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DEFINITE 4-MANIFOLDS

RONALD FINTUSHEL k RONALD J. STERN

1. Introduction

The paucity of positive definite unimodular integral bilinear forms which
are realized as the intersection form of a closed smooth 4-manifold is demon-
strated by the following recent theorem of S. Donaldson:

Theorem {Donaldson [4]). Let X be a smooth closed oriented 4-manifold
with positive definite intersection form θ. Then θ is "standard'; i.e. over the
integers θ^ ( l)Θ Θ(l).

This theorem was originally proved under the assumption that X is simply
connected [2], and has also been extended by M. Furuta [7] to cover X with
Hχ(X Z) = 0 by techniques similar to those used in [4]. The proofs of all
these versions of the theorem rely on quite detailed ad hoc analysis and on
the deep and difficult work of C. Taubes [9] (cf. [8]).

We have long felt that it would be worthwhile to give a proof of Donald-
son's theorem which reduced the role played by analysis and thus be more
accesible to topologists. Our work in [5] was a start in that direction. The
purpose of this paper is to give a proof of Donaldson's theorem under the as-
sumption that Hi (X; Z) has no 2-torsion while using as analytical input only
the basic work of K. Uhlenbeck [10], [11]. Our proof is in spirit similar to that
of [5], using SO(3)-connections, but makes more apparent the importance of
the "basepoint fibration" (see §2). By combining our techniques with Donald-
son's study of orientations of moduli spaces one can presumably remove our
hypothesis on H\(X; Z) as in [4, 4(c)]; however we do not know an elementary
argument that will remove this hypothesis.

As in [5] we base our proof on a useful characterization of nonstandard
integral inner product spaces. Let W be a positive definite unimodular integral
inner product space and define an equivalence relation on W by declaring
that w\ ~ u>2 if w\ = W2 (mod 2) and w\ = w\. Note that — w ~ w. Set
μ(w) = τ}φ(w' G W\w' ~ w) and call an element e EW minimal if e2 < w2

for all w = e (mod 2).
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Lemma 1.1. A positive definite unimodular integral inner product space
W is nonstandard if and only if there is a minimal element e £ W such that
μ(e) = 1, e2 > 1, and e2 φ 0 (mod 4).

Proof. For the standard form each minimal e with e2 > 1 has μ(e) even
(see [5]). Conversely, if W is nonstandard then we have an orthogonal direct
sum decomposition W — U@V where U is standard, V Φ 0, and each nonzero
v €V has v2 > 1. If i; 6 V is primitive, then since V is unimodular there is a
w € V with v w = 1. If both Ϊ;2 and w2 are = 0 (mod 4), then (v -f w2) = 2
(mod 4). Thus F has elements v such that υ2 φ 0 (mod 4).

Let e be an element of smallest square in V such that e2 ψ 0 (mod 4). For
arbitrary u + ?;E[/0Fwe have (e + 2u + 2t>)2 = (e + 2v)2 + (2u)2 > e2 since
(e + 2t;)2 = e2 (mod 4) and so (e H- 2v)2 > e2. Thus e is minimal in W.

If e2 = (e -f 2u -f 2v)2 = (e •+• 2v)2 + 4ti2, then (e + 2v)2 = e2 (mod 4); so
(e + 2v)2 > e2 and w2 = 0, so u = 0. Thus e2 = (e + 2v)2 and expanding we
see that v (e + v) = 0 . So e2 = ((e + υ) + v)2 = (e + v)2 + t;2, and (e + υ)2 < e2

unless v = 0. Thus, unless v = 0, (e + t>)2 = 0 (mod 4), and so e2 = υ2

(mod 4), hence υ2 > e2. This means e2 = v2 and (e + ι>)2 = 0, so v = —e.
Thus e + 2u + 2v ~ e iϊ and only if u = 0 and v = 0 or —e. Hence μ(e) = 1.
q.e.d.

Now fix a smooth closed oriented 4-manifold X with no 2-torsion in
Hi (X\ Z) and suppose that the intersection form of X is positive definite
and nonstandard. By surgering out the free part of Hχ(X',Z) we obtain a
new 4-manifold with the same intersection form, and so we may suppose that
Hι{X;Z2) = 0. Split H2{X;Z) = Fr# 2 (X; Z) Θ Tori/2(X; Z); so we may
consider the intersection form of X as defined on FτH2(X',Z). Since the
intersection form is assumed to be nonstandard, by Lemma 1.1 there is a
minimal e e FrH2(X; Z) such that e2 > 1, e2 ψ 0 (mod 4) and μ(e) = 1. Let
Le be the SO(2) vector bundle over X whose Euler class is e, and consider
the stabilization Le 9 ε to an SO(3) vector bundle. In §3 we shall derive a
contradiction to the existence of e by studying connections on Le 0 ε.

An SO (3) vector bundle over a 4-manifold is classified by the characteristic
classes W2 andpi. For our bundle, W2{Le®ε) = e (mod 2) andpi(LeΘε) = e2.
Any other SO(3) vector bundle E with w2{E) = ιy 2 (L e θε) must have p\{E)
differing from p\{Le 0 ε) by a multiple of 4. Thus if e2 = 4k + r where 1 <
r < 3, then the SO(3) vector bundles with the same w<ι as Le 0 ε have pi =
4m + r, m E Z. Let £ m denote the bundle in this class with p\{Em) = Am + r.
Thus Ek = LeΘ ε.

The structure group of an SO(3) vector bundle reduces to SO(2) if there is a
v e H2(X; Z) such that v = w2(E) (mod 2) and v2 = piί^1). The minimality
of e implies that the bundles Em, 0 < m < k - 1, are irreducible. Also since
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# i ( X ; Z) has no 2-torsion (and Fr HX{X; Z) = 0), Tor if2 (X; Z) = Hλ(X; Z)

has odd order. Now there are no reductions of Ek coming from Fr i/ 2 (X; Z)

other than Le Θ ε because μ(e) = 1. All other reductions have the form

e + t where 0 φ t G Tor i/ 2 (X; Z), and no two of these are equivalent up to

orientation. Thus, up to orientation, Ek has an odd number p of reductions

to an SO(2) vector bundle.

2. The basepoint fibration

For each m = 0, , k let srfm denote the space of SO(3) connections on the

vector bundle ϋ?m over X, and let <^n be the group of gauge transformations

of Em. The group %?m acts on srfm with quotient the moduli space <S$m of

connections on Em. Actually here, as in [5] and all other references, we are

working with the completions of these spaces of connections and gauge trans-

formations in appropriate Sobolev norms. As has become general practice,

we shall ignore the requisite notation. Let ^ m C 3Sm be the moduli space of

self-dual connections on Em. The Atiyah-Singer index theorem measures the

formal dimension of J(m as 2pι(Em) — 3 = 8m + 2r - 3. By the theorem of

Freed and Uhlenbeck [6], for generic metrics on X the moduli space ^ m is

empty or a manifold of this dimension for 0 < m < /c, and J^k is a manifold

of dimension 8fc + 2r - 3 with p cone singularities (corresponding to reducible

connections) whose links are complex projective spaces. (It is important here

that r φ 0 so that none of the bundles Em can be flat.)

Let sfk c J 4 be the subspace of irreducible connections. Using general

position it is easy to see that τrj(s/k*) = 0 for all j , for J^4 is an affine space and

the link in j / f c * of a reducible connection is a copy of S°°. Now 8?k acts freely

on srfk , so srf£l&k = 3%ζ ^s t n e classifying space BS'k- By [1, Proposition 2.4]

B&k is homotopy equivalent to MapA;(X, BSO(3)) the space of maps which

classify Ek. Hence &ζ = Map f c(X,BSO(3)).

If we fix a point XQ G X we may consider those gauge transformations of Ek

which act as the identity on the fiber over xO This is the group of based gauge

transformations ^ , o 5 which is a normal subgroup of ̂ . Let 3§ζ — srfk /%?k,o-

The fibration 3?k* -+ 33ζ factors into j / f c * -• 38ζ and the "basepoint fibration"

3§ζ —> 33ζ, which is a principal SO(3)-bundle. We denote the basepoint fibra-

tion by βk. The space «#£ = s/k* x &k {Pk)x0 (where Pk is the principal SO(3)

bundle associated to Ek and S?k is viewed as the group of automorphisms of

Pk). Hence an element of 3Ϊ?ζ may be considered as a pair ([A], f) consisting

of a gauge equivalence class [A] of connections on Ek, together with a framing

/ of the fiber EkjXo. When we identify 3Sζ with Map fc(X, JBS0(3)) (up to
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homotopy equivalence) the basepoint fibration βk is classifed by evaluation

at x$\

eval x o: MapΛ(X,£SO(3)) - J3SO(3).

We shall modify standard notation slightly by letting Jίζ denote ^ after

removing small open cones on complex projective spaces about each of the p

reducible connections. Let ηk denote the restriction of the basepoint fibration

βk over Jίζ.

If Σ is any immersed surface in X, we may restrict any of the bundles Em

to Σ. All of these restrictions to Σ are equivalent (to a bundle U?Σ, say) since

these restrictions have the same w<ι and p\ = 0. We consider the moduli

spaces 3&£ and 3&£ and the basepoint fibration /%>

Lemma 2.1. Suppose that Σ is a surface in X which satisfies the property

(*) Each connection [A] € Jίζ restricts to an irreducible connection in 3§£

under the restriction map r^ : Jίζ —* ^ Σ

Then if we choose a basepoint on Σ, ηk = ric(/fe)-

Proof The map Jίζ —• 3&£ is covered by a bundle map Jίζ —• 38^

taking ([^4],/) to ( [ J 4 ] Σ , / ) , where [A]Σ is restriction to Σ. This means that

-r* = r£(/fe).
Lemma 2.2. There is a one point union of a finite set of loops in X

such that the restriction of any [A] E ^*, 0 < I < k, to this finite set of loops

is irreducible.

Proof (cf., [3, §111, (in)]). Consider a point ([A], (xi, ,£&)) in Jί§ x

Sk(X), where Sk(X) denotes the symmetric product. Since [A] is irreducible

there is a finite set of loops such that the holonomy elements in SO(3) deter-

mined by A and these loops do not lie in any circle subgroup. In other words,

[A] restricts irreducibly to these loops. Deforming the loops slightly we may

suppose that they all lie in X — {xi, ,Xfc} So there is a neighborhood

U x Vι x x Vk of ([A], (xi, , Xfc)) i n 4 ) X Sk(X) such that these loops

lie in X — UΓ=i »̂ a n c ^ [^Ί ^ ^ restricts irreducibly to these loops. It follows

easily [5, Theorem 5.3] from [10], [11] that ^ 0 is compact; so ^ x Sk(X) is

also compact. Hence if we cover ^ x Sk(X) with sets of the form U x V\ x

• x Vk as above, there will be a finite subcover.

Now suppose inductively that for each 0 < k — j < k — m there is a finite

open cover of J^k-j x S*(X) by open sets of the form U x SJ'(VΊ, , F r ) ,

where S ^VΊ, , F r ) , r > j \ denotes the jth symmetric product of the open

subsets Vi, , Vr of X, and to each such set is associated a finite set of loops

in X — \jVi such that each [A] G U restricts irreducibly to this set of loops.

Consider one of these open sets U x SJ (VΊ, , F r ) . If {[A], (xi, , x m ) ) e

J^k-m x Sm(X) with xi, , x m € (jVi and if [Λ] is close enough to an
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[Af] G U when restricted to X — \jVi, then [A] must restrict irreducibly to
the associated finite set of loops. Thus we get an open set U* x Sm (Vι, , Vr)
in jrk-m x Sm{X) and for {[A], (xu , % ) ) G *7* x 5 m ( F l 5 ,F r),
xi, , z m € (J^ή [Ά] restricts irreducibly to the associated finite set of
loops. Corresponding to our finite cover of U/Γ-^Lo^-* x S%(X) we obtain
finitely many open sets in Jf\z-m x Srn(X).

Cover the rest of ^k-m x 5m(X) with open sets U' xV{ x x ζ =
t/' x Sm(VY, , V^) as in the case of Jt0 x 5m(X) so that there is a finite
set of loops in X — \J V( such that each [A1] G U1 restricts irreducibly to
this set of loops. Thus we obtain an open cover of ^k-m χ Sm(X) with
sets U x 5m(VΊ, , Vr), r > ra, and we can reduce to a countable subcover
{%} which contains all the sets U x Sm(Virm ,Vr), r > ra. If there is
no finite subcover we can find a sequence {([j4t ],χW)} in ^k-m x Sm(X)
such that ([At],x^) G % — \Ji<t %% for each t. Hence this sequence has no
convergent subsequence. Since Sk~m(X) is compact this means that {[Ai]}
has no convergent subsequence. Uhlenbeck's basic results [10], [11] then imply
that there is a finite set of points z\, ,zp EX and a subsequence {[-4 ]̂}
which converges in X — {z\, , zp} to a connection which extends to an [AQQ]
in some ^ - j , 0 < k — j < k — (m + p). Uhlenbeck's arguments show that in
the limit at each z% an 5 4 carrying an instanton of charge μi > 1 is pinched
off, and further Σμi — j — m (cf. [2]). Now {χ(*')} also has a convergent
subsequence so we may suppose that {χ(*')} converges to an χ(°°) G Sm(X).
By assigning multiplicity μi to Z{, i = 1, ,p, one obtains an element z G
Sj-m(X), and we have ([A*], (x ( o o ), z)) G ̂ Tfc-i x SJ'(X). This lies in one of
the U x Sj{Vi, , Vr) in our finite cover of ^ - i x ^ ( X ) . Thus, for large
enough i', ([Λi/],χ(*')) Gί/* x 5m(Vi, , Vr), in contradiction to the choice
of the sequence. This completes the inductive step.

To complete the proof simply use Jίζ at the top level of the argument, and
then take the finite collection of loops obtained.

This last lemma will be used to obtain surfaces Σ in X which satisfy con-
dition (*) of Lemma 2.1. Note that we can assume that the loops obtained in
Lemma 2.2 are by general position disjoint from any given surface. Then if
we connect sum this given surface with a small nullhomologous 2-dimensional
surface containing the union of the loops, we obtain such a Σ. Furthermore the
above proof can be used to produce disjoint copies of such one-point unions
of loops (with disjoint basepoints) so that each of the unions satisfies the con-
clusion of Lemma 2.2. Hence if we are given d disjoint surfaces Σi, , Σ^ in
X, we may modify them to obtain disjoint surfaces Σ'1? , Σ'd so that each
Σ[ is homologous to Σi and so that Σ^ satisfies condition (*) of Lemma 2.1.
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Proposition 2.3. // Ek restricts nontrivially to Σ, then the SO(3)
bundle /?Σ lifts to a U(2) bundle <SΣ.

Proof. It suffices to show that w2(/?Σ) € H2{β£\ Z2) lifts to an integral
class. This is carried out in [1, §9], however we shall outline a proof here.
Let Λf(Σ) = Map^(Σ,5SO(3)) and M*(Σ) = Map^(Σ, SSO(3)), the based
maps. The basepoint fibration β<z{&£ —• 3§£) is homotopically equivalent to
the inclusion of the fiber in the fibration

(*) M*(Σ) -> M(Σ) — BSO(3).

The cofibration V-S1 —• Σ —• S 2 induces the fibration

(**) M*(S2) -> M*(Σ) -+ M 1

Now M (VS1) = ΠSO(3) and M*{S2) S ΩSO(3); so π^M^VS 1 )) = 0 Z 2 ,
πi(M*(52)) = 0, and the exact sequence of (**) gives τri(Af*(Σ)) = φ Z 2 .

The adjoint construction gives an isomorphism

π 2 (M*(Σ))=Bun Σ (S 2 x Σ),

the isomorphism classes of SO(3)-bundles over S 2 x Σ which restrict nontriv-
ially to {*} x Σ and trivially to S2 x xQ. Similarly τr2(M(Σ)) = BunΣ(5 2 x Σ),
isomorphism classes of SO(3)-bundles restricting nontrivially to {*} x Σ. A
ξ G Buns( S2 x Σ) satisfies w2(£|{*} x Σ) = 1 and so is determined by the pair
{w2{ξ\S2 x zo),Pi(O) e Z2 Θ Z. For ζ e Bun£(S2 x Σ), w2{ξ\S2 x xQ) = 0
and pi gives an isomorphism Bun^(52 x Σ) —» 4Z C Z. Also p\ gives an
isomorphism BunΣ(5 2 x Σ) -> 2Z C Z (since ^ 2 ( ^ | 5 2 x x0) = Pi{ξ)/2

(mod 2)). It follows that τr2(M*(Σ)) —• π2(M(Σ)) is equivalent to multipli-
cation by 2: Z —• Z. Thus the exact sequence of (*) shows that πi(M(Σ)) =
πi(Λf*(Σ)) = ΘZ2 = π, say.

There are exact sequences:

π2(M (Σ)) —

i
π2(M(Σ)) —

— H2(M*(Σ);Z) —

I
— H2(M(Σ);Z) —

— H2(π;Z)

I-
— H2(π;Z) > 0 .

We get a splitting map H2{M(Σ); Z) -• π2(M(Σ)) by identifying H2{M(Σ); Z)
with Ω2(M(Σ)) and mapping Ω2(M(Σ)) —• Z = π(M(Σ)) by sending
[/: ΛΓ —• M(Σ)] to pi (induced bundle over TV x Σ)/2. Using pi/4 there is a
consistent splitting map: i/2(M*(Σ);Z) —• π2(M*(Σ)) so that the diagram
commutes.
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Hence there are also consistent splitting maps

# 2(M(Σ);Z)

Thus if / : N —> M(Σ) represents an element of the 2-torsion subgroup
H2{π;Z) C i/2(M(Σ);Z) then it comes from a map fx: N -• M*(Σ) and
so /I(U>2(/?Σ))

 = : 0. However w2 (/?Σ) evaluates nontrivially on the gener-
ator of π2(M(Σ)) (because τr2(M(Σ)) -• π2(£SO(3)) is surjective). Thus
i/2(M(Σ);Z) = Zθ(2-torsion) and w2(/fe) corresponds to the map ω: Zθ
(2-torsion)—> Z 2 which is trivial on the 2-torsion summand and is restriction
mod 2 on the Z-summand; so ω lifts to Zθ(2-torsion)—• Z.

Finally consider the diagram:

0 - Ext(i/!(M(Σ); Z), Z) —*ff 2(M(Σ); Z) - ^ H o m ( # 2 ( M ( Σ ) ; Z), Z) -* 0

0 -+ Ext(#i(M(Σ); Z), Z2) -> J/2(M(Σ); Z2) Λ Hom(i/2(M(Σ); Z), Z2)-+0

Then W2(βγ) maps to α; which lifts, and a diagram chase shows that w2(/fe)
lifts.

Let Σ be a surface satisfying the hypothesis (*) of Lemma 2.1 and the
hypothesis of Proposition 2.3. Let fe be the U(2) bundle obtained in Propo-
sition 2.3, and let A^ denote the complex line bundle over Uo<z<fct/^/* w ^ n

ci(ΛΣ) = r£(ci(&)). Recall that pι{Ek) = 4k + r, 1 < r < 3, and d im^t =
8fc -I- 2r — 3 so that each of the p boundary components of Jiίζ is diffeomorphic
to C P d , d = 4k -f r - 2. Let ft generate # 2 ( C P d ; Z).

Lemma 2.4. On each of the p boundary components of Jίζ we have
^ ( Λ Σ I C P * ) = ft (mod 2).

Proof. Consider the basepoint fibration ηx near a reducible connection.
The slice in Jί^ to the SO(3) orbit of this reducible connection is a copy of
C d + 1 on which the isotropy group S1 acts in the standard fashion giving
the quotient cCPd C J^k- This implies that ^ 2 ( 7 χ | c p d ) = ^ (mod 2) (cf.
also [5, p. 538]). But working mod 2, W2(ΛΣ) = CI(ΛΣ) = ^Σ(CI((5Σ)) =

= w2(ηx) by Lemma 2.1.

3. Cutting down the moduli space

Consider a family of d — 4k + r — 2 transversally intersecting surfaces
over which Ek restricts nontrivially. As explained in the remark following
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Lemma 2.2 we can modify these surfaces in their homology classes to obtain
d surfaces Σi, , Σ^ in X each satisfying the hypothesis (*) of Lemma 2.1.
Consider the basepoint fibrations β\ determined by the surfaces Σ t (where
we will of course need to use different basepoints for each Σz) and the related
complex line bundles A< over Uo</<ifc'/ /̂* Donaldson proves [3, Lemma 3.17]
by an appeal to Sard's Theorem that for each A* there is a section S{ over
/?£. such that the pulled back section through r£. vanishes transversally on
a codimension 2 submanifold W{ C\ Jt£. Furthermore the sections can be
chosen such that Wiλ Π Π W%r Π.^^ is cut out transversally for all i\, , ir

and 0 < m < fc. {Jt^ = Jtm if 0 < m < fc.) Let TV be the 1-manifold

N = jlr

k*nw1n- nwd.
Proposition 3.1. N is compact.

Proof. Consider a sequence of gauge equivalence classes of connections
{[Ai]} in N. If there is no convergent subsequence, then by [10], [11] there
are points Xi, ,Xn G X, 1 < n < fc, and a subsequence {[-Ai']} which
converges to an [AQQ] over X — {xι, , xn}, and [AQQ] extends to an element
of J£m, m < k — n (over all of X). The n points {zi, , xn} lie on at most
2n of the surfaces Σ*; so at least d - 2n of these surfaces, say Σi, , Σd_2 n

lie ΊnX - { x i r , x n } .

Now a gauge equivalence class [A] lies in Wj if and only if [A]\^j is in
the zero set of Sj. Since each [Aj] G ΛΓ, the limiting connection [AQQ] lies in
WiΠ ' ΠWd-2n^^m' Furthermore, m < fc-n; so d i m . ^ = 8m + 2 r - 2 <
8(fc — ή) + 2r — 3. However, transversality then implies that WiΠ-'-Π Wd-2n Π
Jίm is empty. This contradiction implies that N is compact.

Theorem 3.2. Let X be a positive definite smooth closed 4-manifold with
no 2-torsion in Hι(X Z). Then the intersection form of X is standard.

Proof As we have seen above we may assume that FrHι(X; Z) = 0, and
if the form is nonstandard there is an element e G FrH2(X; Z) with associated
SO(2) vector bundle Le such that e2 = 4fc + r, 1 < r < 3. Further, the SO(3)
vector bundle Ek = Le Θ ε has an odd number p of reductions to SO(2),
and none of the "lesser bundles" Em, 0 < m < fc, are reducible. So we
are in the situation above and we have a compact 1-dimensioίial submanifold
N of Jίζ. By Lemma 2.4, the number of points modulo 2 in N Π C P d is
w2(Λi) w2{Ad)[CPd] = hd[CPd] = 1 for each boundary component C P d

of e/#fc*. Hence N has p (mod 2), i.e., an odd number, of endpoints. This
evident impossibility contradicts the assumption that the intersection form of
X is nonstandard.

Acknowledgments. We thank T. Lawson for carefully reading a draft
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