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0. Introduction

In this article, we consider Poisson manifolds M, that is, manifolds (say

C°°) for which there is a bracket operation { , } on smooth functions which

has the usual properties of Poisson brackets. Poisson manifolds, apparently

first considered by Lie, have been recently studied by Lichnerowicz [18] and

by Weinstein [23]. Our main object here is the canonical complex

> Ω n + 1 ( M ) Λ Ω n (M) A nn-x{M) ->•••,

where δ is given by the formula

n

δ(foh Λ • Λ dfn) = £ ( - 1 ) < + 1 { / O , Si) dfi Λ • Λ df, Λ Λ dfn

1 = 1

A - - - Λdf3A--- Λdfn.

This differential coincides with the one introduced by Koszul [17] which he

denotes Δ.

The homology of the canonical complex is called the canonical homology

of M. From its definition, it is clear there is a map from the Lie algebra

homology H*(L,L), where L is the Lie algebra of C°°-functions on M, with

bracket { , }, to the canonical homology of M.

The relation dδ + δd = 0, proven by Koszul (where d denotes exterior

differentiation), allows us to introduce a double complex, studied in §1.3.

In the case of symplectic manifolds, we prove in §§2.2 that δ is equal, up to

sign, to *d*, where * is the symplectic analog of the * operator for Riemannian

manifolds. We then conjecture that any de Rham cohomology class has a

representative a such that da = δa = 0. Some evidence for this conjecture

is presented in §§2.2 and 2.3. We prove the conjecture for a compact Kahler
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manifold by proving that on (p, g)-forms, the symplectic * operator is equal
to a constant times the Riemannian * operator (cf. §2.4).

In §3, we use the canonical complex as a tool for studying the Hochschild
homology of noncommutative algebras which admit an algebra filtration with
commutative graded algebra. Then this graded algebra has a Poisson struc-
ture. One may use the filtration of the algebra to construct a spectral sequence
which has E°° term equal to the Hochschild homology of the algebra, and E1

term to the Hochschild homology of the graded algebra. Theorem 3.1.1 iden-
tifies the E1 term, with its differential, with the canonical complex of the
Poisson manifold given by the graded algebra.

Examples show that this spectral sequence tends to degenerate at E2. For
the algebra of differential operators on a manifold M, the E2 term is equal
to the de Rham cohomology of M (with an inversion of degrees). We relate
this to a result of Kassel and Mitschi [15], who computed the Hochschild
homology for that algebra in the algebraic and complex-analytic cases. We
thus obtain the degeneracy at E2 of the spectral sequence. Let us note that
this degeneracy has been now obtained directly [4], [5], [24].

We also study the enveloping algebra of the Lie algebra sl(2). By imitating
a famous trick of Hermann Weyl, one may restrict one's attention to the
invariant part of the canonical complex, which is very easily computed. This
trick should afford computations for higher-dimensional reductive Lie algebras
(§3.4).

There is a similar spectral sequence converging to the cyclic homology
of such algebras, which we investigate (§§3.2, 3.3, 3.4). Further results for
general Lie algebras have been obtained by Kassel [14].

We have not studied the canonical complex for general Poisson manifolds.

A local study should be possible by using suitable local coordinate systems
as in [18] and [23]. Duals of Lie algebras already have a very rich and intricate
Poisson structure, as our joint work with Borho has convinced us.

We could have derived δ from the Hochschild boundary of the first order
noncommutative deformation of the algebra of functions on the Poisson man-
ifolds, i.e. we could have used the computations of §3.1 as a way to define
δ. However, it would still have been necessary to prove δ o δ = 0 by further
computations.

We hope that the canonical homology introduced here will turn out to be
useful in the geometry of Poisson manifolds, and in their mechanics.

It is a pleasure to thank Alain Connes, Ezra Getzler, Christian Kassel,
Andre Lichnerowicz and Joseph Oesterle for their interest and for helpful
conversations. In particular, Lichnerowicz explained to me about Poisson
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manifolds and the Schouten-Nijenjuis bracket, and he suggested that I inves-
tigate the case of Kahler manifolds. Christian Kassel told me about his result
on the Hochschild and cyclic homology of the algebra of differential operators
on an aίRne variety. I am grateful to the referee for many suggestions, which
led in particular to a substantial simplification in §1.

In addition, I extend my warmest thanks to the Institut des Hautes Etudes
Scientifique for its hospitality during the period when this work was conceived
and written.

1. Construction of the canonical complex of a Poisson manifold

1.1. Let M be a C°°-manifold. A Poisson bracket on M is a complex
bilinear form { , }: Ax A -+ A where A = C°°(M) is the algebra of C°°
real-valued functions on M, satisfying the following properties:

(i) for any / £ A, there exists a (uniquely defined) vector field ξf on M
such that {/, g) = ξf(g) for all g £ A;

(ii) {/,»} =-{*,/};
(iii) {{/, g}, h} + {{g, h], /} + {{Λ, /}, g} = 0 (Jacobi's identity).
Property (i) implies in particular the relation {f,gh} = h {/, g}

+ 9 ' {/? M which will be used frequently. Properties (ii) and (iii) mean
that { , } endows A with a Lie algebra structure; to avoid confusion when
we consider Hochschild and Lie algebra homologies, this Lie algebra will be
denoted by L.

Since { , } is a local operation by (i) and (ii), it also defines a Poisson
bracket on any open set of {/, and we have a bracket { , }: 8^P x %?££ —• ^gP,
where 8^? is the sheaf of germs of C°°-functions on M.

The concept of Poisson manifold is due to Lichnerowicz, who has a more
compact formulation of it [18, pp. 254-255]. He remarks that the Poisson
bracket gives rise to a covariant antisymmetric tensor G of order 2, such that
i(G)(df Λdg) = {/, g} for f,g £ A, where i(G) denotes the interior product by
G. Such a tensor G gives rise to a bracket { , } satisfying (i) and (ii); Jacobi's
identity (iii) is then equivalent to the condition [G, G] = 0, where [ , ] is the
Schouten-Nijenhuis bracket (cf. loc. cit).

Example 1.2. Let (M, ω) be a symplectic manifold. For f £ A, let ξf
be the corresponding Hamiltonian vector field, such that ξf = I{df) where
I:T*M —> TM is the isomorphism of vector bundles on M such that

for any 1-form a and vector field ξ.
Then {/,</} = ζf{g) defines a Poisson bracket on M (see for instance [1]).
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If (pi, ,Pn,qn,'- ,Qn) are local coordinates on M such that ω
ΣΓ=i dpi Λ dqi, then the Poisson bracket has the form

dp. dq. dqi dpi)

Therefore the tensor G is given by G = ]ζ? d/dqiΛd/dpi. Hence we have G =
-Λ2(J)(u;), where Λ2(/): A2(T*M) -+ Λ2(ΓM) is the isomorphism deduced
from /.

1.2. Let M be a Poisson manifold with bracket { , }, and let G, a section
of the vector bundle Λ2(TM), be the associated antisymmetric tensor of §1.1,
such that i{G)(df Λ dg) = {/, g}. For ω € Ώk(M) a differential form of degree
A:, i(G)(ω) is a differential form of degree (k — 2).

Koszul [17, p. 265], introduced a differential Δ: Vtk{M) -• Qk'1(M) de-
fined by Δ = i(G) o d - do i(G). (However, he uses ω instead of G.) For
reasons which will become clear in §2, we prefer to use the notation δ instead
of Δ. The following lemma relates this to our original definition of 5, inspired
by Lie algebra homology and by Hochschild homology.

Lemma 1.2.1. δ = i(G) od — do i(G) is given by the following formula:

h Λ • Λ dfk) = Σ (-l) i + 1 {/o, fi}dfιΛ--ΛdfiΛ--Λdfk

+ Σ ( γ f i
l<i<j<k

Λ ΛdJjΛ Λdfk.

Proof.

δ(fodfiΛ-Adfm)

= i(G)[df0Λdf1Λ--Λdfk]

-d (-iY+J+1fo{fiJj}dfiΛ -Λdfi-Λdf]Λ--Λdfi

which gives the expression in the lemma.
An interesting feature of this formula is that it exhibits a relation of the dif-

ferential δ with the differential δ of the Chevalley-Eilenberg complex C*(L, L),
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where L = C°°(M) is viewed as a Lie algebra, and L is viewed as an L-module

(L acting on itself by derivations). Indeed recall that Ck{L,L) = L<S> {AkL)
c

and the differential δ is given by

«(/o®(/ιΛ ΛΛ))= Σ
l<i<fc

( - 1 ) < + J 7 o ® ( { / < , £ • } Λ Λ Λ Λ Λ

Λ Λ / j Λ Λ Λ )

(cf. [8], [7]).
This makes the following proposition self-evident.

Proposition 1.2.2. The linear maps π^: Cfc(L,L) —• Ωk(M) defined by

7Γfc(/oΘ(/i Λ Λ fk)) = fodfi Λ - Λdfk commute with the differentials, i.e.,

TΓfc θδ = 6 O7Γfc+i.

Formula (F) could be used as a definition of 5, but a somewhat painful

verification that δ is well defined (independently of local expressions of a

differential form) would be necessary; alternately, one might define δ using

the boundary of the Hochschild complex of a deformed algebra (cf. Example

3.1.2).

To compare the two approaches to δ, let us give two proofs of the following:

Proposition 1.2.3 [17]. 6oδ = 0.

We reproduce first KoszuΓs proof. A general property of the Schouten-

Nijenhuis bracket is that [[i(α), d], t(6)] = i([a, b]). Hence

[δ,i(G)\ = [[i(G),d],i(G)} = -i([G,G}) = 0,

since [G, G] = 0. Hence we have

δoδ = i{G) odoi(β) od + doi(G) oi(G) od

= - ί ( G ) oδod-δoi(G) od = -[i{G),δ] od = 0.

The second proof is: the question being local on M, one may check δoδ = 0

on the image of π^ (since π^ is locally surjective). But δ o δ = 0 in the

Chevalley-Eilenberg complex C*{L,L). So the same holds in Ω*(M), using

Proposition 1.2.2.

Definition 1.2.4. For (M, { , }) a Poisson manifold, the complex

> Ω* + 1 (M) Λ Ω*(Λί) Λ nk-x(M) -+

is called the canonical complex of M. This complex will be denoted C{M),

with Ck{M) = Ώk{M).
The homology of this complex is denoted i f£ a n (M), and called the canon-

ical homology of (M, { , }).
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Sorite 1.2.5. Let (M, { , }M)> {N, { , }N) be two Poisson manifolds. A

morphism from the first Poisson manifold to the second is a C°°-map π : M —*

N such that for any g,h E C°°(N), one has {g, h}κ o π = {g o π,h o τr};v

Such a morphism induces a Lie algebra morphism from LN = C°°(N) to

L M = C°°(M). Hence it follows from Proposition 1.2.3 that the pull-back

map gives a morphism of chain complexes W.(N) —• ^ ( M ) .

Sorite 1.2.6. With the notations of 1.2.5, there is a Poisson bracket

{ , }MXN on MxN such that the projections MxN - ^ M and MxTV -^ N

are morphisms of Poisson manifolds. If /i,<7i are C°°-functions on M, and

/2,ί72 are C°°-functions on iV, then

{/i IS / 2 , ̂ i H ^2}MXΛΓ = {/i, ^ I } M El /202 + /i^i Kl {/2, g2}N.

We use the notation — 123 — for the canonical algebra morphism C°°(M) (8)

C°°(iV) ->C°°(Mx N).

There is an obvious Lie algebra morphism

and the product map ISI induces a map LM ® ^iv —• LMXN of modules over

these Lie algebras. Hence we obtain a morphism of complexes:

This morphism fits inside a commutative diagram

C.(LM,LM)®C.(LN,LN)

{
C.(LMXN,LMXN) ^ ^ - +

where m{a®β) = plaAp^β for α E g^(M) = Ω*(M) and /? €
Hence we obtain a morphism of complexes m: K(M) <8)&.(N) —* ̂ ( M x iV).
In concrete terms, this means

Φ ί < * Λ P5/?) = pj(ία) Λ p*2β -h ( - l ) d e g ( α ) p l α Λ p5(^) .

1.3. The canonical double complex. In this section, M is a Poisson

manifold with Poisson bracket { , }, and δ: Ωk(M) -+ n * - 1 ( M ) is the dif-

ferential defined in 1.2. As usual d: Ωι(M) —> Ω / + 1 (M) denotes the exterior

differential.

Theorem 1.3.1 [17, p. 265]. For any k > 0, dδ -f δd induces the zero

map on Ωk(M).
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This could also easily be shown, using formula (F).

Proposition 1.3.2. Let a be a closed differential form on M. Then δa
is an exact differential form.

Proof, δa — —d[i(G)a] from KoszuΓs definition of δ.

In the case of a differential form of degree 1, we deduce:

Corollary 1.3.3. Let a = fidgi H h fndgn be a closed l-form. Then
the function {/i, <?i} H h {/n,On} is (identically) zero.

Construction 1.3.4. As we will see later, the differential δ is analogous
(and related) to the Hochschild boundary 6, and the differential d is analogous
to the operator B of Connes [9]. It is therefore natural in our context to
imitate Connes and introduce the double complex 2?. (M) which is defined by
^kι(M) = Ωι~k(M) for k, I > 0, which has d for horizontal differential and δ
for vertical differential (both of degree —1).

Ω2

Ω ι

δ

Ω°

Ώ,ι(M)
(M)_<__L

(ΛO

δ

Ω

(M)

This Connes-like double complex is concentrated on the first quadrant.
As in [11] we introduce the periodic double complex ^!? e r(M), such that
«£fΓ(M) = nl~k{M) for all kj E Z.

Problem 1.3.5. (a) Give conditions on a compact Poisson manifold M
which ensure that any cohomology class in Hk(M, C) has a representative a
such that da = δa = 0.

(b) Give conditions on a compact Poisson manifold M which ensure the de-
generacy at E\ of the first spectral sequence for the double complex '

It is easily seen that (a) implies (b).
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2. Canonical homology of symplectic manifolds

2.1. Let (M,ω) be a symplectic G°°-manifold of dimension 2m, and let
G be the antisymmetric covariant tensor of order 2 described in 1.2. Let
/: T*M —• TM be the isomorphism of vector bundles described in 1.2. We
may consider G as an antisymmetric bilinear pairing G: T*M x T*M -*
C°°(M). For any k > 0, we denote by λk(G) the associated pairing Ak(G):
Ak(T*M) x Ak(T*M) -» C°°(M), which is (-l^-symmetric. As a volume
form on M, we choose the 2m-form vu = ωm/ra!.

Imitating the star isomorphism for Riemannian manifolds, we define the *
operation *: Ωk{M) — Ω 2 m" f c(M) by the condition βA (*α) = AkG{β, a)-vM

ϊoτn\la,βeΩk{M).
Let us give some properties of this operator.
Lemma 2.1.1. Let (Mi,α;i), (M2,ω2) be symplectic manifolds of respec-

tive dimensions 2rai and 2rri2. For a\ a k\-form on M\ and a2 a k2-form
on M2, ot\ A a2 is a (fci -f k2)-form on M\ x M2 such that

*(<*i Λ a2) = (-l)* ι*2(*iαri) Λ (*2α2) = (*2α2) Λ (* l t t i) .

Proo/. The symplectic form on Mi x M2 is ω\ +α;2, hence I:T*M -> TM
is the direct sum of Ji : T*Mχ -• TM1 and of 72 :T*M2-+ TM2. Hence if G
is the covariant antisymmetric 2-tensor on M, we have G = G\ + G2. Now
if β (i = 1,2) is a differential form of degree ki on Mt, we have (for * the *
operator on M, *i the one on Mi)

βi Λ/?2Λ(αiΛo;2) = Akl+k

On the other hand βi Λ *ια^ = AkiGi(βi, ^i)vMi- Since ^M = VMI A % 2 , we
have

βi A /32 Λ *(α?i Λ α2) = f t Λ (*i«i) A β2 A (*2α2)

which proves the lemma.
Lemma 2.1.2. For β e Ω*(M), we have *(*/?) = ^.
Proof If this is known for symplectic manifolds M\ and M2, one proves

it for M = Mi x M2 since for α; G Ωfci(Mt) (ί = 1,2), one obtains

* * (αi Λ α2) = *(* 2 α 2 Λ *iαi) = (*i *i 0:1) Λ (*2 * 2 a2) = a\ Λ a2,

and since differential forms of this type generate Ωk(M), we obtain the lemma
forM.

Since the statement is local on M, we may assume that dim(M) = 2 and
ω — dpΛdq for a coordinate system (p, q). We then have the explicit formulas

(i) *(/) = fdp Λ dq for / e C°°{M),
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(ii) *ω = —ω for any 1-form ω on M,
(iii) *{fdp Λdq) = f for / e C°°(M),

which prove *(*/?) = β in this case.
Lemma 2.1.3. For a,β in Ω*(M), we have

/?Λ(*α) = (-l)*αΛ(*/7).

Proof. This is immediate from AkG(β, a) = (-l)*ΛfcG(α, /?).
Remark. The formulas concerning the symplectic * operator involve

simpler signs than those for the * operator in Riemannian geometry.
2.2. (M, ω) is a symplectic manifold. The operator 6 is defined as in §1.2,

the * operator as in §2.1.
Theorem 2.2.1. The relation 6 = (- l ) f c + 1 *d* holds on Ωk{M) for any

fc>0.
Proof First let us treat the case dim(M) = 2. We may then assume

ω = dp Adq for some coordinate system (p, q). We then have:

(i) δf = *d*f = OϊorfeC°°{My,

(ii) δ(fdp) = {/,p} = | f = *( | f dpΛdg) = - *d(/dp) = *d* (/dp);

(iii) «(/dg) = {/,,} = - | £ = - ( |f dp Λ dg) = - • d(/d^) = *d * (/dj);

(iv) δ(fdpΛdq) = {/,p}dβ - {/,^}Φ =i£qdq+%dp = df = -*df =

- *d* (fdpAdq).

Hence the theorem in this case.
The rest of the proof is an induction on dim(M). Replacing M by a suit-

able open set, we may assume M is the product of two symplectic manifolds
(Mi,ωi), (M2,uλ2) of positive dimension. Assume the theorem known for M\
and M2. Then using Lemmas 2.1.1 and 2.1.2, and denoting by the symbol *
the * operator for Mu M2 and M = Mi x M2, for c^ € Ωfc<(M<) (t = 1,2)
we have

Λ *c*i) = *(d* α 2 Λ

= αi Λ (*d * α2) + (-1)*2 (*d* αi Λα2)

= (- l )* a + 1 αi Λ (5α2 + . ( - l ) * 1 + f c a + 1 ( ί α i Λ α2)

where we use 1.2.6 in the last step.
This finishes the induction, and the proof of the theorem.
Corollary 2.2.2. The operator * establishes an isomorphism of the

canonical homology group H™n{M) with the de Rham cohomology group
H2m~t(M) for M a symplectic manifold of dimension 2m.
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This implies a sort of Poincare lemma for symplectic manifolds. To state it,
let us denote by g\ M the complex of sheaves on M such that P{U,%[_. M) =
2u(f/) for any open set U of M. As usual, KM is the constant sheaf on M.

Corollary 2.2.3. The morphism of complexes of sheaves RM[—2 m ] —•
£?•> which sends 1 to the section VM ofψ_2γn — Ω 2 m , is a quasi-isomorphism.

We denote by C%°{M) the vector space of C°°-functions on M with com-
pact support, and by /: C£°(Af) —> R the linear form /(/) = fM f VM

The following result is due to Calabi [6] and Lichnerowicz [18].
Corollary 2.2.4. The kernel of I is the vector space generated by

Poisson brackets {f,g}, where f,g G C£°(M).
Proof. *: C^°(M) —• Ω;?m(M) induces an isomorphism from

C™(M)/δΩι

c{M) to Ω*m{M)/dΩ*m-ι{M). This latter vector space is one-
dimensional. We deduce that ker(/) is equal to Ωj(M). Using a partition of
unity, we see that any a 6 Ω*(M) has a finite expression a — Σx fjdgj,
where fj and gj have compact support, q.e.d.

Recall the Lie algebra L = C°°(M), endowed with the Poisson bracket.
Then C™{M) is an L-module. Let B: C™(M) x C™{M) -* R be the bilinear
form defined by B(f, g) = l(fg) = fM fgvM

Proposition 2.2.5. The bilinear form B is L-invariant, i.e.,

for f,ge CC°°(M), heL = C
Proof B({f, Λ}, g) + B(/, {g, ft}) = /({/, h}g) + l(f{g, h}) = l{{fg, ft}) =

0 using 2.2.4.
Remark 2.2.6. This proposition means that the L-module CQ>(M) is

self-dual in a certain sense. In particular, there is a duality between the Lie
algebra homology H*(L,L) and the Lie algebra cohomology H*(L,L) con-
sidered in [18] (at least for M compact). One might compare our complex
-> Ω*(M) Λ Ω^-^M) -> with the complex of [18], -+ AιTM Λ Aι+ιTM,
using the natural isomorphism VlkM —* A2m~kTM. However, it seems more
natural to compare Lichnerowicz's complex directly with the de Rham com-
plex. In loc. cit. the cohomology of this complex is shown to be the same as the
differentiable Lie algebra cohomology Hdiff{L,L). It follows that this differ-
entiable Lie algebra cohomology is none other (for symplectic manifolds) than
the de Rham cohomology. For compact symplectic manifolds, we conjecture
that Problem 1.3.5(a) always has a positive answer, i.e.,

Conjecture 2.2.7. If M is a symplectic manifold which is compact, any
cohomology class in H*(M, C) has a representative a such that da = δa = 0.

Such a form a may be called (symplectically) harmonic, by analogy with
the Riemannian case. Notice however that Theorem 1.3.1 says that the
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"Laplacian" dδ + δd is identically zero. We present below some fragmen-

tary evidence for the conjecture, which might well be true for a large class of

noncompact symplectic manifolds (cf. Corollary 2.2.13).

Proposition 2.2.8. If a is a closed 1-form on M, then δa — 0.

(This is just a restatement of Corollary 1.3.2.)

Proposition 2.2.9. For any j , δ{ωj) = 0.

Proposition 2.2.10. Conjecture 2.2.7 is true if M = R 2 n / Γ , where Γ C

R 2 n is a discrete subgroup, and R 2 n is endowed with the standard symplectic

structure.

2.2.9 and 2.2.10 easily follow from the following lemma, where (<7i, ,qn\

Pi, * * >Pn) are canonical coordinates such that ω = Σ™ dpi Λ dq%.

L e m m a 2.2.11. For a = dqi1 Λ Λ dqik Λ dpji Λ Λ dpji, δa = 0.

Proof Immediate from formula (F).

More evidence for the conjecture is given in the rest of this section. Let us

just point out here the elementary

Proposition 2.2.12. Let M be a Poisson manifold with Poisson bracket

{ , }. Let N be a manifold, π: M —• N be a C°° map such that:

(i) for any f,g 6 C°°(N), we have {/ o π, g o π} = 0;

(ii) π* : H*{N,C) -> # * ( M , C ) is surjective.

Then Conjecture 2.2.7 is true for M.

Corollary 2.2.13. For any C°° -manifold N, the symplectic manifold

M = T*N satisfies Conjecture 2.2.7.

Proof Apply 2.2.12 to the projection map T*N -• N.

2.3. Degeneration of a spectral sequence. We prove here the degen-

eracy of the first spectral sequence for the double complex W.. (M) in case M

is a symplectic manifold. This answers Problem 1.3.5(b) in that case.

First we need to explain the meaning of degeneration at Eι of the first

spectral sequence for a complex ^«* which satisfies ΨVΆ — 0 for p > q. We

denote by d the horizontal differential (of degree —1) and by δ the vertical

differential. We remark that for (p, q) fixed, there exists an integer ro such

that Er

p+q

ι injects into Er

p q for r > ro (this follows since £7J + r > ς _ r + 1 is 0 for

f > ro) and also E™q injects into Er

pq. We say that the first spectral sequence

degenerates at E1 if

(a) dr = 0 for r > 1,

(b) for each (p,ςr), the injection E™q ^-+ Er

p°q ~ Epq is an isomorphism.

Theorem 2.3.1. For M a compact symplectic manifold M, the first spec-

tral sequence of the double complex W.?eτ(M) degenerates at E1.

Proof We simply compute Epq and E^q, and observe that they are iso-

morphic. First we have E\_q = f ^ _ p ( K ( M ) ) = H2m~^p{M). Next, we
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use Corollary 2.2.3 to construct, for any k G Z, a morphism of complexes
<Pk' EΛ/[- 2 m - 2fc] ~> Tot(£ p e r ) where "Tot" means "total complex of a
double complex," which send 1 G R M to vM = ωm/m\ G ^Im+fcί^) =

Ω 2 m(M). (The point is that <5(vM) = 0, by Proposition 2.2.6.) Here K. is the
double complex of sheaves on M, with 2 ^ Γ == Ωg~p. It is clear that 0 cpk in-
duces a quasi-isomorphism of complexes of sheaves from @keZ R M [ - 2 m — 2k]
to Tot(ΐf ?.er), i.e., it induces an isomorphism on cohomology sheaves since the
sheaves W^q = Ως~p are fine, the hypercohomology of the complex of sheaves
Tot(i[?.er) is equal to the hyperhomology of g? e r (M). On the other hand,
the hypercohomology of RM[—2m — 2k] is equal to H%(M, C) in bi-degree
(Jfc,2m + fc-i)

Remark. For A' a complex of sheaves and m G Z, we have denoted by
A'[m] the same complex, shifted m steps to the left.

Observe the following:

Lemma 2.3.2. // X is a compact space and &~ = lim ^\ is a direct

limit of sheaves of abelian groups on X, then Hι(X,^) = lim Hι(X,&\).

For i = 0, this is proven in [10, Theoreme 3.10.1]. For all z, one computes
using Godement's canonical resolution of ^ , and one observes

that a direct limit of flasque sheaves on X is soft (see loc. cit.).
This lemma implies that the cohomology of a direct sum of sheaves is the

direct sum of their cohomologies. The same holds for hypercohomology of a
direct sum of bounded complexes of sheaves (using the spectral sequence for
hypercohomology).

In our case, we deduce that the hypercohomology of

kez

is equal in bi-degree (p,q) to # 2 m -«+P(M). So we conclude E™q =
2+ l

2.4. We consider here a Kahler manifold M. So M is a complex manifold
endowed with an hermitian metric H. We denote by ω the imaginary part of
H, which is a real 2-form on M. Since M is Kahler, dω — 0, so (M, ω) is a
symplectic manifold. We denote by g the real part of i/, which is a Riemannian
metric on M. Classically, g determines a * operator *: Ωk(M) —• Ω2n~k(M)
determined by the equality (cf. [21])

where vg is the volume form associated to g. In fact vg = vu with the
notations of 2.1. On the other hand, ω determines an operator *: Qk(M) —»
Ω2 n" f c(M) as in 2.1.
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Theorem 2.4.1. For a G Ω M (M), we have

*ω(α) = (y/=ϊ)p-q *g (a).

Proof. We take local complex coordinates (21, , zm) such that

ω =
2 Ί

(modulo terms which vanish to order 2 for z\ = = zm = 0). Putting
Zi = Xi + y/^ϊyi, we have ω = ΣT dx{ Λ dt/i, hence (d/dxi,d/dyj) form an
orthonormal basis with respect to g. Hence the dual form G of ω is given by
G = Σ™ d/dyi Λ d/dxi, and the dual form ^~1 of g is given by

(έ)
g-1{dzidzi) = 2andG(dzidzj) = g-ι{Hence G{dzudzi) ^2-y/::ϊ, g-1{dzi,dzi) = 2andG(dzi,dzj) = g-ι{dzi,dzj)

= 0 for i ^ j . Hence G(α, /?) = y/^ϊg~1(a, β) if α, ̂  are differential forms of
type (1,0) and G(α,/J) = -x/^T^- 1^,^) if α,/? are_of type (0,1). If a,β are
1-forms of different types, both G(a,β) and ̂ ~1(o;,/?) are 0.

It follows that if α is a differential form of type (p, q) and 7 a differential
form of type (</, p), then for k — p + q

from which the theorem follows.
Corollary 2.4.2. Let a be a harmonic form on the Kάhler manifold M,

if pure type (p, q). Then δa = 0, where δ is the operator o/§l.
Proof. If a is harmonic, then *gd *g (a) = 0. It follows from Theorem

2.4.1, and the fact that a is of pure type, that δ(a) = *ωd *ω (a) is also 0.
Corollary 2.4.3. // M is a compact Kάhler manifold, then any co-

homology class of M has a representative a such that da = δa = 0.
Proof. The Hodge theorem for compact Kahler manifolds says that the

cohomology of M is generated by the classes of harmonic forms of some pure
type (see [22]).

It remains to apply Corollary 2.4.2.
Remark 2.4.4. 2.4.1 and 2.4.2 still hold for an "almost Kahler" manifold

M. I thank the referee for this observation.

3. Application to the Hochschild homology
of noncommutative algebras

3.1. We work here in the following purely algebraic context. We are
given some noetherian ring k of characteristic 0, and some fc-algebra A which
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is equipped with a filtration {An)nez which is a ring filtration (we have An C
i4n +i, A = U n Λι, Πn ̂ n = 0, An Am c An+m). We assume that the graded
ring Gr(Λ) = φneZAn/An-ι is a commutative fc-algebra, which is smooth
over k. We denote by Π^ r^w fc the relative differential forms of Grothendieck
[12, Chapter II, §8] ̂ Gτ(A)/k i s t n e Q u o t i e n t of t n e exterior algebra generated
over A by symbols da (o€A), by relations d(x, y) = xdy + y dx, and dλ = 0
for λ G k.

Then the Hochschild complex C(A) = C(A, A) has an increasing filtration
Fk such that

Fk(Cn(A)) = Fk(A*tn+») = £ [Akl β Λfca β • ® Afcn

Hence we get a spectral sequence with E^q — Hp+q(Gr(A),Gr(A))p the
homogeneous part of degree p of the Hochschild homology group
Hp+q(Gτ(A),Gτ(A)), and E? = ffn(A,A).

Now a slight generalization of a theorem of Hochschild, Kostant and
Rosenberg [16] (they treat the case where k is a field) asserts that the natural
map β: Hm{Gr{A), Gr{A)) -+ Ωg r ( Λ ) / f c given by

β(a,Q 0 Θ αm) = —-aodai Λ dα2 Λ Λ dαm

is an isomorphism, with inverse given by η:

η{aodaι Λ Λ dαm) = class of ] P ε(σ)α0 ® ασ(i) ® ® α σ ( m ) ,

where 6 m is the group of permutations of {1,2, , m} (see also [19]).

Now on Gr(-4) we have a A -linear bracket operation; for / G Gr(A)j, g G
Gr(i4)/ choose P G Aj which maps to / under the canonical map Aj —>
Gr(A)j, and Q E Aι which maps to g; then PQ - QP belongs to AJ+/_i, and
{/,#} is the class of PQ - QP in Gr(A) i + i_i.

This satisfies all properties of Poisson brackets listed in §1.1. Since here
we are considering an algebraic scheme over k, rather than a C°°-manifold,
(i) simply means that for / G Gr(A) fixed, the map g ι-> {/,</} is a A -linear
derivation of Gr(A). In short, Gr(A) is endowed with a Poisson bracket, hence
we have the complex —> ί l ^^w^ —* ΩlQT\A)/k —• introduced in §1.2.

All the results are constructions in §1 and §2, up to Theorem 2.2.1, are still
valid in this new context.
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Theorem 3.1.1. For any n > 0, we have a commutative diagram

El = Hn(Gr(A), Gr(A)) —*-+ Ωg r ( A ) / f c

I-
Ek.ί=Hn.ι(Gr{A),Gτ{A)) - f - n ^ ) / f c

• > n - l

where d\ is the differential in the spectral sequence.
Proof. It is enough to prove that δ = βod\ 07. Now ΠJ rμw f c is generated

by elements of the form x^dxi Λ Λ dxn, where X{ G Gτ(A) is homogeneous,
say of degree ra*. Let m = mo + m\ + h mn. Choose α̂  in Λm, mapping
to art under ^4mi —• Gr(Λ)m.. First we have

This lifts to the chain Eσ€6n
 ε(σ)ao ® «σ(i) ® ® ασ(n) of F

Its Hochschild boundary is the sum of three terms (I), (II), (III), with

(I) = Σ ε{σ)a0aσ{1)®aσ{2)® ®aσ{n),
σ€&n

(II) = J2 X) ε(σ){-lγa>o ® ̂ (1) ® ' ' ' ® ασ(t)α

σ l<i<n-l

(III) = ̂ ε { σ ) ( - l ) n a σ { n ) a 0 ® aσ{1) 0 <g> α σ ( n _i) .

This Hochschild boundary lives in Fm_i(A®n) and we want to find its
image in F m _ ! ( A ® n ) / F m _ 2 ( ^ n ) = [Gr(A)®n]m_L To this purpose, we
first rewrite (I) as follows (transforming σ E &n to σr where r is a cyclic
permutation):

(I) = Σ (-l)n + 1ε(σ)αoασ(n) ® aσW ® ® aσ{n_iy

Since

(I) + (IΠ)= Σ
σ€&n

it belongs to Fm-iiA®71); its image in [Gr(Λ)Θn]m_i is equal to

Now using the transformation σ »-• σŝ  of &n to itself, where «» is the trans-
position which exchanges i and i + 1, we get

(II) = J2 2 Σ s f a X - 1 ) ^ ® •" ® ["σ(i),aσ(i+i)\ ® " ® aσ{n).
σ KKn-1
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So (II) belongs to F m _i(A ( g > n ), and its image in [Gr(Λ)®n]m_i is

9

So we have computed d\ o 7 ( x o ^ i Λ Λ <ixn) It remains to apply /? to this.

Now, for the sum

0 , Xσ(n)} ® *σ(l) ® ' ® ^σ(n-l)

notice that all σ with σ(n) = i fixed give the same value for β{{xo,xσ{n)} ®

z<τ(i) ® *' ® Xσ(n-i))- This value is

,n_1u ' (-l)n"*{a:o, Xi} dxi Λ Λ dit Λ Λ dz n ;

since there are (n — 1)! such permutations, we find for each i the expression

(A) = (-l)*+ 1{x0 )a;t}da;i Λ Λdόti Λ Λdxn.

We have to sum these for 1 < i < n.

Next, all pairs (σ, i) such that the set {σ(i),σ(i -f 1)} is equal to some

fixed set {j, k} (say j < k) give the same value for β(ε(σ)(—l)ιxo ® * * ®

{xσ(i),xσ(i+i)} ® ' ® Xσ(n)), namely,

(—IV'"1"*
•y—^---τXod{a;j, Xjfc} Λ dx\ Λ Λ dxj Λ Λ dx^ Λ Λ dz n .

There are 2(n — 1)! such pairs (σ, %). Therefore the second term in

βdιη(xodxι Λ Λ c?xn) is equal to

(B) = ] P (-l)j+kxod{xj, xk} Λ dxi Λ Λ dx3 A Λ dxk Λ Λ dxn.

Now (A) + (B) coincides with the formula for δ(xodxι Λ Λ dxn) given in

§1.2. This proves the theorem.

Example 3.1.2. Let L be a commutative Q-algebra and let B be a

smooth L-algebra endowed with a Poisson bracket { , }. Then one may

construct an algebra A over L[ε]/(ε2) = k as follows: A is equal to B ® L k as

a Λ -module and the multiplication in A is given by {XQ + εx\) (yo + ει/i) =

xo2/o + £({zo?2/o} + χi2/o + soίίi) (for x», j/^ G 2?). We filter A by F0(A) = A,

F_i(A) = β c A F-2{A) = 0. Then A is a filtered A -algebra, and Gr(Λ)

is isomorphic, as a fc-algebra, to B <8>L k. In our spectral sequence, we have

therefore

— llBk/k — \lίB/LJ ® Λ —
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According to Theorem 3.1.1, the differential d\ induces the m a p ε δ: Ω ^ / L —•

O n ~ x . F
lίB/L ε'

We could have used this construction in §1.2 to define δ. However, it is not
clear from this approach that δ o δ — 0, unless of course there is an algebra A
over L[ε]/(ε3) such that A/(ε2) is isomorphic to A.

Deformations of smooth commutative algebras (often called "star-
products" ) have been intensively studied by mathematicians and mathemat-
ical physicists in the last few years (see [2] for example).

3.2. We keep the notations of §3.1. We also assume that the unit 1
in A belongs to AQ. Recall the double complex C(A) of Connes [9], with
Cij{A) = 4®tf-*+1) for A:, I > 0, with horizontal differential B and vertical-
differential b.

We filter this double complex in a somewhat strange way, which will be
convenient for our purposes. We let Fk{C..(A)) be the sub-double complex
such that Fk{dj{A)) is the subspace of elements of Cij{A) = A®W-<+1) of
filtration < Jfc-i, i.e. Fk{dj{A)) = Fk-i{A^-i+1^) in the notations of §3.1.

The quotient double complex Fk/Fk-ι has (z,y)-component equal to
[Gr(A)®(J~ι+1)]k-i Because B is homogeneous of degree 0, the horizontal
differential is 0; the vertical differential is b. Therefore this double complex
is quasi-isomorphic to the complex which has Ω ~̂* in bi-degree (i,y) with
hj > 0, and which has zero differentials. This gives the E1 term of the
spectral sequence. Then the complex (Eι,d\) is the total complex associ-
ated to the double complex W..(M) of §1.3 (where M is the Poisson scheme
Spec(Grμ))).

Therefore the E2 term of the spectral sequence is the hyperhomology of
this Poisson double complex (with horizontal differential d, vertical differential
δ).

Similar considerations apply to the periodic Connes complex of A, filtered
in the same manner. The E2 term of the spectral sequence is then the hyper-
homology of g? e r (M).

3.3. In this paragraph, M is either a C°°-manifold, or a Stein complex
manifold, or an affine algebraic variety over a field fc of characteristic 0. We let
D(M) be the algebra of C°° (resp. complex-analytic, resp. algebraic) globally
defined differential operators. We are interested in the Hochschild homology
of D(M). Of course, in the first two cases, we endow D(M) with its natural
structure of locally convex topological algebra, for which D(M) is complete
(if M is connected, D(M) = lim Dm(M), where Dm(M) is the subspace

•m

of differential operators of order < m, so D(M) is given the inductive limit
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topology). Then the Hochschild homology is defined in [9] using the com-
plex C{D(M)) = ^ ( M ) ® ^ 1 ) (where 0 denotes Grothendieck's completed
projective tensor product, as in [9]).

Since D(M) is filtered by the Dm[M), we may apply §3.1 to get a spec-
tral sequence with E* = Hn(grD(M),grD(M)). This spectral sequence
converges to E™ = Hn(D(M),D(M)). Let us first examine the algebraic
case, which is easier. We then have Hn(grD(M),grD(M)) = Hn(^(T*M),
&(T*M)) = ^τ*{M)/k w h e r e T*(M) is the cotangent bundle of M, and
<f(T*M) the algebra of regular functions on T*(M). Using Theorem 3.1.1,
the E2 term is the cohomology of the complex

If dim(M) = m, Corollary 2.2.2 tells us that E% is equal to H^-n(T*M) (de
Rham cohomology). This is equal to i/{5^~n(M); if k = C, this is isomorphic
to the ordinary de Rham cohomology of the C°°-manifold M.

On the other hand, Kassel and Mitschi [15] prove that Hn{D(M), D{M)) =
Hζ™~n{M). We therefore conclude

Theorem 3.3.1. // M is a smooth algebraic variety over a field k of
characteristic 0, then E* = E™ = H^~n{M).

Now the above considerations easily generalize to the case where M is
a Stein complex manifold, except that ΩJΦ/Mx is replaced by the space of
holomorphic differential forms on T*(M) which are algebraic along the fibers
of T*M -> M. Anyway, we still get E*=E%>= i ί ^ " n ( M ) .

In the C°°-case, we can only conclude that E\ — H^~n(M) (where m
is now the real dimension of M). We do not have the result of Kassel and
Mitschi in this case, but the degeneracy of the spectral sequence is proven in
[5] and [24].

Let us remark that for M a complex-analytic manifold, [/ C T*M a Stein
conical open set, we may filter the algebra έP(U) of holomorphic pseudo-
differential operators defined on U (see [3]) by their order, and obtain a spec-
tral sequence with E* = H^~n{U) and E%> = Hn{&>(U),&>(U)). It is not
hard to generalize the result of Kassel and Mitschi, and obtain the degeneracy
of this spectral sequence.

Now consider the cyclic homology of D(M), say for M an affine algebraic
variety. The term E of the spectral sequence constructed in §3.2 is the hy-
perhomology of the double complex of loc. cit. According to Corollary 2.2.13,
the first spectral sequence for this double complex degenerates and we obtain

θ .
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From the results of Kassel and Mitschi [15], and from the above, it is reason-
able to imagine that this is exactly HCn(D(M)). This is actually proven in
[5], [6] and [24].

3.4. Here k is a field of characteristic 0, g is a finite-dimensional Lie
algebra over A;, and A = U(g) is the universal enveloping algebra filtered by
An = Un{g) (elements of order < n). The associated graded algebra gr(A) is
the symmetric algebra 5(g), which is the algebra of regular functions on the
dual space g*. The Poisson complex (with Ω** =

is very hard to work with, however what we are really interested in is the
Hochschild homology H+(A,A). Let us note the following elementary lemma,
valid for any associative A -algebra A. For any A-bimodule M, the standard
Hochschild complex C(A,M)

> M ® A®n Λ M ® A®(n~V
k k

admits, for any a £ A, an endomorphism La defined by

La(m ®x ι ® ® xn) = [a, m] ® xx ® - 0 x n + ^ x\ (8) - ® [o, Xj] ® ® xn

2 = 1

where we put [α, m] = (α (8) 1 — 1 0 α).ra.

Lemma 3.4.1. For any A-bimodule M, the endomorphism of H*(A,M)
induced by La is zero for any a £ A.

Proof La defines an endomorphism of the homological functor M \-*
(Hi(A,M))i>Q. We prove, by induction on i, that La acts trivially on
Hi(A,M). For i = 0, it is clear, since HQ(A,M) is a quotient of M by
^ b € > 1 Lb(M). Now if we know the result for i (and all bimodules A), to prove
it for 2 + 1, choose an exact sequence 0—• JV —> F —> M —•OofAΘ A°-
modules, where F is free. Then Hi+ι(A,M) injects in Hi(A,N); since La

acts trivially on Hi(A,N), it acts trivially on iϊi+i(j4,M).
Let us return to A = U(g). The lemma implies that the adjoint action of g

on Hn(A,A) is trivial. Now assume g is reductive; then the spectral sequence
of §3.1, with E^ = Ωg*, has the same E°° term as the g-invariant part of the
spectral sequence. So we may just work with this smaller spectral sequence,
whose E2 term is the homology of the g-invariant part of the Poisson complex

Let us illustrate this in the case g = sl(2). We take a basis (H,X,Y) of g
such that [H,X] = 2X, [H,Y] = -2Y, [X,Y] = H. The Poisson bracket on
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s(g) is given by the following formulas:

Let us explain how one describes [Ω™ ]9, the space of g-invariant differential
forms of degree n on g*. We have

For a general reductive Lie algebra g, and an arbitrary finite-dimensional
representation V of g, a theorem of Kostant [16] states that HomQ(V,S(g)) is
a free module over S(g)9 of rank equal to the dimension of the zero weight
space of V. The degrees of the generators, in case V is irreducible, are called
the generalized exponents for V, and are described in [16].

In our case, all Λn(g*) are irreducible and have a one-dimensional zero
weight space. Therefore, for n = 0,1,2,3, [Ω£*]0 is a free S(g)9-module
of rank 1. The algebra s(g)ΰ is the polynomial algebra in the variable
u = 2XY + H2/2 (Casimir element). From this we easily obtain [Ω°*]9 = k[u],
[Ω*-]9 = k[u] du, [Ω*.]« = k[u] a, with a = HdXΛdY+YdHAdX-XdHΛdY
and [Ω**]9 = k[u)-β, with β = dXΛdYΛdH. The differential δ is φ]-linear,
since {u, /} = 0 for any / G 5(fl). We have δ{du) = 0, ί(α) = du, 6{β) = 0.
Therefore, our complex is:

k[u) β Λ ifc[ti] α - ^ *[u] dw Λ fc[u]

I I I I
degree 3 degree 2 degree 1 degree 0

Theicfore its homology is k[u) in degree 0, k[u] β in degree 3, and 0 in all
other degrees.

This fits very well with the results of Masuda, who computed the Hochschild
homology of A [20]. For the Poisson double complex considered in §3.2, the
homology is:

k[u] in degree 0;

0 in degree 1;

k in degrees 2,4,

k[u] β in degrees 3,5, .

This is the E2 term of the spectral sequence which converges to HC*(A).
This spectral sequence cannot degenerate at E2 because Masuda [20] shows
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To conclude, let us remark that the Poisson structure on g* has a very rich
geometric structure (the leaves are the g-orbits, with the symplectic struc-
ture of Kirillov), and one might wish to relate the Poisson homology to this
geometry (which plays an important role in the beautiful work of Kostant).
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