e2(s) orthonormal parallel fields along c.
Then

H(s,t) :=exp c ( s ) ί (ei(s)cos(τ s) + e2(s) sin(τ β)),

(0 < s < Z, 0 <t < τr/2). The tangent turning angle along the rulings is not
constant, but is given by tanα(ί) = r tanί. (r = 1 gives the Clifford torus
and τ — 2 gives Lawson's Klein bottle.)

The orbits of the rotation around c are transversal to the helicoid except
on c and its polar circle. We will choose helocoids having as an axis one of
the edges /i, /2 of the quadrilateral Q and with the property that the convex
hull C(Q) can be rotated around the axis to a position where it meets the
helicoid only along the axis.

Then we have an:
Extended maximum principle. // one rotates the Plateau solution,

M, of Q in either direction around the axis, then M first meets the heli-
coid (excluding the axis) at a boundary point. (This is also true in euclidean
geometry.)
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The same sort of "extended maximum principle" will be applied below also
to other comparison surfaces than helicoids.

Proof. Directly by the maximum principle the helicoid and M cannot
first meet at an interior point. We have to exclude the case that the Plateau
solution first becomes tangential to the helicoid at interior points of the axis
and not at the endpoints. To do so we choose an auxiliary axis c in such
a common tangent plane by extending the touching ruling to t = — ε and
choose c perpendicular to the rule. Now continue the rotation of M around
c a little further and rotate back around c. In this way the Plateau solution
can be moved to touch the helicoid from one side at an interior point —a
contradiction. q.e.d

There is an optimal choice of such comparison helicoids due to the following:
If one describes the edge Si (resp. S2) in helicoidal coordinates with the axis
I2 (resp. /1) one finds convex turning angle functions ά{u) given by tanα(iί) =
(tan α(/)/tan/) tanΐi, 0 < u < I (note: U < a(l{) < τr/2). The secant of ά(u)
has slope r = α(/)//, the initial tangent of a(ύ) has slope τ = tan α(/)/tan/.
These are the optimal constant turning speeds for helicoids (axis k) which
touch the quadrilateral from one side or from the other. Because of our
extended maximum principle, they leave the Plateau solution on one side. Our
notations are such that oti is increasing, and OL\ is decreasing. We therefore
get lower bounds for OL<I (resp. —OL\) from the two helicoids with axis U and
turning speed r̂ , and upper bounds with fi (i = 1,2).

a\L(u) — tan~ 1(r 1 tan it),

θί\L{u) = r 2 u (the secant of the function α 2),

(2) a\
u(u) = t an" ι (f2 tan u),

a^u (u) = f\ u (the initial tangent of #2),

similar formulas hold along l\.

We summarize this as

L e m m a 2. a{L{u) < aτ{u) < a{u(u), 0<u<k (i,j = 1,2).

L e m m a 3. Any minimal surface with boundary Q and in the convex hull

of Q is the unique Plateau solution.

Proof. Since Q has geodesic edges, we can extend the minimal surfaces
by 180°-rotation to a rim around the quadrilateral. Since the turning angles
Oίi are less than π/2 one can rotate a second copy of the convex hull by
180° around U so that the two copies meet only along the edge U. Having
two different minimal surfaces bounding Q and in the convex hull clearly
contradict our extension of the maximum principle.

Lemma 4. The function (/?i,/?2) = Fη(h,h) is continuous.
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Proof. Given ε we rotate Q around l\ (resp. /2) by ε. A sufficiently small
change of I1J2 in the rotated position will leave the changed quadrilateral on
one side of M. Again, by the extended maximum principle, this proves the new
turning functions are in an ε-strip around the initial a^s. The second version
of the Frenet equations now shows that the /?t 's change correspondingly little.

4. Existence

L e m m a 5. Let s »—• x(s), s »-• x(s), and s »—• x(s), 0 < s < I be
three locally convex arcs on S2, of the same length I < π/2. Let /c, K and R
denote the corresponding geodesic curvatures, (x, ί,n), (x,έ,n), and (x,?,n)
the corresponding Frenet-frames with det(z,£,n) = 1, a(u) = f™ κ(s)ds the
integrated curvatures, etc. Assume for all s

(3) a(s) < a(s) < a(s) < π/2.

Then

(a) fe(*), ί(0)) > (x{8), ί(0)> > (x(β), ί(0)) /or α// β ,

(b)

- / cos(α(/) - ά)(x(s),t{0)) dscos α(

<cosα(/)- / cos(α(0-α)(Φ

(b) follows easily from (1), (3) and (a) by using

— (cos a(l) cos a + sin α(Z) sin a) — — cos(α(/) — a) < — cos(α(/) — α),

etc. To prove (a) we first show

( φ ) , x(0)) > 0 (t(s), x(0)) < 0 (n(s), x(0)) > 0

( Φ ) , ί ( 0 ) ) > 0 (n(β),t(0)><0

(x(β), n(0)> > 0 (ί(β), n(0)> > 0 (n(s), n(0)> > 0

(x(s) x x(ί),ί(0)) > 0 for t > s (see Figure 7).

Remark. These inequalities imply that x and n are convex (not only
locally convex).

By the Frenet equations, (4) clearly holds for small s > 0. It is therefore
sufficient to see that none of the scalar products in (4) can become zero for
s > 0. In the cases (x(s),x(0)) and (n(s),n(0)), this follows from the fact
that the curves x and n have lengths / and a(l) respectively, both being less
than π/2.



NEW MIMIMAL SURFACES IN S3 177

FIGURE 7

The tangent great circle of the curve x never passes through the point rc(0),

because then we would have (n(s),n(0)) = 0. This together with the local

convexity of x implies our inequality (4) involving x(s). A similar argument

(note that also n is a locally convex curve with curvature 1/κ) implies the

assertions in (14) about n(s).

The geodesic segment from x(s) to n(s) cuts the great circle polar to t(0)

in a point y satisfying (y,x(0)) > 0, (y,n(0)) > 0. This implies our claims

about t(s) = x(s) x n(s), proving all of (4) (and the remark following (4)).

Secondly, given ε > 0, one may choose step functions g, ά such that

(5) a(s) — ε < q(s) < a(s) < ά(s) < a(s) + ε.

The corresponding x, x given by the second version of the Frenet equations

(1) are then close to x in the sense that lime_>0 x, x = x.

Therefore it suffices to prove (a) for the case where x, x, and x are all

polygons. We work now with x and x, the case of x and x is similar. By

subdividing we can assume that the vertices of x and x correspond to the

same parameter values 0 = s n < s n _ i < ••• < s\ < s^ — l. We define a one-

parameter family of polygons XΛ, 0 < λ < n, xo = x, xn — x corresponding

to the integrated curvature functions OL\ defined inductively on v as follows:

αo = & and for λ = v + d, υ G {0, , n — 1}, 0 < d < 1, we set

{ av(s) for s φ

{l-d)av{s)+dά{s) forsG

All a\ are nondecreasing, so the polygons XA are convex, and hence the

inequalities (4) are available for XΛ To compare polygons for different λ, we

assume, with the obvious notation,

(7) xλ(0) - x(0), *λ(0) = t(0), nλ(0) = n(0)
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for all λ. Using this we will prove

(8) ±(Xχ(s),t(O))<O for λ £ Z,

and for every fixed s. This, obviously, will complete the proof.
(6) means that the function aχ is fixed except on the interval

where it is moving upward at a constant speed (see Figures 8 and 9). For
the corresponding polygon xλ, this means that the angle at the vertex x(v) is
increasing at a certain rate, while the angle at x(v + 1) is decreasing at the
same rate.

j

FIGURE 8 FIGURE 9

Clearly then, the last inequality (4) implies (8) for s G (y,υ + 1]; and
thus (since points x\{s) for s < sv are not moving at all) for s < sv+i
The increasing kink at xχ(sv) imposes on all xχ(s), s > sv, an infinitesimal
rotation with angular velocity vector ω = — cxχ(sv) for some constant c > 0.
The decreasing kink at x\(sυ+ι) induces a rotation with ω = cxχ(sv+ι).
The linearity of the Frenet equations implies that the total effect on xχ(s),
s > s v+i, is an infinitesimal rotation with angular velocity

(9)
+!) -Xχ(sυ))

= ctχ(s) for some s G {sυ+ι,xυ]

c > 0, together with the information in (4), then yields (8).
Theorem. The minimal surfaces listed in Table 1 exist; more specifically:

for allη,βuβ2 of Table 1 there exist {lul2) such that Fη(lul2) = (/?i,/?2).
Proof The idea is to find a contractible curve l(s) = (/i(s),/2(s)) such

that the curve Fη(l(s)) has nonzero winding number around the point (/?i, β2)
(see Figures 10 and 11).

This is easy for the third and fourth examples of Table 1 (see Figure 12):
Along cosl\ cos l2 = cosη we have τr/2 — OL% < βi (i = 1,2). Along the
other three parts we have limε_+0 β% = &u the small circle corresponds to the
euclidean limit where cos 77 = sinαi sin a2, and on the two straight portions
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\

\

LI (degrees)

FIGURE 10

IMRGE IN B l , B 2 N/ERR BOXES,ETR=PI^3

80 82 84 B6 88 90 92 94 96 98

Beta 1 (degrees)

F I G U R E 11

we have: /2 —> 0 (resp. l\ —* 0) implies a\ -^ τr/2 (resp. c*2 —•" ̂ r/2) (this

also works for the first and second examples of Table 1 which were discussed

separately in §1).

The remaining five examples are obtained with some numerical help based

on (b) of Lemma 5. Recall that α(s), ά(s) are explicit function given in Lemma
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cos/j cos/2 = cosr?/ cos/j

FIGURE 12

2. The corresponding x(s),x(s) are either circles if a = const, or meridians
of minimal surfaces of revolution in S3 which are given explicitly in [1, p. 25]
in terms of elliptic integrals; of course they are also given as solutions of the
Frenet equations (1).

For any η,l\,h we have the bounds α(s), ά(s) of Lemma 2 for the turn-
ing angle functions a(s) of M(?7,/i,/2). Lemma 5(b) applied to these explicit
bounds and their corresponding Frenet curves gives, through one more inte-
gration, bounds β. < βi < βi (t' = 1,2), which are shown as boxes in Figure
11. For this last step we rely on numerical integration. The data then show
that the continuous center curve of the boxes surrounds the desired (/?i,/?2)-
value at such a distance that it is outside all the error boxes. Since the curve
Fη(l(s)) stays in these error boxes, its winding number with respect to (βi, /?2)
is nonzero. q.e.d

Note that beyond existence the above method gives also a certain region
Λ, in (Zχ,/2)-space, in which our desired (/i,/2)-value must lie. Combined
with our knowledge about the boundary curve of the patch M* (see Lemmas
2 and 5) this allows us to obtain pictures of the stereographic projections of
our surfaces which are qualitatively correct (see Figures 3 and 13-16).

5. Polar varieties, imbeddedness, and volume estimates

Let Mp be the polar variety of M = M(r/,/i,/2), defined by going a dis-
tance π/2 in the normal direction from M. It is again a minimal surface. The
polar surface of Mp is again M. Let Qp be its boundary, etc.

Lemma 6. MpcC(Qp).
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FIGURE 13

FIGURE 14

Proof. Let Π=plane {Ap, Bp', Cp)=polar plane of A=equator sphere in
spherical polar coordinates centered at A. Poles of "vertical" (i.e. passing
through A) planes in this coordinate system lie in Π. Since no points of
M = (Mp)p lie in Π, no tangent planes of Mp are vertical (in particular,
Mp does not pass through A or —A). Now project Mp to Π. This gives a



182 H. KARCHER, U. PINKALL & I. STERLING

FIGURE 15

FIGURE 16

local homeomorphism / : Mp — Π and the boundary curves project one-to-
one to Π. Therefore, / is a homeomorphism onto the "interior" component
of Π = f(Qp). So Mp c Γ\f(Mp)) (= a spindle with cross section QP),
which is contained in an open hemisphere of S2. The lemma then follows by
[6, Theorem 1].
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Note. By the same argument as in Lemma 3, Mp is unique and hence it
is the Plateau solution of Qp.

Lemma 7. M* = M*(η,hJ2) C C(Q*) {resp. M*p C C{Q*P)).

Proof. By [6, Theorem 1], together with the fact that M (resp. Mp) is
isometric to M* (resp. M* p ), it suffices to show that the intrinsic distances
from some point in M (resp. Mp) are less than TΓ. The circumference of Q,
/1+/2 + SΊ+S2, is l e s s than 4 τr/2. Two edges of Qp are #1,0:2, which are both
less than τr/2, and since r/p = 180 — ry, we also have Sp, 5 P both less than
τr/2. Since M and M p are Plateau discs we have, using two triangles, their
areas bounded less than TΓ. Hence for any piece of them f K dA < f dA < π.
Consequently there are no geodesic loops. Then, the same argument as [3, p.
108] shows that any two points of M (resp. Mp) are connected by a unique
geodesic in M (resp. Mp) shorter than TΓ. Since a minimal surface in S3 has
its intrinsic curvature < 1, we can now apply the Alexandrov angle comparison
theorem to the geodesic triangles formed by two adjacent edges of Q (resp.
Qp) and an intrinsic diagonal [9, Cor. 6.4.3]. In particular, all geodesic
secants from any vertex of Q(QP) to the opposite diagonal are shorter (<)
then the longest edge of Q{QP), hence < τr/2. The geodesic triangles formed
by one edge of Q(QP) and the segments to the midpoint of either diagonal
have all their edge lengths < τr/2, hence their intrinsic diameter < τr/2. The
lemma follows.

Lemma 8. For all (η,β\,β2) in Table 1, the surface generated by
M*(η,βι,β2) is embedded. (Compare Figure 1).

Proof. For simplicity, we consider the case (τr/3, τr/2, τr/3) in detail; the
other cases are similar. First, stereographically project so that the plane Π£
containig /£ goes to S2 and now work in R 3. C(Q*P) Π S2 = l£p. Any
"vertical" plane (i.e. vertical to S2) in spherical polar coordinates around 0
must have its normal on S2. However, by Lemma 7, any interior normal to
M* lies outside S2. Thus M* is a graph in these coordinates, and the lemma
follows. q.e.d

It was proved by Lawson that a compact minimal imbedded surface in S3

separates S3 into two diffeomorphic components. The following conjecture is
attributed to Lawson [9, p. 692].

Conjecture. Any compact imbedded minimal surface in S3 separates S3

into two components of equal volume.

The surface generated by M(τr/3, τr/2,τr/5) is a counterexample.

It suffices to prove M stays within a distance τr/2 — D (« 23,8°) of its
equator of reflections, E, where AD - 2sin(2D) = TΓ, since this tube around
E contains half the volume of S3.
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By the analysis in the proof of Lemma 8, the maximum distance from E
must occur on S{. By Lemma 1, and the remark following equations (4), S{
is convex. Hence it suffices to check that h = τr/2 - sin-^tandSf |)/tan^}
is less than π/2 — D, where φ is given by cos/?i = sin η cos φ.

Finally, by the Theorem, we know {h,h) lies within a certain region R
in (/i,/2)-space (e.g. here .54 < h < .56, .01 < Z2 < -03). This gives
max(luι2)eRh < 15° < π/2 - D (the actual value is approximately 7°) (see
Figure 17).

FIGURE 17

Remark. Computer estimates indicate the area of Lawson's three-
hold torus £1,3 is less than that of the genus three surfaces generated by
M(TΓ/3,7Γ/2,TΓ/3). This lends evidence to Kusner's conjecture [3] that stereo-
graphic projections of Lawson's n-holed tori £i,n are "optimal," in the sense
that they are absolute minima of the Willmore integral, / H2 cL4, among all
genus n surfaces. Similarly, Lawson's Klein bottle τ\^ at present is also a
candidate to be "optimal" (see Figures 18 and 19).

Added in proof. Lawson showed [5, p. 365]: If g,S are the metric
and Weingarten map of a minimal surface in a space of constant curvature if,
then g, S + h id satisfy the Gau/?-Codazzi equations for a surface of constant
mean curvature ft in a space of constant curvature K — h2. He used this
to construct constant mean curvature surfaces in R3, and exploited the fact
that geodesies, which are curvature lines, i.e., (spherically) planar geodesies
on the minimal surface, continue to be planar geodesies on the constant mean
curvature surface, i.e., lines of fixed points of a reflectional symmetry.

We rephrase his result for S3: If g, S are the metric and Weingarten map
for a minimal surface in S3, then cos2 φ g, (S + sm<p id)/cos<p are the
local data of a surface of constant mean curvature tan φ in S3 for which the
same geodesies as for the minimal surface are spherically planar. Since the
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FIGURE 18 FIGURE 19

turning angle of these planar geodesies depends continuously on tan φ, from
the degree argument in the proof of our theorem we also get the existence of
closed surfaces of constant mean curvature tan<£> for small ϋ.
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