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Introduction

Using the moduli space of anti-self-dual connections on S"£/(2)-bundles,
Donaldson has introduced new invariants for closed, smooth 4-manifolds. The
invariant of interest to us here is defined for simply connected, oriented
4-manifolds M of type (l,w) for any n > 1 (type (1,») meaning that the
self-intersection form qM\ H2(M;Z) -» Z defined by qM{x) = jMx U x is
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isomorphic to the form x2 - y\ — • • • —yl on Zn+l). Any two simply con-
nected 4-manifolds of type (1, n) are homotopy equivalent, and consequently
A-cobordant [22]. By Freedman's result [13], they are also homeomorphic. As a
first application of his invariant, Donaldson showed [8] that not all such
manifolds are diffeomorphic. This provides the first example of simply con-
nected /*-cobordant manifolds which are not diffeomorphic. More explicitly,
he showed that two well-known simply connected algebraic surfaces of type
(1,9) are not diffeomorphic.

We describe briefly these examples. Begin with the complex projective plane,
P2. Blow up the 9 points of intersection of two generic cubics. Call the
resulting algebraic surface X. It is elliptic in the sense that there is an algebraic
map m: X -» P1 with generic fiber an elliptic curve. Being the result of blowing
P 2 up at 9 points, X is diffeomorphic to P2 connected sum with 9 copies of
P2, the complex projective plane with the orientation reversed. Thus, X is
simply connected and of type (1,9).

Now suppose we have a pair of natural numbers (p,q). We form a new
algebraic surface S(p,q). It is obtained from X by performing log transforms
at two of the smooth fibers of TT, one of order p and the other of order q.
There is an algebraic map m\ S(p, q) -> P1 with generic fiber an elliptic curve
and with two multiple fibers of multiplicities p and q. The diffeomorphism
type of S(p,q) depends only on the unordered pair (p9q). Dolgachev [6]
showed that if g.c.d.(/?, q) = 1, then S(p, q) is simply connected and of type
(1,9). Also, S(l9q) is diffeomorphic to X for q > 1. Thus, we shall use the
term Dolgachev surface to mean an algebraic surface of the form S(p, q) for p
and q relatively prime and p,q > 1.

Donaldson's example is then the following: 5(2,3) and X are not diffeomor-
phic.

Our first result is a strengthening of Donaldson's. It is proved using the
same invariant.

Theorem 1. (a) There is a function n(p,q) from unordered pairs of relatively
prime natural numbers greater than 1 to the natural numbers satisfying

(i) n(p,q) > pq- p - q.

(iii) / / S(p,q) and S{p',q') are diffeomorphic Dolgachev surfaces, then
n(P,q) = n(p',q'\

(b) No Dolgachev surface S(p,q) is diffeomorphic to the rational surface X.
Corollary 2. (a) The function from unordered pairs of relatively prime integers

greater than 1 to diffeomorphism classes of 4-manifolds given by (p,q) •-> {class
of S(p,q)} is finite-to-one. In particular, there are infinitely many algebraic
surfaces all homotopy equivalent to X, no two of which are diffeomorphic.
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(b) / / the Dolgachev surfaces S(2yq) and S(2,q') are diffeomorphic, then
q = q'.

Corollary 2(b) has been obtained independently by Okonek and Van de Ven
[25]. They calculate the appropriate moduli spaces of stable bundles by an
argument which is very similar to our Part Two, §§3-4. However, they bypass
the analysis of the chamber structure which we give in Chapter II, essentially
by deducing the necessary information about chambers from the existence of
the Donaldson invariant.

N.B. It is natural to conjecture that if the Dolgachev surfaces S(p,q) and
S(p', q') are diffeomorphic, then (/?, q) = (/?', q') as unordered pairs.

Corollary 2 contrasts markedly with a result in dimensions > 5 which says
that specifying the homotopy type and the Pontrjagin classes of a smooth,
simply connected manifold determines its diffeomorphism type up to a finite
number of possibilities [29]. (Recall that for a 4-manifold M4 , px(M

4) =
3(signature(Af)), so that specifying the homotopy type of M 4 specifies its
Pontrjagin class.) Thus, according to Corollary 2, differentiable classification
of simply connected smooth 4-manifolds differs qualitatively from the classifi-
cation of higher dimensional manifolds.

These results are stable under blowing up. Recall that if Y is a complex
surface and if {px,- • -,pr) are distinct points in 7, then there is a complex
surface Y and an analytic map p: Y -> Y which induces an isomorphism
Y — p^flJ ,-/*,•) -> Y — U, pt and for which p~l{pt) is isomorphic to P1, 1 < i
< r. These P^fibers are called the exceptional fibers of p. They have self-
intersection equal to - 1 . This process, which is unique up to isomorphism, is
called "blowing Y up at {Pi,-—,pr}" or less precisely, "blowing Y up r
times." The surface Y is diffeomorphic to 7 # r P 2 . In particular, the diffeomor-
phism type of Y depends only on that of Y and on r. Furthermore, if Y is of
type (1, n) then Y is of type (1, n + r).

Here is the result which says that Theorem 1 is stable under blowing up.
Theorem 3. Let r > 0. Let S and S' be blow ups at r points of Dolgachev

surfaces S = S{p,q) and S' = S(p\q'). If S and S' are diffeomorphic, then
n( P-'Q) = n( Pi Q'Y Furthermore, S is not diffeomorphic to a rational surface.

As an immediate corollary we have
Corollary 4. 7/5(2, q) is diffeomorphic to 5(2, q'), then q = q'.
Since S(py q) is of type (1,9 + r), Theorem 3 implies that for every n ^ 9,

there are infinitely many distinct diffeomorphism classes of simply connected
manifolds of type (1, n) (i.e. of manifolds homotopy equivalent to P 2 # « P 2 ) .
In view of Freedman's theorem [13], we can formulate this as follows: for every
n > 9, the topological manifold P 2 # « P 2 admits countably many distinct
smooth structures.
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Theorem 3 contrasts markedly with a stabilization result due independently
to Mandelbaum and Moishezon: if Y is a complex surface, denote by Y the
anti-complex blow up of 7, so that Y is diffeomorphic to 7#P 2 . Then for
every Dolgachev surface S(p,q), S(p,q) is diffeomorphic to X, see [20] and
[23]. Thus, while any number of complex blow ups preserve the C°° distinction
between the S(p,q) (roughly speaking), a single anti-complex blow up
destroys all such differences. (There is an earlier, more general result of Wall
[33], which says that if M and M' are homotopy equivalent simply connected
4-manifolds then after enough connected sums with P2 and P2 they become
diffeomorphic.)

One consequence of Theorem 3 is a finiteness result for moduli spaces of
certain algebraic surfaces which we may state very loosely as follows.

Corollary 5. Fix a simply connected 4-manifold M of type (1, w) for any
n > 0. The moduli space of all algebraic surfaces diffeomorphic to M has only
finitely many components.

The techniques that we use to rule out the existence of diffeomorphisms
between different S(pyqYs apply equally well to limit the self-diffeomor-
phisms of a single S(p,q). For any simply connected 4-manifolds M, let
A(M) be the group of automorphisms of H2(M;Z) that preserve the self-
intersection form. Let Diff+(Af) denote the group of orientation-preserving
diffeomorphisms of M. Note that if M is of type (1,«), n =£ 1, then Diff+(M)
= Diff(M). There is a natural homomorphism Diff+(M) -> A(M). We de-
note the image by D(M). By a recent result of Quinn, diffeomorphisms have
the same image in A(M) if and only if they are homotopic, or equivalently
pseudo-isotopic. The relation of these notions to C00 isotopy is not understood
in dimension 4.

Theorem 6. For any Dolgachev surface S(p,q), let

Af(S(p9q))<zA(S(p,q))

be the subgroup of elements leaving invariant the subset { + [/]} in
H2(S(p,q);Z), where [/] is the cohomology class Poincare dual to a generic
fiber of m\ S(p,q) —> P1. Then D(S(p,q)) is a subgroup of finite index in
Af(S(p,q)) which itself is of infinite index inA(S(p, q)).

N.B. We do not determine D(S(p,q)) completely, but Theorem 6' of
Chapter III is a refinement of this result and gives an explicit subgroup of
finite index in Af(S( p, q)) that is contained in D(S(p, q)).

Once again this result is qualitatively different from results in higher
dimensions which say that for a simply connected ^-manifold, n ^ 5, the
group of homotopy classes, or isotopy classes, of diffeomorphisms is com-
mensurate via the obvious map with the group of automorphisms of the
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homotopy type preserving the Pontrjagin classes, see [29]. (The group of
automorphisms of the homotopy type of a simply connected 4-manifold M
maps onto A(M) with finite kernel. The Pontrjagin class is automatically
preserved by any element of A(M).)

This result also contrasts markedly with Wall's result [32]: D(X) = A{X).
These results on the image of the diffeomorphism group in the automor-

phism group of cohomology are also stable under blowing up. Let p: S -> S
be a blow up of a Dolgachev surface at r points. The map p*: H2(S; Z) ->
H2(S; Z) is an injection preserving the quadratic form. If we let B c H2(S; Z)
be the subgroup generated by the classes dual to the exceptional fibers of p
then B is the orthogonal complement with respect to q§ of p*(H2(S; Z)).
Identifying H2(S,Z) with its image under p* gives an orthogonal decomposi-
tion

(H2(S;Z), qs) = {H2(S;Z),qs) <B(B,qs\B).

Let A(B) denote the automorphism group of (B,q$\B). Then A(B) is a finite
group. In fact, A(B) = (Z/2Z)r X @r and acts on B preserving the r pairs of
elements {±ei} of square -1 (the et being dual to the exceptional fibers of p).

Theorem 7. Let S be the blow up ofS = S(p, q) at r points. Then D(S) c
A(S) preserves the decomposition H2(S; Z) = H2(S; Z) 0 B. In fact, we have
D(S) X A(B) c D(S) c Af(S) X A(B) so that D(S) has finite index in Af(S)
XA(B).

One consequence of this result is that D(S) sits inside D(S) as a subgroup
of finite index.

If x e H2(M\ Z) has square -1 and has Poincare dual PD(x) e H2(M; Z)
represented by a differentiably embedded 2-sphere S2 c M, then the element
in A{M) defined by reflection in the subspace orthogonal to x is realized by a
diffeomorphism, i.e. is an element of D(M) c A(M). Using this remark, one
derives the following as a corollary to Theorem 7.

Corollary 8. Let S = S(p,q) be a Dolgachev surface, and let S be the blow
up of S at r points. Let ev • • •, er e H2(S; Z) be the classes Poincare dual to the
exceptional fibers of p: S -> S. If a e H2(S; Z) is dual to a class represented by
a differentiably embedded 2-sphere and if'q§(<x) = -1 then a = ±et for some /,
1 < / < r. In particular, no such class exists in H2(S\ Z).

This leads easily to the following generalization. If /: S2 >̂ M is a generic
immersion of the 2-sphere into a 4-manifold M, let d+(i)= the number of
double points where the sheets meet with local intersection number +1.

Corollary 9. Let S, S, ev-—,er be as in Corollary 8. For any generic
immersion i: S2 ** S representing the Poincare dual of a class x e H2(S; Z),
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JC =£ 0, we have

with equality only if x = ±et for some i, 1 < i < r.
Actually, the Donaldson invariant also gives information about the diffeo-

morphism group for P2 blown up at more than 9 points. It shows that Wall's
result [32] fails to generalize.

Theorem 10. Let X be P2#«P2, for some n > 10.
Then D(X) c A(X) is of infinite index.
In fact, we give a precise description of D(X) and, as a by-product, obtain a

new proof that D(X) = A(X).
Finally, Wall's theorem holds for no simply connected 4-manifold of type

(l,/i), n > 9.
Theorem 11. Let M be a smooth, simply connected 4-manifold of type (1, n)

with n > 9. Then D(M) c A(M) is a proper subgroup.
Some of these results have been discussed in the note [14].
This paper consists of two parts. The first part consists of the first three

chapters and the second part is Chapter IV. The first chapter sets the stage for
the remainder of the paper. §1 is an exposition of the fundamental properties
of the Donaldson invariant. We review the language of anti-self-dual connec-
tions and the Yang-Mills equation on 4-manifolds and describe the work of
Donaldson, Taubes and Uhlenbeck which defines the Donaldson invariant and
yields its formal properties. §1 concludes with a brief discussion of the relation
between anti-self-dual connections and stable holomorphic vector bundles on
an algebraic surface. This is the only case where one can actually calculate
directly the Donaldson invariant at present. §2 describes the geometry of
certain rational surfaces. The purpose of this section is two-fold. First, we
describe the rational elliptic surfaces X which are used in the construction of
the Dolgachev surfaces. Secondly, we collect various lemmas which will be of
use in Chapter II. The literature on rational surfaces is vast and the material in
§2 is well known; we have not attempted to give precise references. §3 contains
the definition of Dolgachev surfaces, a discussion of their elementary proper-
ties, and an irreducibility result for their moduli spaces.

Chapter II is concerned with the arithmetic of forms of type (l,/i). Quite
generally, let q\ A -> Z be a quadratic function on the free Z-module A, of
finite rank. We denote the associated bilinear pairing A ® A -> Z by

(x-y) = ±{q(x+y)-q(x)-q(y)).
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Definition 0.1. We say that (A,q) is of type (p,n) (resp., of signature
(/?, n)) if it is isomorphic to the form qip,n)(xl9' -,xp, yl9- -,yn) = Lf=lxf
- HL"j=xyf (resp., if the extensions of q and q{p,n) obtained by tensoring with
R are isomorphic). We will call a basis of A a standard basis if, via the
associated identification of A with Z r, q is identified with q(Ptn) for some p
and n with p + n = r.

If q: A -> Z is of type (1, /i), then inside AR = A $ R we have

where q: AR -> R is the natural extension of q. Classes a e A with #(a) = -1
determine walls in H(q). The collection of all such walls is locally finite. This
set of walls divides H(q) up into chambers. When A = H2(M; Z) and q is the
self-intersection form qM the set of chambers # ( M ) is the domain of the
Donaldson invariant. In fact the Donaldson invariant is a function

§1 deals with the basics of this chamber structure. It rapidly becomes
apparent that there is a fundamental distinction between forms of type (1, n)
for n < 8, n = 9, and n ^ 10. The case n < 8, and to some extent n = 9, is
rather classical. To deal with the remaining case, it becomes necessary to
introduce additional walls corresponding to what we call canonical classes. The
cells of this finer decomposition, P-cells, are introduced in §2. There is an
interesting twist here: the P-cells are purely arithmetically defined, but we were
led to them by algebraic geometry (whence the name canonical class). We
prove the basic facts about them using algebraic geometry. This is done in §§3
and 4. §5 deals with some of the deeper properties of this cell structure.
Finally, in §6, we reinterpret the Donaldson invariant as a function on the
chambers # ( M ) , and define a modified invariant which is adapted to the finer
cell structure. We conclude with a technical result which, when coupled with
the appropriate stable bundle calculations, will enable us to distinguish special
cells in the hyperbolic spaces contained in the cohomology groups of blown up
Dolgachev surfaces purely from the differential topology of these surfaces.

After the detailed analysis of Chapter II, and assuming the stable vector
bundle calculations, the proofs of the theorems stated in this introduction are
surprisingly easy. These proofs occupy Chapter III. The statements about the
distinct diffeomorphism types, Theorem 1 and 3, are given in §1. We also show
that the formal properties of the Donaldson invariant give strong restrictions
on the self-diffeomorphisms of the algebraic surfaces under study. In §2, we
complete the proof of Theorems 6, 7 and 10 by giving constructions for
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self-diffeomorphism of blown-up Dolgachev surfaces and rational surfaces.
Finally, Corollaries 5, 8 and 9 are proved in §3.

It remains to pay the piper and prove the necessary statements on stable
vector bundles. The proofs of these statements are largely independent of the
rest of the paper, and are deferred to the second part (Chapter IV).

It is a pleasure to acknowledge the help of many mathematicians during the
course of this work. Neither of us was an expert in gauge theory or 4-
manifolds, and we benefited greatly from the generosity and patience, in
particular, of: Cliff Taubes, who guided us through the perilous shoals of
PDE\ Karen Uhlenbeck, for much technical assistance and a flood of ideas,
which we are still struggling to comprehend; and finally Simon Donaldson,
who in large measure created the mathematical framework in which this paper
rests, and who shared with us many of his insights into past, present, and
future theorems. Much of the research for this paper was done at MSRI at
Berkeley; we found its stimulating intellectual atmosphere and its physical
setting ideal. Our thanks to one and all.

Notation and conventions. If Y is a smooth algebraic variety, 0 y is the
sheaf of germs of holomorphic functions. If S? is a sheaf on an algebraic
variety Z, then we denote by Hl(Z; SP) the sheaf cohomology groups. If Z is
clear from context, we abbreviate this H^S?). If Sf is a coherent sheaf, we
denote by x(Z; Sf) = \{&) the Euler characteristic of S? and by x(Z) the
topological Euler characteristic of the space Z. If D is a divisor in Z, we
denote by OZ(D) the sheaf of germs of sections of the associated line bundle,
and we write H'(D) for H'(Z, 0z(D)). Kz denotes the canonical divisor class
of Z. We tacitly identify the group of holomorphic line bundles on an
algebraic surface with the group of divisors modulo equivalence. We also
identify a vector bundle with its locally free sheaf of sections. If V is a vector
bundle, then V denotes its sheaf of sections. Despite our best efforts to be
consistent here, we confess to lapses of notation. Following the standard
practice in algebraic geometry, intersection of divisors C and Dona surface Y
is denoted by C • D\ also C • C is denoted C2. If [C] and [D] denote the
cohomology classes Poincare dual to the fundamental cycles of C and D, then
C - D = [C] - [D] where the product on the right-hand-side is the usual
cohomological one. If Y is an algebraic surface and Hl(0Y) = 0, then we can
identify a line bundle L over Y with its Chern class q(L) e H2(Y; Z). If Y is
of type (1, n), then pg(Y) = dim H2(Y\ 0Y) = 0 and every class in H2(Y\ Z)
is cx(L) for some line bundle L. Finally, a divisor D is effective if D can be
written in the form E,-/i,-/),-, where the Di are irreducible hypersurfaces and the
A2; are nonnegative integers.
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CHAPTER I

1. A review of the Donaldson invariant

In this section we review the analytic version of Donaldson's invariant for a
smooth, simply connected, oriented 4-manifold M of type (1, n). In §11.6 we
shall re-interpret these results, as Donaldson did, in terms of a chamber
structure on the hyperboloid inside H2(M\ R). But in this section we stick to
individual metrics and paths of metrics. All the material in this section can be
found in [8], [10].

Before we can define the invariant we need to review some of the basics of
the theory of connections.

There is a unique principal S'(/(2)-bundle P -> M with Chern class c2(P) =
1. Let V -> M be the associated complex vector bundle. Let stf be the affine
space of S£/(2)-connections on V (or equivalently connections on P). Let
j / ' c i be the open subset of irreducible connections. Let 9 be the gauge
group; that is to say 9 is the group of C°°-automorphisms of P covering the
identity on M. Then 9 acts on si and si'. The center of 9 is Z/2Z and it
acts trivially on si. The quotient of 9 by its center acts freely on si'. We
denote by 9£ the quotient si' /9. It has completions with respect to various
Sobolev norms which are Banach manifolds. (For a more detailed discussion of
all of this see [12, pp. 52-60].)

Over M X 9C there is a universal (/(2)-bundle 9 whose restriction to any
slice M X {JC} "is" P.

There is a so-called Taubes map (see [30])

T: Mx[0,oo) ^%

which associates to (x, X) a connection on V whose curvature is concentrated
near x, with the strength of concentration being a function of X. For any
X > 0 let Tx: M -> X be the restriction of T to the slice MX {X}. Here is a
basic property, established by Donaldson [9]. The composition

(1.1) H2(M,Z)

(where / is the slant product), is the inverse of Poincare duality.
Definition 1.2. Let g be a Riemannian metric on M. The subspace

9J?(g)c#* denotes the space of irreducible connections anti-self-dual with
respect to g, modulo gauge equivalence (i.e., modulo the action of 9).

There are natural defining equations for 2ft (g) inside 3C. According to [12,
Theorem 3.17] there is a dense G5-subset G of the space of all metrics such that
for each g e G the differentials of the defining equations for 3J?(g) in 3C have
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maximal rank. In this case 9W(g) is a smooth orientable submanifold of SC. As
a corollary of the Atiyah-Singer Index Theorem, one calculates its dimension
to be 2 [12, p. 49].

Associated to g is the Hodge *-operator. It splits the vector bundle of
2-forms over M, fi2, into eigenspaces J22 = fi2. e S2.. Since M is of type (1, n\
the space of self-dual harmonic 2-forms for g is one dimensional. We view any
such form co as a section of B2.. As long as co # 0, the zero set of co depends
only on g, not on the choice of co. We call this zero set Zg c M.

Now we are ready to describe the Donaldson invariant. It is an invariant
TM(g, co) e i / 2 (M; Z) associated to a "generic" metric g and a nonzero
self-dual harmonic 2-form co for g. Here are the conditions that the metric is
required to satisfy in order to define the invariant

(1.3) g^G.

(1.4) co, considered as a section of Q+, is transverse to the 0-section.

(1.5) There is no reducible connection on V anti-self-dual with respect to g.

As we have seen, Condition (1.3) defines a dense G5-subset of the space of all
metrics. Conditions (1.4) and (1.5) define an open dense subset of metrics.
Thus, the metrics satisfying all three conditions form a dense G5-subspace in
the space of all metrics.

Let us examine Condition (1.5) in more detail. If V splits, then, since
cY(V) = 0, we have V = L 0 L \ Consequently, 1 = c2(V) = -qM(cx(L)).
For V to admit a connection anti-self-dual with respect to g is for L to admit
such a connection. This can happen if and only if all self-dual harmonic forms
for q are orthogonal to cr(L). Thus, Condition (1.5) is simply the statement
that the line of self-dual harmonic 2-forms for g, thought of as a line in
H2(M; R), is not orthogonal to any class a e H2(M; Z) with qM{a) = - 1 .

Fix a metric g satisfying (1.3), (1.4), and (1.5) and fix a nonzero self-dual
harmonic 2-form co for g. Because g e G, 2ft (g) is a smooth 2-manifold. The
choice of co determines an orientation for 2ft (g). Since g satisfies (1.4)
Zg c M is a smooth 1-manifold. Let v be a regular neighborhood of Zg in M.
The form co determines a nowhere zero section of B2 | (M-int*>) . The
orthogonal 2-plane bundle (co-1) is naturally oriented. Let AT(g, co)e
H2(M - int*>) be its Euler class, and let A:(g,co) e H2(M - int J>, 3*>; Z) be
the Poincare dual. This class is represented by the zeros of a generic section of
(co-1). A local computation near Zg shows that dk(g9 co) e Hx(dv; Z) has
intersection 2 with any 2-sphere fiber of the projection 3? -> Zg.

It turns out that 2ft(g) is noncompact if and only if Zg =£ 0 . Furthermore,
2ft(g) is asymptotic in % to T(Z X [0, oo)), see [30] and [31].
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FIGURE 1

Thus, if we truncate 9ft(g) near TX(M) we have a compact 2-chain mA(g, to)
whose boundary is nearly Tx(Zg\ provided that X is sufficiently large. Because
of this we can "glue" 2 copies of mx(g, co) to Tx(k(g, to)) to form a 2-cycle
y(g, co) in SC. The homology class of y(g, to) is independent of the choice of X
and of the small deformation of rax(g, co) required to make twice its boundary
cancel dTx(k(g, co)). (For more details on all of this see [10].)

Definiton 1.6. Let g satisfy (1.3), (1.4), and (1.5), and let to be a nonzero
self-dual harmonic 2-form for g. We define the Donaldson invariant

If we fix g e G but replace co by fco, for some t e R*, then k(g, to) and
mx(g, to) change by sign (/). Hence

(1-7) fA/(g,/(o) = sign(0-fA/(g,co)
for any / £ R*.

Now suppose that to is nowhere zero, i.e. that Z g = 0 . Then Wl(g) is
compact, and wA(g, to) = Tt(g) for all X sufficiently large. Also, K(g, to) e
//2(M; Z) and A:(g, to) e //2(M; Z) are Poincare dual.

1.8. In this case

where /x(g, to) = c2(0>)/[Wt(g)]. (N.B. The orientation of Wl(g) depends on
to.)

Proof. Clearly, y(g, to) = rx(fc(g, to)) + 22R(g) (as cycles).
Thus, to establish the claim we need onlv see that
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Since K(g, co) is Poincare dual to k(g, co), this is exactly the formula given in
(1.1). •

Corollary 1.9. With assumptions as above

where px: M X Wl(g) -> M is projection onto M.
Proof. In light of (1.8) we need only see that

This is clear from the definition of the slant product. •
Let us turn now to the question of how f M varies as we vary the metric g

and the form co along a path. Fix a smooth path (g,, co,), 0 < t < 1, where to, is
a nonzero self-dual harmonic form for g r (To say we have a smooth path
means that both g, and co, vary smoothly with /.) Suppose that g0 and gx

satisfy conditions (1.3), (1.4), and (1.5), so that TM(g0, coo) and fA/(g1, cox) are
both defined. By deforming the path (g,, co,) slightly, relative to its endpoints,
we can assume that for all but finitely many values of /, say tl9—-9tr9

Condition (1.5) holds for g,, and furthermore that for each exceptional tt the
following two properties hold:

(a) There is a unique class a, e H2(M; Z), up
(1.10) to sign, with qM{at) = -1 and with co, • a, = 0.

(b) If i//f.(0 = co, • a,, then d^{{t^/dt * 0.

By choosing the sign of a, appropriately we arrange that the derivatives in (b)
are all negative. With this normalization of the ai9 according to [10] we have

(i.ii) r«(gi,«i) - r*(go,»o) = -2 E «,-

This formula has the following consequence.

, . If the cohomology class of cox is a positive multiple of the
cohomology class of coo, then fM(g0, coo) = fM(g1? cox).

Actually, there is a more general version of (1.12). Suppose that we have a
path (g,, co,), 0 < f < 1, and suppose that both g0 and gl satisfy (1.3), (1.4),
and (1.5). Suppose that for each class a e H2(M;Z) with qM(a) = - 1 the
signs of coo • a and cox • a are the same.

Proposition 1.13. Under the above assumptions

Proof. Deform the path slightly until (1.10) holds. Because of the assump-
tion on coo and cox, the exceptional values tt must pair up in such a fashion that
the classes a, in (1.10) in each pair are negatives of each other. Thus, Formula
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(1.11) collapses to

Proposition 1.13 allows us to extend the definition of TM to all pairs (g, w)
where g satisfies (1.5) and co is a nonzero self-dual harmonic 2-form for g.
Namely given such a (g, co), we approximate it by (g', co') where g' satisfies
(1.3), (1.4), and (1.5). By (1.13) the value TM(g', </) will be independent of the
approximation, provided only that the approximation is close enough. We
define TM(g, co) to be the value TM(g\ co') for any sufficiently close approxi-
mation.

Here is a summary of the basic properties of this extended function

(a) fM(g, co) is defined for all pairs (g, co)
for which g satisfies (1.5) and co is a
nonzero self-dual harmonic 2-form for g.

(1.14) (b) fM(g, co) is locally constant.
(c) f^(g, co) depends only on the "period point"

[co]e(//2(M;R)-{0})/R+ .

Properties (1.14) allow us to view tM as a function TM on the set of
chambers cut out of the hyperbolic space {x e H2(M;R)\qM(x) = 1} by the
walls orthogonal to classes a e H2(M\Z) with qM(<x) = - 1 . We give this
re-interpretation in §11.6 after we have developed the theory of the associated
chamber structure.

We have described in detail the formal properties of the Donaldson in-
variant f M, but we have given no indication of how to actually evaluate it. In
fact the only examples where fM(g, co) may be computed directly are when M
is an algebraic surface, g is a Hodge metric and co is its Kahler form. In this
case the computation reduces to a computation in algebraic geometry. Enough
machinery has been developed to allow one to carry out such computations, at
least some of the time. Here, we give the description of tM(g, co) in the Kahler
case in terms of purely algebro-geometric computations.

Let Y be a complex algebraic surface, g a Hodge metric on Y associated to
an ample line bundle L over 7, and o) the Kahler form for g.

We begin with some notational conventions. If V is a holomorphic vector
bundle, we shall always denote by V its locally free sheaf of sections.

Definition 1.15. A subline bundle of V is given by a line bundle F, together
with a nonzero map of 0y-modules

(p:F -> V.
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Giving <p is the same as giving an algebraic map F -> V which commutes with
the projection to Y and is linear on the fibers and nonzero on the generic fiber.

Definition 1.16. Let L be an ample divisor on Y. We say that V is L-stable
(resp. L-semistable) if, for all torsion-free subsheaves F of V, with 0 < rankF
< rank V, we have

where k = rank V. If k = 2, it is well known that one need only check these
conditions for subline bundles F.

We now specialize to the case of interest here, i.e. V of rank 2 with

Proposition 1.17 (Maruyama [21]). / / x (^y) = 1> ^en there is a fine moduli
space 30? for L-stable rank 2 bundles over Y with cx = 0 and c2 — 1. It is
naturally a scheme whose points are in one-to-one correspondence with such
bundles. There is a universal bundle

r^> y x aw. •
N.B. Just as there are natural defining equations for Wl(g) c #", there are

(locally) natural defining equations for Wl which give it a scheme structure.
There is no reason to expect Wl to be reduced. We denote by 2Rred its

reduction. For each component 2R, of Wl we have the reduction (SK,-)^. We
denote by nt the length of the generic point of Wt. Of course, nl > 1 and
w,- = 1 if and only if 3ft, is generically reduced.

Definition 1.18. For each component 3K, which is compact and of complex
dimension 1 we define

where px\ Y X (Tti)Tcd -> Y is the projection and 'fr
i is the restriction of

Theorem 1.19 (Donaldson [10]). Suppose that Y is a simply connected
algebraic surface with x(^y) = 1- Suppose that g is the Hodge metric associated
to an ample line bundle L. Let o) be the Kdhler form for g. Suppose [co] e
H2(Y,R) is not perpendicular to any class a e H2(Y;Z) with qY(a)= - 1 .
Then W is compact. If each component (9DfJ/)red of Wl has complex dimension 1,
then

where K Y is the canonical class of Y. •
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This theorem results from Donaldson's identification of anti-self-dual con-
nections on V for g with L-stable algebraic structures on V, see [7], (This last
result has recently been generalized by Uhlenbeck-Yau.)

2. On the geometry of certain rational surfaces

In this section, we review the construction of rational elliptic surfaces. We
also describe certain other rational surfaces whose geometry will be useful in
understanding the fundamental domains of various reflection groups.

Definition 2.1. Let Z b e a simply connected algebraic surface. Call X good
if we have an equality of divisor classes

Kx=-F,

where F is a smooth elliptic curve on X. Call X generic if, in addition, there
does not exist a smooth rational curve C c X with C2 = -2 .

Lemma 2.2. Let X be a good generic surface. If C is an irreducible curve on
X, C =£ F, and C2 < 0, then C is an exceptional curve. Hence if C is an
irreducible curve on X and C2 < - 1 , then C = F.

Proof. Let C be an irreducible curve distinct from F. By the adjunction
formula for the arithmetic genus pa(C) [15, p. 471],

-2 < 2pa(C) - 2 = C2 + C - Kx = C2 - C • F.

So, if C2 < 0, as C • F > 0 and 2pa(C) - 2 is even, either C • F = 0, C2 = -2
and pa{C) = 0, or C2 = - 1 , C • F = + 1 , and pa(C) = 0. In the first case, C
is smooth rational, which is excluded, and in the second case C is exceptional.
•

Lemma 2.3. Let X be a good generic surface and p: X -* Y the contraction
of an exceptional curve E to a point. Then Y is a good generic surface.

Proof. By the adjunction formula E • F = 1. Thus, p(F) = F is again a
smooth elliptic curve. According to [15, p. 187], we have Kx = p*KY + E =
-F = -p*F +E. (The last equality follows since E • F = 1.) Since p* is injec-
tive on divisor classes, -F = KY, and Y is good. If Y fails to be generic, there
exists a smooth rational curve C in Y with C2 = -2 . If C" is the proper
transform of C on X, then ( C ) 2 < C2 = -2 , contradicting (2.2). D

Proposition 2.4. Lef X be a good generic surface. Then either X = P1 X P 1

or there exists a birational map p: X —> P 2 swc/z f/za/ p w obtained by contracting
n disjoint exceptional curves on X.

Proof. By the Castelnuouvo-Enriques theorem [15, p. 536], X is a rational
surface. Hence, by the general theory of rational surfaces (e.g. [2, p. 191]) there
exists a birational map p: X -» P 2 or p: X - > F , , , H = £ 1 and « > 0, where ¥n is
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a minimal rational ruled surface over P1 characterized by the existence of a
section a with (a ) 2 = -n. Furthermore, p can be factored as a sequence of
maps each of which contracts an exceptional curve.

If A" dominates Fw, then the proper transform on X of the section a c Fn has
square < -n. If X is good and generic, this forces n < 1, hence n = 0.

The surface Fo is isomorphic to P1 X P1. If Y is obtained from P 1 X P 1 by
blowing up a point, then Y dominates P2 . Hence, if X is not isomorphic to
P1 X P1 and if X dominates P 1 X P1, then X dominates P 2 . Thus, if X is a
good generic surface, then either X dominates P 2 or X = P1 X P1.

Finally, we show that if X is generic and p: X -> P 2 is a birational
morphism, then the positive dimensional fibers of p are disjoint smooth
rational curves of self-intersection - 1 . We may factor p:

Pn Pn-l Pi 2

X = Xn -> Xn_l -> Xn_2 -* • • • -> Xo = P ,

where p,: Xi -> A",..! realizes Xi as the blow up of a point /?, e ^ /_ i ,
£, = p~l(Pi) is the exceptional divisor, and p = pxo • • • opw. if? for some
j < /, /?, lies on the proper transform of Ej9 then the proper transform of Ej in
X has self-intersection < -2 , violating (2.2). D

Remark 2.5. (a) By the adjunction formula, the requirement that F be an
elliptic curve in (2.1) is implied by the smoothness of F.

(b) The only Fw, n ^ 0 and « # 1, which are good are Fo and F2. This is a
straightforward calculation with the canonical bundle formula for Fn (see [15,
P- 519]).

Proposition 2.6. Let Xn denote the blow up of P 2 at n points pv •••,/>„. For

a suitable choice ofthept, Xn is a good generic surface.

Proof. We begin by recalling the following well-known result.
Lemma 2.7. Let H be the class of a line on P2 , and p: Xn —> P 2 the blow up

of P 2 at points px,- • •, pn. If Et = p~l(Pj) is the exceptional curve overpt, then:
(a) The classes [p*H, £\, • • • ,£„} /bmz 0 standard basis for H2(X;Z) and

exhibit X as a surface of type (1, «) /« f/*e notation of the introduction.
(b) /« //ze above basis

Kx= -3p*H + El + ••• +£„ . q.e.d

Returning to the proof of (2.6), first choose all points pt on a smooth cubic
F c P 2 . By abuse of language, we will also denote by F the proper transform
of F on X. Then

F=3p*H-Ex En = -Kx,
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so that X is good. Let C be any irreducible curve on X. Then, for appropriate
integers k and ai9 we have an equality of divisor classes

Since C is not homologous to 0, not all of the integers k, at are 0.
Let PicF denote the group of line bundles on F. As a real Lie group, it is

isomorphic to (R2 /Z2) X Z, where projection onto the second factor is given
by the degree of the line bundle. Choosing a point p0 e F as origin, there is a
natural identification of F with the subgroup of line bundles of degree 0, given
by

Now Ox(C)\Fs &P2(kH)\F® OfQLaiPiX where we identify F with its
image in P 2 under p. Hence, if Pi,— m,pn are chosen generically, then
OX{C) | F is not the trivial line bundle.

On the other hand, suppose that C is smooth rational and C2 = -2 . It
follows from the adjunction formula that C Pi F = 0 . Hence

®x(c) \F = ®F i s t h e trivial bundle,

contrary to the choice of pl9 - —, pn. •
To sum up, then
Corollary 2.8. For every n > 0, there exists a good generic surface of type

(l,w). The only good generic surface which is not of type (1, n) {i.e., whose form
is not diagonalizable) is P1 X P1, whose form is even {a hyperbolic plane). D

Remark 2.9. If the rank of H2(X; Z) is < 8, it is easy to show that a good
generic X is the same as a del Pezzo surface, i.e. a surface X such that -Kx is
ample.

We now introduce a special kind of rational surface.
Definition 2.10. A surface S is an elliptic surface if there exists a holomor-

phic map

TT: S - * C,

with C a smooth curve, such that the general fiber 77- - 1(z) is a smooth elliptic
curve, and such that there does not exist an exceptional curve E c S with
£ c ir~l(x) for some * e C. (Some authors term such an S a minimal elliptic
surface.)

Definition 2.11. A rational surface X is a generic rational elliptic surface if
X is an elliptic surface in the sense of (2.10) which is also a good generic
surface with Kx = - F , F a general fiber of IT.



CERTAIN ALGEBRAIC SURFACES. I 315

Remark 2.12. If X is a rational elliptic surface with Kx = -i% then the
base of the elliptic fibration, C in the notation of (2.10), is P1. All such arise
from blowing P2 up along the nine points of intersection of two cubics.
Finally, it is easy to see from the adjunction formula that X is generic if and
only if all its fibers are irreducible.

Lemma 2.13. Generic rational elliptic surfaces exist.
Proof. Let Fo and F^ be the equations of two smooth cubics in P2 and

consider the pencil of cubics defined by Fo and F^. By definition this is the set
of cubics {C,: t e P1} defined by C, = {Fo + tF^ = 0}. Suppose that Co and
C^ meet transversally. Then, after blowing up P2 at the set {Fo = F^ = 0},
we obtain an elliptic surface, IT: X -> P1. X is clearly good since the points lie
on Co so that Kx = -Co, say. To insure that X is also generic, it suffices to
arrange that all fibers of m are reduced and irreducible. This follows if, for
example, (C,} is a Lefschetz pencil [1]. •

3. Dolgachev surfaces

We describe the construction of the Dolgachev surfaces, list some elemen-
tary properties, and prove an irreducibility result. First, we give a fundamental
operation in the theory of elliptic surfaces, due to Kodaira.

(3.1) Let m\ Y -> C be an elliptic surface (2.10). If x e C is a point with
7T~1(x) = F a smooth (reduced) elliptic curve, it is possible to perform a
complex analytic surgery on Y to obtain a new elliptic surface m'\ Y' -» C,
which is the same as Y away from ir~l(x). Y' is called a logarithmic transform
of Y. The construction depends on the choice of a point £ of order p in Pic F.
For details we refer to [15, p. 564 ff], [2, p. 164ff], and to Kodaira's paper [18].
Suffice it to say here that one chooses a small analytic disk Ax centered at x,
and considers the restriction of m to U = 7T~l(^x) -> Ax. We form the pull
back

U'
i

s i *sp = /.

The point £ of order p in PicF, extends uniquely to an analytic family of
/?-torsion points in PicF, for / e Ax. These allow us to define a free (Z/pZ)-
action on U' covering the standard action of Z/pZ on Ax. Let U be the
quotient of this action. It fibers over A'x/(Z/pZ) = Ax. Let IT': U -» A^ denote
this map. The fiber over the origin is a multiple fiber of multiplicity p. Using
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the logarithm one defines a complex analytic isomorphism U — ir'~l(0) = U —
77-1(0) commuting with the projections to Ax - {0}. Using this isomorphism,
one can glue U to Y - ir~\0) along U - (irT\0) = U - ^ ( O ) . We have the
important normal bundle formula

(3.2) If Fp is the reduced fiber of m' over x, 6Y>{Fp) \ F is a line bundle on Fp

of order exactly p [15, p. 567].
Definition 3.3. Let 77: X -> P1 be a rational elliptic surface with Kx = -i%

F a fiber of 77, and let (/?, q) be a pair of relatively prime integers greater than
1. A Dolgachev surface S = S(p,q) is the surface obtained by applying
logarithmic transforms of orders p and q respectively to two smooth fibers
77~1(JC), 77-1(>>), x, y G P1. We will call S generic if X is, i.e. if all fibers in the
elliptic structure S -> P1 are irreducible.

Remarks 3.4. (a) We drop the primes and write 77: S -> P 1 for the elliptic
fibration on S. It is in fact canonically defined by the complex structure of S.

(b) One may allow one of p or q to be 1, i.e., to perform only one
logarithmic transform. The resulting surface is rational, and easily seen to be
diffeomorphic to X (but does not satisfy (2.11)).

(c) To be completely general we should have allowed logarithmic transforms
around certain singular fibers as well. Since such surfaces are limits of those
defined in (3.3), for the purposes of topology or irreducibility questions, they
may be safely ignored. (For more discussion of this technical point, cf. [23, p.
117].)

Theorem 3.5 {Dolgachev [6]; see also [23, p. 191]). Dolgachev surfaces are
simply connected. •

This result is false if we perform more than two logarithmic transforms.
Notation 3.6. / is a general fiber on S = S(p,q).
Fp = the fiber of multiplicity p\
Fq = the fiber of multiplicity q.

We will often identify / , F , and Fq with their divisor classes or cohomology
classes. Hence, as divisor classes,

Proposition 3.7. (a) x(S) = 12 and x(®s) = 1-
(b) Ks=-f+(p- \)Fp + {q- l)Fq = [(pq-p- q)/pq\f\

g

(d) S is a nonrational algebraic surface with Kodaira dimension 1.
(e) The exact order of divisibility off e H2(S; Z) is pq, i.e.,

where KS G / / 2 ( 5 I ; Z) is a primitive integral class.
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(f) The quadratic form qs is of type (1,9). Hence, by Freedman's results [13],
S is homeomorphic to X9 = X as in (2.6).

Proof. By a general result on logarithmic transforms [18, p. 773], x(^) =

X( X) = 12 so that x ( ^ ) = x(&x) = 1 by Noether's formula. Part (b) follows
from the canonical bundle formulas [18], [15, p. 571], [2, p. 161] and by (a).
Part (c) follows from (b) or from (a) and (3.5) as 1 = x(&s) a n d H\0s) = 0.

Next, from the index theorem [16, p. 86], b^S) - b^iS) = -8 where b£
(resp Z?2~) is the dimension of a maximal subspace of H2(Y; R) on which qs is
positive (resp. negative) definite. By (a) bfiS) + b^iS) = 10. Thus, bfiS) = 1
and fo2"(5) = 9. Since bfiS) > 0, there exist classes in H2(S; Z) of positive
square. From the exponential sheaf sequence

0 = H\6S) >Hl(<9$) >H2(S;Z) >H2(0S) -> 0

II
Pic(S)

(where we have used duality: H2(0S)* = H°(KS) = 0), every class in H2(S; Z)
is the first Chern class of a holomorphic line bundle. There exists a line bundle
L with L2 > 0; by a result of Kodaira [18, Theorem 8], S is algebraic. S has
Kodaira dimension one since

dim H°{npqKs) -An, n > 0,

where A is a constant.
We prove (e). Since g.c.d.(p,q) = 1, there exists integers r, s such that

rq 4- sp = 1. Thus, if we set
KS = K = rFp + sFq,

(pq)K = (rq + sp)f = / , so that / is divisible by pq.
To prove that K is actually a primitive class, one may easily adapt the

argument in Kodaira [19, Lemma 2] to this situation. We shall sketch another,
more topological argument. It is sufficient to find a 2-cycle S in S such that

« • / = />?.
Suppose that S is obtained from X by performing logarithmic transforms

over the points JC, y e P1. Choose a section s: P1 -> X for the elliptic fibration
(e.g., one of the exceptional curves will define such a section). Let Ax, Av be
small open disks around x and y and set

,O = , ( P 1 - A X - A V ) ,

viewed as a subset of S. Over Ax and Ay, in S, we may find multi-sections sx

and sy of TT, of orders p and q respectively, (i.e. sx • / = p, sv • / = q, for a
generic / over A v or A v). Let

E =
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Then 3E c m~l(dAx U 8AV). It is clearly sufficient to prove
Claim. 9E bounds a 2-cycle E' in X — TT~1{X) — v~l(y).
Proof of the claim. Let Fx = ^^(x) and Fy = ir~\y). Consider the Gysin

sequence

H2(X;Z) - HO(FX U Fy;Z) - HX(X - Fx - Fy;Z) -> HX{X-Z) = 0.

Since [Fx] = [Fy] defines a primitive cohomology class in H2(X;Z),
it follows that HX(X- Fx - Fy; Z) = Z, in fact HX(X - Fx - Fy\ Z) =
Hx(P

l — [x, y}\ Z) via ?r+. One checks easily that, with our choices of sign,
TTJBE] = 0. This proves that 3E bounds in X - Fx - Fy\ (e) follows.

Finally, we must prove (f). Since K is primitive, there exists S e H2(S; Z)
with 8 - K = 1, so that

[Ks] - S = pq - p - q.

Since at least one of p, q is odd, pq - p - q is odd. From the Wu formula,

S2 = Ks-8 = l m o d 2 ,

so that qs is odd. (Another proof consists in quoting Rokhlin's theorem.) By
the classification of integral unimodular forms [28, p. 92], qs is of type (1,9).
•

Proposition 3.8. For a given p and q relatively prime the moduli space of all
Dolgachev surfaces with multiple fibers of multiplicities p and q is irreducible, i.e.
there exists an irreducible complex space T (which may be assumed smooth) and
a proper smooth map $ : 3E -» T such that every Dolgachev surface S(p,q) is
isomorphic to O~1(/) for some t £ T.

Proof. Let TT: X -> P1 be a rational elliptic surface and x, y e P1 two
points such that ^(x) = Fx and ir~\y) = Fy are smooth. The construction
of a Dolgachev surface S from X depended on a choice of two line bundles
y\x e Pici^, i\v e PicFv, of orders exactly p and q respectively. The next
lemma states that, given X, x9 and y, the choice of -qx and -qy is the only
choice involved.

Lemma 3.9. Given TJX, 7}y as above, there is a unique elliptic surface S -> P 1

with multiple fibers at x and y and associated invariants t]x and t]y and which is
isomorphic to Xover P1 — {x, y}.

Proof. Any two such surfaces differ by an element in the Brauer group
Br( X), by [6, pp. 123-126]. Since X is a rational surface, Br(X) = 0.

In a slightly different language, by results of Kodaira ([17], or (ll.l)(c) on p.
160 of [2]), the set of such surfaces up to isomorphism is a principal homoge-
neous space over Hl(Pl, #), where f is the sheaf on P1 defined by

0 -> R1TT*Z -> R1TT*(9X - » / - > 0.
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An argument with the Leray spectral sequence and standard facts on rational
surfaces shows that H1(R1IT^6X) and H2(R1TT^L) are zero; hence so is
H\Pl; /). This completes the proof of (3.9). •

Returning to the proof of (3.8), let T denote the space of quintuples:

T= {(X9x9y9fix9riy)}

subject to the conditions that A" is a rational, elliptic surface m\ X -> P 1 is the
projection, x # y are points of P1, Fx and Fy are smooth fibers of X,
TJV e PicFv is a p-torsion point and i\v e PicF^ is a q-torsion point. The space
T has a natural analytic structure, and by (3.9) there is a family 3£ over T
containing every Dolgachev surface of type (p,q). Hence, it suffices to show
that T is irreducible. The family R of all rational elliptic surfaces is identified
with the family of all cubic pencils in P 2 whose generic member is smooth.
This is a Zariski open subset of the space of lines in the projective space of
cubic polynomials on P3. Hence R is irreducible.

To show that T is irreducible, it suffices to show that the fibers of T -» R
are irreducible. Thus we fix a rational elliptic surface IT: X -> P1 and we
consider all quadruples

F = [(x, y, 7)x, T)y)\x * y e P1 , Fx and Fy are smooth;

T)X G PicFx is a p-torsion point; r\y e PicF^ is a #-torsion point}.

Of course the pairs F = {(JC, y)} as above form an open subset of P 1 X P 1 and
hence the space of them is irreducible. The map F -» F is finite to one. It
suffices to show that ^ ( F ) acts transitively on a fiber of F -> F in order to
show that F is irreducible.

Pick a point p0 e P1 distinct from x and y so that Fpo is smooth. Choose
paths in P1 from x to p0 and y to p0 avoiding the images of the singular
fibers of X. Using these paths we identify rjx and t\y respectively with p- and
q-torsion points in Pic^Q . What we are reduced to showing is that the
fundamental group ir^F, pQ) acts transitively on pairs a, /? e Pic(i^o), a
being a /?-torsion point and /? being a ^-torsion point. Choosing a basis for
HX(F ^ Z), we identify a with an element in ^ (Z 2 ) /Z 2 , and /? with an element
in ^ (Z 2 ) /Z 2 . We claim that the action of ^ ( F , p 0 ) on such pairs {a,/?} is
transitive. Of course the action of ^ ( F , p0) on such pairs is via a representa-
tion jit: ^ ( F , /?0) ~> SL2(Z). According to [23, proof of Theorem 9, p. 175],
Im/x = SL2(Z) if X is generic. Thus, it suffices to prove

Lemma 3.10. SL2(Z) acts transitively on pairs (a, ft) where a e ^ (Z 2 ) /Z 2

is of order p and /? e ^ (Z 2 ) /Z 2 w of order q.
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Proof. Since p and q are relatively prime, there is a unique y e ^ ( Z 2 ) / Z 2

such that qy = a and py = /?. We need to see that SL2(Z) acts transitively on
such y, i.e. on elements of order pq in ^ ( Z 2 ) / Z 2 . This is a standard fact. •

Corollary 3.11. Let Sx and S2 be Dolgachev surfaces with multiple fibers of
orders p and q. Let [/] e H2(St\ Z) be the class dual to a generic fiber of the
elliptic fibration on St. Then there is a diffeomorphism <p: Sx -> S2 such that

<P*[/2] = [fil
Proof. By (3.8) there exist a family $ : £ -> T with T irreducible and

points tx, t2 ^ T such that $"1(/ /) = £,. Choose a real curve y in T joining tx

to t2. If we pull the bundle 3E -> T back to the domain of y, it has a
C°°-trivialization. Hence, there is a diffeomorphism cp: Sx -> S2. The relative
canonical class A ^ / r restricts to any fiber to give the canonical class of that
fiber. As y*K^/T is a class in the pulled-back bundle which restricts to the
ends to give KSi and K^ (p*KSi = KSi. Since [/•] = (pq - p ~ q)Ks, we
have <p*[/2] = [/J. n

CHAPTER II

1. Generalities on forms of type (1, n)

In this section we develop some of the basic theory for quadratic forms of
signature (1,«). We concentrate on the hyperbolic space inside the vector
space supporting this form. We are particularly interested in the chamber
structure associated to the walls perpendicular to integral classes of square - 1 .

We fix a nonsingular quadratic form q: A -> Z of signature (1, n\ n > 1.
Set AR = A ® R and let q: AR -> R be the extension of q to a real-valued
quadratic form on AR. We denote by (•) the symmetric bilinear form on AR

associated to q. Let <3T= $?(q) be the level set {x e AR\q(x) = 0}. It is a
double cone. Let &>=@(q) be (x e A R | ^ ( J C ) > 0}. It is the interior of
the cone. Let J = £(q) be @> U 3 * - {0}. The level set H = H(#) = {x e
A R | ^ ( j c ) = l } i s a hyperboloid of two sheets. We give H(^) the Riemannian
metric induced by (-q) restricted to its tangent spaces. It is isometric to two
copies of ^-dimensional hyperbolic space. (See Figure 2.) There is the obvious
identification of ^ / R + with H. If we form i?/R+ , then this gives a compactifi-
cation of ^ / R + and hence of H. We denote it by H. Clearly H is just two
copies of the unit disk in Rn.

Lemma 1.1. £(q) has two components, as does £P(q). If x e &(q) and
y e <S(q), then x • y # 0 and x • y > 0 // and only if x and y lie in the same
component of £l(q).

Proof. Fix x G @(q). Suppose the function ix: J2(q) -> R defined by
ix(y) = x • y never vanishes. Then since x • x > 0, ix must be positive on the
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FIGURE 2

component of Q(q) containing x and negative on the other component (which
contains -x). But if x • y = 0 for some y e £(q), then y is not a multiple of
x, so that (x, >>) has dimension 2, where (x, y) is the R-linear span of x and
j>. The form q | (x, j>) is positive semidefinite. This is a contradiction. •

The point of this section is to give some of the basic facts about certain sets
of walls in hyperbolic space and their associated chamber structures. Included
in these is a general condition for a set of walls to be locally finite. We are
most interested in the set #"\ of walls defined by classes a e A with
q{a) = - 1 . But first we do some very general preliminary work.

For any x e AR we define (x -1) c AR to be the orthogonal subspace to x:
( x ± ) = {y ^ AR\x - y = 0}. When x # 0, this is a codimension-1 linear
subspace. There is a very simple condition on x for this subspace to meet H.

Lemma 1.2. If x # 0, then (x L) n H # 0 if and only ifq(x) < 0.
Proof. Suppose that x # 0 and that (x-1) n H # 0 . By Lemma 1.1 this

implies that x £ 2l{q), and hence that ^(x) < 0.
Conversely, suppose that ^(x) < 0, or equivalently x • x < 0. Since x • x #

0, we can decompose AR as (x) © (xx) . Since x • x < 0, the signature of
q\(x±) is (1, n — 1). Hence, inside (x -1) there is a vector of positive square.
An appropriate multiple of this vector lies in H, and hence (x-1) Pi H =£ 0 .
•

Definition 1.3. If q(x) < 0, then (x -1) n H is of the form WU - W where
W is a totally geodesic codimension-1 subspace. We call W\l — W the wall of
H determined by x, and we denote it Wx. If W is a totally geodesic,
codimension-1 subspace of one of the components of H, then there is a class
x e A R such that Wx = W\l — W. This class x is unique up to nonzero
scalar multiples.
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Lemma 1.4. Let B c H be a compact set, and let K > 0 be a constant. Then
the set

D = [x e ARKJC- 1 ) n B # 0 tfwd | ? ( x ) | < ^ }

w compact.
Before giving the proof we introduce another definition.
Definition 1.5. A diagonal basis for AR is an R-basis for AR (e0, el9—-9 en)

such that q(e0) = 1, q(et) = -1 for 1 < / < n, and et • e,, = 0 for / # 7 . Notice
that AR always has a diagonal basis since # is of signature (1, n).

Proof of 1.4. Clearly D c AR is closed. We show that it is bounded. To do
this choose a diagonal basis (e0, • • •, en) for AR and write all elements of AR in
terms of this basis. Possibly after expanding B, we can assume that it is of the
form B = { ( V • -9bn)\bl - L?=1£,2 = 1 and L?=ibf < R} for some R > 0.

For any x = (JC0,- • -,xn) e ARwe denote by ||JC||_ the quantity Ql?-ixf)1/2.
Suppose x e D. Then there exists (Z>0,- • -,bn) G B with x • ft = xobo —

Since

Thus,

, this yields

_+ 1

q(x) = x2
0-

+ 1
Since x s Z), Lemma 1.2 says <7(x) < 0. Since - ^ < q(x) < 0, we have,

or

-1
W-

I-)2 + 1).
This shows that x, for 1 < i < n is bounded in absolute value by ]/K(R + 1 ) .
Since ^(x) < 0, x ^ < ||jc||i < A: (/? + 1) also. •

Corollary 1.6. Let B c H fte compact and fix N > 0. 77^ .*?/ o/ wato
{ ^ a | a G A - {0}, |<?(a)| < ^V} which meet B is a finite set.

Proof. It suffices to prove that

{a G AKa-1) HB * 0 and | ^ ( a ) | < A^}

is finite. But this set is the intersection of a compact subset of AR with the
lattice A. •
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Definition 1.7. For any iV G Z, N > 0, we define iTN to be the set of
walls

{Wa \a e A and -N < q(a) < 0}.

Corollary 1.8. For any N > 0 , 7 ^ is a locally finite set of walls in H. •
Definition 1.9. Let iT be a locally finite set of walls in H. A chamber (for

^ ) is the closure in H of a connected component ofH — UWGirW. A wall
W e W is a w<2// O/Z/K? chamber C if C is not a chamber for the set HT- { W}
of walls. Equivalently, W is a wall of C if C n W contains a nonempty open
subset of W. In this case CO W is a face of C. The frontier of C in H is the
union of its faces. A point in the frontier of C lies in the interior of a face of C
if and only if it lies in a unique wall W e W.

If F is a face of C, then there is a unique chamber C ± C which also has F
as a face. The chambers C and C lie on opposite sides of the wall containing
the common face.

Definition 1.10. We say that a class a e AR determines an oriented wall of
Cif:

(i) Wa is a wall of C, and
(ii) a • C > 0, i.e. for all x e C, a • x > 0.
Given the chamber C and one of its walls W, the above two conditions

determine a up to a positive scalar multiple. If, as will be the case, the line
R+- a e AR passes through A, then we make the extra implicit assumption
that a is primitive in A. This will determine a uniquely.

We say that a wall (f e f separates chambers Co and Cx if Co and Cx lie
in opposite closed half-spaces bounded by W, or equivalently if W = Wa for
some a e AR with a • Co > 0 and a • Cx < 0.

There is one locally finite set of walls that is of particular interest to us. This
is the set iVx = { Wa \ a e A and q(a) = -1}. For the remainder of this paper,
we will reserve the term chamber for a chamber for the set ifr

l unless we
explicitly say otherwise. We denote by J^= {a e A\q(a)= -1} and by
# = <#(q) the set of chambers for vrv Here is the first special fact about iTx:
the walls meet orthogonally.

Lemma 1.11. Let Wa and Wfi be distinct walls in the set HTV If Wa n Wfi

=£ 0 , then a • /? = 0, or equivalently, Wa and W^ are perpendicular.
Proof. We have a, £ e &. If Wa n )T* * 0 , then there is JC e H n (a -1)

HOS^.fhus, JC e ( a ± 0)-1 n H. By (1.2) this means tf (a ± p) < 0(a
since H^a # ^ ) . But

q(a + j8) = -1 ± 2(a • j8) - 1 = -2(1 T(a

Since a • )8 e Z, for both these numbers to be negative, a • /? = 0. •
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Definition 1.12. Suppose a G ^ . S e t Aa = ( a 1 ) n A . The quadratic form
q | Aa is of signature (1, n — 1). If it is of type (1, n - 1), then we say that Wa

is an ordinary wall in Hfv Otherwise, it is an extraordinary wall. In either case
we identify Wa with H(q | AJ .

Proposition 1.13. Let a E l " . Suppose that C is a chamber which has Wa as
a wall. Then

(a) / / Wa is an ordinary wall of ^(q), then C n Wa is a chamber for

(b) / / Wa is an extraordinary wall of i^i(q), then C n Wa is a component of

Proof. Let W be a wall in the set ^ ( t f l AJ . It is defined by a class
j 8 e A a with q(/5)= - 1 . Considering /? as an element in A, this gives a wall
W G ifx{q) which meets Wa perpendicularly in W. Clearly this sets up a
bijection between the walls of i^i(q \ Aa) and the walls of i^i(q) meeting Wa

perpendicularly. According to Lemma 1.11, the latter set is the set of walls of
^i(q) meeting Wa. From this the result is immediate. •

There are two discontinuous groups associated with all this structure.
Definition 1.14. Let A(q) denote the full automorphism group of (A, q). It

acts on AR preserving 3?(q) and H(q\ and the action of A(q) on H(g) is
properly discontinuous. Notice that A(q) preserves the set of walls iT± and
hence acts on the chamber structure associated to iTv

There is another group closely related to ifr
l—the reflection group in the

walls of HTV

Definition 1.15. For each a G f we define the reflection Ra: A -> A
by

Ra(y) = y + 2(a-y)a.

One checks easily that Ra e A(q) and is of order 2. The induced action of
Ra onH(q) is geometrically reflection in the wall Wa. (Notice that Ra leaves
invariant the components of H(g).)

Let ^ c A(q) be the group generated by {Ra\a <=&}. Actually, & is
generated by the reflections in the walls of any single chamber C. Since
& c A(q), the action of ^ on H is properly discontinuous. If we restrict to a
connected component Ho of H, then the quotient space of the action and also
a fundamental domain for the action is a single chamber C in Ho. In
particular, 0t acts simply transitively on the chambers contained in Ho.

Inside A(q) there is the group & = &X {±Id}. This group acts simply
transitively on all chambers. Consequently, A(q) acts transitively on the
chambers. However, the isotropy group of a chamber is nontrivial, and in fact
is infinite for n ^ 9.
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Definition 1.16. If C is a chamber, then let !FC = {a e &r\a defines an
oriented wall of C}.

Lemma 1.17. Let n > 2, and let q: A -> Z be a quadratic form of type
(1, n). IfCc: H(q) is a chamber, then the classes a^&c span A over Z.

Proof. Since A(q) acts transitively on the chambers, it suffices to prove this
for a single chamber. Since q is of type (1, w) there is a standard basis
(x, ex,- • •, en) for A. Let C be the chamber with x e C and ex • C ^ 0 for
/ = 1,•••,«. Clearly, ^ , - • -,en define oriented walls for C. We claim that
x — ex — e2 also defines an oriented wall for C. To see this restrict to
(e3

±) n ••• n(ew
±). A straightforward computation shows that C n (e3

±)
O • • • n(^w

±) = C is as pictured below

C

FIGURE 3

That is to say, the walls of C" are defined by eve2, and x - ex - e2.
Consequently, x — ex — e2 defines a wall for C. Since x — ex — e2, ev- • •,en

span A, the result is established. •
Here is another transitivity result.
Lemma 1.18. Consider the set Sf of all ordered pairs (C, W) where C is a

chamber and W is an ordinary wall of C. Clearly A(q) acts on SP. This action is
transitive.

Proof. Let (C, W) and ( C , W) be elements of Sf with, say, W= Wa and
W = Wfi. We choose a G &C and j8 e J^,. There are decompositions:

Since Wa and ^ are ordinary walls, tf|Aa and ^ |A^ are both of type
(1, n - 1). Thus, there is ^ 0 G i4(?) with i/,0(a) = 8̂. Clearly, ^ 0 ( ^ a ) = ^ «

The chambers i//0(C) and C both lie in the same side of Wfi and both meet
it in a face. By Proposition 1.13, ypo(C) n Wp and C" n ^ are both
chambers for 7^(91A^). Thus, there is /x G ,4(tf | A^) sending ^ 0 (C) n ^ to
• C7 n Wfi. Extend ]u to an element ji e A(q) by setting ji(f}) = p. Clearly,
\x o ̂ 0 (C) n ^ = C n ^ is a face of C', and /i ° ̂ 0 (C) and C lie in the
same side of Wfi. This means that jx o i//0(C) = Cr. Since jx o ̂ 0(P^a)
= W^, this proves the lemma. D
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So far we have been working inside H where local finiteness holds for the set
Wx of walls. We show now that we lose local finiteness even at the boundary
of hyperbolic space, on the double cone $?.

Proposition 1.19. Suppose that (A, q) is of type (1, n) for some n > 2. Then

Proof. Since the points with rational coordinates form a dense subset of
the unit sphere in Rw, lines in 2£{q) through points of A - {0} form a dense
subset of &(q). Clearly, (L^a"1) CM?) is invariant under the R+ action.
Hence, the proposition will be established when we show that for each
t e A n ^ ) , w e have k e U^a"1) n ^ ) . Actually it suffices to prove this
result for all k e A Pi 3?(q) which are primitive (i.e., indivisible) in A.

Let K A n &(q) be primitive in A. Since k e 3?(q), q(k) = 0. Since k is
primitive, there is / e A with k • / = 1. The form q\(kj) is unimodular.
Thus, there is a decomposition

Since q is not even, either q(l) = 1(2) or there is x e ((k, I)-1) with q(x) =
1(2). In the latter case if q{l) = 0(2), then we can replace / by / + x. Thus, we
can always arrange that q(l) = 1(2). Once we have this, replacing / by / - ak
varies q(l) by 2a. Hence, we can arrange that q(l) = - 1 . Since q\((k,/))
has type (1,1), q\((k,l)L) is negative definite. Thus, for any N > 0,
there is a class dN e ((A:,/)-1) with q(dN) = 0(2) and q(dN) < -N. Define
aN = i^(dN)/2)k - I + dN. Obviously, aN e &. The element JC/V = k +
(1 + g(dN)/2)~l - I is contained in 0> C\ («#). As AT -> oo, xN -> A:. Hence

This density result has two useful corollaries.
Corollary 1.20. Suppose that (A,q) is of type (1, n) for some n>2 and

that C is a chamber. Then (R + - C) Pi 3?(q) has no interior in 3?(q).

Proof. Suppose U c R+- C n &(q) is a nonempty open subset of &(q).
Let x e R+(int C). Denote by (x * U) the cone in AR with base U and vertex
x. Clearly (x*U)n0> c R+- int C. Thus, if W € 7 ^ then W O (x * U) = 0 .
Hence, ( U ^ e ^ W) n (x * £/) = 0 , and hence (U^ e i r i Ŵ ) n f/ = 0 . This
contradicts Proposition 1.19. D

Corollary 1.21. Suppose that (A,q) is of type (1, w) /or ^ome « > 2.
Suppose that C is a chamber. There is no class x e A R - i ( ^ f ) such that
x - a> 0 for all a G J^c.

Proof. Let C = DaG jr (x e AR | a • JC ̂  0} This is a convex subset of AR

which meets 9 exactly in R + - C. Suppose j > e C n ( A R - J ) . For each
x e R + - intC we form the line /(JC, j ) in AR joining x to j . This line must
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pierce 2£{q) at a unique point z(x). Clearly, the segment [x, z(x)) c l(x, y)
lies in R + - C. Since R+- C contains an open subset of ^ , the {z(x)} sweep
out a subset of 3?(q) with nonempty interior in 3?(q). This means that
(R + - C) O 3?(q) contains a nonempty open subset of 3?(q\ contradicting
Corollary 1.20. •

2. The canonical class of a chamber and a corner
In this section we define the canonical class associated with a chamber and a

corner. We state two basic results—the first describes the convex subset of the
chamber cut out by the wall perpendicular to the canonical class, the second
gives a disjointness result for these convex subsets. Both are purely arithmetic
results, and presumably both can be proved directly. We find it easier to use
some of the theory of Kahler metrics on good generic rational surfaces to prove
these results. The study of these metrics is carried out in §3. The proofs of the
results stated in this section are given in §4. We keep the notation of the
previous section.

Definition 2.1. A corner is a point x e H at which n mutually perpen-
dicular walls of Wx meet, where n = dimension H. If ( x ,a v - • -,<*„) and
(x\a[,- • -,a'?) are standard bases for A, then they are equivalent if they are
the same as unordered sets. Notice that this forces x = x'.

Lemma 2.2. Suppose q: A - > Z w a quadratic form of type (1, n).

(a) JC G H is a corner if and only / / x G A f i H and q\((x L) n A) is of type

(0,n).
Now let us assume that x G H is a corner.
(b) There are 2" chambers meeting at x.
(c) There are 2" equivalence classes of standard bases for A whose first element

is x.
(d) There is a bijection between the set of chambers having x as a corner and

equivalence classes of standard bases for A whose first element is x. This bijection
is defined by

C <-> {.*,«!,• -,<*„} if and only if aw -,an G^" c .

Proof, (a) Suppose x G H is a corner. There are classes av- • ,an GJ*"
with a, • ai = 0 for / =£ j and x.• ai = 0 for / = 1,•••,«. (These classes de-
termine the n mutually perpendicular walls meeting at JC.) Clearly,
q | (al9- • •, «„) is nonsingular and of type (0, n). Hence q\(((av- • •, O " 1 ) n

A) is also nonsingular and of signature (1,0). The generators of this sublattice
lie in H. Thus, x G ((a^- • •,«w>±) and generates it. Clearly (x±) =



328 ROBERT FRIEDMAN & JOHN W. MORGAN

Conversely, if x e A n H, then q(x) = 1 and we have a decomposition

» ©(A n(x^),q\ A O(x^)) .

The second form is of signature (0, n). If it is of type (0,«), then there are
vectors ax, • • •, an e (JC -1) n J*\ for 1 < / < n, with a7 • ay = 0 for i =£ y. These
classes determine the n mutually perpendicular walls meeting at x e H.

Parts (b), (c) and (d) are immediate given (a). •
Definition 2.3. If x e H is a corner and C is a chamber with x e C, then

any standard basis (x, al9- • •, an) for A with a,. • C > 0 for 1 < / < « is called
a standard basis adapted to C. We define the canonical class K(X,C) to be
( 3 x - E ; ' = 1 a , ) G A .

Notice that if we permute the a,, then K(X, C) remains unchanged. Hence,
K(X, C) depends only on x and C and not on the choice of basis adapted to C.

Lemma 2.4. Let C be a chamber and x a corner for C. Then
(a)?(ic(x,C))=9-#!.
(b) K(X, C ) E A is indivisible.
(c) ^K/c^C)- 1 ) n A is even.
(d) If n = 9 and//KGA satisfies (a), (b), <2«d (c) £/*£« f/jere w a chamber C

and a corner x' with K(X\C) = K.

Proof. K(X,C)= 3X - X ^ a , where (x,av- —,an) is a standard basis.
Clearly then (a), (b), and (c) hold, where (c) follows by reducing mod 2.
Suppose n = 9 and K G A satisfies (a), (b), and (c). Since K is indivisible, there
is 8 G A with K - 8 = 1. Since #(/c) = 0, # | ( K , 8) is nonsingular and of
signature (1,1). Hence, A = </c,S) 0 ((/^S)-1). By (c), r̂ |(<ic,S>~L) is even. It
is of signature (0,8). Thus, q |((K,8)-1) must be isomorphic to -£ 8 . Since # is
of type (1,9) it is odd. This means that q(8) = 1(2). By subtracting a multiple
of K from 8 we can arrange that q(8) = 1. This proves that for any class
/c e A satisfying (a), (b), and (c) of the lemma there is a decomposition

with

Thus, if /c and K' are two such classes, then there is an automorphism of (A, q)
carrying K to K'. In particular, for any such K there is a standard basis for A,
(x\ aj,- • •, a'9) with /c = 3x' — E^=1a-. Let Cr be the chamber with corner xf

and with «; • C > 0 for 1 < i < 9. Then *(*', C ) = /c. •
Since q{K(x,C)) = 9 - /i, /c(x,C) e R+- H for « < 9, K(X,C) determines

an ideal point in H for n = 9 and (K(JC, C) -1) n H is a wall for n > 10.
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Definition 2.5. If x is a corner of a chamber C, then we define

P(X9C) = cn{y<= H\K(X,C) -y>0}.

(Clearly, if n < 9, then P(x, C) = C.) Any subset of H of the form P(JC, C) is
called a P-cell.

Now we state the basic properties of P-cells. Let us begin with some obvious
one

(a) If cp: (A, q) -> (A', q') is an isomorphism of
forms of type (1, n\ then the extension 9: AR -^ A'R
sends P-cells for # to P-cells for #'.

(b) P(x, C) contains a neighborhood in C of JC.
In particular, P(x,C)=t 0.

(c) P(x, C) is a chamber for the set of walls
(2.6) ^ r 1 u{( /c (x ,C) ± )nH}.

(d) If P(x, C) * C, then K(X,C)L OH defines a
wall of P(JC,C).

(e) If Wa is a wall of Or
l passing through x>

and if we identify Wa with H(q \ Aa), then
)n Wa = P(x,Cn Wa).

The main results we need about P-cells are contained in the following two
propositions whose proofs are deferred to §4.

Proposition 2.7. Let q: A -> Z be a quadratic form of type (1,/?). Let
C c H(q) be a chamber, and let x be a corner for C.

(a) Ifn < 9, thenP(x,C) = C, K(X,C) G R+-(intC), and for every a G # c ,
we have a • /c(x, C) = 1.

(b) Ifn = 9, //ie/i P(x,C) = C, /c(x,C) e (R+- C), a«J/or every a
w to^ a - K(X, C) = 1.

(c) Ifn = 10, f/ze« P(JC, C) = C, K(JC, C) G ̂ C , fl«J/or any a e Ĵ "c

/rom K(JC, C), we have a • K(X,C) = 1.
(d) //w > 11, r/ze« P(x,C) g C, K(JC,C) defines an oriented wall ofP(x,C\

and if a e J ^ defines any other oriented wall ofP(x, C), f/ze« a • K(X, C) = 1.
Proposition 2.8. (a) IfP(x, C) = P(x\ C'), then K(X9 C) = K(X\ C).
(b) / / (int P(x, C)) n (int P(x', C')) ^ 0, ^ « ^(JC, C) = P(JC', C) .

Definition 2.9. Notice from (2.8)(a) that /C(JC,C) is an invariant of the
P-cell itself, not its description as P(x, C). Thus for n > 10, the wall K(X, C)±

OH of P(x, C) is a distinguished wall. We call it the exceptional wall of the
P-cell.

Propositions 2.7 and 2.8 are purely arithmetic in nature and presumably can
be established by direct arithmetic arguments. We prefer to argue using the
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algebraic geometry of good generic rational surfaces. This involves a detour to
first establish the requisite results in algebraic geometry. That is the purpose of
the next section.

3. The Kahler cone of a good generic surface

Recall from §1.2 that a good generic surface X is one for which (a) Kx = -F
for F a smooth elliptic curve, and (b) if C is a smooth rational curve on X,
then C2 > - 1 . All such surfaces are rational and have self-intersection forms
of signature (1, n). If n =£ 1, then the form is actually of type (1, n). According
to 1(2.6), for each n > 0, there is a good generic surface X whose form is of
type (1, n). We fix a good generic surface Xof type (1, n). We denote by A(X)
the lattice H2(X\ Z), by qx the self-intersection quadratic form, by &(X) the
set {x G AR(X): qx(x) > 0}, by ^(X) the set of walls in H(X) defined by
classes a e^"(Ar), i.e. by. classes a G A ( I ) satisfying qx(a) = - 1 , and by
#( X) the set of chambers in H( X) associated to iVx{ X).

The surface X has many Kahler metrics. Associated to each such metric g,
there is its Kahler form co and associated cohomology class [u] e H2(X;R).
Changing g by a positive factor changes [co] by the same factor.

Definition 3.1. Let jt(X) c H(X) be the set of all Kahler cohomology
classes contained in H(X). Let X (X) c H(X) be the closure of Jf (X) in
H( X). (Notice that the set of all Kahler cohomology classes is R+- Jf (X).)

Let H c X be a hyperplane section for a protective embedding of X. Then
H2 > 0, so that H e &>(X). Let @+(X) denote the component of &>(X)
containing H, let H+(X) be the corresponding component of H(JQ, and let
J+ (X) be the corresponding component of <S(X) = £(qx).

Claim 3.2. (a) Jf(Ar) c H + ( I ) .
(b) If C c X is any irreducible curve with C2 > 0 then
(c) If L is an ample line bundle over X, then cx(L) c
/V00/. If C c X is any irreducible curve and g is a Kahler metric for X

with associated Kahler form co, then [w] • C = /cco = vol(C) > 0. Thus, if
C2 > 0, C and [co] lie in the same component of M(X). Applying this remark
to C = i/, we see that jfr(X) c H+(Ar); hence so is its closure Jf(X). Part
(b) is immediate from this argument. Lastly, if L is ample then NL is very
ample for some N > 0 so that Ncx(L) is the class of a hyperplane section of a
projective embedding. Hence Nc^L) e <P+(X)9 and consequently q(L) e
^+(*). •

Definition 3.3. Let J(X) be the set of irreducible curves in X, and let
S{ X) be the set of exceptional curves.
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Proposition 3.4. (a) JT(X) = [y e H+(X) | y • F > 0 and y E > 0 for

(b) Jf(jr) = interior of Jf(X).
Proof. General theory ([2, p. 238]) tells us that jfr(X) is equal to the

interior of Jf (X). Also by [2, p. 127], we have

Jf(X) = { >> e H+( jr) |j> • O 0 for all C G / ( I ) } .

As we have already seen, if C e ./(A') and C2 > 0, then C e ^ + ( X). By
Lemma 1.1, y • C > 0 for any y e H+( JQ. Thus Jf(X) is also given as

Jf (*) = {y € H+( X) | j> e C > 0 for all C e ./(JIT) with C2 < 0}.

By Lemma 1(2.2), except possibly for F c X, all C e ^ ( X) with C2 < 0 are
exceptional curves. D

Let E a X be an exceptional curve and let p: X -> 7 be the result of
blowing down E. Then by 1(2.3) Y is a good generic surface. We can identify

), qY) with (p*A(y), ̂ | P*A(Y)) inside (A(X), qx). Furthermore,

Proposition 3.5. Jf(X) n ([E] -1) = p*X(Y). In particular, all exceptional
curves on X define walls of Jf( X).

Proof. Let if c y be a hyperplane section missing the point p(E). Then
H2 > 0. Clearly, [H] lies in &>+(Y). Since p*[H] = [p"xif] is also algebraic,
p*[H] lies in ^+(A^). This proves that p*H+(7) c H+(X).

Now if J G H + ( 7 ) and y C> 0 for all irreducible curves C c Y , then
p*y e H + ( ^ ) and (p*^) • C = ^ • p*(C) > 0 for all irreducible curves C" c
X Thus, p*>; € Jf(X). This proves p*Jf(Y) c jf(Jf) n ([£] -1).

Conversely, suppose x G Jf(A") Pi ([is]-1). Then x = p*y for some ^ e
H + (y) . Clearly, if C c Y is irreducible, then y>C = (p*y) • (p*C) = x • p*C.
But p*C is effective in X (It is the proper transform of C plus some
nonnegative multiple of E.) Since x e Jf( X\ x • p*C ̂ 0 . •

Now we are ready to show that Jf (X) is a P-cell in H(X). Let p: X -> P2

be a holomorphic map with exceptional fibers El,",En where each £, is an
exceptional curve. (Such a map exists by Proposition 1(2.4).) Let H c P2 be a
hyperplane section and set x0 = p*(H) and e, = [isj for 1 < / < n. Then
(x0, ev• • •, ew) is a standard basis for A(X). There is a unique chamber Co( Jf)
which has JC0 as a corner and for which the given basis is adapted (i.e., for
which et • C0(X) >0 for / = 1,- ••,«). Notice that K(XO ,CO(X)) = 3x0 -

Proposition 3.6. (a) Jf (X) = P(JC0, Co(
(b) / / K(JCO,CO(JC)) does not define a wallofX(X\ then X{X) = C0(X).
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(c) / / a e ^(X) is not equal to K(XO,CO(X)) and if a defines an oriented
wall for JT(X), then a • K(XO,CO(X)) = 1.

Proof. We have already established (d) by direct computation. We consider
(a), (b) and (c).

Claim 1. Jf(X)Q C0(X).
Proof of Claim I. Since xo = p*H, x0 • C > 0 for any irreducible curve

C c X. Hence, *0 .e Jf(X). Clearly Jf (X) - et>0 for all / = 1,••-,«. Since
JtT( X) = int Jf(X) is dense in Jf (X), it follows that Jf (X) n int Co( X) * 0 .

To complete the proof of Claim I, we show that Jf(X) is contained in a
single chamber. To do this it suffices to show that jfr(X) meets no wall of
WX{X). Suppose, by contradiction, that W EL iT^X) contains a Kahler class
[<o]. Let W = Wa for some a e &(X). By changing the sign of a, if necessary,
we arrange that a • Kx < 0. Let La be the holomorphic line bundle with
Chern class a. Then by Riemann-Roch

X( Jf; La) = 1 + ( c 1 ( L j 2 - La • Kx)/1 = 1 +(« 2 - a • ̂ ) / 2 > 1/2.

Hence x ( * ; L « ) > l .
By Serre duality H2(X\ LJ = H\X\ Kx ® L^1). Since dim^°(X; Ltt) +

dim H°(KX <8> L^1) > x(^; ^«) > 1 we see that either La or ii:^ 0 L^1 has a
global holomorphic section. This means that either a or Kx — a is an effective
divisor. Since [co] • a = 0, a cannot be effective. Since [co] • (Kx — a) = [<o] •
AT̂  = -[co] • i7 < 0, neither can AT̂  - a. This is a contradiction.

Claim II. The walls of Jf(X) are contained in

j
Proof. All walls of Jf( X), except possibly one, are defined by exceptional

curves in X. These, being of square - 1 , define walls of iT^X). The only other
possible wall of X(X) is defined by [F] = 3x0 — E"=1ez. This class is the
canonical class K(X0, CO(X)).

Proof of (a) and (b). We have established that Jf(X) c Q ^ ) , that
Jf( X) • K(JC0, CO(X)) > 0, and that all walls of Jf (X) are perpendicular either
to K(XO,CO(X)) or to classes in &(X\ Hence, all walls of Jf(X)9 except at
most 1, are walls of if^X). The exceptional wall, if it exists, is
(K(JCO,CO( X))^ n H(X). This shows that

Jf (*) = Q U ) O{ j ; e H(Jf) | j • K(XO,CO(X)) > 0},

which is exactly the definition of P(JC0, CO(X)). This proves (a), and (b) is now
clear.

Proof of (c). All othe walls of JfT(X) are defined by [E] for E c X
exceptional curves. But for any exceptional curve E we have Kx • E = - 1 .
Since A:̂  = -ic(jco,Co(A

r)), this gives E • /C(JCO,CO(X)) = +1. •
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Proposition (3.7). / / X is a good generic surface and n < 8, or if X is a
generic rational elliptic surface and n = 9, then a is the cohomology class dual to
an exceptional curve E if and only ifqx(a) = - 1 and a • K(X0, CO(X)) = 1.

Proof. Clearly, if a = [E] where E is an exceptional curve, then

Conversely, suppose that qx(a) = a • [Kx] = - 1 . We let La be the holo-
morphic line bundle corresponding to a. Suppose that we are in the case n = 9
and I is a generic rational elliptic surface (the case n < 8 is similar and
simpler). By Riemann-Roch as in the proof of Claim I of (3.6), since x(^«) = 1>
either La or Kx <£> L"1 is of the form 6X{D), where D is an effective divisor.
Since Kx = 0X(-F), where \F\ is a basepoint-free linear series, F • D > 0 for
every effective divisor D. Moreover F • La = 1 and F • Kx = 0. Thus, if
Kx (8) L"1 = OX(D), F - D = - 1 , which is a contradiction. It follows that
La = OX(D) for an effective divisor D. Since i7 • D = 1, and F is a fiber of the
elliptic fibration, D is linearly equivalent to E + nF, where £ is a section of
the fibration and hence an exceptional curve, and n > 0. Since

D2 = (E + «F) 2 = -1 + 2/i = - 1 ,

H = 0, and Z) is an exceptional curve. •
Remark 3.8. It is easy to see that if X is a good generic surface and n ^ 10,

then the conclusion of (3.7) is no longer true.

4. A study of P-cells

In the last section we showed that for X a good generic surface of type
(1,«) Jf(X) = P(xo,Co(X)) for an appropriate choice of x0 and C0(X).
Actually, as the next lemma shows, we can use Jf(X) as a model for any
P-cell.

Lemma 4.1. Let q\ A -> Z be a quadratic form of type (1, n). Let P(x,C)
c H(#) be a P-cell. Then there is an isometry of quadratic forms (p:
(A ,? ) i (A(X)9qx) with q>(P(x9C)) = P(xo,Co(X)).

Proof. Let (JC,ex,- • -,en) be a standard basis for A adapted to C. Let
( • x 0 ' e i » " " ' O be a standard basis for A(X) as in Proposition 3.6. The
isomorphism cp: A -» A(X) defined by cp(x) = x0 and cp(e,) = ê  for 1 < i <
«, is as required. •

Now we are ready to begin the proofs of (2.7) and (2.8).
Proof of (2.7). By the previous lemma it suffices to prove (2.7) for the

P-cell Jf (A") = P(x0, C0(X)), where X is a good generic surface of type (1, n).
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Proof of (a) and (b). If n < 9, then qx(K(x0,C0(X))) > 0. Thus,
K(XO,CO(X)) does not define a wall in F^X). Hence, by Proposition 3.6(b),
JT(X)=C0(X).

If n < 9, then ^(ic(jco,Co(Jf))) > 0. By (3.6)(c), a • K(XO,CO(X)) > 0 for
all a^&c^xy Therefore, K(XO,CO(X)) e R+-(intCo(JO). If « = 9, then
?*-(K(*O>Q(^)) )

 = 0 an (l K(*o>Q(^)) G &(4x)- As before, it has positive
intersection with all classes defining oriented walls of C0(X). Thus,

0/ (c) and (d). If « > 10, then qx(ic(xoXo(X))) < 0. Thus by
Corollary 1.21, it cannot be the case that K(X0, CO( X)) has positive intersection
with every class defining an oriented wall of Co( X). By Proposition 3.6(b) and
(c), it follows that K(X0, CO(X)) defines a wall of Jf (X). Also, by Proposition
3.6(b) for every a^^(X) defining an oriented wall of X(X) with a ±
K(X0X*(X)\ we have a • ic(jco,Co(Jf)) = 1.

If n = 10, then qx(ic(xo,Co(X))) = - 1 , and K(XO,CO(X)) defines a wall in
^(X). Thus, all walls of X(X) are walls in irx(X). Hence, Jf(X) is a union
of chambers. Since X(X) c C0(Jif), it follows that X(X) = C0(X).

If n > 10, then ^^(K(xo,Co(A
r))) < - 1 . Since this class is indivisible in

A(X), the wall it defines is not a wall in ^ ( g ) . Since this wall is a wall of
Jf(X\ it must be the case that X(X) g C0(X). This completes the proof of
Proposition 2.7. •

Before beginning the proof of Proposition 2.8, we need a couple of lemmas.
Lemma 4.2. Suppose n > 3, and let q: A -» Z fee a form of type (1, n). Le/

PO, C) fee 0 P-cell for q. Let a e A de//ne a wa// 0/ P ^ C ) distinct from
(K(X, C) L) O H (//^e to^r w a wall of P(x, C)). Then Wa is an ordinary wall
in Hr^q).

Proof. By Lemma 4.1, it suffices to prove this result for the P-cell
P(xo,Co(X)) where A" is a good generic surface of type (1,n). By Proposition
3.4, a = [E] where E c X is an exceptional curve. Thus, qx(<x) = -1 and
Wa e nrv Furthermore, in the notation of (1.12), Aa(X) = p*A(Y) where p:
X -» y is the result of contracting £. To prove that Wa is an ordinary wall is
to prove that (A(Y), qY) is of type (1, n — 1). Since, by Lemma 1(2.3), Y is a
good generic surface and since rank A(Y) = n ¥= 2, by Proposition 1(2.4), Y is
of type (1, n - 1). •

Lemma 4.3. Letn> 10, am/ fef 4: A -> Z fee 0/0/7*2 o/ry/?e (1, w). Suppose
P(x,C) is a P-cell for q. The wall ( K ^ C ) - 1 ) PI H(q) for P(x,C) is dis-
tinguished among all walls of P(x,C) by being the only one which is not an
ordinary wall in ^ \ ( ^ ) .

Proof. Since n > 10, we know that (K(X, C) -1) n H(̂ f) is a wall of />(*, C).
By Lemma 4.2 all other walls of P(x,C) are ordinary walls in ̂ (q). Since
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K(X, C) is indivisible in A and #(K(JC,C)) = 9 - n, the wall (K(X,C)±)nH is
not in i^i{q) unless n = 10. In this case, #|((/c(x, C)x) n A is even, by
(2.4)(c), so the wall is extraordinary. •

Corollary 4.4. Let q: A -» Z #wd #': A' -> Z fee /onra1 0/ type (1, «), /or
some « > 2. Let P c H(g) W P' c H(g') fee P-a?/&, say P = P(JC,C) tfnrf
P' = P{x',C). Suppose <p: A -> A' w tf« isomorphism of forms and that
<p(P) = P ' w/zere 9 w //*e natural extension of <p to A R . 77ze« <p(/c(x, C)) =
K(X\C).

N.B. We assume that <p(P) = P ' but not that y(x) = JC'.
Proo/. If 2 < w < 9, then P = C and Pr = C". Thus, our assumption

becomes 9(C) = C in this case. By Proposition 3.6(c), if a e j ^ . , then
a • K{X,C) = 1. Likewise, if a' e % then a' • K{X\C) = 1. Clearly then,
(P(K(X,C)) and /c(x',C) both have the property that their intersection with
any a e &c. is 1. By Lemma 1.17 &c spans A'. Thus, <p(/c(x, C)) = K(JC', C")
in this case.

Now suppose that « ^ 10. By Lemma 4.3 the fact that <p(P) = P ' implies
that y((K(x,C)±)nH(q)) = (K(x\C')±)nH(q'). Hence 9(K(JC,C)±) =
(^(JC',^)-1-). Thus, cp(/c(jc,C)) = mic(x\C') for some m e Z. Since q(K(x,C))
= ^'(^(^'^C")), m = ±1. Since P • K(JC,C) > 0, P' • K(X,C) > 0 and <p(P)
= P\ it follows that w > 0. Thus m = 1, and <JP(/C(JC, C)) = /C(JC', C). •

Definition 4.5. Let P be a P-cell. We define the canonical class K(P) to be
K(x, C) where P = P(x, C).

Corollary 4.4 tells us that K(P) is well defined, i.e. independent of the
representation of P as P(x, C), provided « > 2. This is obvious for « = 1.

Lemma 4.6. (a) Suppose that q: A -> Z w o/ (y/?e (1, «) /or 5ome n ^ 11.
L^/ P be a P-cell for q, and let a e ^ Je//we fl« oriented, ordinary wall of P.
Then P C\ Wa = Pf is a P-cell for q \ Aa. Let K(P) e A and K{P') G Att fee the
canonical classes for these P-cells. We have

K(P) = K(P') -a.
(b) {a e IF \ a defines an oriented ordinary wall for P } spans A.
Proof. As before we identify (A, q) with (A(X\ qx) for some good generic

surface X of type (1, n). We do this in such a way that P is identified with
Jt{X). Thus K(P) becomes -Kx.

Since a defines an ordinary wall for P, it is identified with [E] for some
exceptional curve E c X. Let p: X -> 7 be the result of contracting E. By
Proposition 3.5, Jf( X) n ([£] -1) = p*X*(Y). Since 7 is a good generic surface
and n * 2, Y is of type (1, n - 1). Hence, Jf (y) is a P-cell in H(y) = H(X)
n^E]1-). Furthermore, the canonical class of this P-cell is -KY. We know
that Kx = p*KY + [£]. Hence, - i ^ = P*(-A^y) - [£]. Translating back to A
gives the claimed formula in (a).
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If n < 9, then Part (b) is immediate from (1.17) and (2.7).
To prove (b) for n > 9 let x be a corner of P and (JC, e0, • • •, en) a standard

basis adapted to the chamber containing P. Then by Part (a), P C\ (e-^)
n •••• n(elf-

L) is a chamber C for the form 9|((e10,- • " J O " 1 ) . Hence, the
oriented ordinary walls of P include (e^), • • •, (e^\ and the oriented ordinary
walls of C. Thus, the classes defining them span A. •

Proof of Proposition 2.8. Part (a) of (2.8) is immediate from Corollary 4.4.
Part (b) is obvious from (2.7) for n < 10. We suppose that n > 11, and that,
by induction, we have established Part (b) of (2.8) for n — 1.

If Px and P2 are P-cells and if (intPJ n (intP2) ± 0 , then clearly Px and
P2 lie in the same chamber, say C. Furthermore, / = Px n P2 is a chamber for
the locally finite set of walls

Thus, either / has at most two faces or a face of / lies in a wall in iTv Since
/ c C, by Corollary 1.20 R+- / n «3T has no interior in <3T. Hence, / must have
more than two faces. Let F be a face of / contained in Wa e # \ . Clearly,
both Px and P2

 n a v e faces, say P{ and P2
r respectively, contained in Wa.

Furthermore P[ n P2' = F contains a nonempty open subset of Wa. By
Lemma 4.6, P[ and P2 are P-cells for the form q\Aa. By induction, it follows
that P[ = P[. In particular, K(P{) = K(P2'). But by Lemma 4.6 again, we have

ic(P1) = ic(P1
/)-a and K(P2) = K{P{) - a.

Consequently, K(P1) = K(P2). It follows immediately that Px = P2. This com-
pletes the proof of Proposition 2.8. •

Note. It happens that P(JC, C) = P(xr, C) without x = JC'.
Having established Propositions 2.7 and 2.8, we continue now with a further

description of P-cells.
Let q\ A -^ Z be of type (1, «), let C be a chamber and let { Pt}, e /c be the

set of P-cells contained in C.
Lemma 4.7. The { P,}, e / /orm 0 locally finite set of convex subspaces of C.
Proof. This is immediate from the definition of a P-cell and the local

finiteness result, Corollary 1.8. •
Definition 4.8. Let Q(C) = ( C - U / e / c P , ) . We call this the core of C.
Lemma 4.9. Q(C) is convex. It is nonempty if and only ifn> 12.
Proof. Since Pi•= {x e C | x • /c(Py) > 0} and since the walls {(K(P7) -1) n

H ( ^ ) } / e / form a locally finite family, either Q(C) = 0 or Q(C) contains a
nonempty open subset of C and is given by

Q(C)= (JCG C|JC • ic(Pf.) < 0 foraU i e / c } .

Clearly in both cases Q(C) is convex.
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If n < 10, then each P-cell is a chamber, and Q(C) = 0 . We consider
n > 11. Let Po be a P-cell in C. Then the intersection Io = (/c^)-1) n C
contains a nonempty open subset of (/c^)-1) Pi H(#). If 2(C) = 0 , then
every point of Io lies in a wall ( K ( P ; )

± ) n H(g), for some P, =£ Po. Since the
walls are locally finite, there is another P-cell, Px =£ Po in C such that
(/cCP^-1) = (/cCPo)-1). Since Px * Po, by Proposition 2.8(b), Px and Po lie on
opposite sides of (^(PQ)-1) PI C. NOW consider Po U Px c C. It is a closed
subset of C without frontier in C. Hence Po U Px = C. We have just shown
that for any n ̂  II, Q(C) = 0 if and only if C is a union of two P-cells.

Suppose n = 11. Then #(/c(P0)) = -2. Thus, there is a reflection in (K(P0) -1),
# G ,4(#), defined by

R(X) = X+(X-K(P0))K(P0).

Clearly, R(C) = C and fl(P0) = Pi is another P-cell in C with K(PX) =
-/c(P0). Thus, C = Po U Px and ()(C) = 0 .

Conversely, suppose that C = Po U Px. We shall show that w = 11. Let
a G f define an ordinary wall for Po. We consider P o n P = PJ. We claim
that Po' is a chamber for ^\(<71AJ. If so, then (n - 1) < 10 so that n < 11.
Since we are assuming n ̂  11, this forces w = 11.

First notice that since Po and Px meet along (/c(P0) -
1) n H, K(P0) = -^P^.

Thus, by Proposition 3.6(c) there is no wall W in ̂ (q) which is a wall for
both Po and Pv Set C' = Cfl ^ a . It is our purpose to show that Po' = C.
Suppose not. Then {K{P^)L) n intC * 0 . Since (/c(P0

/)±) n C = (^(Po)-1)
O C, this means

( /c ' (P 0 ) ± )n( in tC)^ 0 .

Consequently, C meets both sides of (K(P0)
X). Thus, Wa contains a face of

both Po and Px = C - Po. This is a contradiction. •
We need one last fact about P-cells:
Lemma 4.10. If P is a P-cell and ifW^ ^(q) is a wall for P, then there is

a P-cell P ' meeting P along its face P n W.
Proof. Let W = Wa and let Ra be reflection in Wa. Clearly P' = Ra • P is

as required. •
This completes our description of P-cells. The following pictures summarize

what we have shown.
For n < 8, the chamber structure is well known (and classical). In particular,

all chambers have finite volume, and the stabilizer of a chamber is essentially
the Weyl group of an appropriate root system of type A, D, or E\ moreover,
the Weyl group arises as a finite subgroup of the Cremona group.
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5. Super P -cells

Throughout this section we fix a quadratic form q: A -» Z of type (1, n) and
a P-cell P c H ( ^ ) . W e denote by J ^ the set {a e J^ |a defines an oriented,
ordinary wall of P }. Let C be the chamber containing P.

Definition 5.1. ^ ( P ) c A(q) is the group generated by reflections in the

If 3 < /? < 9, then P is a chamber and all walls of P are ordinary. Hence,
is the full group @ generated by reflections in all walls in i^i(q). For

n > 10 this is not true, and, as we shall see, ^ ( P ) is of infinite index in @t.

n= 10

C = P(x, C)

(/c(py-) n H

ordinary walls

n = 11

P' = reflection in (fcrP)1) of P

n> 12

FIGURE 4
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Definition 5.2. The super P-cell S( P) is defined by

S(P) = U » • * •

Lemma 5.3. (a) S(P) w a union of P-cells with disjoint interiors.
(b) IfC is a chamber, then S(P) n C = 0 or S(P) n C is a single P-cell.
(c) 0t{P) acts simply transitively on the P-cells in S(P).
(d) A P-cell P' is contained in S(P) if and only if there is a sequence

P = Po, Pv- • ,Pt = P' of P-eelIs with P, and Pi+1 sharing a face in an ordinary
wall in i^v

(e) / / (intS(P)) n (intS(P')) # 0 , then S(P) = S(P') and @(P) = 9t(P'\
Proof of (a). This is clear from the definition and the fact that distinct

P-cells have disjoint interiors.
Proof of (b) and (c). By definition 32(P) acts transitively on the P-cells in

S(P). Since 0t acts simply transitively on the set of chambers, &(P) acts
freely on the set of chambers. Thus, if cp • P, and <p' • P are contained in the
same chamber C", then <p • C = <p' • C. Hence, tp = <p'. This proves that
S(P) n C is at most a single P-cell and that 0t{P) acts freely on the P-cells in
S(P).

Proof of (d). Suppose P = Po, Pv • • •, P, = P ' is a path as described in (d).
We prove by induction on i that P, c S(P). This is clear for / = 0. Suppose
we know the result for (/ - 1). Then the ordinary walls of Pi_l are images
under an element of 3?(P) of the ordinary walls of P. Hence, reflections in
them are conjugate by elements of ^ ( P ) to generates of ^ ( P ) . Thus,
reflections in all ordinary walls of Pt_x are elements of ^ ( P ) . One of these
reflections carries Pt_x to P,. Since Pf_x c S(P), so is P,.

Conversely, suppose Pf = (rx° ••• ° rt) • P where the rt are reflections in
the ordinary walls of P. Let Po = P, and P/ = (rx <> . . . o r.) • i> for 1 < / < f.
Clearly, Pt = P'. We claim that for each 0 < i < / — 1, P, and P / + 1 share a
face in an ordinary wall. To see this let w — rx ° • • • ° rt. Then Pt = w • P and
Pi+i = w • (r /+1 • P). Since P and r; + 1 • P share a face in the fixed wall of
r/ + 1, which is ordinary, w • P and w • (r /+1 • P) share a face in an ordinary
wall.

Proo/ o/ (e). Suppose (int S(P)) n (int S(P')) # 0 . Then there are P-cells
Po c S(P) and Po

r c S(P') with (int Po) n (int PJ) # 0 . By Proposition 2.8(b),
it follows that Po = Po

r. Clearly, by (d) P' c S(P), and thus S(P') c S(P). By
symmetry, S(P') = S(P). Since ^ ( P ) is the group generated by the reflections
in any P-cell contained in S(P), it also follows that ®(P') = 9t(P\ D

Remark 5.4. If 3 < /i < 9, then the P-cells are chambers and all walls are
ordinary. Thus a super P-cell is simply a component of H. •
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Corollary 5.5. S(P) is connected. •
Now we state the main result of this section.
Proposition 5.6. S(P) c H(q) is convex.
Proof. In light of Corollary 5.5, it suffices to show that S(P) is locally

convex. Fix x e S(P), say x e Po a P-cell of S(P). Let Co be the chamber
containing Po. Let Af(x) be the union of all chambers containing x. Then
^V(JC) is a neighborhood in H(q) of x. We prove the local convexity of S(P) at
x by showing that S(P) C\ N(x) is convex inside N(x).

Suppose that the walls in if^q) passing through x are Wa\- • •, Wa'. We
can choose the a ; G ^ f . The reflections .Ra commute by Lemma 1.11. The
group &x that they generate is isomorphic to (Z/2Z)'. It acts simply transi-
tively on the 2* chambers making up N(x). We have two cases to consider.

Case 1. One of the Wa> is an exceptional wall in i^i(q).
Case 2. All the Wa> are ordinary walls in ^(q).
In Case 1, q\ A a is even so that there is no other wall in Wi(q) meeting

Wa>. Hence, in this case / = t = 1 and N(x) is the union of two chambers. By
Lemma 4.2, all walls of Po except (*(/>())-1) PI H(q) are ordinary in i^x(q).
Thus, if Wa' is extraordinary, it must be the case that Wa* = (K(P0) -1) n H(q).
Hence, q(ic(P0)) = - 1 , and n = 10. Thus, all P-cells are chambers in this case,
and S(P) P\ N(x) is either a single chamber or all of N(x). In either case the
intersection is convex inside N(x). (In fact, the intersection is a single
chamber.)

We consider Case 2. The images of Po under all elements of 3ix are
contained in S(P). By Part (b) of Lemma 5.3, it follows that S(P) Pi N(x) =
UM . e^ K> • P{). The following claim establishes the convexity of S(P) Pi iV(jc)
inside N(x).

Claim 5.7. S(P)nN(x)= {y e A^(JC)|J- K(W • Po) > 0 for all w (E @x}.
Proof of Claim. Let T(x) denote the right-hand side. Since S(P) D N(x) =

UM-e*A.w * ̂ o a n d since w • Po = w • Co n {^|y • K(W • Po) > 0}, we see that
T(x) n w • Co c w • Po for all w e ^ v . Hence, T(x) c S(P) n N(jt).

We must establish the opposite inclusion. To do this, it suffices to show that
for all w, w' e #_v,

or equivalently to show that for all w e 9tx^ K(W • Po) • Po ^ 0. Any w e 9tx

can be written as Ra. o • •. o /Ja_, for some i^— -Jk distinct indices between
1 and /. Since a, • ay = 0 for / =t j , we see that

k

K(W • P()) = w • K(P0) = K(P0) 4- 2 $
7 =
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Since each a, defines an ordinary oriented wall for Po, Proposition 2.7 tells us
that K(P0) • at = 1. Hence

j
7 = 1

Since a, • Co ^ 0, for any y e Co, we have
k

K(W - P o ) -y = K(P0) • J> + 2 £ *ij-y> K(P0) -y.
7 = 1

Thus, K(W • Po) • Po ^ 0. D
We finish the section by proving a result about the way a super P-cell meets

infinity. Let us introduce some notation. Suppose that P is a P-cell contained
in the chamber C. Suppose that (x9el9'"9en) is a standard basis for A
adapted to C and that X E P . Then K(P) = 3x - EJLi*,-. Set k = K(P) +
£?-io*/ = 3JC - £?_!«?,. Clearly, P' = P n W10 n • • • n We« is a P-cell for
the form q\(A n ((el0,- • -,eny) and k = /c(P').

Proposition 5.8. (a) /c • k = 0 so that k determines a point in
(b) A: e R + - P ' c R^TP.
(c) / / S(P) denotes the super P-cell in H(q) containing P,

wA/c/i pass through intS(P) and contain k in their closures are

Proof. It is clear that k • k = 0, that k • elf = 0 for 10 < / < «, and that
A: = /c(P'). It is also clear by (2.7)(b) that the point determined by k in H(#) is
contained in P 7 and a fortiori in P.

Now suppose W* is a wall of ^\(<7) and k is contained in the closure of
Wa. This means k • a = 0. We write a = a0 4- E"=10^^/. Since a • k = 0, we
see a0 • /c = 0, and hence #(a0) < 0, by (1.1).

We have

-1 = q(a) = q(a0) - £ r,2.
/ = 10

Hence g(a0) = 0 or - 1 . Since by Lemma 2.4(c) q\((k,el0,- • •,ew>±) n A is
even, q(a0) = 0. Thus r7 is nonzero for exactly one value of /, say / = i0, and
a0 = mk for some m e Z. It follows that a = mk ± eiQ. By symmetry we can
assume that i0 = 10.

We shall show that, if m ¥= 0, then Wa does not pass through S(P), which
will complete the proof of the proposition. Since {mk + e10) and S(P) are
both invariant under the reflections Re for 11 <y < n and since S(P) is
convex, if W(mk±e^ n (int S(P))) # 0 , then ^ ( w / c = t e i o ) n i l < y < / 1 (* / ) n
(int S(P)) # 0 . Clearly, S(P) n ( e i ) n • • • n ( e / ) is a super P-cell S(P")
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for the form q\(x9el9--9 el0). Thus, we have reduced the problem to showing
that the result is true for n = 10.

Now suppose n = 10. We have K(P) = k - el0. Since n = 10, (/c(P)-1) =
((^ ~ eio)±) ls a n exceptional wall for P and hence for S(P). Likewise,
( ( H ^ ) 1 ) is an exceptional wall for the P-cell Rew-P, and hence
((k + ^io)"1) is also a wall for S(P). The other walls (mk ± e^)1) are
separated from (e^) by either ((k + el0)

L) or ((k — e^)-1). Since (e^) cuts
S(P), none of the others does, by the convexity of S(P). •

6. The Donaldson invariant revisited

We begin by re-interpreting the results of §1.1 in terms of the chamber
structure. Let M be a closed, smooth, simply connected, oriented 4-manifold
of type (1,/?).

Proposition 6.1. Suppose g0 and gx are metrics satisfying condition 1(1.5).
Suppose co0 and cox are self-dual harmonic 2-forms with respect to these metrics
with [coo] and [cox] e H(M). Then [<o0] and [coj are foo//z /'/? the interiors of
chambers. If they are in the interior of the same chamber, then tM(g0, <oo) =
f\/(gi, <*>!).

Proof. This is immediate from 1(1.14). •
If A(M) is the lattice H2(M, Z) with self-intersection form qM, we shall let

(A R (M) ,q M ) denote A(M) ® R, equipped with the natural extension of qM.
We may then define H(M), # ( M ) , etc.

FIGURE 5
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Let ^\M) c ^(M) be the subset of all chambers whose interiors contain
the cohomology class of a self-dual 2-form for some metric on M.

Definition 6.2. There is a unique function

IV
defined by TM(C) = tM(g, <o) if [<o] G C. It satisfies:

(a) If C G «"(M), then so is -C and r^(-C) = -TM(C).
(b) If C and C G «f'(Af) both lie in the same

component of H(M), then

(6.2) rM(C) = TM(C) - 2 t «,.
1 = 1

where the classes a,, G A(M) run over all classes
satisfying qM(<Xi) = -1 and a. • C > 0 > a,- • C.

(That is to say, the a, run over all classes defining walls separating C and C ,
oriented so that C is in the positive side.)

Clearly, UC€E#'(A/)C meets both components of H(M). Since the set of
metrics on M is connected UCe<g»(A/)C meets each component of H(M) in a
connected set. Thus, it is easy to see that there is a unique extension of TM to a
function

satisfying (6.2)(b). This extension also satisfies (6.2)(a). This then is the
Donaldson invariant. Notice that TM is determined by its value on any chamber
via formulae (6.2)(a) and (b). Suppose that Mf is also a closed, smooth, simply
connected, oriented 4-manifold of type (1,«), and that / : M -> M' is an
orientation-preserving diffeomorphism. Then / induces an isometry /* :
H(Af') - H(M) and consequently a function f*: W(M') ^> <#(M). Clearly,
f*V'(M')= V\M). Furthermore, if C" G V'(M') then 7 * ^ ( 0 =
^ ( / • C ' ) . It follows that

(6.2)(c) For any C G ^(M r) we have/*IV(C) - r^ ( /*C ' ) .

We find it convenient to work with another invariant, AM, derived from the
Donaldson invariant. The domain of A M is a convex cell decomposition of
H(M) finer than ^(M).

Definition 6.3. Let ®(M) be the union over C G # ( M ) of
{g(C), P(JC, C) | x is a corner of C}. (Thus, each D G ® (M) is either a P-cell
or a core of a chamber.)

If Z> e <D( Af) then Z) is a closed convex subset of H(M), and its frontier in
H(M) is a union of a locally finite set of faces with each face contained in a
wall in iTx U ^w_ 9 | . Furthermore, each D e ®(Af) is a subset of some
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C e V(M). If n < 10, then ®(M) = V(M). If /i > 11, then each 2) e ®(M)
is a union of chambers cut out by ^ _ 9 ( ^ A / ) . By Proposition 2.8(b), and the
definition of Q(C), the interiors of the D e ®(M) are disjoint.

The invariant AM which we shall now define is a function AM: ®(Af) ->
A(M).

Definition 6.4. (a) If P is a P-cell in H(Af) contained in the chamber C,
then

(b) If () is the core of a chamber C, then

Lemma 6.5. (a) / / D <= ®(M), tfie/j -Z> e ®(M)

(b) / / / : M ^> M' is an orientation-preserving diffeomorphism, then it induces
amapf*: 3)(AT) -> ^(M). We have

for any D'
Proof of (a). Clearly, if Z) G ®(M) and Z> is contained in the chamber C,

then - D e ®(M) and (-i)) c (-C). Furthermore, Z) is a P-cell if and only if
-D is. Since K(-P) = - K ( P ) for any P-cell, (a) is immediate from (6.2Xa).

Proof of (b). If / : M -» Af' is a diffeomorphism, then clearly it induces a
map / * : ®(M') -> ®(M). For any P-cell P ' for ^M,, / * P ' is a P-cell for ̂ rM

and K ( / * P ' ) = / * K ( P ) . Given this result, (b) is immediate from (6.2)(c). •
We also need a formula for the effect on A M of crossing a face of the

decomposition ®(Af).
Let us list the possibilities.
Lemma 6.6. Suppose that Do and Dx are distinct elements of S)(Af) and

that Do and Dx share a face. Then one of the following holds.
(a) One of Do and Dx is a P-cell P contained in a chamber C and the other is

Q(C). Furthermore DQ n Dx = (fc(P)-1) Pi C.
(b) Do and Dx are both P-cells and Do n Dx is a face of each which is

contained in an ordinary wall in 7^ .
(c) Do and Dx are both Q-cells, cores of chambers Co and Cx respectively, and

Don Dx<z C0D CX(Z W for some wall W e HTV

(d) Do andDx are both P-cells, Do n Dx c ^(DQ)^ andn = 10 or 11.
Proof. That these are the only possibilities is immediate from Lemma 4.9

and Lemma 4.10. •
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Having listed the possibilities, we now give the formula in each case.
Lemma 6.7. Let M be a closed smooth, simply connected, oriented 4-

manifold of type (1, n).
(a) Suppose P is a P-cell for qM, and P is contained in a chamber C. If

n > 12, then

(b) Suppose that P and P' are P-cells sharing a face in an ordinary wall Wa in
1TX(M). Then

(c) Suppose that Q(C0) and Q(CX) are Q-cells sharing a face in a wall Wa

where a e J*"(M) and a • Co > 0.

(d) Suppose that P and P' are P-cells sharing a face in (K(P) ̂  Then

Since n = 10 or 11 in this case (d) breaks up into:

(d I):« = 10, AM(P') = A M ( P ) - 4 K ( P ) ,

Proof. (a) AM(P) = rA/(C) + K(P) and AM(0(C)) = TM(C). From
this (a) is clear.

(b) Suppose P c C and P' c C and that C n C c T f o r a e J^(M)
with a • C > 0. Then by Proposition 2.8, P' = Ra- P where Ra is reflection
in W. Thus K(P') = Ra • K(P) = K(P) + 2(a • /c(P))a. Since a defines an
oriented ordinary wall of P, by Proposition 2.7 a • K(P) = 1. Hence, we have
K(P') = «(P) + 2a. By (6.2)(b), TM{C) = TM(C) - 2«. Hence

AW(P') = TU(C) + K(P ' ) = (rw(C) - 2a) + ( K ( P ) + 2a)

(c) A^CSCQ)) = r w ( C j = TM(C0) - 2a

= AM(<2(C0)) - 2a.

(The second equality is a consequence of (6.2)(b).)
(dx): Here P is a chamber, say C, and P' is another chamber say C" and

C n C c (^(P) -1), the latter being an exceptional wall in ^ ( M ) . Thus P' is
the image of P under reflection in (K(P) -1). Hence, K(P') = -K(P\ SO that

A*(/>') = r v ( c ) + IC(P') = (rM(c) - 2K (P)) - K(P)
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(d2): Here, P and P' both lie in the same chamber, say C. Again K(P ' ) =
K ( P ) . Thus

K(P') = TM(C) - K(P)

= A A / (C) -2 /c (P) . •

Remark 6.8. If D and Df are elements of ®(M) which share a face in the
wall Wa, with a chosen to be indivisible on A(M) and to satisfy

a • 2) > 0, then AA/(D') = AA/(Z)) - ma

where m = 0,1,2, or 4.
Corollary 6.9. AM w constant on super P-cells in H( M).
Prco/. This is immediate from (6.7)(b) and (5.3)(d). D
Now we come to our main technical result.
Theorem 6.10. Suppose that for some P-cell, P, we have AM(P) e R+- P.

77*672 /or a«y Z> e ®(Af) we have qM(AM(D)) < qM(AM(P)) with equality if
and only if D is a P-cell contained in one of the super P-cells ± S(P).

Proof. By (6.5)(a) it suffices to consider those D contained in the same
component of H(M) as P. Let D e S)(M) be contained in this component.
Let y be a geodesic arc in H(M) from a point x e int P to a point j> e int Z>.
We choose x and ^ so that y is generic with respect to the locally finite cell
decomposition {D e ®(M)} of H(M). Let P = DO,DV- -,DS = D be the
cells (in order) that 7 crosses. For each 1, Di_1 is separated from Dt by a wall
Wa' defined by a unique primitive class a, e A satisfying at - Di_l ^ 0.

Z)2 D3 D

FIGURE 6

isAccording to Remark 6.8, AA/(D) = AM(P) - EJ_!»!,.«,. where each y

0,1,2, or 4.
Cta'w 6.11. For all /, 1 < 1 < s, a,•, - x > 0 > a, • y.
Proof. Parameterize y so that y(0) = x and y(l) = y. For any i the

function a ; • y(/) is strictly monotone with respect to t. It vanishes at tt =
y~l(Di_l n D() and is positive for t < /,.. This proves (6.11).

Since (a/1) n (intP) = 0 and (a/-) n intZ) = 0 , it follows immediately
from (6.11) that

(6.12) at,- P ^ 0 > al,- D for 1 s.
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Now we are ready to compute:

AW(D) = AM(P) - t m,a,,
/ = 1

hence

qM{AM{D)) = ^(AA/(P)) - 2AM(P) • ( £ m^q) + qJ £ mta\.

Since AM(P) G R+- P, (6.12) implies that

Thus

^A/(AA/(Z))) < ?„(*„(/>)) + qJ £ m^.J.

Since mi > 0 for all i, and a,. • JC > 0 > a,. • .y, either

JC > 0 > I J^ w / a / ' ^ ' o r w / = 0 for all /, 1 < i
\

Thus, by (1.1) either qM(^Si=\miCii) < 0 or m, = 0 for all i, 1 < i < £. Conse-
quently, either

or
qM(AM(D)) = qM(bM(P)) and M j = 0 for / = 1,-•-,s.

But if ml; = 0 then Z)/_1 and Di are both P-cells and their intersection is a face
contained in an ordinary wall of each. Thus, if mlr = 0 for all /', 1 < 1 < 5 then
D is a P-cell contained in the super P-cell S(P). D

CHAPTER III
1. Proofs of the main theorems

In this section we prove Theorems 1, 3 and 11 stated in the Introduction,
and we prove one inclusion in each of Theorems 6, 7, and 10. All the
arguments use Theorem I (1.19) and are based on computations of the moduli
spaces of stable rank-2 vector bundles over Dolgachev surfaces and their blow
ups. These computations are stated as needed, but the proofs are postponed to
Part Two (Chapter IV). We shall refer to the necessary results from Part Two
by IV.n.m. for appropriate n and m.
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Throughout this section we denote by S = S(p, q) a Dolgachev surface. We
shall calculate Ts by calculating it on a natural chamber C0(S) associated to
the elliptic fibration structure on S.

Definition 1.1. Let [/] be the cohomology class dual to a generic fiber in S.
By I(3.7)(e), there is an indivisible class KS e A(S) with [/] = pqics. Since
/ • / = 0, we have qs(Ks) = 0.

Lemma 1.2. qs\((
Ks) n A(S)) is even.

Proof. Let w2(S) denote the second Stiefel-Whitney class of S. Then the
reduction of [A^]mod2 is w2(S). Suppose x e A(S) and x • KS = 0. Then
x • [tfs] = 0 as well, by I(3.7)(b). Hence qs(x) = 0 (mod 2). D

Corollary 1.3. 77iere is a unique chamber C0(S) in H(S) with K(C0(S)) = KS.

Proof. This is immediate from (1.1), (1.2), and II(2.4)(d). •
Now we are ready to calculate TS(CO(S)). This we do with the aid of the

following definition and theorem.
Definition 1.4. A line bundle L on S will be called suitable if there exists

an ample line bundle Lo on S and an integer

such that L = Lo ® K's.
It follows from the Nakai-Moishezon criterion [2, p. 127], that a suitable line

bundle is ample. We shall use the following result from Chapter IV to prove
Theorem 1.

Theorem IV 4.4. Let So = S0(p,q) be a generic Dolgachev surface, and let
L be a suitable line bundle over So. The moduli space Wl of L-stable rank-2
vector bundles V with cx{V) = 0 and c2(V) = 1 is compact. Each component of
Tlred is identified with either Fp or Fq. If a component (9W/)red of 2ft red is
identified with Fp (resp. Fq) and i^t is the restriction of the universal bundle over
SQXJ? to S0X ( ^ , ) r e d , then /z, = ( / ? / ) * C 2 ( T Q is Poincare dual to [Fp] (resp.
Fq). Lastly, if p = 2, then Wl is reduced and consists of (q — l ) / 2 components,
each identified with F2.

Corollary 1.5. Suppose that So is a generic Dolgachev surface with multiple
fibers of orders p and q. Let L be a suitable line bundle over So. Let g be a Kdhler
metric associated to L, and let o) be the Kdhler form of g. Then

fso(g,w) = (pq-p - q)KSo + 2 £ ntq+ £ ^

where Ip and lq are the sets of components of Wl red identified with Fp and Fq

respectively and nt is the length of the generic point of 9W,. If p = 2, then
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Proof. By I(3.7)(a), x(^s0) = l- BY Proposition IV(4.3) all components of
red are compact and of dimension 1. Thus, by Theorem 1(1.19)

By 1(3.6) and I(3.7)(b), KSQ = (pq - p - q)KSo. If i e / , , then Ml. =
o and if i e /^ then /i,. = [FJ = /?KV Thus,

If /? = 2, then Iq= 0, I2 has (^ - l) /2 elements, and «, = 1 for all
/ G 72. Thus, in this case, we have

f 5 o ( g , W ) = { ( 2 9 - 2 - q ) + 2q{q - \)/2}KSO

= ( ?
2 - 2 ) K V D

Definition 1.6. For all pairs (/?, q) with g.c.d.(/?, q) = 1, we define «(/?, #)
= (pq-p - q) + 2Li€,Ipniq + 2Lierqnip. Clearly n(p,q) > pq - p - q
and n(2,q) = q2 - 2.

Note. The proof of Theorem IV(3.9) shows, in fact, that n(p,q) is inde-
pendent of the choice of generic Dolgachev surface So. A slightly better lower
bound for n(p9 q) is given in IV(4.9).

Thus, we can reformulate Corollary 1.5 as follows
Corollary 1.7. With So, g and co as in 1.5, we have

fso(g,w) = n(p,q)KSo. U

Now we identify the chamber containing cY(L).
Proposition 1.8. Let S = S(p9 q) be an arbitrary Dolgachev surface, and let

L be a suitable bundle over S. Then

Proof. We write L = Lo + (pq - p - q)(L0 • K) • K where
4 s ( c i ( L o ) ) > 0 and q(L0) • K> 0,

and we set K = KS. Hence, (1.8) is an immediate consequence of the following
lemma.

Lemma 1.9. Let x e AR(5). Suppose that qs(x) > 0 and that x • K > 0
(/.e. //ztf/ JC tfm/ /c ar^ in the same component of ^{qs))' Then, for all t ^ j ,
x + t(x • K)K G R + -(intC0(S)).

Proof. After rescaling x, we may assume that x • K = 1. Let a e
Then a • K = 1, so that (x - a) • K = 0. Hence ^S(JC - a) < 0, i.e., #
2(x • a) - 1 < 0. It follows that
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If t>\, we have ((x + t(x • K)K) • a) = (x • a) + *(JC • /c) = (x • a) + t >
- \ + t > 0. As this holds for all a e ^Co(tS), x + f(x • K)K G R+-(intC0(S'))
for all t> {. U

Corollary 1.10. Let So be a generic Dolgachev surface with multiple fibers of
orders p and q. Then

r5 o(C0(S0)) = n(p,q)icSo = n(p,q)K(C0(S0)).

Proof. This is immediate from (1.7), (1.8), and the definition of TSQ. •
We now pass from a generic Dolgachev surface So to an arbitrary one.
Corollary 1.11. Let S = S(p, q) be a Dolgachev surface. Then TS(CO(S)) =

n{p,q)Ks = n(p,q)K(C0(S)).
Proof. Let So be a generic Dolgachev surface with multiple fibers of orders

p and q. By 1(3.11) there is a diffeomorphism <p: S -+ So (automatically
orientation-preserving, since S is of type (1,9)) with <)P*̂ So = Ks. Thus,
<P*KSO = KS, and hence <p*(C0(S0)) = Q(S) . By H(6.2)(c) and (1.10), we have

D

Corollary 1.12. A5(C0(5)) = ( / i (p, 9) + 1 ) K ( Q ( S ) ) . D
Now we are ready to prove Theorem 1.
Theorem 1. (a) Let n(p,q) be the function from pairs of relatively prime

integers greater than I toN defined in (1.6). Then
(i) n(p,q)>pq- p - q\

(ii) n(2,q) = q2 - 2; and
(iii) ifS(p,q) andS(p\q') arediffeomorphic then n(p,q) = n(p',q').
(b) No Dolgachev surface S(p9q) is diffeomorphic to a rational surface.
Proof. We have already seen that n(p,q) satisfies (i) and (ii). Let S =

S(p, q) be a Dolgachev surface. By Corollary 1.12

M Q ( S ) ) = (n(p,q) + 1 ) K ( Q ( S ) ) = ("(/>>«) + !)K>
where we let K = K(C0(S)) = KS. Since n = 9 the super P-cell containing
CQ(S') is exactly the component of H(5) containing C0(S). Since A5 is
constant on super P-cells (by 11(6.9)), we see that A5(C) = (n(p,q) + 1) • fc
for all C in the same component of H(S) as C0(S). Hence, by II(6.5)(a),
A5(C) = ±(n(p,q) + l)-K for all chambers C in H(S). Thus for all cham-
bers C in H(5), A5(C) is divisible in H2(S; Z) by exactly (AZ(/?, q) + 1).

Now suppose S{p, q) and S(/?', r̂') are diffeomorphic. By H(6.5)(b) and the
above computation, it follows that

n(p,q) + 1 = n(p\q') + 1, so n(p,q) = n(p\q').
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Lastly, we show that no S(p, q) is diffeomorphic to a good generic rational
surface X. From this it will follow from the proof of Theorem 3.4 in this
chapter that no S(p, q) is diffeomorphic to any rational surface. To do this we
compute Ax . Let L be an ample line bundle over X. By [8], or by IV(5.12),
there are no L-stable rank-2 bundles over L with c2 = 1. Thus, if g is a Kahler
metric for L and co is its Kahler form, we have 2ft (g) = 0 and

Let C0(X) be the chamber containing all Kahler forms (up to scalar multiple).
Then

TX(CO(X)) = KX.

Since by II(3.6)(d), K(C0(X)) = -Kx, we see that

Ax(Co(X)) = 0.

Again using 11(6.9) and II(6.5)(a), we have A^(C) = 0 for all chambers C in
H(X). Since n(p9q) > pq — p — q>\ if g.c.d.(/?, q) = 1 and p9q > 1, we
see immediately from II(6.5)(b), that S(p,q) and X are not diffeomorphic.
This completes the proof of Theorem 1 (modulo Theorem IV(4.4) and IV(5.10)).
•

Corollary 1.13. Let C be a chamber in H(5). Then qs(Ts(C)) = 0 if and
only if C = ±C0(S).

Proof. TS(C) = ^S(C) - K(C) = ±(n(p,q) + 1)K(C0(S)) - K(C). Since
qs«C)) = qs(K(C0)) = 0, qs(Ts(C)) = 0 if and only if K ( C 0 ( S ) ) • K(C) = 0.
But K(C0(S)) - K(C) = 0 if and only if K(C0(S)) and K(C) are multiples of
each other. Since K(C0(S)) and K(C) are indivisible in A(S), this happens
only when K(C) = ± /c(C0(5)), i.e. only when C = ± C0(S). •

We turn next to the proof of Theorem 3. Let S = Sr(p, q) denote the blow
up of S = S(p, q) Sit r distinct points, and let p: S -> S be the natural map.
Here is another result from Chapter IV which we shall use to prove Theorem 3.

Corollary IV (5.9). Let L be a suitable line bundle on S, and let El9- —,Er

denote the exceptional fibers of p. Then there exist positive integers N, mh

/ = 1, • • •, r, with mt/N arbitrarily small, such that, if we set
r

L = Np*L- X mtEi9
l

then:
(a) L is ample on S.
(b) The moduli space Wl of L-stable rank 2 vector bundles on S with cx = 0

and c2 = 1 is isomorphic as a scheme to 9JI, the moduli space of L-stable rank-2
vector bundles on S with cx = 0 and c2 = 1. This isomorphism is induced by p*.
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(c) The universal bundle V over S X Tt is the pullback via (p X Id)* of the
universal bundle Y over S X Tt.

Lemma 1.14. There is a unique chamber C0(S) in H(S) with the following
properties

(a)[£|.]-C0(S)>0/orl < i < r.

(b) co(S) n([E^)n • • • naE,]^ = P*Q(S).
There is a unique P-cell P0(S) in H(S) such that

p o ( s ) c c o ( s ) and P0(s)n([E1]
±)n...n([E,]±) = p*c0(s).

Proof. That there is a unique chamber C0(S) satisfying (a) and (b) is clear.
By Proposition 11(2.8) there is at most one P-cell as required. Furthermore, if
x e H(S) is a corner for C0(S), then p*(jc) e H(S) is a corner for C0(S). The
P-cell P0(S) is P(p*x,C0(S)). D

Lemma 1.15. If y ^ intCo(S'), iV a«J mt are positive integers, 1 < z < r,
and if m(/N is sufficiently small, then Np*y - L[/«,.[£,.] e R+- C0(S).

As m / i V - ^ 0 , ^(p*iVy - E[mf.[£f.]) -* p*>̂  e int p*C0(5). Since
- !;>,•[£,•]) • £,- = m,- > 0 for all /, 1 < z < r, it follows that if the
are sufficiently small, then Np*y - ![/?!,.[£,.] e C0(S). •

Corollary 1.16. r§(C0(S)) = P*TS(CO(S)) + E J . J E J .
Proof. First let us assume that S is a generic Dolgachev surface. Let L be

a suitable line bundle over S. Then by Proposition 1.8, cx(L) e R+-(int C0(5)).
Let L over S be the bundle iVp*L - E J ^ m , ^ , where Â  and m are chosen to
satisfy the conclusions of IV(5.9) and (1.15). Then L is ample and cx(L) e
C0(5). Thus

where /i and jd are calculated from 9K and Wl as in Theorem 1(1.19). By
Corollary IV(5.9), p > = jx. Of course, p* /^ 4- E^=1 [Et] = ^ . Thus,

This proves the result when S is generic. To pass to a general Dolgachev
surface S, we use 1(3.11) to construct a diffeomorphism from S to a generic
Dolgachev surface So. This lifts to a diffeomorphism between the blow ups
which makes the exceptional curves correspond. The result for S then follows
from that for So by the naturality property II(6.2)(b). •

Corollary 1.17. A5(P0(5)) = p*As(C0(S)) = (*(/>, <?) + l)p*ic5.
Prw/ . By 11(4.6), we have K(P0(S)) = p*fc(C0(5)) - E^=1 [Et]. The result

is immediate from this and (1.16). •
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We recall the statement of Theorem 3.
Theorem 3. Let r > 0. Let S and S' be blow ups at r points of Dolgachev

surfaces S = S{p,q) and S' = S(p',q'). If S and S' are diffeomorphic, then
n(p,q) = n(p',q'). Furthermore S is not diffeomorphic to a rational surface.

Proof. Since by II(2.7)(b) KS = K(C0(S)) e CO(S), P*KS is in the closure
of P0(S). By Theorem 11(6.10), for any D e 2)(S), we have

with equality only if D is in one of the super P-cells + S(P0(S)). Now suppose
S' is a blow up of S(p\q'\ and suppose cp: S -> S' is a diffeomorphism.
Again, cp will be automatically orientation-preserving, since S is of type
(1,9 + r). Let P0(S') be the P-cell in S' as in Lemma 1.14. Then by II(6.5)(b)
we have

qS{*s{<P*Po(S))) = «A*S'MS'))) = 0.

Thus, <p*P0(S') is in one of the super P-cells ± S(P0(S)). Since A^ is constant
on super P-cells (11(6.9)), by II(6.5)(a) and Corollary 1.17, we have

Of course, by Corollary 1.17, A5,(P0($')) = (n(p\q') 4- l X ^ ) * ^ - By
11(6.5)(b), the divisibilities of these classes must be the same. Hence, n(p, q) +
1 = n(p\q') + 1, and n(p9q) = n{p',q').

Lastly, we show that S is not diffeomorphic to a rational surface of type
(1,9 + r). To do this we can again work with X a good generic surface. Let
C0(X) be the chamber in H(A') containing all Kahler forms associated to
Kahler metrics. By IV(5.10) there are no L-stable bundles on X for any ample
line bundle L. Hence,

(1.19) Tk(C0(X)) = Kk= -K(C0(X)).

Hence A*(C0( A")) = 0. Thus, A^ takes on the value 0 whereas A^ never does.
Thus, by 11(6.5)(b) this implies that S and X are not diffeomorphic. This
completes the proof of Theorem 3, modulo Theorem IV(4.4) and Corollary
IV(5.11). •

Now we turn to Theorem 6. At this point we shall prove part of Theorem 6.
Recall that if S = S( p, q) is a Dolgachev surface, then we define

where [/] is the cohomology class dual to a generic fiber of S.
Theorem 6A. For any Dolgachev surface S = S(p,q) we have D(S) c

Af(S) c A(S). Furthermore, the subgroup A^(S) is of infinite index in A(S).
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Proof. Suppose that <p: S -* S is a diffeomorphism. We must show that
<p*[/] = + [/]'• We know that A s takes on only two values, + (n(p, q) + \)KS.
Thus, y*Ks = ±KS. Since [/] is a multiple of KS, <p*[/] = + [ / ] .

To show that Af(S) is of infinite index in A(S), we note that Af(S) =
{xP ̂  A(S)\yp(K)= ±K). Since K = K(C0(S)) we have ^ ( 5 ) = (i// e
y4(5)|;//(C0(5')) = + C0(S) | . Since there are infinitely many chambers in
H(5) and since A(S) acts transitively on the set of chambers, it follows that
Af ( S) c A (S) has infinite index. •

Next we turn to Theorem 7. At this point we prove a partial result along
these lines.

Theorem 7A. Let S be the blow up of S = S(p,q) at r points. Let
B c H2(S\ Z) be the subgroup generated by the classes dual to the exceptional
fibers of p: S -* S. If <p: S -* S is a diffeomorphism, then cp preserves the
orthogonal splitting

Furthermore, the restriction of <p* to H2(S; Z) w contained in A^
Proof. Let Po(^) b e t h e ^-cell in H(S) described in Lemma 1.14. Since

^(A^((p*/ )
0(5))) = 0, we see that (p*P0(S) is contained in one of the super

P-cells ±S(P0(S)). Since A^ is constant on super P-cells, it follows that

) . But As(P0(S)) = <P*Ks- Thus

Let us consider first the case when <p*p*Ks = P*KS. In this case <p*S(P0(S))
= S(P0(»S)). Let (x,ev— -,e9) be a standard basis for A(5) adapted to
C0(S). Let el0, • • •, en be the classes dual to the exceptional fibers of p: S -> S.
Then (p*x, p*^!,- • •, p % , ̂ 10,- • •,ew) is a standard basis for A(S) adapted to
C0(5), and p*x e Po(5). Of course, P*KS = /c(C0(S)) - E^io*,- Thus, by
Proposition 11(5.8), the only walls in ̂ ( # 5 ) which pass through S(P0(S)) and
contain p*K5 in their closures are W*10,- • -,W€n. The automorphism <p* must
then preserve this set of walls. Thus for each /, 10 < i < n, there is a j =j(i),
10 <y < n with <p*(ey) = ±ej. Hence, <p* leaves invariant (el0,- • -,^w) c

Consequently, it also leaves invariant ((e10,* • s O " 1 ) n

If <p*p*Ks = -p*Ks, then (p*S(P0(S)) = -S(P0(5)) . We apply the above
argument to yp = (-Id)°<p*. We conclude that \p preserves the given decom-
position. Since (-Id) also preserves this decomposition, so does <p* in this case
as well. Since <p*p*/c5 = ±P*K S , it follows that <p*p*[/] = ±p*[ / ] , so that
<p*\H2(S;Z)^Af(S). •
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We shall establish the following refinement of Theorem 10.
Theorem 10'. Let X be a rational surface of type (1, n) for some n > 9.

There is a P-cell P0(X) c H(X) such that D(X) = (^ e A(X) | i//(S(P0( JQ))
= ±S(P0(Ar)) where S(P0(X)) is the super P-cetl containing P0(X). The group
D( X) has infinite index in A( X).

In this section we prove
Theorem 10A. / / X is a good generic surface, then setting PQ(X) equal to the

closure of the Kahler cone Jf(X) we have

D(X) ^ {t e A(X)\t(S(P0(X))) = ±S(P0(X))}.
The group D(X) has infinite index in A(X).

Proof. Let C0(X) be the chamber containing P0(X). By (1.19), Tk(C0(X))
= Kx = -K(P0(X)). Hence bx(P0(X)) = 0. Applying Theorem 11(6.10), we
see that qx(Ax(D)) < 0 with equality if and only if D is in one of the
super P-cells + S(P0(X)). Thus, if cp: X -* X is a diffeomorphism then

Finally, we must show that D(X) has infinite index in A(X). Since D(X)
acting on the P-cells preserves the value of q^0^^ a n ^ since A(X) acts
transitively on the P-cells, it suffices to show that qx°^x ta^es infinitely
many distinct values on P-cells.

It suffices to prove that ^ ° A j takes on infinitely many values when
n — 10, since the cohomology of a good generic rational surface of type (1,10)
injects into that for a rational surface of type (1, n) for any n > 10 preserving
the values of qx°^x- I*1 ^ c a s e n = 10> ^ super P-cells are exactly
chambers for the subset of exceptional walls in ifv If So is the super P-cell
containing the Kahler cone P0(X) then by II(6.7)(d) for any other super P-cell
S2 in the same component of H as So we have

where the a, are the classes defining the exceptional walls which separate So

and Sx. Of course, qx(a-) = - 1 . Since the walls Wa* and WaJ do not meet, and
since there is a geodesic crossing the oriented walls Wai and Waj both from the
positive side to the negative side, ataj < 0 for all / and j . Hence qx{^x^\))
< -16r, where r is the number of exceptional walls separating So and Sx.

To complete the proof we need only see that given r > 0 there is a super
P-cell Sx(r) separated from So by at least r exceptional walls in iVv Since each
super P-cell has at least 2 exceptional walls and they meet each other, if at all,
along one wall, this is obvious. •

Finally, we shall prove Theorem 11. It is an easy corollary of the formal
properties of T and the discussion of Chapter II.
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Theorem 11. Let M be a smooth simply connected oriented 4-manifold of
type (1, w), with n > 10. Then D(M) is a proper subgroup ofA(M).

Proof. Let C e #(M), and let a e J*"c. Then

Suppose that # a e Z>(M), say Ra = <p*. Then

Thus, if /?a e Z)(M) for all a, we must have rM(C) • a = -1 for every
chamber C and every a e J^. By II(4.6)(b), this is only possible if

for every corner x of C. By 11(1.21), - ^ ( C ) lies in 1= {x e AR(M):
^ ( x ) ^ 0}. Since ^ ( - ^ ( C ) ) = ^ M ( K ( X , C ) ) = 9 - n9 n < 9. D

2. Completion of the proofs of Theorems 6,7, and 10'

We begin by stating a refinement of Theorem 6 of the Introduction. Let
S = S{p,q) be a Dolgachev surface. The complement of tubular neighbor-
hoods of the multiple fibers is naturally identified with the complement Xo in
X of tubular neighborhoods of two smooth fibers. Let A0(S) c A(S) be the
stabilizer of the subspace in H2(S\ Z) Poincare dual to the image of H2(X0\ Z)
ini /2(S;Z).

Theorem 6'. We have inclusions A0(S) c D(S) c ^ ( S ) c ^(5) . 77ze I/I-
dex ofA0(S) in Af(S) is (pq)%\ the index ofAf(S) in A(S) is infinite.

Theorem 6A established that D(S) c Af(S) c ^ (5) and that Af(S) has
infinite index in A(S). Thus, to prove Theorem 6', we need to show

(2.1)(a) ^o(S) is a subgroup of Af(S) of index (pq)S.

(2.1)(b) A0(S)<zD(S).

In order to prove these results we introduce some notation. We set L c
H2(S\7J) equal to the subspace Poincare dual to the image of H2(X0;Z) in
H2(S\ Z); and we set L c H2(S\ Z) equal to ([ /]±) . The Dynkin diagram for
-EH is

FIGURE 7

I
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The associated symmetric bilinear form on the free abelian group with basis
{x0, *!,-•-, x8} is defined by

-2 if 1 =7,
1 if i # / and x, and *,- are connected

y . y = / •/

by an edge in the diagram,
\0 otherwise.

We denote this form by -Es. It is negative semidefinite. It has a one-
dimensional radical. The quotient by the radical is -Es.

Claim 2.2. (a) The form qs\L is isomorphic to -E%. Its radical is (KS)
(b) L c L , and the quotient L/L is isomorphic to Z/pqZ and is generated

by KS. The form qs \ L is also isomorphic to -E8 and its radical is ([/]>
Proof. Using the notation in the proof of 11(2.4), we have H2(S; Z) =

(KS,8) 0 «/c5, S)-1) with qs |((ic^S)-1) isomorphic to -£ 8 . Clearly, L = (KS)

0 ( (K 5 , 8 ) -1). Part (a) follows immediately.
Since Xo a S misses the multiple fibers, any a e H2(S\ Z) in the image of

H2(X0;Z) has zero homological intersection with the classes of the multiple
fibers and hence with the classes of the ordinary fibers (these classes being
rational multiples of those of the multiple fibers). Dualizing gives L c L .

To compute L/L, let Tp and Tq be tubular neighborhoods in S of the
multiple fibers Fp and Fq. A simple computation shows that H2(Tp,dTp; Z) =
Z 0 Z/p Z with the class of Fp generating the finite cyclic factor (and similarly
for Fq). From the exact sequence

H2(X0)-*H2(S) »H2(S,X0) 'tfxUo) ^i(S)

111

H2(Tp9dTp) <B H2(Tq9dTq) IH ||

111

(ze z/pZ) e (ze z/qZ) ̂ z -o
we see that H2(S)/lm H2(X0) = Z 0 Z/pZ 0 Z/qZ = Z 0 Z/pqZ and that
the class dual to KS generates the finite cyclic factor. Dualizing, we have
H2(S\ Z)/L = Z 0 Z/pqZ with /c5 generating the finite cyclic factor. Since
L c L and since H2(S\ Z) = Z 0 L, it follows that L/L = Z/pqZ and that
KS generates the quotient. Part (b) is now an easy consequence of Part (a).

Now we show that A0(S) c Af(S). The first step is to identify Af(S) with
the stabilizer of L. This is immediate, for a £ A(S) leaves { + [/]} invariant if
and only if it leaves (KS) invariant if and only if it leaves ((KS)

±)=Z L
invariant. Since L = QL Pi H2(S; Z) any a ^ A(S) leaving L invariant also
leaves L invariant. This proves that A0(S) c Af(S).
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Now for any a e Af(S\ consider the subgroup a(L) c L. It is a subgroup
with cyclic quotient isomorphic to "L/pqL generated by KS. It is straightfor-
ward to verify that there is one such subgroup for each element of
Hom(!/([/]>, (%>/([/]». Since !/<[/]> = Z8 and since [/] = pqicS9 there
are (pq)* such subgroups. It is also easy to check that each such arises as a(L)
for some a e Af(S). To complete the proof that A0(S) c Af(S) has index
(/?<?)8, note that a(L) = /?(L) if and only a~l^(L) = L, if and only if the
right cosets aA0(S) and fiA0(S) are equal. This completes the proof of

Now we turn to (2.1)(b). We begin with a lemma.
Lemma 2.3. / / a and /? are elements of A(S) and if a\L = / J | L , then

« = /?.
Proof. It suffices to suppose that a e A(S) and that a | L = Id^, and to

prove that a = Id. Using the notation established in the proof of Claim 2.2(a),
we have CL\((KS,S)1) = Id and «([/]) = [/], so that OL(KS) = KS. We need to
show that a(8) = S. But a(S) e (((/c^S)-1)-1) = (KS,8) SO that a(8) = aics

4- Z?S. On the other hand, a(S) • KS = 1, implying that 6 = 1. Lastly, 8 • 8 =
a(8) - a(8) = 2a + 8 • 8, so that a = 0, and a(8) = 8. D

In light of (2.3) to prove that ^40(^) c ^ ( ^ ) it suffices to prove that any
automorphism of the indefinite form qs \ L is realized by a diffeomorphism. As
a first step to doing this, recall that, if q: A -> Z is a quadratic form on the
lattice A, and if a E A, q(a) = - 1 , then

Ra(x) = x + 2(x - a)a

is an integral isometry of A. Similarly, if q(a) = -2 , we define

In both cases, Ra(a) = -a , R2
a = Id, and Ra fixes (a-1).

Proposition 2.4. Le/ M be an oriented 4-manifold and S2 c M be an
embedded sphere with a E / / 2 ( M ; Z ) the cohomology class dual to S2. If
qM{a) = - 1 or -2 , there is an orientation-preservingself-diffeomorphism <p of M
such that <p* = Ra.

Proof. We deal with the two cases separately. First suppose that qM(oc) =
- 1 . Then there is a neighborhood of S2 in M which is diffeomorphic to
C P 2 - i n t Z > 4 , via an orientation-reversing diffeomorphism. We may thus
write

M = M'#
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with
S2 = (CP1) c C P 2 - i n t Z ) 4 c A f # C P 2 ,

where M' is a smooth oriented 4-manifold. It suffices to construct an orienta-
tion-preserving diffeomorphism <p0: CP2 -> CP2 such that

(i) <p01 D4 is the identity on D4;
(ii) cp*(*) = -*, where JC is a generator of i/2(CP2; Z).

Indeed, given <p0, we can extend cpo\CP2 — intD4 by the identity on AT and
smooth to obtain an diffeomorphism cp of M with the required properties.

To construct <p0, it is sufficient to replace CP2 by CP 2 and construct a map
satisfying the analogues of (i) and (ii). Begin with complex conjugation

a: CP2 -> CP2.
It is orientation-preserving and satisfies (ii). Let p be a fixed point of a, i.e.
p e RP 2 . Let Z)4 = C2 be the affine piece of CP2 given by (z0 ± 0), where
z0, Zj, z2 are homogeneous coordinates on CP2. Then D4 is invariant under a,
and (zj, z2) = (xx, ^^ JC2, j>2) are coordinates on f/. Moreover, in these coordi-
nates,

o(xl,yl,x2,y2) = (^1,-^1,^2.-^2)-

There is an isotopy of o\D4 to the identity on D4 given by rotating the
2-plane spanned by the yx- and ^-coordinates at time t by an angle tv. By the
isotopy extension theorem, we can extend this isotopy to an isotopy from a to
a diffeomorphism <p0, which has the required properties (i) and (ii).

Now suppose that qM(a) = -2. Then a neighborhood of S2 in M is
diffeomorphic (via an orientation-reversing diffeomorphism), to TDi(S2), the
unit disk bundle of the tangent bundle of S2. We construct an orientation-
preserving diffeomorphism (JP0: TDi(S2) -> TDi(S2) such that, if 2 is the zero-
section of TDi(S2),

(i) <p01 dTDi(S2) is the identity:
(ii) <po(2) = - 2 ( = 2 with the orientation reversed). Extending <p0 by the

identity on the rest of M and smoothing near dTD2(S2) c M then gives the
desired diffeomorphism cp. To construct <p0, view TDi(S2) as

7 ^ ( S 2 ) = { ( ^ , W ) G R 3 x R3: |M| = 1, ||w||< l ,and«;- w = 0},

where || • || and (•) are the standard norm and inner product on R3. Define

( os(/77)i; + sin(/7r)jj—jj-, —||

if w * 0 ^

where t = 1 -
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One checks easily that <p0: TDi(S2) -> TDi(S2) is a diffeomorphism, with
9o(^w) = (u,w) if ||w|| = 1 and <po(M) = (-0,0). •

Remark 2.5. If p: Z -> A is a family of algebraic surfaces over the complex
disk acquiring an ordinary double point at t = 0, and Z is smooth then there
is so-called "vanishing cycle" associated to p. It is a smoothly embedded
sphere S2 c Z,, where Z, is a general fiber of p, and S 2 has self-intersection
-2 . According to the Picard-Lefschetz formula, the monodromy diffeomor-
phism associated to a loop in A enclosing 0 is the map <p0 constructed above,
up to isotopy.

We next turn to the construction of embedded spheres in Dolgachev
surfaces. To do this, it suffices to consider one very special Dolgachev surface
S = S(p,q); this is a consequence of 1(3.11).

We turn to the construction of S. Let Co be a smooth cubic curve in P 2 , and
/ a line of inflection of Co. (There are exactly 9 such lines.) Thus, / meets Co at
a unique point /?, counted with multiplicity 3. Make 9 "infinitely near"
blowups at p. In other words, blow up p, then blow up the point of
intersection of the proper transform of Co with the newly created exceptional
curve, and so on. In the following schematic picture, we indicate the newly
created exceptional curves Et by dotted lines and use the same letter for a
curve and its proper transform. Call the resulting surface X. If we continue to
use the same symbol to denote a curve and its proper transform on X, then X
has classes £1?- • •, Es and / which are smooth rational curves of square -2 ,
and all indicated intersections are transverse. X has the structure of a rational
elliptic surface in the sense of 1(2.10). In fact, X is a resolution of singularities
of the pencil defined by Co and 3/. Moreover, X may be deformed complex-
analytically to a generic rational elliptic surface. (In Kodaira's notation [17], X
has a singular fiber of type II*, sometimes called of type Es.)

Let S = S(p,q) denote the result of performing two logarithmic transforms
of orders p and q on two smooth fibers of X. Thus, S is a Dolgachev surface
as defined in 1(3.3). Let eo,ev- • - ,e8 be the cohomology classes on S dual to
l,Ex,- -', £8 . They are orthogonal to [/], the class dual to a general fiber in the
elliptic fibration on S.

Clearly, we can define a map of quadratic forms \p: (-Es) -> (L,q$\L) by
sending x. to et. Let q'$ be the induced form on L / ( [ / ] ) . Then \p induces a
map of quadratic forms \p: (-Es) -» ( L / ( [ / ] ) , q'$). Since both these forms are
nonsingular, \p is automatically an isomorphism. The class [/] is an integral
linear combination of eQ,— -,e%. Thus, it is contained in the image of \p.
Hence, \p is onto, and consequently, \p is an isomorphism.
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p2

2nd blowup

first blowup

361

3rd blowup

9th blowup

FIGURE 8

Lemma 2.6. Every automorphism of {L,q^\L) sending [/] to [/] can be
written as a composition of the reflections Re, 0 < / < 8.

Proof. By the discussion above, it suffices to show that the subgroup G of
Aut(-£8) generated by RXQ,- • •, Rx& is the subgroup which is the identity on
the radical of -Es. Let k e (-Es) generate the radical. Since the reflections in
the simple roots generate Aut(-ii8), it follows that the image of G in Aut(-Es)
is all of Aut(-E%). Next, using [4, p. 198], we see that G contains all the
transvections: Ty(x) = x + (x • y)k for y e (-i?8). Now let \p e Aut(-f?8)
satisfy \p(k) = k. After composing with an element of G we can suppose that
y\> is the identity on the quotient - £ 8 . It follows that \p is a transvection and
hence an element of G. •
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Lemma 2.7. / / $ G A0(S) satisfies i//([/]) = [/], then i//
PA™/. If ^ e ^ 0 ( ^ ) , then $\L G Aut(L). If in addition, *//([/]) = [/],

then by (2.6), ^ is in the subgroup generated by Reo,-,Re^ But by
construction each ei is the Poincare dual of an embedded 2-sphere in S. By
(2.4), each Re is induced by a self-diffeomorphism of S. Hence, so is \p. •

Finally, we construct a diffeomorphism <p: S -> S with <p*([/]) = - [ / ] . We
may view a Dolgachev surface S as the zero locus of a finite set {/>!,•••> pM}
of homogeneous polynomials in z0,- • •, z^ which define the embedding S c
p/v = p / v ( C )

Let a: C -> C denote complex conjugation and let Sa c P^(C) be defined
by the vanishing of [p°,% • -•> PM}. (If /> is a polynomial with complex
coefficients, we denote by p° the polynomial obtained by applying o to all the
coefficients.)

By transport of structure, S° is a smooth algebraic surface with the same
numerical invariants of S, and every purely algebraic statement about S is true
for Sa as well. Hence 5° is an elliptic surface with pg = g = 0 and with exactly
two multiple fibers, of multiplicities p and q. It follows that Sa is a Dolgachev
surface, by [6] or [23, Theorem 10, p. 191].

By 1(3.11), there is a diffeomorphism <p0: S
a -> S such that, if [/a] is the

class dual to a general fiber in the elliptic fibration for Sa, then

<Po*[/] = [/*]•
Moreover, a: PN(C) -> P"(C) induces a diffeomorphism S -> 5 a , also de-

noted a, and clearly a*[/°] = - [ / ] . Hence, if we set <p = <p0 ° a,

This concludes the proof of (2.1)(b), and hence of Theorem 6'. •
We now consider Theorem 7.
Let S be S(p,q) blown up at r points. Of course we have the map p*:

H2(S) -» / / 2 ( ^ ) . We identify H2(S) with p*//2(5) c / / 2 (S ) . By Theorem
7A we have ^ ( 5 ) c {^ e >I(S) | \P(H2(S)) = / / 2 ( 5 ) and ^ | / 2

i4y(S)}. That is to say

where B is the subgroup of H2(S;Z) generated by the classes el9—-,er dual
to the exceptional fibers of p and A(B) is the automorphism group of the
negative definite form q$ \ B. We complete the proof of Theorem 7 by showing

Theorem 7B. D(S) X A(B) c D(S).
Proof. First let us show that D(S) c D(S). Suppose $ e A(S). Let ^ G

^(S1) be the element defined by ^(JC) = ^(JC) if x e i/2(5') and #(*?,.) = e, for
1 < / < r. We wish to show that if yp G D(5), then \p <= D(S). Suppose that ^
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is realized by a diffeomorphism cp: S -> S. Since <p is orientation-preserving,
we can isotope <p until it is the identity in a disk D4 c S. We take this disk to
include the r points we blow up. Then cp lifts to a diffeomorphism <p: S -* S.
Clearly <p realizes i//.

Now we show that A(B) E: D(S). The group .4(2?) acts as a permutation
group on the vectors of square - 1 . These vectors are { + el9- —, ±er), where
ev- - -,er are dual to the exceptional fibers of p. It follows easily that A(B) is
generated by the reflections defined by ei and by transpositions R^ defined by
et -> -ey , e ; -> -e, , e^ -> e^ for k =£ /, 7 for all pairs i ^ j . Since the e{ are
dual to embedded 2-spheres in S, reflections defined by e, are realized by
self-diffeomorphisms of S, by (2.4). The transposition RtJ is in fact the
reflection defined by et + e^ Clearly, ^ ( e , 4- ej) = -2 . Since e{ and ey are
dual to classes represented by disjointly embedded 2-spheres in S, e, + ej is
dual to a class represented by an embedded 2-spheres. Hence by (2.4), RiJ is
realized by a diffeomorphism of S. •

Now we turn to the completion of Theorem 10'.
Theorem 10B. Let X be a good generic rational surface of type (1, n) for

n > 10. Let Po(X) be the P-cellin U(X) which is the Kdhler cone. Then

(^ e A(X) |*(S(P0(*))) = ±S(P0(*))} c D(X).

Proof. Clearly, the group on the left-hand side is generated by (i) — Id, (ii)
reflections in the ordinary walls of P0(X), and (iii) {\p e A(X)\xp(P0(X)) =
P0(X)}.We show all these elements are realized by self-diffeomorphisms of X.
Let (x, ev • • •, en) be a standard basic for Xcoming from a representation of X
as P 2 with n points blown up. Then x and the et are represented by disjointly
embedded spheres. By (2.4) Re is realized by a self-diffeomorphism of X. By
the obvious analogue of (2.4) for classes of square 4-1, so is Rx where
R
 x(y) = y ~~ 2 ( x ' y)x- T h e composition Rx ° Rei° • • • ° Re = -Id. Hence

-ld*=D(X).
Since the ordinary walls of Po( X) are defined by classes dual to exceptional

curves the reflections in (ii) are realized by self-diffeomorphisms of X.
Lastly suppose $ e A(X) and \j;(P0(X)) = P0(X). Let x be a corner of

/ y X ) and let (x,e t , - • -,en) be a standard basis for A ( ^ ) adapted to the
chamber C() containing P0(X). Since the et define oriented, ordinary walls for
P()(X)i each ^, is dual to an exceptional curve £, in X. Since e, • ey = 0 for
/ gfey, £, n £• = 0 . Thus, there is a diffeomorphism <p0: ^ -> CP2#nCP2

carrying the obvious standard basis for CP2#n(^P2 to (JC, e^- • •, ̂ w).
Now suppose \p ̂  A(X) leaves Po( A^-invariant. Then
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is another standard basis adapted to C0(X) with \p(x) a corner of P0(X).
Thus, there is another diffeomorphism <p#: X -> CP2#nCP carrying the
obvious standard basis for CP2#«CP2 to (i/>(x), ̂ (^i),- • •, iKO)- The com-
position (cpo)"1 ° <p#: X -» X is a diffeomorphism realizing t//. This completes
the proof of Theorem 10B. •

Proof that Theorem 10A and Theorem 10B => Theorem 10'. Theorem 10A
and 10B taken together say that if X is a good generic rational surface of type
(1, w), ;i > 10, then D(X) = {^e ><(*) | ̂ (S(PO(1))) - ±S(P0(X))}, where
P0(X) is Jf(X), and that D(X) has infinite index in A(X). Now suppose
that X' is any rational surface of type (1, n). We know that there is
a diffeomorphism <p: X' -> X Let P0(X') = <p*P0(*)- Then D( l ' ) =
{iff e ^4(Jif/)|^(S(P0(Jf/)) = + S(P0(*'))} a n d t h i s group has infinite index
in A(X'). D

3. Some corollaries

In this section we deduce some corollaries of the main theorem. We first give
lower bounds for the number of double points on immersed 2-spheres in blown
up Dolgachev surfaces, in terms of the cohomology class dual to the image of
the 2-sphere. As a consequence we find that there are strong restrictions on the
possibilities for connected sum decompositions of Dolgachev surfaces and their
blow ups. Finally, we give a reformulation of our main theorem in terms of the
finiteness of the number of components of moduli spaces for algebraic surfaces
of type(l,tt).

Our first result characterizes those cohomology classes of square -1 in a
blown up Dolgachev surface which are represented by differentiably embedded
2-spheres.

Corollary 8. Let S = S(p,q) be a Dolgachev surface, and let S be the blow
up of S at r points. Let ev • • •, er e H2(S; Z) be the classes Poincare dual to the
exceptional fibers of p: S -> S. If a ^ A(S) is dual to a class represented by a
differentiably embedded 2-sphere and if ^ ( a ) = -1 then a = ±ei for some /,
1 < /< /* . In particular, no such class exists in H2(S; Z).

Proof. Suppose that ^ ( a ) = -1 and a is Poincare dual to a class repre-
sented by a differentiably embedded 2-sphere. By (2.1) the reflection Ra:
H(S) -> ll(S) is realized by a diffeomorphism. Since Ra leaves invariant the
components of H(S), Theorem 7 implies that Ra preserves the super P-cell
S(P0(S)) and also the class k = P*KS e i/2(S; Z). Since Ra: H(S) ^ H(5) is
geometric reflection in the wall Wa in ^ ( 4 ) , this implies that R+- Wa

contains k in its closure and that S(P0(S)) is invariant under this reflection.
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Since S(P0(S)) is convex, it must be the case that Wa n intS(P0(5;)) ¥= 0 .
Hence by 11(5.8) Wa = We> for some /, 1 < i < r. D

This result has a corollary concerning the types of immersions that can
represent classes in H2(S\ Z) or H2(S; Z). If M4 is an oriented 4-manifold
and if /: S2 &* M is a generic C°°-immersion, then i has a finite set of double
points. At each double point there is a sign for the self-intersection (+1). Let
d+(i) (resp. d_(i)) be the number of double points whose self-intersection is
4-1 (resp. -1). If x denotes the Euler characteristic of the normal bundle of /
and if x e H2(M\ Z) is the class Poincare dual to / JS 2 ] , then

qM(x) = 2d+(i)-2d_{i)+X.

Corollary 9. Let S, S, ev • • •, en and p be as in Corollary 8. For any generic
C°°-immersion i: S2 tf* S representing the Poincare dual of a class x G H2(S; Z),
x ¥= 0, we have

with equality only if x = ±ei for some /, 1 < / < r.
Proof. Suppose /: S2 o^ S is a generic C°°-immersion representing the

Poincare dual of a class x e H2(S; Z) and d+(i) < ( ^ ( x ) + l ) /4 . Let the
double points of i be av- -,as, bv- • -,bt with the sign of self-intersection at
each at positive and at each bj negative. Let u = ^ ( x ) 4- 1 - 4d+(i). By
hypothesis u > 0. Choose smooth points cl5- • -,cM on /(S2). We can assume
that the two sheets of i(S2) near each ai are complex analytic and that the
single sheet of i(S2) near each c{ is complex analytic. Near the bj we can
arrange that the sheets are geometrically complex analytic but that one has the
opposite orientation. Now let X: Sf -> S be the result of blowing up
{#!,* • •, as, bx,- - •, fer, cl5- • *,cM} in »S. Let y4/? 5y and Ck denote the fibers
over bt, bj, and ck respectively. In Sr we have the proper transform /':
S2 &* S' of /: S2 &* S. It is an embedding, and it represents the class Poincare
dual to y = \*(x) - TLs

i=\Ai ~ £"=icy T h u s '

) 9s(x) - 4 J - a = ? 5 ( JC) - 4rf+(i) - u = - 1 .

By Corollary 8, y is Poincare dual to an exceptional fiber of S' -> S. Clearly,
since x =£ 0, the only way that this can happen is for ^ ( x ) = -1 and
d+(i) = 0, and hence by Corollary 8 again x = +e, for some /, 1 < / < r. D

Corollary 3.1. Lef S fe^ a Dolgachev surface and let i: S2 &> S be a generic
C°°-immersion. Suppose that the cohomology class dual to /*[»S'2] is x and x =£ 0.
Then,
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Corollary 3.2. Let S be the blow up of a Dolgachev surface S at r points.
(a) There does not exist a connected sum decomposition

S = M#CP2 or S = M#(S2 X S2),

for any smooth 4-manifold M.
(b) Suppose that there is a connected sum decomposition

S = M#~CP2.

Let x e H2(S;Z) be the element corresponding to the image of a generator of
H2(CP2; Z). Then x= ±et for some i. •

Our final application is, in a certain sense, a much less precise reformulation
of the main result on diffeomorphism types of blown up Dolgachev surfaces.
We include it as a clue to the very striking relationship between the moduli of
algebraic surfaces and 4-manifold theory.

Definition 3.3. Two smooth compact complex surfaces Yx and Y2 are of the
same deformation type if there exist

(i) connected complex spaces T and Y (which need not be smooth or
irreducible);

(ii) a smooth proper map $: Y -> T\ and
(iii) two points tx, t2^ T with

<b~l(t-) = Y, i = 1,2.

Of course, if Yx and Y2 are of the same deformation type, then they are
diffeomorphic. Corollary 5 in the introduction is a paraphrase of the following
theorem.

Theorem 3.4. The forgetful map

smooth simply connected , f, , , , I oriented, simply connected]
algebraic surfaces of I 1

, x , , , . -> < 4-manifolds of type ( l ,w) }
type (1 , n) modulo defor- \

\ modulo diffeomorphism
mation type

is finite-to-one.
An equivalent reformulation of (3.4) is
Theorem 3.4'. Let M be an oriented simply connected 4-manifold of type

(1, n). Then the set of all nonrational algebraic surfaces diffeomorphic to M may
be parametrized by a union of finitely many quasi-projective varieties.

Proof of (3.4). First note that if Yx and Y2 are of the same deformation
type, then so are Yx and 72, where Y( is the blow up of Yi at some point. By
Kodaira's classification, surfaces fall into 4 types, characterized by Kodaira
dimension -oo, 0, 1, or 2. Surfaces of Kodaira dimension -oo have minimal
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models which are rational or ruled, and if the surface is simply connected it is
rational.

Rational surfaces of type (1, n) fall into one or two equivalence classes under
deformation type, depending on whether n > 1 or n = 1. (A simply connected
algebraic surface of type (1,0) is automatically P2 , which is elementary if the
surface is rational and a deep theorem of Yau [34] otherwise.) To see this, first
assume that the rational surface is minimal ruled, and so Fa for some a > 0. It
is well known that Fa and F a + 2 are of the same deformation type [5]. Since
Fo = P1 X P 1 has an even intersection form and ¥l is of type (1,1), deforma-
tion type and diffeomorphism type coincide. The case n > 2 follows from the
case n = 2, by the remark above. Finally, to handle the case n = 2, using the
remark above, it suffices to note that the blowup at Fo at one point is the same
as the blowup of ¥x at any point not on the exceptional curve. Once again
deformation type and diffeomorphism type coincide.

There are no simply connected surfaces of type (1, n) and Kodaira dimen-
sion 0.

If 7 has Kodaira dimension 1, its minimal model 7 is elliptic. If in addition
Y is simply connected and of type (1, w), then it is a Dolgachev surface [6].
Hence, Y itself is a blown up Dolgachev surface. By Theorem 3 and 1(3.8), the
theorem is true for these surfaces.

If Y has Kodaira dimension 2, then its minimal model Y is of general type.
Suppose Y is simply connected and of type (1, n). By the Noether formula

c 2 ( ? ) = 12

As c2(Y) is the Euler characteristic of 7,

Thus c\(Y) < 9. By a theorem of Bombieri [3], the line bundle OY{5KY)
defines a birational morphism of Y to its image in P ^ of degree 5(Ky)2 =
5(cx(7))2 , where N = IO(KY)2.

From the general theory of Hilbert schemes, the collection of such subsets of
PN is parametrized by a finite union of quasi-projective varieties. The same
will be true for the blown up varieties 7. •

Remark 3.5. The discussion of surfaces of general type shows that the
elliptic surfaces and their blow ups are the only class of surfaces that can give
us an infinity of diffeomorphism types in any given homotopy type.

In light of (3.4), it is natural to make the following conjecture.
Conjecture 3.6. The forgetful map from smooth algebraic surfaces, modulo

deformation type, to smooth oriented 4-manifolds, modulo diffeomorphism, is
finite-to-one.
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It follows from (3.5) that (3.6) reduces to the analogous conjecture for blown
up elliptic surfaces. Moreover, it is sufficient to prove (3.6) for blown up
simply connected elliptic surfaces, via an explicit calculation of the fundamen-
tal group and an analysis similar to the proof of 1(3.8).

Remark 3.7. The analogous conjecture for higher dimensional algebraic
varieties is false, even if one only considers simply connected algebraic
varieties. On the other hand, Kollar has proven this conjecture for algebraic (or
equivalently, Kahler) varieties with b2 = 1.
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