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Introduction

A longitude of a knot k in S3 is the unique (up to isotopy) essential simple

closed curve λ in dN(k) such that λ is homologically trivial in S3 - N(k).

The manifold M is obtained by zero frame surgery on k if it is obtained by

performing Dehn surgery to the longitude. Note that M is the unique manifold

obtained by Dehn surgery on k which is a homology S2 X Sι and k viewed in

M generates HX(M).

The main result of this paper is

Theorem 3.1. If S is a minimal genus Seifert surface for a knot k in S3, then

there exists a taut finite depth foliation & of S3 - N(k) such that S is a leaf of

JF and & I dN(k) is a foliation by circles.

Attaching discs to each leaf of & | dN(k) we obtain

Corollary 8.2. The manifold M obtained by performing zero frame surgery to

a knot k in S3 possesses a taut finite depth foliation 3F such that k (viewed in M)

is transverse to JF and intersects every leaf of &'. 3F has a compact leaf S of

genus equal to the genus ofk.

Applying the work of Alexander, Reeb, Haefliger, Novikov, and Thurston

(see [3, 2.5 and 2.8] we obtain

Corollary 8.3. // M is obtained by performing zero frame surgery on a knot k

in S3, then M is prime and genus A: = min{genus S\ S is an embedded, oriented

nonseparating surface).

Remark. The Property R conjecture asserts that zero frame surgery on a

nontrivial knot k in S3 does not yield S 2 X S1. The Poenaru conjecture

asserts that zero frame surgery on a nontrivial knot k in S1 does not yield

S2 x Sι# (M3). Corollary 8.3 gives positive proofs of these conjectures.

Corollary 8.3 was the missing ingredient in the proof of the following result.
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Corollary 8.6 (Poenaru 1974). // V is a 4-manifold obtained by attaching a

2-handle and a 3-handle to B4 such that H2(V) = 0, then V = B4.

Remark (September 1986). M. Scharlemann has found a simplification of

our proof of Corollary 8.3 which avoids foliations (see Remark 8.3^).

For ten ways to compute the genus of a knot in S3 consult Theorem 8.8.

The smoothing procedure of [3, §5] allows one to modify the construction of

the foliation of Theorem 3.1 to obtain a smooth one if genus k Φ 1. Applying

a further modification we can eliminate the compact leaves. In the case that

genus k = 1 these modifications may throw holonomy onto the boundary.

Therefore we obtain the following result.

Corollary 8.10. // k is a knot in S3 such that genus A: > 1, and S is a

minimal genus Seifert surface for k, then there exists C0 0, taut foliations J^ ,

/ = 1, 2 of S3 - N(k) such that ^ \dN(k) is a foliation by circles, S is a leaf

of J ^ , and no leaf of J^2 is compact.

Tubularizing these foliations near dN(k) and attaching a Reeb component

yields Corollary 8.11. A C° version of this result (for k nontrivial) was

obtained in [3].

Corollary 8.11. Ifk is a knot in S3 such that genus A: > 1, then there exists a

C 0 0 foliation IF of S3 with a single Reeb component whose core is isotopic to k.

The most striking observation in the proof of Theorem 3.1 is that any nice

finite depth taut partial foliation constructed on S3 — N(k) extends to a

foliation satisfying the conclusions of that result. This is the key ingredient in

proving

Corollary 8.19. k is a fibered knot in S3 if and only if the manifold M

obtained by performing zero frame surgery to k fibers over Sι.

Since the trefoil and the figure 8 knots are the only genus one fibered knots

in S3 [8] we obtain

Corollary 8.23. Surgery on a knot in S3 yields a torus bundle over Sι if and

only if the surgery is the zero frame one and either k is the trefoil knot or k is the

figure 8 knot.

We assume that the reader is familiar with the results and terminology of [3]

and of §0 of [6]. §1 and §2 of [6] are independent of this paper. Because we

view this paper as a continuation of Foliations and the topology of 3-manifolds

II, we begin with §3.

The proof of Theorem 3.1 involves four steps which are respectively carried

out in §§3-6. These four steps are precisely stated and put together in §7. The

reader is advised to consult §7 for an overview of the proof. Consequences of

Theorem 3.1 are given in §8.

The author gratefully thanks M. Scharlemann and T. Kobayashi for their

large number of constructive criticisms of the text.
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3. Longitudinal foliations

The goal of the next five sections is to prove the following theorem.
Theorem 3.1. // S is a minimal genus Seifert surface for a knot k in S3, then

there exists a taut finite depth foliation & of S3 — N(k) such that S is a leaf of
& and J** I dN(k) is a foliation by circles.

Idea of the proof. We attempt to construct & leaf by leaf. We either
completely construct J^ or get stuck and must be satisfied with a particularly
nice lamination (i.e., partial foliation) S£. This is the content of §3. Now,
suppose we get stuck. In §4 we put this lamination into a normal form in S3 in
order to find an essential 2-sphere Q. In §5 we find a planar surface ?c j§f
with some remarkable properties. A little combinatorial argument in §6 rules
out the coexistence of such P and Q. The entire proof is pieced together in §7.

Definitions 3.2. Let

be a sequence of sutured manifold decompositions where 3M is a union of tori.
Define Eo = 3M. Define Ei to be the union of those components of Ei_1 —
N(Sj) which are annuli and tori (i.e., if Mz is viewed as a submanifold of M,
then Ei consists of those components of yi which are contained in 9Af). The
components of Ei are called the boundary sutures of γf .

More generally if (M, γ) is any sutured manifold and Eo is a set of
components of γ, then any sequence as above (with (M, 3M) replaced by
(M,γ)) yields a sequence £ 1 ? , En.

Two sutures Ax, A2 are parallel if there exists a product disc D such that
D Π Ai Φ 0 for / = 1,2. A boundary suture e is tame if it is parallel to a
component of γ — E.

Notation 3.3. Let (M, γ) be a sutured manifold and let E be a subset of
the annular components of γ. Denote by (M, γ) the sutured manifold obtained
by attaching 2-handles to M along each component of E. We define γ = γ - E
and R(y) to be the natural extension of R(y) to 3M. If S is a properly
embedded surface in (M, γ), then denote by S the properly embedded surface
in M obtained by attaching 2-discs to each component of dS Π E.
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In practice E will be the boundary sutures of γ. For example if

is a sequence of sutured manifold decompositions such that dSf Π dM is a

union of circles for each i and Sλ is a Seifert surface for k, then the

corresponding sequence

(M,0) %(&!,%)* ••• ^{Mn,%)

is a sequence of sutured manifold decompositions of the manifold M obtained

by performing zero frame surgery (see 8.1) to k.

Lemma 3.4. Let (Λf, γ) be a taut sutured manifold. Let E be a subset of

annular components of γ. // 0 Φ y e H2(M, dM), then there exists a groomed

sutured manifold decomposition (M, γ) ~> (M 1 ,γ 1 ) swc/z /Λ#/ [ X ] = > y Π M G

H2(M, dM) and S (Ί E is a possibly empty union of simple closed curves.

If dM is not a union of 2-spheres, then y can be chosen so that the

corresponding S is a connected well-groomed surface and dS Φ 0.

Proof. To obtain the first part apply Lemma 0.7 of [6] to y ΠM. [If T is an

embedded surface in M such that y = [T] e H2(M,dM), then y Π M is

represented by T Π M. Now view M as M - TV (properly embedded arcs) and

let T intersect these arcs transversely. Since T Π E is a union of circles and

0 = \T Γi dE\ = IS Π dE\, the resulting S intersects E in circles.]

If 3M is not a union of 2-spheres, then apply Lemma 3.8 of [3] to the

sutured manifold (M,γ) to obtain the class z E i / 2 ( M , 3 M ) . z has the

property that each boundary component δ of each nonplanar component V of

R(y) satisfies (z, δ> = 0. Also (z, δ) Φ 0 for at most 2 components of 3F if V

is planar. Let S be a nonseparating component with boundary of the surface

obtained by applying Lemma 0.7 of [6] to (z Π [M, 3M]) e ^ 2 ( M , 3M). By [3,

Lemma 3.9] if F is a component of R(y), then S Π F is homologous to a set

of parallel curves. An application of [6, Lemma 0.6] now yields the desired

well-groomed surface.

Definition 3.5. Let (M, γ) be a taut sutured manifold. Let 2 =

{£>!,•••,£>„} be a maximal set of pairwise disjoint, pairwise nonparallel,

nonboundary parallel product discs in (M, γ). Let (AT, γ') be the taut sutured

manifold obtained by decomposing (M, γ) along 3). Define C(M,y) =

C(M\ γ '), where C is the sutured manifold complexity defined in [3, §4]. C is

called the disc reduced sutured manifold complexity (compare [3, 4.10]). C is

well defined because another choice of 2 would yield a sutured manifold

(M'\ γ " ) which is obtained from ( M ' , γ ' ) by adding and/or deleting product
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sutured manifold components. Sutured manifold complexity does not detect

product sutured manifold components.

Lemma 3.6. Let (M o, γ 0) be a taut connected sutured manifold and let Eo be

a subset of components of γ0. Then there exists a well-groomed sequence of

sutured manifold decompositions

such that for 1 < i < n:

(1) Si is connected, dSt Φ 0 , and 0 Φ [S^dS^ e H2(Mi_ι,'dMi_ι).

(2) Ei_ι Π Sf is a union of simple closed curves (Ei9 1 < / < n, is as defined

in 3.2).

(3) // (M/7, yn) denotes the sutured manifold obtained by attaching 2-handles

to (Mw, γw) along En, then dMn is a union of 2-spheres.

Remarks. In our application, Theorem 3.1, (M o , γ 0 ) is (S3 - N(k), dN(k))

decomposed along a minimal genus Seifert surface.

The conclusion of this lemma implies (by the definition of sutured manifold

decomposition) that each component of 3S, Π Ei_1 has the same orientation

as some core of Et_x.

Proof. Let

)

be a sequence of sutured manifold decompositions which satisfy the conclu-

sions of Lemma 3.6 with the possible exception of (3). This sequence satisfies

the conclusions of Lemma 3.6 or dMn contains a surface of genus > 1.

By [3, Lemma 4.12] it follows that C^M^ γ ) < ^{M^^ y._λ) for 1 < i < m.

To complete the proof of Lemma 3.6 we will show that there exists an
s m + 1 s r

extension of the sequence by (Mm,ym) ~* ••• ~> (M r , γ r), where C(Mnyr) <

C(Mm,ym). Since sutured manifold complexity takes values in a well-ordered

set the result will follow.

We now prove the lemma by induction on the triple (C(M,y), -χ(M),

|nontame boundary sutures |) ordered lexicographically.

Case 1. There exists a properly embedded nonseparating product disc D in

Mm such that D Π Em= 0 .

Proof. If D intersects distinct sutures, then extend the sequence by (Mm, ym)

~* ( ^ m + i5Ym+i) If D intersects the same component A of γ, then let C be

the product annulus obtained by first gluing a component of A — D to D and

then isotoping it slightly to be properly embedded and satisfy ΘC c R(ym).
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There now exists a sequence

where F is a product disc in M" such that F C\ A Φ 0 . If both components

of dC are nonseparating, then our desired extension is obtained by

letting ( M m + 1 , γ m + 1 ) = ( M ' , γ ' ) and letting ( M m + 2 , γ m + 2 ) = ( M " , γ " ) .

C ( M m + 2 , γ m + 2 ) = C(Λfm, γ j but χ ( 3 M m + 2 ) = χ ( 3 M J + 2.

It may happen that one or both components of 3C are separating in R(ym).

We now proceed in a manner reminiscent of [3, Lemma 5.4]. We will consider

the case that exactly one component a of dC is separating; the other case is

similar. The proof is contained in Figure 3.1. Let X be the surface obtained by

attaching to C that component J oί R(ym) — a such that C U J is oriented

and J Π a Φ 0 . (The arrows in Figure 3.1(a) indicate the transverse orienta-

tions of R(ym) and C.) Isotope X slightly so that X is properly embedded in

Mm as in Figure 3.1(b). Now decompose (Afm,γw) along X to obtain

(Mm+i>ϊm+i) as in Figure 3.1(c). By decomposing (Mm+vym+ι) along the

product annulus C" we obtain (M\y') plus the product sutured manifold

(B, β). There now exists a groomed sequence ( M m + 1 , γ m + 1 ) -»•••-> (Mp, yp\

where p = m + I + k, each Df is contained in N(B U F) and is either a

product disc disjoint from the boundary sutures or a product annulus. (Mp,yp)

is obtained from ( M " , γ " ) by drilling out r > 0 (r = 2 in Figure 3.1(d)) tame

boundary sutures which are parallel to the suture C" of Figure 3.1(d). There

will be genus R+(β) annular D/s and |nonboundary sutures of β\ +

2 genus(/?+(/?)) - 1 disc 2)/s. This is our desired extension since C(Mp, yp) =

C(M'\y") = C(Mm,ym) but Mp = M " so xίθM^) > X(3JfiΓw).

Cαse 2. There exists a component e of £ m and a properly embedded

nonseparating product discD c Mm such that D Γ\ y a e.

Proof. If e is parallel (3.2) to the nonboundary suture A, then there is a

properly embedded nonseparating product discD' c Mm such that D ' Π γ c

A9 so invoke Case 1. Otherwise let C be an annulus constructed as in Case 1. If

each component of 3C is nonseparating in R(ym), then extend our sequence
c

by the decomposition (Mm,ym) ~> ( M w + 1 , γ w + 1 ) . After this decomposition e

becomes tame, hence the number of nontame sutures has been reduced. Note

that C(Mm,ym) = C ( M m + 1 , γ m + 1 ) a n d χ ( Θ M J = χ ( 3 M m + 1 ) .

Now suppose that some component a of dC separates. For simplicity

assume that α is the only one that does. Proceed as in Case 1 (in Figure 3.1

replace the suture A by e) to construct the surface X and the decomposition

(^m.Y«)^(^m+i.Ym+i)- A s b e f o r e > bY decomposing ( M m + 1 , γ m + 1 ) along

the product annulus C we obtain the product sutured manifold (B,β) plus
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(ΛΓ,γ'), the sutured manifold obtained by decomposing (Mm,ym) along C.
We now obtain the groomed sequence

( ) ( 1 , y m + 1 ) ~ l ••• ~ϊ (Mp9yp),

Boundary Sutures

Product discs | & Annuli (Mm +1 > T m + 1 )

(Λί", γ" ) (Mp, ΊP)

FIGURE 3.1
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where p = m + 1 4- k, each Di is contained in N(B) and is either a product
annulus or product disc disjoint from the boundary sutures. There will
be genus R + (β) annular D/s and |nonboundary sutures of β\ +
2 genus(# + (β)) - 1 disc D/s. If k Φ 0, then (Mp, yp) is obtained from (AT, γ')
by drilling out r > 0 tame boundary sutures and C(Mp,yp) = C(M\ γ') =
C(Mm,ym), Mp = M' so χίθM^) = χ(3Mm) but the number of nontame
sutures has been reduced. If k = 0, then C(Mp,yp)= C(Mm+ι,ym+ι) but
X(3M,) = χ ( 3 M J + 2.

Case 3. Neither Case 1 nor Case 2 hold.
/V<96>/. Apply Lemma 3.4 to (Mm,γm) to obtain the sutured manifold

decomposition (Mm, ym) -> (Mm + l9 γw + χ). We will now show that
C(Afm + 1,γ# f l + 1)<C(Mm,γm). Let ^ = {2)1? , Z)r} be a maximal set of
pairwise disjoint, pairwise nonparallel, nonboundary parallel, properly em-
bedded product discs in Mm. Since (M w + 1 , γ m + 1 ) is taut, S can be isotoped

γ so that each component of 3) Π Mm+ι is a product disc in
Ym + i) (If some component was not a product disc, then some compo-

nent is a compressing disc for R(ym+ι).) Let 5" be the surface obtained from
S by doing boundary compressions to curves of 3) Π S which appear as in
Figure 3.2(a) using the indicated discs.

FIGURE 3.2

Now isotope S' slightly near γ, as in Figure 3.2(b) to remove arcs of S' Π γ
which have both endpoints in the same component of 3γ. (Such arcs would
have been created if one of the arcs of S Π 2 which was compressed away
intersected γ.) Our new S' intersects S> in only " vertical" and " horizontaΓ'arcs.
We therefore have the commutative diagram of Figure 3.3.

Here £ is a set of product discs (one for each boundary compression of S),
R = N Π S\ and J^ is a maximal set of pairwise disjoint, pairwise non-
parallel, nonboundary parallel, properly embedded product discs in (7V',γ').
By definition C(Mm,ym) = C(JV,δ) and C(M m + 1 ,γ m + 1 ) = C(N",δ"). The
proof of Theorem 4.2 of [3] shows that C(N",δ") < C(N,δ); hence,
C(Mm + n Ym+i) < C(Mm9 ym) if we can prove the following:

Claim. 0 Φ [R] G H2(N, dN).
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/* (Mm + l>Ύm + l) "^ g

(Mm>Ίm) ^——^~^^<^ (Mm + 2 , y m + 2)

\9 \3nMm+1

4 p + g;
( N δ) x - ^ - - s\ - - - - . - , ^-, - ( N' fi'λ χ-\-C^~ -• ( N" δ")

FIGURE 3.3

Proof of Claim. Construct a graph H as follows. The vertices of H are the

components of γm. The edges of H are the elements of 3. An edge connects

the components of ym which it intersects. For each component of H construct

a maximal tree. Let / be the union of the edges of these maximal trees. Since

£ ' intersects Em in circles and each maximal tree (by Case 1) contains at most

one nonboundary suture, 5" is homologous in H2(Mm,dMm) to a surface T

such that T Π (/ U Em) = 0 and T is nonseparating in P = Mm - N(J).

View (TV, δ) as the result of the two sutured manifold decompositions

where B = 3) — J. Since neither Case 1 nor Case 2 holds, each component of B

is separating in P. Therefore T — N(B) = T Π N is nonseparating in N. Since

[TΠ N] = [R] <= # 2 ( JV, dN) we conclude that 0 Φ [R]. q.e.d.

Our interest in finding a well-groomed sutured manifold hierarchy of

(Λf,9M) whose decomposing surfaces intersect 3M in circles is exhibited in

the following result.

Lemma 3.7. Let

be a well-groomed sutured manifold hierarchy such that Si+ι Π Et is a properly

embedded union of simple closed curves for 0 < / < n — 1. Then there exists a

finite depth taut foliation ^ of M such that Sλ is a leaf of IF and 8F \ dM is a

foliation by circles.

Proof. The hypothesis of the lemma is what is needed to invoke the

construction of J^o on [3, pp. 471-473]. This construction yields a taut

foliation # Ό n M such that J*" | dM has no Reeb components. By construction
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Sx is a leaf of J*\ Applying the construction with the hypothesis of the E/s
yields the property that & | ΘM is a foliation by circles. Applying the construc-
tion with the hypothesis that the hierarchy is well groomed yields the property
that IF is of finite depth, q.e.d.

We now prove a sharper version (replace well groomed by groomed) of
Lemma 3.7. This version shows that finite depth foliations are quite a bit more
plentiful than first imagined in [3]. This section is not needed to prove
Theorem 3.1.

Definitions 3.8. Let IF be a codimension-1 transversely oriented foliation
on the sutured manifold (Λf, γ). Recall that a leaf of !F is of depth 0 if it is
compact. Having defined the depth < p leaves we say that a leaf L is depth p
if it is proper (i.e., the subspace topology on L equals the leaf topology), L is
not of depth < /?, and L - L c (union of depth < p leaves). If J^ contains
nonproper leaves, then the depth of a leaf may not be defined.

Since a foliation f on a sutured manifold (M, γ) is in practice the
restriction of a foliation <F' on a larger manifold, it may happen that a depth
r leaf of J^ may be contained in a depth r' > r leaf of J*"'. This motivates the
following definition.

Let J^ be a foliation on (M, γ). A pseudo-depth function is a function /:
M -> (0,1, , k], k < oo, such that the sets f'\i) = Ft have'the following
properties. Ft is a union of leaves of !F'. If i < k, then Ft is a proper set of
leaves (i.e., the subspace topology on Ft equals the leaf topology on i*]). Fo is a
compact set containing R(y) and Ft — Ft c f~\{0,- •,/ - 1}). Ft is called
the leaf of pseudo-depth /, and k is called the pseudo-depth of !F and /.

A pseudo-depth function is full if the restriction of / to each properly
embedded interval / in γ which is transverse to J^ has the following property.
Let /, = / Π Fj. If a e It and / < k, then a e ϊi+ι. If a is an interior point of
/, then points of Ii+ι limit on a from both sides of a.

Let fk: I = [0,1] -> (0,1, , A:} denote the "standard" full pseudo-depth
function, i.e. /^(O) = {0,1}, fk~\l) = { i , ϋ ϋ }, etc. In a simi-
lar way one can define the standard depth function fkp with p interior
compact leaves. Here view / = [0, p] and define fkp: I -> (0,1, , k) by
/£,/,(*)=/*(>') if • x ^ + tf, w G Z. Note that the standard full pseudo-depth
function of depth k + 1 could be defined byfk+1: [-oo, oo] -> {0,1, , k + 1}
by

l+fk(y)

0 if x e {-oo, oo}.
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Lemma 3.9. // the sutured manifold (M, γ) possesses a foliation ^ and a

pseudo-depth function, then 3< is of finite depth.

Lemma 3.10. Let (M, γ) ~»(M ', γ') be a groomed sutured manifold decom-

position. Let E be a subset of the annular components of y and let T have the

property that T Π E is a union of circles. Let E' be the subset E — N(T) of γ'.

// (M\ γ ') possesses a taut foliation !Ff such that ϊF' \E' is a foliation by

circles and a full pseudo-depth k function f, then (M, γ) possesses a finite depth

taut foliation ^ such that &' \E is a foliation by circles and a full pseudo-depth

k' ^ {k, k + 1} function f. Furthermore if dT c γ, then Twill be a leafofJ*".

Proof. IF will be the foliation obtained by applying the principles of the

constructions on [3, pp. 471-477].

Case 1. 97" c γ.

Proof. In this case (M, γ) is obtained by gluing components of R(y')

together. The foliation J** is obtained by identifying leaves of J*"'. / ' naturally

extends to a pseudo-depth k function / on M. Since a properly embedded

interval in γ transverse to & is a union of properly embedded intervals of γ '

transverse to J*"', it follows that / is a full pseudo-depth function.

Case 2. dT Π R(y) Φ 0. For simplicity we will consider the case that dT

intersects a unique component R of R(y).

As noted in [3] (see Figures 5.2(a), 5.7(a)) M is topologically obtained by

gluing together the surfaces T+a R+(y') and Γ c i?_(γ r).

Case 2A. dT intersects R in circles.

Proof. Glue Γ + to T~ (see [3, Figure 5.2]) and then apply the construction

of [3, Case 2, p. 471] to extend &' to the finite depth foliation J^*. Since

each leaf of J*"* — R is an extension of a leaf of &\ f induces a function

/ * : M -> {0,l, , * + 1} by/*(Λ) = 0 a n d / * ( x ) = / / ( j ) + l i f x lies on

the same leaf as y. Let V = R(y) - R. Let ^ be the product foliation on

V X [0, oo]. Let g: [0, αo] -> {0,1, , fc + 1} be the restriction of the function

fk + ι which was defined in 3.8. Now glue V X 0 to V. Let & be the foliation

on (M, γ) defined by identifying the leaves V and V X 0 of ^ and J^"*. These

foliations induce a full finite depth function / on (M, γ) as follows:

f ( χ ) = (s(x) i f * e κ x [ 0 , o o ] ,

\ / * ( * ) i f * < Ξ M - Fx[0,oo].

Case 2B. 9Γ intersects R in arcs.

ZV00/. Construct the foliation J^* on (M,γ) by applying with one

modification the construction of [3, Case 3, pp. 475-477]. In this discussion

notation will be as in those pages. That construction involved first gluing T+ to
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T~ to obtain a partial foliation Jf on M. Each leaf on X is a quotient of
leaves of J**' (see [3, Figures 5.6 and 5.7]). Therefore / ' induces a map h:
M -> {0,1, , k + 1} by Λ(x) = / ' (*) 4- 1. The second step of the construc-
tion involves attaching to M the set / ' X [1, oo] with the product foliation. Let
Jt be the extended partial foliation. Extend h over / ' X [1, oo] to h by
h(x, t) = fk + λ(t). Now fill in the ditches βmx I X I (Figure 5.7(b)) to create
our J*" * in such a way that h extends to a function / * constant on leaves of
& *. Extend & * and / * to & and / as in Case 2A. q.e.d.

Applying several applications of this lemma we obtain
Lemma 3.11. Let

be a groomed sutured manifold hierarchy such that if Si+1 Π Ei is a properly

embedded union of simple closed curves for 0 < i < n — 1, then there exists a

finite depth taut foliation ^ of M such that Sλ is a leaf of !F and ϊF \ dM is a

foliation by circles.

4. Finding an essential 2-sphere in S3

This section is organized as follows. In (A) we define the notion of a thin
knot presentation and show how it can be used to find essential 2-spheres in
S3. In (B) we define the notion of lamination and branched surface in normal
form in S3. We show how branched surfaces and laminations arise from
sequences of sutured manifold decompositions. In (C) we show that a lamina-
tion arising from a groomed sequence of sutured manifold decompositions can
be put into normal form by a finite sequence of compactly supported isotopies.
This lamination will be carried by a branched surface in normal form which
arose from a (possibly different) groomed sutured manifold sequence. In (D)
we will generalize the argument of (A) to show that given an incompressible
lamination in normal form, there exists an essential 2-sphere Q which inter-
sects this lamination in an essential way. In particular if this lamination arose
from a groomed sutured manifold sequence, then Q will essentially intersect
the final sutured manifold. In (E) we give a generalization applicable in special
cases.

I would like to thank William Thurston for pointing out that my original
notion of a minimal complexity knot presentation was essentially the notion of
being thin.
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(A) Thin knot presentations.

Convention 4.1. Once and for all pick two distinct points x and y in S3.

Fix z e S 2 . Identify (S2 - z)XU with U3 in a canonical way so that the R

factor corresponds to the z axis. Define the height function h\ S3 — {x, y) =

S2 X IR -> R to be the projection onto the second factor. The level 2-sphere

(resp. level plane) at height α, denoted Qa, is the surface »S 2Xα (resp.

(S2 - z) X a = IR2 X a). Let tf denote the fibration of U3 by level planes.

Definitions 4.2. A knot /: is generically embedded in S 3 if k = f(Sι),

where /: S1 -> S 3 is an embedding such that the height function h of is a

Morse function with 26 critical points which occur at discrete levels. Such an /

is called a generic presentation. We view isotopic knots as being the same knot.

Define the width w(k) of k to be w(k) = m i n β Σ l β , Cλf(Sι)\ \f is a

generic presentation of k and (?1? ζ?2>'' > C?26-i a r e l e v e l 2-spheres, one

located between each critical level).

A thin presentation of A: is a presentation which realizes the width of k. The

width can be computed explicitly as follows. Let Mv- —,Mb and mv- ,mh

be the local maxima and minima of h ° f where / is a thin presentation of k.

Let

T(k)-ΣΣ*(i.J). w h e r e . ( / , , - ) - ( Q i f w < , ^

Proposition 4.3. w{k) = 2Γ(A:) - b2.

Proof. Pull down on the local minima to obtain a new presentation such

that every local maximum lies above every local minimum. The width of each

term of the resulting sequence of knot presentations is increased by 2 each time

a minimum is pushed below a maximum. The width of the final presentation

is

\(2 + 4 + +2(6 - 1) + 26 + 2(6 - 1) + +2) = b2\

hence, w(k) = b2 - 2(b2 - T(k)) = 2T(k) - b2. q.e.d.

The following lemma and proof illustrate the key ideas in finding the

essential 2-sphere in S3.

Lemma 4.4. Let k be a knot in a thin presentation in S3. Let P be a properly

embedded surface in S3 — N(k) such that dP is not a union of meridians. Then

one can isotope P and find a horizontal 2-plane Q such that Q is transverse to P

and each arc component ofQπP is essential in P.

If P is boundary incompressible (resp. incompressible), then each arc (resp.

closed) component of P Π Q is an essential curve in Q — N(k).
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Proof. First isotope P in a neighborhood of dP so that P is defined locally
near N(k) as follows. If x e k is a local maximum or minimum of ky then
there exists a neighborhood F^ of x such that each component of VXΠ P
appears exactly as in Figure 4.1(a) or 4.1(b). If y e k -U(f^'s), then there
exists a neighborhood Vyoiy such that each component of Vy Π P appears
exactly as in Figure 4.1(c).

a) b)

FIGURE 4.1

c)

Now isotope P slightly so that P is transverse to 3tf except at a finite
number of center and saddle tangencies. x e P is a saddle tangency if
N(x) Π P appears as a saddle embedded in S3 as in Figure 4.8(a). x e P is a
center tangency if iV(x) appears as a local maximum or minimum (compare
Figures 4.8(b), (c)). Assume that all such tangencies are at distinct levels. Let
Qa denote the 2-sphere at height α. Let b denote the height of the highest
(biggest) local minimum of k and let s denote the height of the lowest
(smallest) local maximum of k which is greater than b.

a)

FIGURE 4.2
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Let Q = Qa be such that b < a < s and P is transverse to Q. Suppose that
λ is an arc component of P Π Q. If λ is an inessential arc in P such that
D c P (Figure 4.2(a)), the corresponding boundary compressing disc contains
no other such inessential arcs, then D viewed in S3 appears as in Figure
4.2(b). In particular D Γ) k lies either above Qa or below Qa. If such a λ exists
with Qa lying below (resp. above) D Π k, then call Qa a low plane (resp. high
plane) and D a high disc (resp. /ow ίfoc). Let

B = [a α is a high plane}, S = { α
α is a low plane} .

Claim. [b,s]ΦBUS.
Proof of Claim. If U is an open subinterval of [b, s] such that P is

transverse to β α for a G. U, then either UoBoτUΠB= 0 . The analogous
situation holds for S. Since P has been put into a standard form near iV(λ ),
b ^ B and 5 G 5 . Therefore, if the claim fails, there exists an a such that Qa is
tangent to P, a G B for a G (a — ε, α), and fleSforαG(α,α + ε) for some

a)

a) c)



494 DAVID GABAI

small ε. There exists a (singular) foliation ^ of P induced from the height

function h of S3. The leaves of *$ can be viewed either as level curves of h or

as the intersections of P with level planes. There exists a function fb:

(a — ε, a] X / -> P so that if a < α, then fh(a X /) is a level curve which is

the frontier of a low disc Da. These low discs satisfy Da<z Dc if a < c. The

limit arc fh(a X /) is either smooth (Figure 4.3(a)), pinched (Figure 4.3(b)), or

squeezed (Figure 4.3(c)). The corresponding limiting low "disc" Dh viewed in

S3 is either smooth, pinched, or squeezed (Figure 4.4(a), (b), (c)). The analo-

gous discussion holds for the function fs: [α, a + ε) X / -> P which has the

property that fs(a X /) is the frontier of a high disc Da if a > a and

fs(a X /) c Qa. Let Ds be the limiting high disc. Note that Ds and Db cannot

both be squeezed. It follows the either k is unknotted or one can find a thinner

presentation of k. Situations when both Ds and Dh are smooth or pinched are

given in Figure 4.5. q.e.d.

If a G [b, s] - B US, such that Qa is transverse to P, then Qa is our desired

plane.

If P is boundary incompressible, then each arc component of P Π Qa is

essential in Qa - N(k).lϊ P is incompressible, then an isotopy of P eliminates

circles which bound discs in Qa — N(k).

b)

FIGURE 4.5
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(B) Branched surfaces, laminations, and sutured manifolds.

Definition 4.5. A p-dimensional lamination ££ of an ^-dimensional mani-

fold M is a decomposition of a closed subspace N of M into a disjoint union

of connected subsets { La) called leaves of the lamination with the following

property. Every point in M has a neighborhood U and a system of local

coordinates x = (xv- ,xn)'. U -> Un such that for each leaf La each compo-

nent of U Π La is of the form { J G U\xι(y) = constant,- -,xn-p(y) =

constant}. These components form a basis for the topology of JSP. In what

follows, all leaves of laminations will have the property that the leaf topology

will equal the subspace topology. Also all laminations will be 2-dimensional

and transversely oriented in oriented 3-manifolds, hence will be oriented.

We will abuse notation by identifying a lamination 3? with the set of points

of M which lie in leaves of «£?. It will be clear from context which topology

(subspace or leaf) on ££ we are using.

Definition 4.6. A leaf of a lamination is of depth 0 if it is compact. Having

defined the depth < p leaves we say that a leaf L is depth p if it is proper

(i.e., the subspace topology on L equals the leaf topology), L is not of

depth < /?, and L - L c (union of depth < p leaves). If the depth of each leaf

is defined, then the depth of the lamination is the depth of the maximal depth

leaf. The depth of a leaf or of a lamination is not in general well defined.

Example 4.7. If J^ is a foliation on a manifold M, then 3F restricted to

any saturated closed subset is a lamination. In particular if fF is finite depth,

then for each integer r, the union of depth < r leaves forms a finite depth

lamination on M.

The following is closely related to the notion of a finite depth lamination.

Definitions 4.8. A branched surface B in a 3-manifold M is a subspace

B c M whose local models appear as in Figure 4.6. Note that each point of B

has a well-defined tangent plane. In all our subsequent discussions B will possess

a transverse orientation. Since all manifolds under discussion are oriented, this

transverse orientation induces an orientation on B. In the language of [2], B

has a product neighborhood JV(i?) called a fibered neighborhood (Figure

4.7(a), (b)). N(B) possesses an oriented foliation y by intervals and B is

FIGURE 4.6
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obtained from N(B) by contracting each leaf of iΓ to a point. dN(B) =
dhN(B) U dvN(B) where dhN(B) is the subset of dN(B) transverse to iT and
dL,N(B) is the subset tangent to y. A lamination 3? is carried by a branched
surface 1? if there exists a fibered neighborhood iV(i?) of B such that
JSf c N(B) and «£? is transverse to TT. Se is /w/fy carried hy B iί & is carried
by B and each leaf of Ψ* nontrivially intersects 2\ If B carries JSP, then the
transverse orientation on B induces a transverse orientation on oSP.

b)

FIGURE 4.7

Definition 4.9. A branched surface B in S 3 — iV(λ ) is in normal form if:

(1) /: is generically embedded.
(2) The local behavior of B near N(k) is exactly as in Figure 4.1.
(3) 5 is transverse to the horizontal planes except at isolated saddles (Figure

4.8(a)) or at centers possessing neighborhoods which encapsulate local maxima
or minima of k (Figure 4.8(b), (c)).

(4) If Q is a horizontal plane, then Q Π B contains no smooth circle C
which bounds a disc in Q - B unless there exists a center of B whose
encapsulating neighborhood contains C.

(5) The points zv- , zr of tangency of B with tf occur at discrete levels
ll9 - , /r, distinct from the maxima and minima of k. If /, is the level of a local
maximum zi of B and ΛΓ is the height of the maximum y of k encapsulated
by a neighborhood of zi9 then M < lj < /, implies that Zj is a local maximum
possessing a neighborhood which encapsulates y. The analogous situation
exists at local minima.

(6) The height function of each component of the branch locus describes a
Morse function. Critical points occur at discrete levels distinct from the //s
and the critical points of k. The branch locus is disjoint from N(N(k)),
neighborhoods of saddle tangencies of B with Jf, and from neighborhoods of
discs which encapsulate critical points of k (i.e., the branch locus stays away
from the local models drawn in Figure 4.7).

Definition 4.10. A lamination S£ in S3 — N(k) is in normal form if:
(1) k is generically embedded.
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b) C)

FIGURE 4.8

(2) The local behavior of ££ near N(k) is exactly as in Figure 4.1.

(3) If L is a leaf of «£?, then L is transverse to the horizontal planes except

at isolated saddles or at centers possessing neighborhoods which encapsulate

local maxima or minima of k.

(4) If Q is a horizontal plane, then Q Π JSP contains no circle C which

bounds a disc in Q — B unless there exists a center z whose encapsulating

neighborhood contains C.

(5) If z is a center of ££ and x is a critical point of k which a neighborhood

of z encapsulates, then all tangencies of S£ and Jtf* between h(z) and h(x)

correspond to critical points of discs (with respect to h) which encapsulate x.

Proposition 4.11. // S£ is a lamination carried by a branched surface in

normal form in S 3 , then ££ is isotopic to a lamination in normal form.

Definition 4.12. Let S£ be a finite depth lamination in M with a finite

number of leaves. We define a new lamination Ψ* obtained by thickening S£.

Topologically each leaf L of «5P is replaced by a closed interval of leaves each

of which is isotopic to J£?. Let ^ be the lamination inductively obtained by

thickening the depth <y leaves. Let W_λ =J£\ Having defined ^ _ χ let

A^(Ly) = Lx X I be a nice product neighborhood of the depth / leaves Lt. Let

f{. M -> M be the map which contracts each / fiber of N(Lt) to a point. # ^

is the lamination defined by #^ I #(£,-) equals the product foliation and

*rt \{M - N{Li))=f*[^i-i \(M - L,)].

Proposition 4.13. Let S£ be a finite depth lamination carried by the branched

surface B. If Ψ* is obtained by thickening ££, then Ψ* is carried by B. In

particular if B is in normal form, then iV is isotopic to a lamination in normal

form.

Definition 4.14. If B is a transversely oriented branched surface in an

oriented 3-manifold P, then B defines the sutured manifold S(B) =. (M,γ)

obtained from B by letting M = P- N(B), γ = dvN(B), and R(y) = dhN(B).
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The orientation on the interval foliation Y* of N(B) determines the transverse
orientation on R(y).

Proposition 4.15. // J? is a finite depth, finite leaved lamination fully carried
by the branched surface B in the 3-manifold P, then the sutured manifold
(M, γ) = S(B) is naturally embedded in P - # \ where iΓ is the lamination
obtained by thickening J?\ Finally J = P - int.(^U M) has a natural product
structure where the vertical interval fibration is ir\J. {Figure 4.9 shows a
possible local picture of the l-dimensional version.)

B

N(B) Π M

FIGURE 4.9

Construction 4.16. Constructing branched surfaces from sutured manifold
decomposition sequences. Let

(N,dN)={M0,y0)^(M1,yι) (Mn,yn)

be a sequence of sutured manifold decompositions of the oriented irreducible
3-manifold N. Let Bλ = Sλ. Suppose that the branched surfaces Bl9- ,Br_x

have been constructed such that S(Bt) = (Af^γ,.). We show how to construct
Br so that S(Br) = (Mr, γr). Br is obtained by attaching Sr to Br_λ and
modifying the attaching map to obtain smooth switching with coherent trans-
verse orientations. If the local picture of Sr and R(yr^λ) appears as in Figure
4.10(a), then create Br as in Figure 4.10(b). If the local picture of Sr and
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a)

b)

r
c)

FIGURE 4.10

R(yr_ι) appears as in Figure 4.11(a), then create Br as in Figure 4.11(b). Note

that Figure 4.11(b) is a union of Figures 4.11(b/) and 4.11(b") and the branch

locus crosses as in Figure 4.6(c).

Construction 4.17. Constructing finite depth laminations from sutured mani-

fold decomposition sequences. Let

be a groomed sequence of sutured manifold decompositions of the oriented

3-manifold N. We give two equivalent, almost canonical, constructions of a

finite depth lamination JS?Π containing Sx as a leaf which is fully carried by Bn,

the branched surface arising from 4.16.

Description 1. First assume that the sutured manifold decomposition se-

quence is well groomed. Suppose that we have constructed a finite depth

lamination Jίίs on (Ms9ys) (let Jfn = R(yn)) with the property that JtTs is

transverse to ys and R(ys) c J ζ . The construction of J*"o in [3, pp. 471-477]
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shows how to construct a finite depth foliation on (Ms_1,ys_1) having con-
structed one on (Ms, ys). This construction works equally well in our setting to
extend Jί s toa lamination Jfs__x on ( M ^ ^ y ^ ) . Jf0 is the desired &n. In
the case where the sequence is only groomed, by proceeding in a more refined
way, as in the proof of Lemma 3.9, one constructs the desired S£n.

b')
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Description 2. Let S£x = Sv Suppose that ££λ,- - -,££r_λ have already

been constructed. Let Ψ'i be the lamination obtained by thickening JS* . Let

C/f = N - iΓj. View C, as the noncompact (sutureless) sutured manifold (C, , λ,)

where 3C, = ^ ( λ , ) inherits a transverse orientation from TJ^ . In a natural way

identify C, with N — SPr By Proposition 4.15 there exists a set At of product

annuli in C, such that decomposing (Cf , λf ) along 4,. yields (M7,γ z) and a

(noncompact) product sutured manifold (B,β).

View S r as an embedded surface in Mr_λ c Cr_γ where 85,. consists of

properly embedded curves in Λ(γ r_ 1), vertical arcs in Ar_l9 and circles

parallel to core curves in Ar_x U Er_1 (see 3.2). Extend Sr to a properly

embedded surface Xr in Cr_λ as follows. To each circle component a of

3 ^ Π y4Γ_x attach an annulus Z with 3Z = α U a' where α' is a boundary

parallel circle in R+(β). To each arc α component of SrΓ\ Ar_λ let ω be a

properly embedded arc in F (where (B,β) = (F X /, dF X /)) homeomorphic

to [0,1). Extend Sr to B U M r _! by attaching ω X / to a. Let R be the set of

components of 3C r_x which intersect Xr nontrivally. Let R X / be a tiny

product neighborhood of l£ where R X 0 is identified with i£. Let V =

{Λ X 1, Λ X i , Λ X i, }. Let ί/r be the surface obtained by doing ori-

ented cut and paste with Xr and V. Our desired S£r is the union of Ur and

^r_λ. ^r is of finite depth and fully carried by Br.

Remarks 4.18. (1) For simplicity we require that the sutured manifold

sequence be groomed. If one drops the tautness hypothesis inherent in the

definition of a groomed sequence one can still carry out the construction of

4.17. This same comment holds regarding Lemma 4.20.

(2) A sutured manifold decomposition sequence gives rise to a lamination

which is well defined up to the paths ω chosen.

Proposition 4.19. Let Xr be as in Description 2. // one changes Xr to Xf

r

using a sequence of the following operations, then X'r will yield the same leaf Lr

hence the same S£r as Xr

(a) Let W be a compact subsurface of R(λr) (i.e., W inherits orientation from

R(λr)) isotoped slightly to be properly embedded in Cr — Er. Let X'r be the

surface obtained by cutting and pasting Xr and W.

(ar) // W is a component of Xr which is boundary parallel to a compact

subsurface of R(λr), or W is of the form ω X I where ω is a properly embedded

inessential arc or circle, then let X'r = Xr — W.

(b) Surger Xr along a square S as described in Figure 4.12. Note that S must

intersect Xr on the "same side."

Consider the sutured manifold sequence of Description 2. Let R be a

component of R(yr-ι) such that R Γ) SrΦ 0 . Let R' be the surface obtained



502 DAVID GABAI

x= - = i

FIGURE 4.12

by cutting and pasting R and Sr. Isotope R' slightly so that R' n R(yr_x) =
sr n R(Ύr-ι) and # ' Π γ ^ ! is a union of essential curves. Let (M',y')be the
sutured manifold obtained by decomposing (Mr_vyr_λ) along S". Observe
(compare [6, Lemma 0.6]) that by decomposing (M',γ') along a set H of
product annuli or discs one obtains (Mr_l9yr_λ) plus a product sutured
manifold (Z, £). There is a one-to-one correspondence between components of
H and components of S'Γι R. Finally (M',γ') naturally embeds in the
sutured manifold (Cr, λΓ) and ^ ' = J2*, where .S?' is the lamination obtained
by changing the original sutured manifold sequence by replacing Sr by R'.
These observations lead to the following:

Lemma 4.20. Let

γ 1 ) S . . . % (Mn,yn)

be a groomed sequence of sutured manifold decompositions. Let R be a finite

number of pairwise disjoint properly embedded surfaces in M- such that each

component nontriυially intersects Sj and lies parallel to and very close to a

component of R(yJ_1). Let Tj be the surface obtained by doing oriented cut and

paste to Sj and R. Then there exists a groomed sequence

which has the following properties:

(1) // ' < h then T; = St and (Mi9 γf.) = (Λ;.,«.).
(2) Tj is defined as above.

(3) There exists a lamination S£' determined by the (N,δ) sequence which
equals a lamination Se determined by the (M, γ) sequence.

( 4) // i >j, then there exists a set A of product annuli in (Λ^δ,) such that
decomposing (Λi,βf.) along A yields a disjoint union of (Mi9yt) and a product
sutured manifold.
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Proof. We will construct the lamination Si for the (M,γ) sequence as in

Description 2 of 4.17. Let Ai9 (C, , λ ; ), etc. be as defined there. The key to the

lemma is to choose the paths ω to construct S£ correctly.

Suppose that (No, δ0), 9(Nr9 δr) and Tl9-—9Tr have been constructed for

some r ^ j so that the (N9 δ) sequence satisfies the conclusions of the lemma

and satisfies (MΓ, γ r) c (Nr9 δr) c (C r, λ r ) . Suppose, also, that there exists a set

A'r of product annuli in Cr such that decomposing (C r, λ r ) along A'r yields

(Nr9 δr) and a product sutured manifold.

First, extend Sr+1 to Xr+1 in Cr as in Description 2 using paths ω which

have the property that |ω Π A'r\ = 1. Second, surger Xr+ι using operation (b)

of 4.19 near A'r so that \A'r Π Xr+ι\ = ( ^ _ ( λ r ) Π Λ'Γ, # _ ( λ r ) Π X r + 1>. As in

the proof of Lemma 0.6 of [6] we can find a set {Wl9 —,Wp} of compact

subsurfaces of R(δr) such that after applying operation (a) to these compact

subsurfaces and operation (a') to the result, one obtains a new Xr+ι such that

Xr+ι Π Nr = Γ r + 1 is a groomed surface in (Nr9 δr). By construction the induc-

tion hypotheses hold for ( M r + 1 , γ r + 1 ) and (Λ^ + 1 ,δ r + 1 ) . By Proposition 4.19,

JSf/ equals the lamination S£r defined by the (Λf, γ) sequence. The result

follows by induction.

(C) Putting laminations into normal form.

Lemma 4.21. Let k be a knot in a thin presentation in S3. If

( 5 3 - Λ f ( / C ) , 3 i V ( / c ) ) = ( M 0 , γ 0 ) ^ ( M 1 ) γ 1 ) S ••• * (Mn,yn)

is a groomed sequence of sutured manifold decompositions such that Sf Π Ei_ι is

a union of simple closed curves, then the lamination Si determined by this

sequence can be put into normal form. Furthermore there exists a new sutured

manifold sequence

having the same properties as the (M, γ) sequence plus the following:

(1) The lamination S£r determined by the (N9 δ) sequence equals S£.

(2) By decomposing (Nn9Sn) along product annuli and discs one can obtain a

disjoint union of (Mn9yn) and a product sutured manifold.

(3) The associated sequence of branched surfaces Bl9 - -9Bn are in normal form

in S3 and S£ is carried by Bn.

Idea of Proof. Put the lamination into normal form one leaf at a time.

Having put the first r leaves in normal form we then insert the next leaf so

that, away from a compact region, it lies very close to the previous leaves. A

compactly supported isotopy puts this leaf in normal form.
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Step 1. Isotope Sλ into normal form.
The fact that we can put the compact surface Sx in normal form basically

follows from the isotopy result of Rousserie [18] and Thurston [20]. We present
the proof here since the proof that the general leaf can be put in normal form
is only a slight modification.

Isotope Sλ so that it has the correct normal form near k and that it is
smoothly embedded and transverse to the height function except at isolated
saddles, centers in normal form and plateaus. A plateau is an embedded
(planar) surface P c S such that h is constant on P and h is locally either
maximized or minimized at P. Recall that saddles and centers are isolated
points of tangency of S with J^.

As in [18] if P is a plateau or center, then there exists a neighborhood U of P
in S whose induced foliation Jf | P is one of the types given in Figure 4.13

Type I Type II

Type III

FIGURE 4.13
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(see Figure 7.1 of [3] for the corresponding picture when P is a center). More

precisely there exists a maximal closed neighborhood ί/' c U of P such that

3V\U' - P is a foliation by |3P| families of "circles" indexed by [0,1]. The

initial circle α 0 corresponds to dP. The circles at indexed by / < 1 consist of

|3P| horizontal circles in S3. The limit "curve" aλ nontrivially intersects a

saddle tangency q and is smooth away from q. In particular it consists of either

|9P| — 1 or 19P| - 2 smooth horizontal circles. If all but one circle is smooth,

then ax is smooth except for either a single corner at q (i.e., P is type I) or two

corners at q (i.e., P is type II). If aλ has |3P| - 2 smooth circles, (i.e., P is

type III) then two components of dP are squeezed together. Figure 4.14 shows

what U looks like in S 3, when P is of type III. In any case each an t < 1,

bounds an embedded horizontal planar surface Pt in S3 so there exists a map

F:P X / -» S 3 such that ,F(3P, X /) = α,, F ( P X 0) = P, F \ P X [0,1) is an

embedding, and F(P X 1) is obtained by pinching a point on 3P, or squeezing

P along a properly embedded interval, or identifying two points of dP.

Definition 4.22. If x is a point of tangency of Jί? with a transversely

oriented surface S, then define σ(x) = 1 (resp. -1) if the normal vector to S

points up (resp. down).

If P is of type I (resp. type II), then we say P is of type la (resp. type Ha) if

σ(P) = σ(q\ otherwise we say that P is of type Ib (resp. type lib). When

P = Z>2, a neighborhood of a type la (resp. Ib) plateau embedded in S3 looks,

after flattening out the hilltop, exactly like the left-hand side (resp. right-hand

side modified to be embedded) of [3, Figure 7.7] F(D2 X 1) appears as in [3,

Figure 7.6(a) (resp. Figure 7.6(b))]. A neighborhood of a type Πa (resp. lib)

plateau, when P = D 2 , looks, after flattening out the hillltop, exactly like [3,

Figure 7.10 (resp. Figure 7.11)] with F(D2 X 1) appearing as in [3, Figure

7.6(c) (resp. 7.6(d))].

FIGURE 4.14
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To see that these are the exact pictures draw a picture of S Π N(Qa) where

a = h(q) as in Figure 4.15. S Π N(Qa) looks like a union of vertical annuli

and a single saddle. Now view P as lying in Qa+ε. The above paragraphs

enumerate the possibilities.

We now prove Step 1 by induction on the complexity c(S) =

(31 plateaus | + 21 centers | ) .

After possibly turning IR3 upside down (i.e., replacing h(x) by -h(x)) we

can find a plateau P with the following properties. P is a maximum and either

P is the lowest plateau in R 3 or P is the lowest plateau in P c F(Pf X (0,1))

for some plateau P' which is a local minimum.

If each plateau is a local maximum let P be the lowest one. Otherwise let P'

be the highest plateau which is a local minimum. If F(P' X (0,1)) contains a

plateau let P be the lowest one. If F(P' X (0,1)) contains no plateaus, then

turn R 3 upside down and let P = P\

Casel. k Π F ( P X I) Φ 0.

Proof. There exists a smallest / such that F(P[09t]Π k)Φ 0 . Each com-

ponent D of F(P[0, t]) Π S is a disc which contains a center in normal form.

A maximal point x of Z) is either a center or is contained in a plateau. If x is a

center, then by assumption it is a center in normal form and D is a disc. By

the way P was chosen, x could not have been contained in a plateau.

Isotope P U F(3P X [0, / 4- ε)) relθ to create a center in normal form and

1 — χ(P) saddles. To see this operation for the case when P is an annulus,

start with the flattened rim of a volcano with a local maximum of k lying just

under the rim. Push down on the other side of the rim to create a type Ha

center [3, Figure 7.10]. This operation eliminates a plateau and creates a center,

hence the complexity is reduced, q.e.d.

FIGURE 4.15
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We will now assume that k Π F(P X /) = 0.
Case 2. P is of type III.

Proof. The incompressibility of S implies that this cannot occur.
Case 3. P is of type la.

Proof. If P is a disc, then isotope S as in [3, Figures 7.7 and 7.8] to cancel
the plateau with a saddle. More generally isotope S to S' = (S - F(P X /))
U F(P X 1) and then isotope it a bit more as in Case 1 to eliminate the
plateau and create 1 - χ(P) saddles.

Case 4. P is of type Ib.

Proof. Necessarily F(P X (0,1)) Π S Φ 0, but this contradicts the choice
of P.

Case 5. P is of type lib.

Proof. We analyze the case P = D2 since the others are similar. S locally
appears as in [3, Figure 7.11] (imagine the hilltop flattened out). The incom-
pressibility of S implies that one of λλ or λ2 (say λ 2) bounds a disc D in S
which does not contain the other. The irreducibility of S3 implies that we can
perform an isotopy of S which is the identity away from a neighborhood of D
to obtain (before smoothing the corners) S' = (S — D)U D\ where D' is the
disc which \x bounds in F(P X 1). Since D must contain at least one plateau
or center we have reduced the complexity of S.

Case 6. P is of type Πa.

Proof. Isotope S to S' = (S - F(P X I)) U F(P X I) and then a bit
further to create a surface S" which has a plateau Pλ with χ(Pλ) = χ(P) - 1.
If one of the previous cases applies to Pv then we are done, otherwise we
isotope Pλ further to obtain a plateau P2 with χ(P2) = χ(P) - 2. Continue in
this manner to eventually either cancel out this plateau or obtain a plateau Pr

such that some component λ of dPr bounds a disc F in the level plane Q
which contains P such that F Π S = 0 . The incompressibility of S implies
that λ bounds a disc D in S. By performing an isotopy of S which is the
identity away from a neighborhood of D we reduce the complexity of S. q.e.d.

After finitely many applications of Cases 1-6 we eliminate all plateaus.
Case 1. There exist a level plane Q and a component C of Q Π S which

bounds a disc D in Q - S and a disc F in S such that F does not contain a
unique center.

Proof. S is isotopic to S' = (S - F)U D. Since we have eliminated at
least 2 centers and have created exactly one plateau, c(S') < c(S).

Remarks 4.23. The isotopy of Step 1 could have been carried out in such a
way that plateaus were not smoothed out until the very end. For example, if
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Case 1 is applicable, then instead of creating a center and 1 — χ ( P ) saddles,

simply leave P as a plateau but count it as a center. If Case 3 is applicable,

then instead of smoothly cancelling the saddle and plateau, leave the plateau as

a flat surface at the level of the old saddle. Only at the very end should the

surface be smoothed out. The utility of this approach is that if S' is the surface

obtained by partially isotoping S as above, then S' - (flat part of S') c S.

Step 2.

Lemma 4.24. Let k be a knot in thin position in S3. Let B be a branched

surface in normal form in S3 - N(k) such that S(B) = (M, γ) is taut. Suppose
s

that (M, γ) ~> (M\ γ') is a groomed sutured manifold decomposition. Let R be

the components of R(y) which nontriυially intersect S. Let Sr, r > 0, be the

properly embedded surface in M obtained by doing oriented cut and paste with r
sr

boundary parallel copies of R and let (M, γ) ~» (M r, γ r) be the associated sutured

manifold decompositions with complementary branched surfaces Br.

There exists an r such that Br is isotopic rel B to a branched surface in normal

form.

Proof. Isotope S so that dS is disjoint from neighborhoods of saddles,

critical points of the branch locus, and discs which encapsulate critical points

of k. Furthermore the height function restricted to dS should describe a Morse

function. Isotope S so that it is transverse to Jίf except at isolated saddles and

plateaus which are distinct from the critical levels of B and k. Construct the

branched surfaces Bo, Bv B2, ••• using the construction of 4.16. In a natural

way if i < j , then Sf c Sj c B-. After a preliminary isotopy of Bj rel B

supported in a neighborhood of the branched locus of B we can assume that

each Bj satisfies condition (6) of Definition 4.9. B- should be constructed so

that each tangent plane of Bj — S lies very close and parallel to a tangent

plane of B. For example if Figure 4.10(b) (resp. 4.11(b)) shows a local picture

of Bo, then Figure 4.10(c) (resp. 4.11(c)) shows the local picture of Bv

Let m = max{|g α Π S\\a e R}. If Q is a level plane, s > m, and Q n Bs

contains a smooth circle C which bounds a disc in Q — B, then either C c Sm,

or C bounds a smooth disc F c Bs such that F Π S = 0 and F encapsulates

in normal form a critical point of k. To see this let C c Q n Bs be a smooth

circle which bounds a disc F in Q — B. F contains discs Fλ<z c Fs = F

with pairwise disjoint boundaries such that 3/) c Bs. If F Π S Φ 0 , then

Fi Π S Φ 0 for each /, so | F Π Bs\ < \Q Π S\ < m. Therefore C c Sm or

C Π S = 0 . The result follows (compare Figure 4.16).

Let r = m + m' where mf is the number of plateaus and centers in normal

form of Sm. Let Ω = (centers and plateaus of Br which are contained in Sm}.

Define c(Ω) = (31plateaus| 4-21centers|).
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N o w isotope Br by an isotopy performed exactly as in Step 1. The key point

is that the isotopy will only involve modifications of Ω (i.e., the centers of

Br — Ω are untouched). Therefore the program of Step 1 can be completed by

doing at most |Ω| sequences of pushing down on plateaus. Each push can

involve at most one new St where i > m. Choose a plateau P c Ω as in Step 1.

We indicate the modifications of Ω which are involved in the cases of Step 1.

Case 1. Here a plateau is transformed into a center.

Case 2. Does not occur.

Case 3. Here a plateau is deleted from Ω.

Case 4. Does not occur.

Case 5. Here all the plateaus and centers of Sr contained in a disc D are

deleted. By Remark 4.23 and the choice of m, dD c Sm; hence D c 5 m , so all

these plateaus and centers are contained in Ω. In particular c(Ω) has been

reduced.

Case 6. Here one of the modifications of the previous cases occurs.

Case 7. A plateau is created and at least two centers of Ω are deleted. That

all centers deleted actually belong to Ω follows as in Case 5.

Step 3. Proof of Lemma 4.21.

Proof. We will construct the tower of Figure 4.17. The (N,8) sequence is

obtained by letting Tt = Sf. and (Λ^δ,.) = ( M ^ γ , ) . Apply Step 1 to put Sx in

normal form. Let S2 be the surface Sr obtained by applying Lemma 4.24 where
s2 s

( M l 5 yx) ~> ( M 2 , γ 2 ) equals ( M , γ ) ~> (M', γ ' ) . Now apply Lemma 4.20 to the

F I G U R E 4.16
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sequence of sutured manifold decompositions on the bottom row of Figure
4.17 to obtain the sequence on the second row of Figure 4.17. In a similar
manner having constructed the yth row of Figure 4.17 one obtains SJ+ι by
applying Lemma 4.24 and one obtains the (j + l)st row by invoking Lemma
4.20. The conclusions of Lemmas 4.20 and 4.24 imply that the (N,δ) sequence
satisfies the conclusions of Lemma 4.21.

u

U

u

FIGURE 4.17

(D) Finding an essential 2-sphere in S3.

Let M be a compact oriented 3-manifold whose boundary is a union of tori.
A lamination # " c M has geometrically incompressible leaves if for every disc
D such that 3D c TΓ and D Π 7Γ= 0, 3D bounds a disc in a leaf of TΓ. It is
easy to see that laminations arising from groomed sutured manifold sequences
are geometrically incompressible. In fact the leaves of ΊV inject into M in πv

To see this use [3] to extend #~ to a taut foliation J o n M and then apply
Novikov's theorem.

We are now ready to find an essential 2-sphere Q in S3. The following result
is a generalization of Lemma 4.4.

Lemma 4.25. Let k be a nontriυial knot in S3. Let & be a finite depth

lamination with incompressible leaves in S3 — N(k) in normal form. Let Of be

the lamination obtained by thickening 3?. If (M, γ) is a sutured manifold

embedded in S3 — Ψ' such that R(y) c diΓ and γ is a union of properly

embedded incompressible annuli in (S3 — N(k)) — ifr* and a nonempty set E of

boundary sutures, then one can isotope (M, γ) and Ψ~ and find a 2-sphere Q

such that

(0) Q Π k Φ 0 and Q is transverse to M.

(1) Q is transverse to W except possibly at a finite number of saddles in #*,

(2) at most one component of dWΠ Q is a circle bounding a disc in Q - iΓ,

(3) each circle component of Q Π γ is homotopically nontrivial in Q — iΓ,
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(4) each arc component of Q Π γ is an essential arc in γ, and

(5) each arc component of Q Π (dM — E) is an essential arc in dM — E.

Proof. Isotope M slightly so that dM is transverse to Jίf except at a finite
number of center and saddle tangencies, and 3γ is transverse to Jf except at a
finite number of critical points. Assume that all such tangencies are at distinct
levels and the tangencies of 3γ and γ with 3tf are at levels distinct from the
tangencies of leaves of Ψ* and J?. Since S = dM — E is in standard form
near k we can apply the proof of Lemma 4.4 to find a level plane Q lying
between the height h of the highest local minimum of k and the height of the
lowest local maximum of k which is greater than h, such that each arc of
Q Π S is essential in S. By construction conclusion (0) holds. By raising Q
slightly if necessary we can assume that Q is transverse to Jf. By extending Q
to oo we can view Q as a 2-sphere.

Since ££ is in normal form and W is obtained by thickening Si a tiny bit it
follows that (1), (2), and (3) hold for Ψ* and Q. By construction each arc of
Q Π (dM — E) is essential in dM - E, so (5) holds. If some circle component
β of γ Π Q bounds a disc D in Q - # \ then R(y) c HT implies that
D Π dM = D Π γ. Therefore by choosing an innermost component in D of
D Π γ we can assume that either D a S3 - int.(^U M) or D c M. The
incompressibility of γ in (S3 - N(k)) - Ψ° implies that β bounds a disc in γ.
Use the irreducibility of S3 to isotope M to remove this and possibly other
components of Q Π dM from dM and Q. Note that if D ιΊ M = 0 then this
isotopy has the effect of attaching a disc to Q Π M. By continuing in this
manner, we can assume that all but possibly (4) of the conclusions of Lemma
4.25 hold. Assume that \Q Π A:| is minimal among all 2-spheres Q which satisfy
all but possibly (4). For such a Q each circle component of γ Π Q is essential
in γ.

To prove (4) we will first show that each arc component of Q Π γ is
essential in Q - # . Suppose that there exists a component β of Q Π γ and a
disc D a Q such that 3D c β U >T and D Π (TΓU γ) = 0. Since both
endpoints of β lie (say) in i£+(γ), β is an inessential arc in γ. Let 5 c γ b e
the associated boundary compressing disc. The incompressibility of the leaves
of Ψ* implies that there exists a 2-sρhere S = B U CU D (where C is a 2-disc
contained in a leaf of W). An isotopy of M supported in a neighborhood of
the 3-cell which S bounds reduces the number of arc components of Q Π γ.
We now assume that every component of Q Π γ is essential in Q — OΓ.

Let β be an inessential arc of Q Π γ whose corresponding boundary
compressing disc K γ (Figure 4.18(c)) contains no other inessential arcs.
Isotope W and M as in Figures 4.18(e),(f) to remove this arc of intersection of
Q Cλy. Figure 4.18(g) shows three leaves of the isotoped W. This isotopy is
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supported on a neighborhood of B and can be physically achieved by pushing
B through the other side of Q. Figure 4.18(a) shows the intersection of W with
a neighborhood of the component Y of Q Π ((S3 - N(k)) - iΓ) which con-
tains β. Figure 4.18(b) shows the intersection on N(Y) with the isotoped iΓ.
Figures 4.18(c), (d) show the effect of the isotopy on Q Π dM.

Remarks 4.26. If one restricts oneself to level 2-spheres, then Q can be
chosen so that the conclusions of Lemma 4.25 hold if (1) is modified as
follows. Q is transverse to Ψ* except possibly at a finite number of saddles and
centers in # \ To each center c there exists an annulus A a Q n iΓ such that
c ^ A and the components of dA are contained in leaves of iΓ.

Lemma 4.27. Let

(S3 - N(k),dN(k))* ( M 1 ? γ i ) ^ ••• ^ ( M n , γ J = ( M , γ )

be a groomed sequence of sutured manifold decompositions such that each

St Π d(N(k)) is a union of simple closed curves. Let £ c γ denote the set of

boundary sutures. Then there exists a 2-sphere Q such that QC\kΦ 0 , Q is

transverse to M, each arc component of Q Π γ (resp. Q Π (dM — E)) is

essential in γ (resp. dM — E). Further, Q Π M = {q^ , qr)ΛJ D where each

qi is a connected surface and either D = 0 or D is a disc and D Π 3γ = 0 and

Finally, each qt contributes a nonnegative number to the above summation.

Proof. By 4.17 the sequence

(S3 - N(k),dN(k)) * (M l j γ i ) ^ • * (Mn9yn) = (M,γ)

determines a finite depth lamination ££ which has incompressible leaves since
each (M^γ,-) is taut. By Lemma 4.21, ££ is carried by a branched surface in
normal form, so ££ itself can be isotoped to be in normal form in S3. By
Description 2 of 4.17 each component of γ — E is a properly embedded
annulus in (S3 - N(k)) - Ψ° and R(y) c HT. To see that each component of
γ — E is incompressible in (S3 — N(k)) — iΓ observe that M is connected,
taut, and not of the form (D2 X I,(dD2) X /) if γ - E Φ 0, and that each
component of (S3 — N(k)) — int.(#~U M) is a noncompact product "sutured
manifold." We conclude that (M,γ) and S£ satisfy the hypothesis of Lemma
4.25.

Let Q be the 2-sphere obtained from Lemma 4.25. Construct a vectorfield X
on Q - N(k) as follows. Since iΓ is transversely oriented we can define X on
Q Π iΓ so that X is tangent to the leaves of iΓ\ Q and is singular only at the
points of tangency of Q and W. Therefore X | Q Π iΓ is nonsingular away
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a) b)

C) d)
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from a finite number of singularities of negative index. Extend X to each
component of Q Π M and each component of Q - int.(#~U M) so that X is
tangent to Ψ*, X is transverse to γ, and X is nonsingular except at a finite
number of points. By (2) of Lemma 4.25, at most one component of Q — IV* is
a disc D with smooth boundary, so X could have been chosen to be nonsingu-
lar except at a finite number of singularities of negative index plus at most one
point where it has a singularity of index + 1. The lemma now follows from the
following inequalities which rely on the Poincare-Hopf index formula.

- | 9 < ? ' 4 9 γ l - index(X|(M n Q) - D)

> index(X|((ρ - N(k)) - D)) = indexX - indexX|D

= x ( Q ~ # ( * ) ) - x ( D ) > 2 - \ Q n k \ - l = l-\Qn

(E) A useful generalization.

Lemma 4.28. Let M be a compact oriented ^-manifold whose boundary is a

{possibly empty) union of tori. Let k be a knot in M such that M — k is

irreducible and let Q be a surface in M such that Q — N(k) is incompressible in

M - N(k). Let

be a groomed sequence of sutured manifold decompositions such that each

St Π dN(k) is a union of circles parallel to λ, a simple closed curve not parallel

in dN(k) to Q Π dN(k). Then one can isotope (Mn,yn) so that Q is transverse

to Mn, each component of Q Π yn is essential in yn, Q Π M = { qt, ,qm }, and

Finally, each qt is a connected surface and contributes a nonnegative number to

the above summation.

Proof. Use [3, §3] to extend the given sutured manifold sequence to a
groomed sutured manifold hierarchy. Let !F be the finite depth taut foliation
obtained by applying the construction of [3, §5] to the hierarchy. Apply the
Rousserie-Thurston theorem [18], [20] to isotope Q to be transverse to J^
except along saddle tangencies. Let ££ be the lamination obtained by applying
4.17 to the given sutured manifold sequence. (££ is a union of leaves of J*\)
Thicken S£ to W and isotope if and Mn as in the proof of Lemma 4.25
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(using this Q) to obtain the conclusions of Lemma 4.25 where conclusion (2) is

replaced by " n o component of ΰWCλ Q is a circle bounding a disc in

Q — ΨT The proof follows by arguing as in the last paragraph of the proof of

Lemma 4.27.

5. Finding an exotic planar surface

Let A: be a knot in S 3. The goal of this section, Lemma 5.1, is to show that

either we can find a sutured manifold hierarchy of (S3 — N(k),dN(k)) such

that every decomposing surface intersects dN(k) in circles or we can find a

sphere Q and a planar surface P in S3 with some remarkable properties.

Lemma 5.1. Let k be a knot in S3. Let

( S 3 - J V ( * ) , 8 J V ( * ) ) * ( M 1 > Y l ) - ••• * (Mn,yn) = (M,y)

be a groomed sequence of sutured manifold decompositions such that dSi Π dN(k)

is a union of circles for each /', and if M is the manifold obtained by attaching

2-handles to E = En = γ Π dN(k) (see 3.2) then dM is a union of 2-spheres.

One of the following must hold:

(1) (M, γ) is a product sutured manifold.

(2) There exists a planar surface P <z S3 - N(k) and a sphere Q c S3 such

that \k Π Q\ = μ> 0, P (Ί dN(k) is a union of u > 0 coherently oriented

longitudes, and λ = dP — P Π dN(k) is a simple closed curve which satisfies

|λ Π Q\ < μ — 2. Finally no component of P - Q is a disc F with F CλQ

connected.

Proof. If k is the unknot, then (1) holds. Otherwise apply Lemma 4.27 to

our given sutured manifold sequence to obtain the 2-sphere Q and q =

{qv -,qr}. Our goal is to show that either (M,γ) is a product sutured

manifold or we can find a planar surface P c R(y) such that 3P is a union of

components which are contained in E and a component λ disjoint from E

which satisfies |λ Π Q\ < μ - 2. Since |λ Π Q\ and μ are even, it suffices to

show |λ Π Q\ < μ. Such a P satisfies all but possibly the last part of

conclusion (2). The existence of a bad F would imply that some arc compo-

nent δ of Q Π P is inessential in P. The conclusion of Lemma 4.27 implies

that such a bad arc δ with 3δ c E does not exist. A small isotopy of P

removes bad arcs δ with endpoints in λ.

Let (M, γ) denote the sutured manifold obtained from (M, γ) by attaching a

2-handle to each component of E. View (M, γ) as a submanifold of (M, γ).

Note that M is contained in the manifold N obtained by performing zero

frame surgery to k.
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Define an equivalence relation ~~ on the boundary sutures E = {Al9- —,AW}

generated by the relation At ~ A} if / =j or there exists a component D of q

which is a product disc such that D Π Ai,Φ 0 and D Π A}Φ 0 . Let Xl9 , Xt

denote the equivalence classes. Note that each Xt intersects a unique compo-

nent of each of R+(y) and # _ ( γ ) .

Recall that product discs detect where a manifold is locally a product.

Case 1. If p e q is a product disc, then p n(y - E)= 0 .

Case 1A. ί = 1.

Proof. Let # ± be the disc components of R ± ( γ ) which intersect X = Xv

No #, is a disc /? such that as one traverses dp the intersections of dp and γ

alternate between intersections with X and intersections with γ - X. Otherwise

M, hence N the manifold obtained by doing zero frame surgery to k, contains

a lens space summand contradicting the fact that H^N) = Z. Concretely let

Y = X U { qx e q \ qi n X Φ 0 , #, is a product disc} and let U be the compo-

nent of M - N(Y) which contains p. Let Z = (M - t/) U JV(3ί/). Topologi-

cally Z = ( D 2 X Sι)#(B3). To see this, first pretend that X consists of a

single suture. Now consider the effect of creating, one by one, more boundary

sutures each of which is parallel to an existing one. By the hypothesis of Case

1, p is a 2-handle which attaches to Z and wraps \p (Ί X\ > 1 times around

the Sι factor. We conclude that M contains a lens space summand.

Let D+ be the disc R+ reduced in size to eliminate trivial intersections with

Q. (Conceivably Q Π R contains arcs with both endpoints in dR.) In a similar

manner obtain D_. Therefore for each /

\qt Π dD+\ + \qt Π dD_\ < 2[\dqf Π 3γ|/4 - χ ( ί f . ) ] .

Summing over all the #/s and applying Lemma 4.27 we obtain

Σ k n 3D+ I + Σ k Π ΘD_ I < 2Σ (Iθί, n 3γ|/4 - χ(9/)) < 2(μ - 1).

Therefore one of D+Π M or D_Π M is the desired P.

Definitions 5.2. Define F(Xt\ the /enα? of Xi9 to be J^ U {̂ ^ e ^ 1 9 y n Jζ.

^ 0 , ^ is a product disc}. Note that the frontier SNiFiX^) is a union of

annuli each of which separates M, since H2(M, 3M) = 0.

Define H^X^ the Λαwrffe of Xi9 to be the largest codimension-0 submani-

fold of M containing iV(F( A))) such that 3i/ c (3M - (γ - Xt)) U JV(F( Jjf))).

Note that in the proof of Case 1A, H(X) U 7V(3M) = Z.

Define C+(*,-) (in a similar manner define C_(JQ), the cα/7 of A), to be the

smallest (up to isotopy) surface C+(Xέ) c Λ + ( γ ) such that

^)N(F(Xi))ΠR+(y)(ZC+(Xi)9

(b) if λ is a component of (R(y) - C+(Xt)) Π β such that 3λ c C+ί^.),
then λ is an essential arc in R(y) - C+
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(c) if R is a component of R(y) - C^X^ disjoint from y - E, then
R n Xj Φ 0 for some j .

Figure 5.1 shows a picture of a neighborhood of a component of R(y) which
intersects two distinct equivalence classes Xλ and X2. The members of Xγ are
drawn as circles and the members of X2 as ovals. The intersection of product
discs and R(y) are drawn as solid lines while the intersections of other
components of Q Π R(y) are drawn as dotted lines. For clarity not all the
components of Q Π R(y) are shown. Note that C+(Xλ) is a shaded disc and
C+(X2) is a three times punctured sphere.

Remark 5.3. By the tautness of (M,γ) it follows that if C+(X) is a disc,
then so is C_(X). In this case i/(X) is a Z)2 X / such that #(X) Π dM = D2

X {0,1}, i.e., H(X) is a 1-handle.
Case IB. There exists a component R of Z£(γ) - C±{Xj) which is a disc and

intersects a unique Xr (Figure 5.1 contains such an R.)
Proof. Here the desired P will be one of C ± ( ^ ) . The proof of Case IB

follows by pretending that X = Xi9 and then (after one modification) mimick-
ing the proof of Case 1A. We need to show (as in the proof of Case 1A) that

FIGURE 5.1
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no bad p exists. In this setting let U be the component of M - (ff(^ζ ) U
H(Xj)) which contains p. Let Z = (M - U) U N(dU). Topologically Z =
(D2 X 5'1)#(3-manifold). This follows from Remark 5.3, the fact that dM is a
union of 2-spheres and the observation that for each r, δN(F(Xr)) is a union
of annuli each of which separates M. The proof now continues as before.

Case 1C. There exists a disc R which intersects exactly two X9s9 say Xλ and
X2, and is either a component of R(y) - C±(Xj) ίoτ some y or is a component
of Λ(γ).

Λw/. In light of Case IB and its reduction to Case 1A it suffices to
consider the case that R is a component of R+(y) and the C±(ΛΓ

/)'s are discs
for i = 1,2. To prove Case 1C we will first show that for some i e {1,2} there
exists no q^ such that qj is a disc and as one traverses dqy one alternately
intersects Xi and γ - Xt. Suppose that for i e {1,2} such components of
Q Π M exist. Call them respectively qx and q2. Let atj = \qιf n Zy|.

If either α n = a12 or α12 = 0, then one could find a lens space summand in
M with Hλ of order Λ11. In the latter case apply the argument of Case 1A. In
the former case let Z = N(R) U H(Xλ) U H(X2) which is homeomorphic to
D2 X S1. qλ is a 2-handle which attaches to Z and wraps 0 U times around the
S1 factor. This contradicts the fact that HX(N) = T.

We now assume that au > al2 and a22 < a2l. In this case M = MX#M2

where M2 is a closed oriented 3-manifold obtained by attaching two 2-handles
(qλ and q2) to the (genus 2 handlebody)#2?3 which is equal to N(dM) U
H(XX)U H(X2). H1(M2) has the presentation

This implies that its order is ana22 — al2a21 which is finite but greater than
one. Again this contradicts the fact that H^N) = Z.

We now assume that there exists no disc qj such that as one traverses dqj
one alternately intersects Xλ and γ - Xv Define G ± c jR(γ) by G_= C_(XX)
and G+= R if there exists an arc δ <z R such that δ £ C+(XX) but δ Π
C+ίΛ^) # 0 and G + = C+(AΓ

1) if no such arc exists. As in Case 1A assume
that G+ has been reduced in size to eliminate trivial intersections with Q.
Observe that for every /

|9/ n dG+ I +19|. n 3G_ I < 2[|39l. n 3γ|/4 - χ ( ? l . ) ] .

Arguing as in Case 1A we find that the desired P is one of G+Γ\ M or
G_n M.

Case ID. There exists a disc R which intersects / > 3 I ' s , say Xl9 X2, , Xt,
and is either a component of i£(γ) or a component of i£(γ) — C+(Xj) for
some 7.
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Proof. Assume by induction that Case ID is true for s < t and that
R c R+(y). If some C+{X() was not a disc, then one could find a disc
component of R(y) - C+(Xj) which contained fewer X9s so the result would
follow by induction. Therefore we will assume that all the C+(X;)'s are discs.

Let Λ = dR U dC+iXJ U UdC+(Xt). Let n0 = \dR Π Q\ and ni =
|3C+(X, ) Π β|. For each /, \q. Π Λ| < 2(|3^ Π 3γ|/4 - χ( 9.)) unless ? |. is a
disc and iSg, Π 3γ|/2 = |^. Π Λ| in which case the inequality is off by 2.
Therefore by Lemma 4.27 and the hypothesis of Case 1

\q, Π Λ| < 2(|39/ Π θγ|/4 - χ(^)) + | 9 / n Λ|/2.

Therefore,

t j 1 /

Σ »r= Σ lί/Π A | < 2 ( / i - l ) + x Σ nr

so Σnr < 4(μ — 1), hence ni ^ (μ - 1) for some /. Our desired P is R if / = 0
orC+(* f.)if i > 0 .

C«^ 2. There exists at least one product disc qt G ̂  such that qt Π
{y - E)Φ 0.

Proof. Let A ,̂ Jf2>" "> ̂ C ^ e ^ e equivalent classes such that for each Xj9

1 < j < s, there exists a product disc qi such that ^y Π ̂ ^ ̂  0 , and #, Π
(y - E)Φ 0 . Let £ ' = E - { Xl9 X29- , Jf5}. Let q' = {qi\qi is a product
d i s c a n d #, Π(y - E ' ) Φ 0}.

If E' = 0 , then (M, γ) is a product sutured manifold and conclusion (1) of
Lemma 5.1 holds. To see this let q" be a maximal subset of q such that q"
does not separate M. Since H2(M, 3M) = 0 and dM is a union of S2's, each
component of q" nontrivially intersects two distinct components of γ, one of
which is contained in E. If A e E and D is a component of q" such that
A Π D Φ 0 , then the sutured manifold obtained by decomposing (M, γ)
along Z> is equal to the sutured manifold obtained by attaching a 2-handle to
A (see Figure 5.2). In a similar manner decomposing (M, γ) along #" yields
the taut sutured manifold (M", γ") which is equal to (M, γ). The tautness of
(M, γ) and the fact that dM is a union of S2's imply that (M, γ), hence
(ΛΓ',γ") equals (D2 X I,dD2 X I). We conclude that (M,γ) is a product
sutured manifold.

Now assume that Ef Φ 0. The sutured manifold (M',γ') obtained by
decomposing (M, γ) along #' is taut by [3, Lemma 4.12]. View q - qf as lying
in (Λf, γ') and observe that (M', γ r) enjoys all the properties ίhat (M, γ) had,
e.g., if M' equals M' with 2-handles attached along E', then Mf is contained
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FIGURE 5.2

in the 0-frame manifold N, dM' is a union of 2-spheres, and

q-qr

(M',γ') is naturally embedded in (M,γ) so if we can find a planar surface
P c ^(γ ' ) such that ΘP is a union of components which are contained in E'
and a single component λ' disjoint from E' which satisfies \λ Π (q — q')\ =
|λ' Π Q\ < μ — 2, then P is our desired planar surface. Now apply Case 1 to
(M', γ') to find P and conclude that (2) of Lemma 5.1 holds.

6. The combinatorial lemma

Lemma 6.1. There does not exist a graph G in S2 with the following

properties.

(1) G has υ 4- 1 vertices, υ vertices are valence μ (μ Φ 0 even) and one vertex

w has valence m (0 < m < μ — 2).

(2) The ends of edges emanating from a given valence n vertex are labeled in

order clockwise 1,2, , μ mod μ.

(3) // both ends of an edge are labeled, then one label is even and the other

odd.
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(4) If D is the closure of a disc in S2 - G, w Π D = 0 , and nv n2,- , n2r

(r > 1) are the labels read in order as one traverses the labels of dD starting

from a vertex, then (nv- , n2r) Φ (j\ j — 1, , j \ j' — 1) mod/x.

Proof. Let l{e,v) denote the label of edge e at vertex v if e intersects v

exactly once. If e intersects a unique valence μ vertex or v is understood, then

denote the label by l{e).

We will first show that if such a graph exists, then one exists such that

valence w = 0. If some edge has both edges in w, then delete it from G. Let

eλ, , em be the edges emanating from w cyclically ordered so that et appears

to the left of ei+ι. Since m < μ there exists an z'modm such that l{et) Φ

(l(ei+1) - l)mod(μ). Let H be the graph obtained by deleting ei+1 and et

from G and creating a new edge e (Figure 6.1) whose endpoints and corre-

sponding end labels on the valence μ vertices are those of et and ei+ι. H

satisfies the properties that G had, but the valence of w has been reduced.

Now we can assume that valence w equals zero.

Property (4) implies that there does not exist a disc D c S2 - G whose

closure is bounded by a single edge and whose endpoints lie on a unique

valence μ vertex. It also implies that no two vertices are connected by 1 + μ/2

parallel edges. It follows that no such graph G exists with v < 2.

We will show that if a graph G exists with v > 2, then a graph H exists with

fewer valence μ vertices. The lemma will then follow by induction.

If we can find a simple closed curve δ in S2 which is disjoint from the

vertices of G, intersects the edges of G in fewer that μ points, and each

component of S2 — 8 contains a valence μ vertex, then the desired graph H is

obtained from G by collapsing to a point F Π G where F is the disc bounded

by δ and containing w. If either some edge of G has endpoints on the same

vertex or if the closure of a component of S2 - G is not an embedded disc,

then one easily finds such a δ.

FIGURE 6.1
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Let λ1? , λv denote the valence μ vertices.

Let F be the closure of the component of S2 - G which contains w. Let D

be the closure of any component of S2 — G such that dD intersects at least

three vertices, two of which (say υλ and υr) are adjacent (in 3D) and contained

in F. Let vl9- , υr be the vertices encountered as one traverses dD clockwise.

Let et be the edge of G Π D which connects υt to υi+ι mod r.

Construction of graphs Hv H2. (Figure 6.2) Hx (resp. H2) is obtained from G

by removing edges ex and er (resp. er_l9 er) from G and attaching a new edge

e between vertices υ2 and vr (resp. υx and υr_ι). The vt end of e, / e (2, r }

(resp. / G {1, r — 1}), is given the label of the υt end of the appropriate βj.

Now delete w and rename υλ (resp. ϋr) to be w.

Claim. One of graphs Hλ and H2 satisfy properties (l)-(4).

Proof of Claim. All but (4) clearly hold for both Hλ and Hr Note that w

has valence μ - 2. (4) could only fail for Hι if it failed for the disc Eλ whose

interior is a component of S2 — Hλ and which is bounded by e, e2, * * *, er_λ. In

that case starting at the midpoint of e the edge end labels read clockwise

would be (s, s — 1, -,s, s - 1), mod/i. Necessarily

l(eι> vx) = t - 1 Φ (s - 1), mod/A,

else property (4) will fail for the disc Z>, hence the graph G. The edge

end labels of the disc E2 whose interior is a component of S2 — H2, bounded

by e, ev , er_2 are (/, / - 1, s, s — 1, , s, s — 1), modμ which satisfies

property (4). It follows that property (4) holds for H2.

Remark. Lemma 6.1 can also be deduced from the independently obtained

Lemmas 2.61, 2.62 of [1].
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7. Proof of Theorem 3.1

Let k be a knot in S3. Let S be a minimal genus Seifert surface for k.

Step 1. The goal of this step is to do the best we can to construct the desired

foliation on S3 — N(k). More precisely, find a groomed sequence of sutured

manifold decompositions

( S 3 -

such that for 1 < / < n

(1) St is connected, dSt Φ 0 , and 0 Φ [S^ΘSJ

(2) dN(k) Π Sf. is a union of simple closed curves.

(3) If (Mn, γ j denotes the sutured manifold obtained by attaching 2-handles

to (Afπ, yn) along £„ = yn n 3iV(λ:) (here view Mna S3 - N(k)), then 3MΠ is

a union of 2-spheres.

Proof. First decompose ( S 3 - N(k),dN(k)) along S, then apply Lemma

3.6 to ( M ^ ) .

•Ŝ /? 2. The goal of this step is to find an essential 2-sphere in S3. More

precisely, find a 2-sphere Q in S3 such that \Q (Ί k\ = μ > 0, Q is transverse

to Mw, each arc component of Q Π γM (resp. 2 ^ (9^« ~ ^«)) is essential in yn

(resp. 3MW — En), Q Π Mn = {qλ,' -,qr] U D where each qt is a connected

surface and either D = 0 or Z) is a disc and D O 9 γ = 0 , and

Finally each ήf,. contributes a nonnegative number to the above summation.

Proof. Apply Lemma 4.27.

Step 3. Either we can construct the desired foliation on S3 — N(k) or there

exists an exotic planar surface in S3, i.e., there exist a planar surface P c S3 —

N(k) and a sphere β c S 3 such that \k Π β | = μ > 0, P Π 8JV(A:) is a union

of v > 0 coherently oriented longitudes, and λ = dP — dN(k) is a simple

closed curve which satisfies |λ Π Q\ < μ - 2. Finally, no component of P — β

is a disc i 7 with F fλ Q connected.

Proof. Apply Lemma 5.1 to conclude that either P exists or (Mn,yn) is a

product sutured manifold. If the latter holds, then apply the construction of J^o

in [3, pp. 471-477] to the sutured manifold sequence of Step 1 to obtain the

desired foliation J^ (compare Lemma 3.7).

Step 4. No exotic planar surface exists.

Proof. Construct a graph G in S2 as follows. Contract each component of

3P to a point to create a S2. The vertices of G correspond to the components

of 3P. The edges of G correspond to the arcs Q Π P. G has υ + 1 > 1 vertices
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of which v are valence μ and 1 (called λ) is valence < μ - 2. Label the points
of k Π Q 1,2, , μ modμ by starting at a point of k Π Q and labelling it 1
and then following the knot to label the other points of intersection in
sequence. If some endpoint p of the edge e of G lies on a valence μ vertex,
then give the p end of e the label corresponding to the point of p e Q n k.

After possibly reversing the orientation on k the labeled graph G satisfies all
but possibly properties (3) and (4) of the hypothesis of Lemma 6.1. Hypothesis
(3) holds because P is oriented and all the components of P Π dN(k) are
oriented in the same way. Hypothesis (4) holds as follows. If F is a disc
contradicting hypothesis (4), then either r = 1 or r > 1. The former corre-
sponds to a disc component of P — Q and the connectivity of F ιΊ Q con-
tradicts the conclusions of Step 3. The latter implies that S3 contains a lens
space summand. To see this think of Q as the boundary of a 0-handle, the
piece of knot between points of k Π Q labelled j and j - 1 as 1-handles and
F as a 2-handle. The subcomplex formed by these three cells is a punctured
lens space.

Lemma 6.1 implies that such a graph G does not exist.
Remark 7.1. The technique of translating a topology problem into a

combinatorial problem as in Step 4 was learned from the two very fine
preprints of Scharlemann, Tunnel number one knots are doubly prime and
Tunnel number one knots satisfy the Poenaru conjecture, which were combined
into [19].

As far as I can tell, the first person to use the combinatorics of labelled
graphs to solve problems in 3-manifold theory was Litherland [14]. Of course,
using the existence of a family of (possibly immersed) surfaces in a 3-manifold
M to derive information about M has always been a key element in the study
of 3-manifold topology.

8. More applications

Definitions 8.1. Let k be a knot in a closed oriented 3-manifold N. A
longitude of k is the unique (up to isotopy) essential simple closed curve λ in
dN(k) such that (with any orientation on λ) 0 = [λ] e /^(N - N(k))Q).
The manifold M is obtained by zero frame surgery on a knot k in N, if it is
obtained by performing Dehn surgery to the longitude. Note that if N is a
homology sphere, then M is the unique manifold obtained by Dehn surgery on
k which is a homology S2 X Sι.

Corollary 8.2. Let S be a minimal genus Seifert surface for a knot k in S3.

The manifold M obtained by performing zero frame surgery to k possesses a taut
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finite depth foliation IF such that the core of the filling is tranυerse to & and

intersects every leaf of &. !F has a compact leaf S such that S — N(k) = S. In

particular genus S is equal to the genus ofk.

Proof. Apply Theorem 3.1 to find a taut foliation &' of S3 — N(k) such

that J ^ ' I dN(k) is a foliation by longitudes and such that S is a leaf. Cap off

leaves of &' \ dN(k) by discs to extend &' to a taut foliation & on M. Cap

off S by a disc to create S. By construction every leaf of J*"' intersects dN(k)

so the core of the filling intersects each leaf of J*\ Since genus k = genus S =

genus S the result follows. Note that S generates H2(M).

Corollary 8.3. // M is obtained by performing zero frame surgery on a knot in

S3, then M is prime and genus A: = min{genus5f | S is a nonseparating oriented

embedded surface in M).

Proof. Apply the work of Novikov, Reeb, and Alexander to the conclu-

sions of Corollary 8.2 to conclude that M is prime. By Thurston [22] and

Corollary 8.2 a genus k surface S c M is a Thurston norm minimizing surface

in M. Since S generates H2{M\ the result follows.

Remarks 8.3^ (September 1986). (1) Our proof of Corollary 8.3 consists of

invoking the following three results A, B, C. M. Scharlemann has observed

that results B and C can simply be replaced by our Lemma 3.5 [3].

Let S be a minimal genus surface for k.

Explanation of A, B, and C.

A. Either k is unknotted or there exists a sutured manifold hierarchy

Si=S A Sn

(Λf, 0 ) ~> ( M ^ γ J - * ••• ~>(Mn,yn) (see Notation 3.3 and §7).

B. Lemma 3.7.

C. The theorems of Reeb, Novikov, and Thurston (see [3, 2.5 and 2.8]).

The point is that arguments B and C are superfluous, for if k Φ 0, [3,

Lemma 3.5] (see also [6], Lemma 0.4) applied to the sutured manifold sequence

of A implies that M is irreducible and (M^Yx) is taut. Lemma 3.6 of [3]

implies that S is a minimal genus surface in M. (For otherwise there exists an

incompressible surface T in M disjoint from and homologous to S such that

χ(T) > χ(S). T viewed in M1 contradicts the tautness of (Mvyλ).) Lemmas

3.5 and 3.6 are used in the proof of A.

(2) We leave as an exercise to the reader the observation that Lemmas 3.5

and 3.6 imply, for the case of finite depth foliations, Thurston's and Novikov's

theorems.

Problem 8.4. To what extent is a knot k determined by the manifold

obtained by zero frame surgery on A:?
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Remark 8.5. The Property R conjecture asserts that zero frame surgery on a

nontrivial knot k in S3 does not yield S2 X Sι. Property R can also be

expressed as follows:

D2 X Sι = ("trivial" knot complement}

= (complements of knots in S3} Π (Complements of knots in S2 X Sι}.

The Poenaru conjecture asserts that zero frame surgery on a non trivial knot

k in S3 does not yield S2 X Sι#M3.

Corollary 8.3 gives positive proofs of these conjectures.

The following result was proven (modulo Corollary 8.3) twelve years ago. Its

statement and proof are due to Poenaru [17].

Corollary 8.6 (Poenaru 1974). // V is the 4-manifold obtained by attaching a

2-handle and a 3-handle to B4 and H2(V) = 0, then V = B4.

Proof. Let W be the 4-manifold obtained by attaching a 2-handle to B4. If

one can attach a 3-handle to W so that the resulting 4-manifold V satisfies

H2(V) = 0, then two applications of the Mayer-Vietoris sequence yield the

facts: H2(W) = Z, the inclusion /: H2(dW) -> H2(W) is an isomorphism, and

H2(dW) is generated by a 2-sphere. Since H2(dW) = Z, dW is obtained by

zero frame surgery on a knot k in S3. By Corollary 8.3, k is unknotted.

Therefore W = S2 X D2 and V = B4.

Problem 8.7 (Poenaru 1959). If a 4-manifold V is obtained by attaching q

2-handles and q 3-handles to B4 and H2(V) = 0, then: Is V = B4Ί

Theorem 8.8. Let k be a nontriυial knot in S3. Let M be the manifold

obtained by performing zero frame surgery to k. Let ω be a generator of H2(M)

and z a generator of H2(S3 — N(k),dN(k)). Then the following numbers are

equal.

(1) genus k = (min g | k bounds an embedded surface of genus g}.

(2) singular genus k = (min g\ there exists a map f'.S^S3 such that

f~ι(k) = dS, f I dS is an embedding onto k, and genusS = g}.

(3) (min g \ there exists a properly embedded surface S of genus g in S3 —

N(k) such that \dS\isodd).

(4) ( m i n g | there exists a proper map f:S-*S3 — N(k) such that genusS

= g, |9S| is odd, andf | dS is an embedding}.

(5) (xs(z) + l)/2, where xs denotes the singular norm (see [3, 6.16]).

(6) (1 + g(z)/2)/2, where g denotes the Gromoυ norm (see [3, 6.17]).

(7) {mm g\ there exists an embedded surface S in M such that [S] = ω e

H2(M)}.

(8) {min g \ there exists af S^M such that genusS = g andf^S] = ω}.

(9) (*,(ω) + 2)/2.

(10) (2 + g(ω)/2)/2 where g denotes the Gromoυ norm.



FOLIATIONS AND THE TOPOLOGY OF 3-MANIFOLDS. Ill 527

Proof. By Corollary 8.3, (1) = (7). If S is a minimal genus surface for k

and S' its extension to M, then z = [S] and ω = [S']. By Corollary 6.18 of [3],

xs(z) = |χ(S)|, g(z) = 2\χ(S)\, xs(ω) = \χ(S')\, and g(co) = 2|χ(S')l
Therefore (1) > (2) > (4) > (5) = (6) = (1) = (7) = (3) > (8) > (9) = (10) =

(7).

Theorem 8.9. Let k be a homologically trivial knot in a reducible 3-manifold

M such that Hλ(M) is torsion free and M - k is irreducible. If S is a minimal

genus Seifert surface for k, then there exists a taut finite depth foliation !F of

M — N(k) such that & \ dN(k) is a foliation by circles which are longitudes and

S is a leaf of 3?.

Proof. The proof of Theorem 8.9 is exactly the proof of Theorem 3.1 with

the following modifications. We follow the program of §7. First replace each

occurrence of S3 in §7 by M.

Step 1 follows exactly as before.

Step 2 follows by Lemma 4.28. This step uses the reducibility hypothesis.

Step 3 follows exactly as before. Note that the proof of Step 3 uses the fact

that the homology of the manifold obtained by doing zero frame surgery to k

is torsion free.

Step 4 follows exactly as before. The proof of Step 4 uses the fact that

Hλ(M) is torsion free.

Corollary 8.10. // k is a knot in S3 such that genus/: > 1, and S is a

minimal genus Seifert surface for k, then there exists C0 0, taut foliations J^ ,

/ = 1,2, of S3 — N(k) such that J^ \dN(k) is a foliation by circles which are

longitudes, S is a leaf of &x and no leaf of ^2 ^ compact.

Proof. Lemma 3.6 applied to the knot k in S3 yields a sequence of sutured

manifold decompositions which, by the proof of Theorem 3.1 is a sutured

manifold hierarchy of (S3 — N(k),dN(k)). Apply the construction of J ^ of

[3, pp. All-All] to this hierarchy to obtain the C°° taut foliation (which we

also call) J ^ . Note that the construction of J ^ is similar to the construction,

on these same pages, which yielded the foliation J^ of Theorem 3.1; however,

the construction of J ^ requires a smoothing operation at each step of the

construction. When genus k = 1, this smoothing operation would possibly

create nontrivial holonomy on dN(k).

To obtain J^2 apply the opening up operation of Step 2 of [3, p. 481] to the

foliation J ^ which by construction has the unique compact leaf S.

Corollary 8.11. Ifk is a knot in S3 such that genus k > 1, then there exists a

C°° taut foliation & of S3 with a single Reeb component whose core is isotopic

to k.

Proof. Spiral, in a neighborhood of dN(k\ the foliation J ^ constructed in

Corollary 8.10 to construct a smooth foliation &' on S3 - N(k) such that
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dN(k) is the unique compact leaf. Extend &>' to a foliation & on S3 by

plugging in a Reeb component.

Questions 8.12. If genus A: = 1, does there exist a C 0 0 foliation & on S3

such that J*" has a unique Reeb component whose core is kΊ Does Corollary

8.10 hold for genus 1 knots?

It follows from Theorem 3.1 that C° foliations exist. By [4] the answers are

yes if k is an alternating knot.

Remark 8.13. For knots of genus > 1 versions of Corollary 8.2 and Theo-

rem 8.9 exist where the resulting foliations are C 0 0 rather than finite depth.

These foliations can be slightly perturbed away from N(k) to create smooth

new ones which have no compact leaves.

Lemma 8.14. // k is a knot and

( 5 3 - Λ Γ ( A : ) , 3 i V ( A : ) ) ^ ( M 1 , γ 1 ) S ••• * ( M n , γ J = ( M , γ )

is a (well) groomed sutured manifold sequence, such that 5, Π dN(k) is a union

of circles for each i, then this sequence can be extended to a (well) groomed

sutured manifold hierarchy.

Proof. Apply the proof of Theorem 3.1.

Corollary 8.15. If S£ is a finite depth finite leaved lamination on S3 — N(k)

such that S£ is transverse to dN(k), ££C\ dN(k) is a union of circles, and JS? is a

union of leaves of a taut foliation &' of S3 — N(k\ then there exists a taut

foliation & of S3 - N(k) extending Se such that ^\dN(k) is a foliation by

circles.

Proof. There exists a groomed sutured manifold sequence

with the property that the lamination obtained by applying Description 2 of

4.17 is oSf. To see that each (Mi9 γ, ) is taut first apply Corollary 5.3 of [3] to

conclude that (MM,γM) is taut and then apply Lemma 3.5 of [3] to conclude

that the others are taut. By Lemma 8.14 this sequence extends to a sutured

manifold hierarchy, hence by either of Description 2 or Lemma 3.8 S£ extends

to the desired &.

Remark 8.16. The previous corollary could be expressed slightly differently

as follows yet be proved identically.

If S£ is a finite depth finite leaved lamination with the property that each

incompressible compact portion S of each leaf L of J5? is Thurston norm

minimizing (rel dS U dN(k)), thenJ^7 extends to a taut finite depth foliation !F

such that J^ I dN(k) is a foliation by circles.
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Definition 8.17. A sutured manifold (M, γ) has the groomed decomposition

extension property with respect to a subset E (see 3.2) of γ if for every

groomed sutured manifold decomposition sequence

(M, γ) ~> (M1, yι) ~> ~* (ΛfM, γw)

such that Sj Π £* is a union of simple closed curves, then the sequence

obtained by attaching 2-handles to each component of γ, Π E to create

(M^γ,) and attaching discs to each component of St Π E to create S, is

groomed.

Example 8.18. If A: is a knot, then the sutured manifold (S3 - N(k),dN(k))

has the groomed decomposition extension property with respect to dN(k) by

Lemma 8.14.

Corollary 8.19. k is a fibered knot in S3 if and only if the manifold M

obtained by performing zero frame surgery to k fibers over Sι.

Remark 8.20. Corollary 8.19 does not immediately follow from Theorem

3.1. The point is that a priori there might exist a depth 1 foliation ϊF of M

which consists of one compact leaf F (a fiber) and other leaves which spiral

around towards the compact one. k could be a knot which is transverse to &

yet isotopic to a curve which begins at F9 goes a short distance transverse to

J^, then traces out a very long and complicated route on a noncompact leaf,

then goes a short distance transverse to J*" before returning to F. Such a knot

(e.g., Figure 8.1) would not be transverse to the fibration of M, hence would

contradict the conclusions of the theorem.

Γ

T2 x /

glue

FIGURE 8.1
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Definition 8.21. Let k be a properly embedded arc or knot in M. k is
prime if for each separating 2-sphere Q c M such that \Q Γ\ k\ = 2, there
exists a component λ of k - Q such that relθλ, λ is isotopic to an embedded
arc in Q.

Lemma 8.22. Let k be a prime properly embedded arc in S X /, where S is a

compact oriented surface such that k Π (S X /) Φ 0 for i = 0,1. // (Λf, γ) w

ίλέ? swtara/ manifold defined by M = S X / - JV(ifc), R+(y) = S X 1 - JV(£),

β«J Λ_(γ) = S X 0 — N(k), then (M,y) has the groomed decomposition ex-
tension property with respect to γ Π N(k) if and only if k is isotopic to a curve
transverse to the product fibration ofSXl.

Proof that Lemma 8.22 implies Corollary 8.19. => Extend the given fibration
& of S3 — N(k) to a fibration on M by attaching discs to the boundary of
each fiber of J*\

<= Apply Corollaries 8.2 and 8.3 to k and a Seifert surface of minimal genus
S" for k to conclude that S" extends to a surface S in M which is punctured
once by k and is minimal genus in M. Let J*" be the fibration of M with fiber
F. S is incompressible and homologous to F so by Neuwirth [15] S is isotopic
to a fiber; hence, we can assume that S is a fiber of J*\ Since M - N(S) = S
X / we can view /c as a properly embedded arc in S X /.

We now show that A: is a prime arc in S X /. Let Q be a 2-sphere in S X /
such that \Q Π k\ = 2 and let B be the unique 3-cell that Q bounds. Let
ί c ^ b e the torus (Q - N(k)) U (dN(k) Π B). T separates S3 into two
regions, both S3 knot complements, one of which is B — N(k) and the other is
S3 - N(k). Since Γ c S 3 , Γ bounds a solid torus V. If V = S3 - N(k), then
k is the trivial knot and obviously prime. If V = B - N(k\ then k Π B can
be isotoped in B rel k Π ζ) to be an embedded arc in <2, so /c is prime.

By Example 8.18 and Lemma 8.22, k can be isotoped to be transverse to J*\
The desired fibration is obtained by restricting J^ to S3 — N(k).

Proof of Lemma 8.22. <=This follows from the fact that there is a fibered
knot of every genus and Lemma 8.14. Alternatively one could give a com-
pletely elementary proof using the fact (compare Figure 3.3) that any decom-
position of a product sutured manifold which yields a taut sutured manifold
also yields a product sutured manifold.

=> If S is a disc, then k is isotopic to a vertical arc since k is prime. To
complete the proof we need to show that if S Φ D2 is not closed (resp. closed),
then there exists a nonseparating product disc (resp. annulus) A in S X / such
that A Π k = 0 . Since the sutured manifold obtained by decomposing (M, γ)
along A has the groomed decomposition extension property with respect to
δN(k), the lemma follows by induction on χ(S) if dS Φ 0, and from the
dS Φ 0 case if S is closed.
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Step 1. Show that it suffices to prove Lemma 8.22 under the additional

hypothesis " I f T is a properly embedded surface in 5 X / such that 3Γ c

( 3 5 ) X / and \TΠ k\ = 1, then T - N(k) is isotopic in M to either 5 X 1 -

N(k) or S X 0 - N(k)."
Proof. By Haken (see [10]) there exists a maximal set ^ = {7\, , Tn} of

pairwise disjoint surfaces such that each Tt is properly embedded in 5,

37; c (35) X 7, Tt is isotopic to 5 X 1, |7) Π &| = 1, no Tt - N(k) is isotopic

in M to 5 X 1 - N(k) or 5 X 0 - #(&) or 7} - N(k) for some y Φ i. By [18]

or [20] we can isotope k and 3Γ so that y is a union of fibers of the product

fibration of 5 X /. Orient each 7) so that the + side of 7) faces 5 x 1 . Each

component (N,λ) of the sutured manifold (M 1 ,γ 1 ) obtained by decomposing

(M, γ) along & is taut and satisfies the groomed decomposition extension

property rel3(N(λ:)) Π λ. Since JV = 5 X [a, b] - N(k) for some a, b e 7 we

conclude that 5 X [0, Z>] and k Π 5 X [a, b] satisfy the hypotheses of Lemma

8.22 together with the additional hypothesis of Step 1. Therefore k Π [a, b] is

isotopic to a vertical arc in 5 X [a, b]. After isotoping k in a similar manner

for each component of Mv k will be transverse to the fibration of 5 X 7.

Step 2. Show that for each z e Hλ(S X 0,35 X 0), there exists a set J / =

{Aλ,- -, An) of oriented annuli and discs in 5 X 7 such that s/Π k = 0 ,

j / = λ x / for λ a union of simple pairwise disjoint curves in 5 x 0 , and

[s/\ Π 5 X 0 = z.

Proof. Let σ be a union of embedded pairwise disjoint curves in 5 X 0 — k

such that [σ] = z, no nontrivial subset of σ is homologically trivial in

Hλ(S X 0,35 X 0), and if 8 is a component of 35 X 0, then |σ Π δ| = <σ, 8).

Let y' = / * [ σ ] where / : 5 X 7 -> 5 X 0 is the natural projection and

f*:H\S X 0) = # x ( 5 X 0,35 X 0) -> 77X(5 X 7) = 772(5 X 7,3(5 X 7)).

Let T (resp. # ) be the surface obtained by applying Lemmas 0.6 and 0.7 of [6]

to y = y' n [M, 3Af ] G i72(M, 3M) (resp. -j;) so that 3 Γ n 5 X / = σ X 7 Π

5 X / (resp. dR Π 5 X i: = σ X 7 Π 5 X i) for i = 0,1 as unoriented curves.

Attach discs to each component of 3Γ Π N(k) (resp. 3.R Π N(k)) to obtain

the properly embedded surface t (resp. i£) in 5 X 7 so that t Π M = Γ (resp.

R Π M = R). By isotoping A:, A and, Γ slightly we can assume that dN(k) Π

(tn R)= 0.
We now show that topologically f (resp. R) is isotopic to the surface

obtained by doing oriented cut and paste to σ X 7 (resp. -σ X 7) and p > 0

(resp. q > 0) horizontal surfaces; i.e., surfaces of the form 5 X pt. p < 0

means \p\ copies of (-5) X pt., where - 5 denotes 5 oppositely oriented. The

incompressibility of t (which follows from the groomed decomposition exten-

sion property) implies that t is obtained by doing oriented cut and paste to

σ X 7 and p horizontal surfaces. To see this first find a set of product annuli



532 DAVID GABAI

and discs which chop S X I into D2 X /'s. Next, isotope t Π (each product
surface) to be either vertical or horizontal. Finally, straighten out the compo-
nents of t Π (each D2 X /) (compare Step 1 of [5]). Lemma 0.5 of [6] implies
that t orientedly cut and pasted with one horizontal surface is incompressible,
hence we conclude that either /? > 0 or χ(S) = 0. The result for R follows
similarly. If χ(S) = 0, then after an isotopy of R, Γ, and k we can assume
that /?, q > 0.

After an isotopy of T we can assume that T appears on (35) X / as follows.
Let ω be a component of 35. If λ is a closed component of T Π ω X /, then λ
is of the form ω X pt. If λ is a component of T Π ω X / homeomorphic to /,
then the projection of λ to the / factor of ω X J is a homeomorphism, and the
projection of λ to ω X 0 is a degree p immersion. The appropriate correspond-
ing statements for R should hold. Furthermore, if one of p or q is nonzero,
then T and R should intersect transversely on (35) X /.

Fix x e 5 X / - (f U R). Define a function φ: 5 X / - (t U R) -> Z by
φ I5 X 0 = 0 and φ(t) = (λ, R) + (λ,Γ> where λ is an oriented path from x
to t. ψ is well defined because [f ] = -[R] e H2(S X /,3(S X /)) (compare
[3, p. 452]). Thicken and/or squeeze down slightly in a natural way each φ~1(/)
to obtain Jt (see Figure 8.2 for the 1-dimensional version). Note that the
arrows indicate transverse orientation. The union of the ^'s equals M and
Jt Π J r = 0 if i Φ r. Also Jt Π JrΦ 0 implies that |i - r\ = 1. By construc-
tion \tnk\=(t,k) and \RΠ k\ = (R,k) (for otherwise decomposing
(M, γ) along, say, T would be undefined), so k is a path starting at S X 0 c Jo

and passing through Λ> Λ>*' *> *̂ +<7 i n sequential order before ending at
S X 1. Figure 8.2(b) shows the rule for constructing the J/s. Figure 8.2(c)
shows the //s which would arise from Figure 8.2(a).

Claim. We can assume that each Jt is homeomorphic to S X /.
Proof of Claim. The proof will follow by induction on \R Π T\.
We can assume that the closure of no component o f A ϋ t — (k (Ί Γ ) i s a

disc D such that D Π (35) X / = 0.1f such a disc existed (say in R% then the
incompressibility of t would imply that 3D bounds a disc £" in T. D U E
bounds a 3-ball B in S X I and |£ Π ifc| = \D Π Λ|. Now replace t by
(f - E)U D isotoped slightly in N(B) to reduce \T Π R\.

We can assume that no component W of any Jt has the property that either
dW c y/+1 or dW c j ; . _ l β By construction W Π (3(5 X /) U k) = 0 . Let Γ*
= (T - (dW D T)) U (-(dW Π R)% and Γ* be the natural extension to
S X I. T* is homologous to t in H2(S X 7,3(5 X /)), and the fact that Γ
and R were Thurston norm minimizing as relative classes implies that
χ(dW Π f ) = χ(dW Π A) so χ ( f *) = χ ( f ) . The previous paragraph rules
out the possibility that some component of Γ* is a sphere. Therefore f* is
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isotopic to f r e l θ f and decomposing (M,γ) along T yields a taut sutured

manifold, so we can continue our discussion with t replaced by 71*. Note that

after a small isotopy \T* Γ) R\ < \T Γ\ R\ (see [3, Figure 3.2]).

We now show that each Ji is connected and | 3 ^ | = 2. Construct a graph G

as follows. The vertices are the components of the ^'s. Connect Jt to Jr by an

oriented edge if i < r and Jέ Π JrΦ 0 . The previous paragraph implies that

Jo is the only vertex such that all edges point out and Jp+q is the only vertex

such that all edges point in. Therefore, if Jt exists, then 0 < /" < p + q and

14)1 = \Jp + <f\ = l I f P + 9 = 0, then Jo = S X /. If p + q = 1, then by ob-

serving values of φ near points of R Π Γ we see that J R Π Γ = J R Π Γ I Ί 5 ' X

(0,1} and our assertion follows. Now assume that p + q > 2. To complete the

proof of our assertion it suffices to show that G is a tree and that | ^ Π / r | < 1

for all /, r, so it is sufficient to show that there exists no loop μ in S X / which

intersects some boundary component W of some Ji exactly once. For homo-

logical reasons the existence of such a W implies that dW Π S X 1 Φ 0 and

Θ W n S x O ^ 0 and therefore p + q ^ 1, contradicting our assumption that

p + q > 2.

a)

Rule:

b)

c)

FIGURE 8.2
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For 0 < i < /> + ςr, define Yt = 8(/0 U JXU \jJt) - S X 0. Note that
dYt c (dS) X / and is homologous to S X 0 in H2(S X 7,(85) X 7). Since
X(^) < X(S), Yt is connected, |8^.| = |8S|, and χ(U^'s) = χ(Λ) + χ(t) +
χ(S X 1) - 2χ(σ) = (/? + ? + l)χ(S'), it follows that each Ϊ ; is homeomor-
phic to S and incompressible in S X 7. By the standard isotopy results we can
isotope the YJ 's to be of the form S X pt. q.e.d.

i- i

a)

b)

σ =

σ =

= « 3 * /

c)

FIGURE 8.3

It follows by Step 1 and the Claim that the following is the exact picture of
T and R in S X 7. If p = q = 0, then T = R = σ X 7. Otherwise start with
surfaces Y^ Y2, , 7/7+<? where each Y) is a surface in 5 X 7 of the form S X a(

and 0 < ax < ••• < ap+q < 1. Let a1 ? α 2 , * ,α / H-< 7 +i be sets of pairwise
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disjoint simple curves in S such that aλ = σ = a +q+1. (If p + q = 1 then

isotope aλ slightly to be disjoint from σ.) If / Φ 1, p + q + 1, then remove

Nζoίj) from Yt and Yt_λ and attach criss-crossing strips to Yt and Y ^ as in

Figure 8.3(a). If / = 1 (resp. p + q + 1) then remove A^α^) (resp. N(ap+q+1))

from yχ (resp. ^,+ < 7) and attach strips between Yλ (resp. Yp+q) and 5 x 0

(resp. S X 1) as in Figure 8.3(b). R and Γ are the connected components of

the surfaces constructed. By Step 1 there exists an / such that k is isotopic to

a vertical arc when restricted to Jr (which is isotopic to S X /) for r Φ i and by

construction k Π α / + 1 X / Π Jέ= 0 .

Step 2 now follows from the observations that k can be isotoped off of

α, X / and that the projection of t Π (S X [0, t - ε)) (where Yt c S X /) to

S X 0 is a homology between αz and σ. Our desired J / equals at X /. q.e.d.

Since the trefoil and the figure 8 knots are the only genus 1 fibered knots [8]

we obtain the following result.

Corollary 8.23. Surgery on a knot k in S3 yields a torus bundle over Sι if and

only if the surgery is the zero frame one and either k is the trefoil knot or k is the

figure 8 knot.
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