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CONFORMAL DEFORMATION
TO CONSTANT NEGATIVE SCALAR CURVATURE

ON NONCOMPACT RIEMANNIAN MANIFOLDS

PATRICK) AVILES & ROBERT C. McOWEN

A natural question in Riemannian geometry is whether any Riemannian
manifold may be conformally deformed to achieve constant scalar curvature. It
is customary to refer to this as the Yamabe Problem because Yamabe claimed
in 1960 to have proven the result for compact manifolds [20]. Trudinger [18]
found a deficiency in Yamabe's proof, but was able to correct the error when
the total scalar curvature is nonpositive. Some cases of positive scalar curva-
ture were solved by Aubin [1], and the remaining cases were finally resolved by
Schoen [16].

The Yamabe Problem for complete, noncompact Riemannian manifolds was
posed by Yau [22] and Kazdan [10], however we are not aware of any results in
the literature. In this paper we shall study the case of achieving constant
negative scalar curvature. From history we expect this to be the simplest case,
but even here some interesting phenomena occur.

As in the compact case, the problem is studied by means of the semilinear
elliptic equation

(1) 4U2)^sU " w

where Ag and S denote the Laplace-Beltrami operator and scalar curvature
respectively for the Riemannian manifold (M,g) with dimM = n > 2. A
positive solution u of (1) will define a ("pointwise") conformal metric g =
w4/("~2)g with constant scalar curvature S = - 1 .

The problem is clearly related to determining when a simply-connected
Riemann surface is conformally equivalent to the disk, so it is not surprising
that we encounter conditions on the negativity of the curvature (cf. [9], [14],
[21]). Note, however, that in the present paper we always consider pointwise
conformal metrics and conditions on the scalar curvature.
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Our first result is analogous to that in [14].
Theorem A. If (M, g) is a complete Riemannian manifold with nonpositive

scalar curvature S satisfying

(2) S(x) < -e < 0

for J C G M \ M O , where Mo is a compact set, then there is a complete conformal
metric g with scalar curvature S = - 1 .

Suppose now that we allow S to vanish at infinity. Even if S < 0 on M, it
may not be possible to solve (1). Indeed, Ni [13] has constructed metrics g in
R" which are uniformly equivalent and conformal to the Euclidean metric, and
have S < 0 for x e R" although

| 5 ( J C ) | = O(|x |~ /) as |* | -> oo,

where / > 2 (cf. also [11]). If g were conformal to g with S = - 1 , then g
would also be conformally Euclidean. Writing g = v4/(n~2)dx2 we find that

(3) 4 ( " J ^ A P - v("+2)^"-2) = 0

in R"; hence v = 0 by [14].
Thus some negativity condition on (g, S) is required to achieve S = - 1 . In

view of [13] and [21], it is reasonable to consider

(4) S(x) < -C^rix))'1 forx GM\M0,

where 0 < / < 2 and r(x) is the geodesic distance to a fixed point x0 in the
interior of the compact set Mo. This is sufficient negativity, at least if we add
an assumption on the Ricci curvature:

(5) Ric(*>,*>)> -C2(r(x))~2a fo r j cEM.

where v = 9/3r at x (whenever defined).
Theorem B. If (M, g) is a complete Riemannian manifold with nonpositive

scalar curvature S(x) satisfying (4) and Ricci curvature satisfying (5) where
0 < a < 1 and 2 a < / < l + a, then there is a complete conformal metric g with
S = - 1 .

The required negativity of (g, S) may also be concentrated in a compact set:
suppose that

(6) f f4/"~^lv<El2 + S*2) dV < 0,
J \ (n - 2) I

(n - 2)

for some smooth 0 > 0 with compact support. This condition implies that the
"conformal Laplacian" -A + ((n - 2)/4(« - 1))5 has negative first eigen-
value for Dirichlet conditions on some compact set. This strong restriction
fails, for example, for the simply-connected hyperbolic space form Hn{-\\ but
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holds for certain quotients Hn(-\)/Y by a discontinuous group of isometries
F, for instance in case Hn(-l)/T has finite volume. In fact, it is not difficult to
see that (6) holds for any complete Riemannian manifold with finite volume
satisfying

f S(x)dV<0,

so this case is somewhat analogous to that of compact manifolds (cf. [18]).
Theorem C. If (M,g) is a complete Riemannian manifold satisfying (6)

then there is a conformal metric g with S = - 1 . Moreover, g is complete if (2)
holds for x e M \ Mo where Mo is a compact set, or if (4) and (5) hold with
0 < a < 1 and 2a < / < 1 + a.

Remark. Condition (6) is also exactly the obstruction to conformally
deforming an asymptotically flat spacetime to achieve zero scalar curvature (cf.

[6]).
Note that Theorem C allows unrestricted nonnegativity of S on portions of

A/, unlike Theorems A and B. The reasons for this can be seen from the proofs.
In §§1 and 2 below we show that the existence of a lower solution is equivalent
to the existence of a positive solution of (1). (This is related to results in [3] and
[12] and the references therein.) Condition (6) is strong enough to guarantee
such a lower solution regardless of how (g, S) behaves globally (cf. §3).
However, the lower solutions for Theorems A and B depend globally on
(g, S): the proof in §§3 and 5 shows that the condition S < 0 can be relaxed
to S < TJ for some TJ = rj(g) > 0 but Example 6.1 shows that we cannot in
general allow positivity of 5 on Mo. Nevertheless, it may be possible to
construct a lower solution by other means. In fact, the behavior in Mo may be
irrelevant provided M\M0 is sufficiently "nice" as illustrated by Example
6.2.

Finally we should also mention that Bland and Kalka [5] have used Theorem
A to show that every noncompact manifold admits a complete metric with
constant negative scalar curvature.

Acknowledgments. We would like to thank R. Schoen for several useful
conversations concerning this work and also the referee who suggested an
alternative analysis in §1 which we have adopted.

1. A priori bounds for solutions to nonlinear inequalities
Let fi be a compact C°°-manifold with boundary dQ and interior fi = £2 \3Q.

Suppose we have a C°°-Riemannian metric g on fi. We shall consider positive
nonnegative weak solutions of the nonlinear equation
(1.1) A u > ua + Su in £2,
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where a > 1, S(x) is continuous, and S(x) > -So for x e fl. Let Hf denote
the Sobolev space of functions with derivatives of order s in Lp.

Theorem 1.1. For every compact set X c £2, there is a constant Co such that
every nonnegative weak solution u e //^(fi) of (1.1) satisfies

(1.2) max w(x) < Co.

Proof. Since ^ is compact, we can find Z£ > 0 and yly- • -, yN E: X so that
the balls BR(yt) cover X and 5 ^ ( ^ ) c fl. By (1.1) we have Agw > -Sow so
Theorem 8.17 of [8] states

(1.3) sup u(x) = sup u(x) < CR-n/p\\u\\LO(B2R(yi)),
x<=X x(=BR(y,)

for some / e {1,- • •, JV}, where /? > 1 and C depends on «,./?, the ellipticity
constants for Ag in fi, and S .̂

Now let (jp e C0°°(fl) with 9 = 1 on ^2^(7,). Multiply both sides of (1.1) by
uyq, where q = 2(a -f l ) / ( a - 1) > 2, and integrate by parts to obtain

J M a + VJF< - J cp^VufdV- j qcpq-luV<P' VudV'+ Sof u\qdV.

By Cauchy-Schwarz

q l Vu^qU*? |v<p| + <pq\Vu\ ,

so we obtain

and then the Holder inequality applied to both terms on the right yields

e n1 I r \2/(« + l ) / N ( « - 1 ) / ( « + 1

J na + V^K<i-IJ iia+V^Kl / \W\ dV\
2/(a

Using Young's Inequality, we can absorb the terms involving u on the right
into the term on the left to obtain

(1.4) j wa+VJF< elf \v<p\qdV + j <pqdvY

Finally, note that p = a + I implies

so we may combine (1.3) and (1.4) to obtain (1.2).
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2. Condition for the existence of a positive solution
In this section we reduce the problem of finding a positive solution of (1) to

constructing a nontrivial (weak) lower solution. Let cn = 4(n — \)/{n — 2).
Proposition 2.1. There is a positive C00 solution u of (1) if and only if there is

a nonnegative continuous function w_e (Hl)loc satisfying u _# 0 and

(2.1) c>AgU-~ w(_'? + 2 ) / ( "- 2 ) > Su_9

weakly on / / 2 . Moreover, u > u_ on M.
Proof. Since "only if" is trivial, suppose we have the desired lower solution

w_. If ficM is bounded, then S(x) is bounded below on fi and we may
construct an upper solution u+= const > max{ u_(x) :x e fi}:

0 = cwAgw+< u(
+"+2)A"-2)+ Su+ in £2.

Since w + are bounded, and since the maximum principle applies to continuous
functions in //2(fl) (cf. [17]), the monotone iteration scheme (cf. [15]) will
produce a solution u £ H^(Q,) of (1) satisfying w_< u < u+. Since w is
bounded on B we can use standard elliptic theory to show u e C2(fi). We
may also use the Hopf maximum principle to show u is positive on £2,
assuming w_^ 0 on fl: since u satisfies Agw — Au < 0 in fi for 4̂ sufficiently
large, w cannot achieve a nonpositive minimum unless u = 0, which is pre-
vented by w ̂  M _ # 0. Thus u(

n + 2V(n-2) e C2(i2) and we may proceed induc-
tively with elliptic regularity to conclude u e C°°(S).

To construct a solution on all of M, suppose M = U{Q^: k = 1,2, • • • },
where £2A is bounded, Qk c Q^+1, and w_# 0 in S^ Since S is bounded below
on each fiA we can use the above argument to construct positive solutions uk of
(1) in fiA with uk > w_. Let us consider the sequence {uk}k>2)on X = fi3. By
Theorem 1.1 we have WA(JC) < Co for JC G ^ and k ^ 4. Using interior elliptic
estimates (and C as a generic constant) we find

Taking p > n we have ||wA||ci(fi } < C by the Sobolev embedding theorem, so
interior elliptic estimates yield ||wjlc2+a(ft > < C. The compactness of C2+a(S21)
-> C 2 ^ ) now yields a subsequence of {uk}, denoted {ukl}, such that ukl

converges to a solution of (1) on 2V We repeat this procedure with {ukl} on
X = B4 to obtain a subsequence { MA2 } which converges to a solution of (1) on
fi2. Inductively we obtain {ukj} and finally define

u(x) = lim M^^(JC),

which is C2 and satisfies (1) on M.
To verify that u is positive on M we can again use the Hopf maximum

principle in any fiA. This in turn implies u is C00 on M and we are done.
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3. Proofs of Theorems A and C

To prove Theorem A we first reduce it to the case where (2) holds for all
J C G M . Namely, let cp e C™{M) satisfy cnkg<p = 8 > 0 on Af0, but otherwise
arbitrary. Choose a constant <p0 large so that (i) <p0 + <p(.x) > 0 for x e M,
and (ii) S(;c)(<p0 + <p(x)) - c,;Ag<p(;c) < -8 for JC e M. (Note that (ii) uses
S < 0 on A/, but also holds if S < TJ, TJ = rj(g) > 0 sufficiently small with
-8/2 on the right-hand side of the inequality.) Now let gx = (<p0 + q>)4/(n~2)g
which has scalar curvature

Si = (<po + <pr("+2)/<"-2)(S<p0 + S<p - cnAg<p) < -e , ,

on A/, where Cj > 0 is a suitable constant.
But if (2) holds on M then we can choose a lower solution u_ to be a small

positive constant. By Proposition 2.1, there is a positive solution u of (1).
Moreover, u > u_ and the completeness of g imply the completeness of
g = u4/{n~2)g thus proving Theorem A.

As noted in the introduction, the hypothesis (6) in Theorem C implies that
there is a positive solution ^ of

-cwA¥ + S* = Xx* in Q, * = 0 on 38,

where 8 is a bounded domain and Xx < 0. If we choose /A > 0 so that
( / i*) 4 / ( l f - 2 ) < ~XY, then w_= /x* satisfies (2.1) in a and u_= 0 on 38. We
may now extend by zero to M \ 8 to make w_ a weak solution of (2.1) on M.
Applying Proposition 2.1 we obtain a positive solution u of (1) and hence a
conformal metric g (not necessarily complete) with S = - 1 . (Notice that we
have not used any information about (g, S) outside of 8.)

We prove that the metric g is complete. Assume that (2) holds in M \ Mo

where we may assume Mo c 8. For 8 > 0 small enough, Mx = {x e 8:
/x*(x) > S} D Mo and w_= S is a solution of (2.1) in M\M0. Thus defining
M_= ju^ in Mj and M_= 8 in M\M0 yields a weak solution of (2.1) on M.
Applying Proposition 2.1 yields a solution u of (1) satisfying u(x) > 8 for
x G M and hence a complete metric g with S = - 1 .

Finally, suppose that (4) and (5) hold, where we may assume Mo = (x e M:
r(x) < /^j,}. Let w(x) = Cra~n)/1 for r > Ro and a constant C. A calculation
shows

c.Aw - w
{n + 2)A"-2) - Sw

= [n{n - 1) - 2(n - l)rAgr - C1/(w~2) - 5r 2 ]Cr ( - w - 2 ) / 2 ^ 0

using Proposition 4.1 (below), Ro large, and C small. If we extend w to
r < Ro as a positive, smooth function, and let gx = n>4/"~2g, then gx is
complete by Lemma 5.2 (below) with scalar curvature Sx < -1 in M\M0
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since

cnbgw - w(// + 2)/ ("-2) - Sw > 0 = cnkgw + syn+l)A"-2) - Sw.

Moreover, gx satisfies (6) since that condition is conformally invariant. Hence
we may apply the preceding analysis to gx to obtain a complete metric g
which is conformal to gl (and hence to g) with S = - 1 .

4. Ricci curvature and the Laplacian of the distance function

In this section we derive upper bounds on the Laplacian of the distance
function r assuming lower bounds on the Ricci curvature. (The special case
a = 0 is well known in the literature by other methods, cf. [19] and the
references therein.) We shall use this material in the next section to construct a
lower solution which only depends on r.

Proposition 4.1. Suppose (M,g) is a complete Riemannian manifold and
r(x) = d(x, x0) denotes the geodesic distance to a fixed point x0 e M. If the
Ricci curvature satisfies

(4.1) Ric(c;,i;) > -C 2 min[ l ,

for x ^ M, where Cx > 0, 0 < a < 1, and v = d/dr at x (whenever defined),
then there is a constant C2 = C2(CV n, a) > 0 such that

(4.2) Agr< C2max(r-\r-«)

holds weakly on M.
Proof. We shall use the ideas of Calabi [7]. Write M\{x0] as the disjoint

union Y(x0) U Z(x0) where Y(x0) is the set of points x connected to x0 by a
unique minimal geodesic y which has no conjugate points, and x e Z(xQ) if
the length-minimizing geodesic y is not unique or contains conjugate points.

If p G Y(x0), then r is differentiable at /?, p is a regular point on the
geodesic sphere Sr = {x e M: r(x) = r } , and the mean curvature H of Sr at
p satisfies

(4.3) {n

Moreover, along the geodesic y we have

(4.4) dH/dr > H2 + ^ j

where v is the unit normal (cf. (4.9) in [7]). Let C = Cx/ Jn — 1 .
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Now suppose 0 < r(p) < 1 so by (4.1)

(4.5) dH/dr > H2- C2.

Notice that H -> -oo as r -» 0, so there are two possibilities:
(i) H < -C and dH/dr > 0 along y, or

(ii) H(y(s)) > -C for s0 < s < sx where y(j1) = /?.
In case (ii) we find immediately that -H(p) < C or by (4.3)

(4.6) £±gr(p)^C(n-l).

In case (i) we may integrate (4.5) along y to find

where 0 < r0 < r. Letting r0 -> 0 we find

Since //(/•) + C < 0, we obtain

e1Cr)
K7{

where the last inequality is easily verified; so by (4.3)

(4.7) A L ± I ^ l

Next suppose r{p)> 1 so by (4.1)

Again there are two possibilities:
(i) H < -Cra and dH/dr > 0 along y, or

(ii) H(y(s)) > -C(r(y(s))~a for s0 < s < sx where y(sl) = p. Again in case
(ii) we find that

(4.8) Ar < C(« - l)r" a ,

whereas for case (i) we let Hx denote the solution of the ordinary differential
equation

4-H, = H2 - C2r~2a for r > 1,

^ = _(i + c) at r = 1.



CONFORMAL DEFORMATION 233

The solution of this Riccati equation clearly exists for all r > 1 and satisfies
H[(r) > 0 and Hx(r) < -Cra. The standard substitution Hx = -v'/v yields
the second-order linear equation

(4.9) v" - C2r~2av = 0.

The leading behavior of (4.9) as r -> oo is (using a < 1)

(4.10) v(r) ~ exp[±Crl-°/(l - a) + ( a l n r ) / 2 4- b],

where b is a constant. Plugging into Hl we find we must take + in (4.10) and
then

Hl(r)--Cr-a asr-oo.

In particular, we may choose C3 = C3(Cl9n,a) such that Hx > -C3r~a for
r > 1. Since 3///3r > d/ii/rfr for r > 1, and H > Hx for r = 1, we find
/ / > -C3r" a along y; so

(4.11) A

Combining (4.6), (4.7), (4.8), and (4.11) yields (4.2).
On the other hand, if p e Z(x0) let y be a length-minimizing geodesic

between x0 and /?, and let xe be the point on y with r(x£) = e. Then
p G y(^ f), so re(x) = J(x, xe) is differentiable near p. Let ye be the unique
geodesic between xe and p. If 0 < r(p) < 1 then we have Ric > -Cx

2 along ye

and the proof above shows

(4.12) A / t < ̂ - ( 1 + Crt) < y ^ | ( l + C).

If r(p)> 1 then re(p)> 1 provided e is sufficiently small. Moreover, Ric ^
-C^r , ) " 2 * along ye with the same Cx as in (4.1) since re < r. Repeating the
above argument shows

(4.13) A / e < (w - \)C3rr ^(n- l)C3(r - e)"a,

with the same C3 as above. Moreover, (4.12) and (4.13) hold in a neighborhood
Ve(p)i and r — re achieves its minimum at p\ arguing as in [7] shows that we
can take e = 0 and obtain weak inequalities at p. Combining these as before
yields the weak inequality (4.2).

5. Proof of Theorem B

Theorem B follows from Proposition 4.1 and the succeeding more general,
but more technical, result.
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Proposition 5.1. Suppose (M, g) is a complete Riemannian manifold with
nonpositive scalar curvature S, which is strictly negative outside a compact set,
and distance r(x) to a fixed x0 satisfying: there is an R > 0 such that

(5.1)

holds weakly for all r(x) > R. Then there is a complete conformal metric g with

S= - 1 .
Proof. First note that the reduction used in §3 enables us to assume 5 < 0

on M; observe that condition (5.1) continues to hold. Next define

For this to be a lower solution, a calculation shows we must find ft > 0 so that

/ c V {n-\){n + 2)r2 2 / 1 - 1 2(n - l ) rAr ^ o

holds weakly on M. We shall ignore the first term since it is ^ 0. Now (5.1)
implies there is an Ro > 0 such that

2n - 1 2(/i - l)Ar
— > S for r > i ( n ,r2

so for any ft > 0 we have

2n- 1

r2
S for r

This establishes (5.2) for r > Ro. For r < Ro we have S < -8 and Ar
bounded, so we can take b large to achieve (5.2) on M. Hence Proposition 2.1
implies there is a positive solution w, and we need only verify that g = uA/n~2g
is complete. But note that

(5.3) u2/n-2(x) > C/r(x) for r(x) > 1.

This is exactly what we need by the following.
Lemma 5.2. If g is complete and the positive function u satisfies (5.3), then

g = u4/"~2g is complete.
Proof. Let Ml = {x e M:/-(*) < 1} and suppose y: [0, ft) -> M is a

geodesic for g with y(0) = x0 and which is not extendible to b\ we must show
the length of y is infinite. Since (M, g) is complete, y cannot remain in any
compact subset of M. In particular, with respect to Mx there are two possibil-
ities: (i) y leaves Mx in finite time and does not return, or (ii) y returns to Mx

infinitely many times. In both cases we are interested in the length of y while
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outside of Ml% so suppose we have 0 < a < ft < b with y: [«,/?] -> M\MV

Consider the partition a < tx < t2 < • • • < tN < /? such that there exists a
geodesic ball B(y(tj),Rj) with center y(/y) and radius Rj, y(tj+1) e
B(y(tj), RJ), and in B(y{tj\ Rj) there is a chart and coordinates in which we
may write the metric g as

(5.4) S 2

with rj being the geodesic distance from y(tj). For tj_x < t < tj+1 and h small
we have

r(y(t + h)) < r(y(t)) + rj(y(t + h)) - r,(y(0),
which implies

dr{y{t)) ? ^ - ( Y ( 0 )

The length in g of {y(/): tj< t < tJ+1) is given by

Using (5.3) and (5.4), we obtain

r(y(0)

Thus

(5.5) L(y, a,0) > C,[lnr(y(i8)) -

Since y(/) cannot remain in any compact set we may find bj -> Z) such that
r(y(bj)) ~* °o« Now suppose (i) y leaves Ml in finite time, i.e. for some
a G (0, />) we have y(/) e M\MY for a < t < b. Then by (5.5) we have
L(y; a, bj) -> oo so that y has infinite length in g. On the other hand, if (ii) y
returns to Mx infinitely many times, then let bj -> b with bJ_l < dj < bj such
that r{y{bj)) -> oo, y(aj) e BM^ and y(0 G M \ Afx for Qj < t < bj. By (5.5)
we have

L(y; a,,*,) >

where rf() = max{r(x):x e BMj}. Summing over j we find that y has infinite
g-length. Thus g is complete.
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6. Two examples

Both examples in this section involve "cylindrical" metrics

(6.1) g = dr2+f(r)2h

on some portion of Rr X N where (N, h) is a compact Riemannian manifold
and f(r) is a smooth positive function. We may compute the sectional
curvatures of (6.1) by direct calculation; the answer depends on whether the
relevant two-dimensional plane in the tangent space contains the direction
d/dr. If so, the result is the "radial curvature" and is found to be

(6.2) k">-J-W)'

If the sectional curvature is computed for a plane perpendicular to d/dr we
obtain

(63) * *„-(/'('))'

where kN is the sectional curvature in the metric h of the associated plane in
the tangent space of N. Similarly we may compute the scalar curvature of (6.1)
to find

(6.4) S = -2(« - l ) ^ -(„ - !)(„ -2)UX+SjLt

where SN is the scalar curvature of N.
Example 6.1. Let M = R, X Tn~\ where Tn~l is the standard flat torus

whose metric we denote simply by d®2. The formula z = /0
rexp(s2) ds defines

r(z) and let f(r) = exp(-r2). Consider the conformal metric

g = f{r{z))\dz2 + d&2) = dr2 +f(r)2 d@2,

which is clearly complete. If we let u =y(w~2)/2 then we may compute the
scalar curvature from (1) or (6.4),

S = 4(n- 1)(1 - nr2).

Notice that S(0) > 0 although (2) is satisfied outside of the compact set
r2 < 1. However, this complete metric cannot be conformally deformed to
g = v

4/{"-2)(dz2 + d@2) with S = -1 since

admits no positive solution on the flat cylinder M. Thus we cannot in general
allow S to be positive inside Mo in Theorem A. Notice that dVg =
u2fl/"~2dzd<d = exp[(l - n)r2]drd@ so that g has finite volume, however
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the total scalar curvature is positive:

SdV=A{n-\)( (1 - m-2)exp[(l -n)r2]drd@

- n/2(n - 1)) j exp[(l - n)r2] drd® > 0,

so there is no contradiction with Theorem C.
Example 6.2. Suppose (M, g) is a noncompact manifold with a cylindrical

end, i.e. M = Mo U M+ where Mo is a compact manifold with boundary and
M + = R + X N with

g = dr2 +f(r)2h onM+,

as in (6.1). Let us suppose / ( r ) satisfies

(6.5) / ' ( r ) > 0,

(6.6) lim f(r) = lim / ' ( r ) / / ( r ) = lim f"(r)/f(r) = +oo,

for example / ( r ) = exp[r2]. Clearly the manifold (M, g) is complete and the
scalar curvature 5 satisfies 5 < -e for r sufficiently large by (6.4) and (6.6). By
reparametrization we may assume

(6.7) S < -6 for r > 0.

Theorem A does not apply since S may be positive on M, however we shall
now show that the desired conclusion holds regardless of how g behaves in
A/o.

Claim. There is a complete conformal metric g on M + {hence on M) with
S= - 1 .

Proof. We consider the function

{ 8 for r>rx,

s ( l - ( r 1
2 - r 2 ) 2 A 1

4 ) farO < r < r l f

0 otherwise,
where r t, 8 > 0 are to be specified. Using |Vr|2 = 1, a calculation shows that
for 0 < r < r{ r2 - r2)(l + rAr) - 2r2]
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Since we can take 8 small, it suffices by (6.7) to show

4(rx
2 - r2)(l + rAr).- 8>2 - e'{r2 - r2)2 + e'r* > 0,

where e' = e/cn. But

so, using (6.5), it suffices to verify

(6.9) 4(r2 - r2) - S>2 - e'(r2 - r 2) 2 + eV* > 0.

Elementary calculus shows that (6.9) holds for 0 < r < rx provided rx is taken
sufficiently large. Thus ^ is a lower solution for 0 < r < rv Since 8 is very
small, ^ is also a lower solution for r > rx by (6.7), and hence ¥ is a lower
solution on all of M. By Proposition 2.1 there is a conformal metric g as
desired which must be complete since ^ = 8 > 0 near infinity.
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