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FOLIATIONS AND THE TOPOLOGY OF
3-MANIFOLDS. II

DAVID GABAI

Introduction

In this paper and its continuation [3] we investigate the following question:
Let M be a compact oriented irreducible 3-manifold whose boundary is a
torus. If TV is obtained by filling dM along an essential curve α (i.e., N is
obtained by attaching a 2-handle to dM along a and then capping off the
resulting S2 with a 3-cell), then does N possess a taut foliation? In this paper
we consider the case when H2(M) Φ 0 and in [3] we study the case when N is
obtained by zero frame surgery on a knot k in S3.

Using the existence of foliations on the filled manifolds we obtain a number
of topological corollaries.

We now state (for reasons of clarity) a slightly less general version of the
main result (Theorems 1.7,1.8) of this paper.

Theorem. Let M be an atoroidal Haken 3-manifold whose boundary is a

torus and H2(M) Φ 0. Let S be any Thurston norm minimizing surface repre-

senting a class of H2(M). Then with at most l-exception (up to isotopy) the

manifold N obtained by filling M along an essential simple closed curve in dM

possesses a taut finite depth foliation !F such that S is a leaf of & and the core of

the filling is transverse to !F.

Combining our main result with the work of Alexander, Reeb, Novikov, and
Thurston (see [2, 2.5 and 2.8]) and some 3-dimensional topology we obtain the
following results.

Corollary 2.14. Let M be a connected sum of M1 ? , Mr where each Mi is

either an oriented torus or sphere bundle over Sι. If k is a knot in M which does

not lie in a 3-cell, then k is determined by its complement.
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Corollary (see 2.4 and 2.7). Let M be a Haken atoroidal 3-manifold such

that dM is a torus. Let S be any closed Thurston norm minimizing surface. With

at most one exception (up to isotopy) the following holds. If N is obtained by

filling M along an essential curve a c dM, then

(1) S is norm minimizing in N,

(2) S is incompressible in N,

(3) the core of the filling is of infinite order in πλ(N), and

(4) TV is irreducible.

Remarks. By Thurston, any homology class can be represented by a norm

minimizing surface.

Closed norm minimizing surfaces in hyperbolic 3-manifolds satisfy the

hypotheses of the previous corollary.

Analogous versions exist for manifolds with more boundary components

and manifolds which have essential tori but are atoroidal in a weaker sense.

Apply this corollary to the 3-manifold M — N(k) where A: is a homotopi-

cally trivial knot to obtain:

Corollary 2.9. Let M be a compact 3-manifold such that H2(M) Φ 0. //k is

a knot in M such that k is homotopically trivial and M — N(k) is atoroidal and

irreducible, then each nontrivial surgery on k yields an irreducible 3-manifold N

such that k (viewed in N) is of infinite order in πx(N).

Applying Corollary 2.4 to homologically trivial knots in solid tori we obtain

the following results.

Corollary 2.5. Let k be a knot in D2 X S1 of winding number 0 (i.e.,

(k, D2 X pt.) = 0) such that k does not lie in a 3-cell in D2 X Sι. If M is

obtained by nontrivial surgery on k, then M Φ D2 X S1. In particular dM is

incompressible.

Corollary 2.6. Let fx: W -> S 3, f2: W -+ S2 X Sι be embeddings of W =

D2 X S 1 such that, for i = 1,2, f(W) is a standardly embedded solid torus (i.e.,

fi(W) = N(pi.X S1)). If k is a nontrivial knot in W, then f(k) is a nontrivial

knot for some /, i.e., it does not bound a 2-cell.

Corollaries 2.5 and 2.6 respectively give positive solutions to three old

problems of J. Martin [9, problems 1.18A, B, C]. Problem 1.18B, an interesting

special case of Martin's first problem, has been independently solved by Bleiler

and Scharlemann [1] using a very complicated combinatorial argument.

The paper is organized as follows. We assume that the reader is familiar with

the results and terminology of [2]. In §0 we introduce new terminology and

prove some basic lemmas which were implicitly proven in [2, §3]. In §1 we

prove Theorem 1.7 and a generalization. In §2 we give topological conse-

quences of the foliations results of §1.
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0. Preliminaries, corrections, and amplifications
The notation and terminology in this paper will follow that of [2].
Definitions 0.1. Let (M, γ) be a sutured manifold. A product annulus in the

sutured manifold (Λf, γ) is an annulus A properly embedded in M such that
dA c #(γ), dA Π R+(y) Φ 0, and dA n #_(γ) Φ 0 . A product disc is a
disc D properly embedded in M such that |9Z) Π γ| = 2 and dD Π γ consists
of essential arcs in γ. Product discs and annuli detect where a sutured manifold
is locally a product. (M, γ) is a product sutured manifold if M = R X /,
γ = dR X /, R+(Ύ) = R X 1, and R_(y) = R X 0.

Definitions 0.2. A sequence

( M 0 , γ 0 ) ^ ( A f ^ γ J ^ ••• - ( M w , γ J

of sutured manifold decompositions is said to be groomed if each (Mf , γ,) is
taut, no subset of toral components of ^ U Λfγ^i) is homologically trivial in
H2(Mj_1) and for each component V of Λ(%•_!), either 5 t Π V is a union of
parallel, coherently oriented, nonseparating closed curves or 5f Π F i s a union
of arcs such that for each component δ of dV, |δ n 3Sf-| = |<δ, ΘS,)!. A
groomed sutured manifold sequence is well groomed if it has the additional
property that for each component V of R(yi_ι) which intersects 5f in arcs,
F Π Sf. is a union of parallel arcs. A properly embedded surface S in (M, γ) is

said to be (well) groomed if the decomposition (M, γ) ~> (Λf, γ') is (well)
groomed.

If TV is a codimension-0 submanifold of M, then define δN, the frontier of
TV, to be 3TV Π (ΛΪ^Γ/V).

Correction 0.3. Correct [2, Definition 3.1] to further require that "if
s

(M, γ) ~» (Λf, γr) is a sutured manifold decomposition, then no component of

dS bounds a disc in R(y) and no component of S is a disc D with
32) c R(y)" Without these additional trivial properties, as pointed out by S.
Miyoshi and M. Scharlemann many of the results of [2] (e.g., 3.5, 3.12, and 5.1)
are not "precisely stated." With the latter excluded (which among other things
outlaws Reeb components) some of the results of [2] (e.g., 3.5 and 5.1) can be
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stated more clearly. All the decompositions in [2] have these additional
properties. Here are examples to illustrate what goes wrong.

EXAMPLE 0.3. (A) Pick a sutured manifold (M, γ) which is taut such that the
sutured manifold (Af1,γ1) obtained by attaching a 2-handle to an annular
component of γ is not taut. (E.g., Mx = B3 and γx c 3i?3 consists of three
concentric annuli. M = Mλ — N(k) where k is an arc with endpoints in the
disc components of R(yx).) The taut (M,γ) U (D2 X /, (3D2) X /) is ob-
tained by decomposing (M1,γ1) along a product annulus. This contradicts
both Lemma 3.5 and Lemma 3.12 of [2].

EXAMPLE 0.3. (B) Let (Ml9yx) be a taut sutured manifold with a planar
component P c R+(yx) (e.g., ((Sι X /) X /, d(Sι X /) X /)). Let (M,γ) be
the sutured manifold obtained by gluing Mλ to D2 X Sι by identifying P with
a subset of 9Z)2 X Sι which is disjoint from a meridinal disc D. Let γ = yτ —
dP. The taut (M^yJ U (D2 X /,3(D2) X /) is obtained by decomposing the
nontaut (M, γ) along P U D again contradicting [2, Lemma 3.5].

s
Lemma 0.4 (corrected Lemma 3.5 of [2]). Lei (M,γ) ~> (AΓ,γ') fee α

sutured manifold decomposition. If (ΛF, γ') is taut, then (M, γ) zs
P/ΌO/. Recall [2, 3.1] that M' = M - N(S), so topologically M is obtained

by gluing a S + c #+(7') to a S_c #_(γ') Also γ = γ' modified along 3S.
It suffices to assume that M and M' are irreducible and M is connected.
Case 1. R(y) is compressible. Let £ be a nontrivial compressing disc of

R(y) such that | £ Π S| + |£ Π dS\ is minimal. There exists (after possibly
reversing the transverse orientation on (M, γ)) a disc component Eλ of
E n M' such that 3 ^ c JR+(γ/). Let E' be the disc in R+(y) which 3£x

bounds. Note that possibly 3£' c 5 + . By minimality some component of
dS+Π Ef is a circle. Therefore either some component δ of dS bounds a disc
in R+(y) or some disc component D oϊ S satisfies 3D c R(y).

Case 2. R(y) is incompressible. If (M, γ) is not taut, then (after possibly
reversing the transverse orientation on (M, γ)) there exists an incompressible
surface T such that 3Γ = s(γ) and [T] = [R+(y)] e i/2(M,γ), and χ(T) >
χ(R+(y)). By deleting components of T if necessary we can assume that no
component of T bounds a submanifold of M. Assume that such a T has been
chosen so that \T Π S\ is minimal. By minimality no component of S — T is a
disc £ with 3£ c T. Conversely no component of T — S is a disc £ with
dE <z S for, as in Case 1, such a disc implies that either (AT, γ') is not taut or
some component 8 of dS bounds a disc in R(y). Let T be the surface
obtained by doing oriented cut and paste with T and S. Since ΓUiR + (γ)U
(half of γ) bounds in M, T can be isotoped slightly so that T Π S = 0 . Γ' is
isotopic to a surface (also called Γ') in Mf such that 3Γ' = s(γ') and
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[T] = [Λ + (γ')l G Hi(M\ Y') % construction no component of T is a 2-sphere
so x(T') = -χ(Γ') + |Disc components of T'\. Also χ(Γ') = χ(Γ) + χ(5),
χ(R+(y')) = χ(Λ+(γ)) + χ(5) = - * ( * + ( γ / ) + |Disc components of R+(y')\).
It follows that either x(T) < x(R+(y')) or |Disc components of T'\ > |Disc
components of R+(y')\. In either case (AT, γ') is not taut, q.e.d.

The following three lemmas were implicitly proven in §3 of [2].
s

Lemma 0.5. Let (M, γ) ~»(M', γ') be a sutured manifold decomposition
such that (AT, γ') is taut. Let R be a subsurface of R(y) (i.e., R inherits an
orientation from R(y)). Isotope R slightly so that it is properly embedded in M
and dR Π γ consists of essential curves. Let Sλ be the surface obtained by doing
oriented cut and paste to S and R. Then the sutured manifold (M l 5 yx) obtained
by decomposing (M, γ) along Sx is taut.

Proof. There exists a set D of product discs and annuli in (Ml9 yλ) such that
the sutured manifold obtained by decomposing (Mλ, yλ) along D is a union of
(M\ γ') and a product sutured manifold. The result now follows from [2,
Lemma 3.5].

s
Lemma 0.6. Let (M, γ) ~> (M\ γ') be a sutured manifold decomposition

such that (M\y') is taut and for each component 8 of dR(y), \8 Π dS\ =

|(δ, dS)\. If λ is a set ofpairwise disjoint oriented simple essential curves in R(y)

such that for each component 8 of 9#(γ), |λ (Ί δ| = |<λ,δ>| and [λ] = [35 Π

R(y)] G Hx(R(y), dR(y)), then there exists a sutured manifold decomposition

(M,γ) ~> (Mvyλ) such that {Mlyyλ) is taut, dT Π R(y) = λ, and [T] = [S]

e H2(M, 3M). In fact, T can be chosen such that T Π (M - N(dM)) = S Π

(M - N(dM)).
Proof. (Compare 3.9, 3.10 in [2].) Find a sequence 35 Π R(y) = λ0,

λi, , λp = λ such that 3P^ = λ / + 1 U (-λz) for some compact subsurface Wt

of R(y) (i.e., Ĥ  inherits orientation from R(y)), where -λf denotes X,
oppositely oriented. Each λ,- should have the property that for each component
δ of dR(y), |λf. Π δ | = |(λ/,δ>|. Let To = 5, let i;.+1 = i ; . U ^ isotoped
slightly such that 37].+1ΠΛ(γ) = λ/+1, and let T= Tp. By Lemma 0.5,
(M^γj is taut .

Lemma 0.7. Let (M, y) be a taut sutured manifold. If 0 Φ y G H2(M,dM),
then there exists a properly embedded groomed surface S such that [5] = y e
H2(M,dM).

Proof. Let TV be the manifold obtained by doubling M along R(y). Let
z e H2(N,dN) be the class obtained by doubling y. Now apply Lemma 3.11
of [2] to obtain the norm minimizing surface T c N where z = [Γ] e
H2(N,dN). It follows from the first paragraph of [2, p. 457] that if δ is a
component of 3Λ(γ), then |δ Π Γ| = |<δ, Γ>|.
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Let S' be a union of components of i n M such that Sf is nonseparating

and [S\dS'] = [T,dT] Π M = y e #2(M,3Af). By the proof of Lemma 3.13

of [2] we conclude that the decomposition (M, γ) ~» (M', γ') yields a taut

sutured manifold. If V is a component of R(y) such that dV Π S' Φ 0, then

F Π 5' is homologous in Hλ(V,W) to a set of arcs λ such that |δ Π λ| =

|(δ, λ>| for each component δ of W. By Lemma 3.9 of [2] if dV Γ\ S' = 0,

then F Π S" is homologous to a set λ of parallel coherently oriented closed

curves. By Lemma 0.6 we can modify S' near dM to find the desired S.

1. Foliating certain knot spaces

Definition 1.1. Let M be a 3-manifold such that dM contains a torus T. N
is said to be obtained by filling (or Dehn filling) M along an essential simple
closed curve a in T if N is obtained by first attaching a 2-handle to M along α
and then capping off the resulting 2-sphere with a 3-cell. N will often be
denoted M(α).

M{a) is obtained by attaching a solid torus called the filling to M, and
M = M(a) — N(k) where A: is the core of the filling. If A: is a knot in M, then
one can view a Dehn surgery on A: as a filling on M — N(k). Therefore the
objects core and filling are "well defined" in the surgered manifold.

Remarks 1.2. Filling M along isotopic simple closed curves yields homeo-
morphic manifolds.

Definition 1.3. An I(n)Qc\i\6)-cobordism between closed connected ori-
ented surfaces To and 7\ is a compact oriented 3-manifold V such that
dV= To U Tλ and for / = 0,1 the induced maps j): H^) -> Hλ(V) are
injective.

Recall the following old and well-known result which follows from the fact
that the alternating sum of the ranks of the terms of the long exact homology
sequence is zero and from the fact that Poincare duality implies that

τ2^k(Hλ(M)) = rank(# 2(M,3M)) = rank(#2(Af,3Af)),

rank( ̂ ( M ^ M ) ) = rank(# 2 (M)) = rank(i/2(M)).

Lemma 1.4. If M is a compact oriented 3-manifold, then

rank(imageθ: H2(M,dM) -> Hx(dM)) = rank(keri: Hx(dM) -• Hλ(M))

where 3 and i are the boundary and inclusion maps of the long exact homology

sequence.
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Lemma 1.5. // V is an I-cobordism between surfaces To and 7\, then

(a) there exists a natural isomorphism φ: Hλ{T0\ Q) -> i/χ(7\; Q) defined by

M<P(x)) = ./o(*) where ji\ Hλ(Tf, Q) -> i / ^ F ; Q) /or / = 1,0 is the natural

inclusion map.

(b) genus Tx = genus To.

(c) // 7\ β«J To are tori, then there exists a bijection t: {isotopy classes of

oriented essential simple closed curves in 7\} -> {isotopy classes of oriented

essential simple closed curves in To } defined by the equation

JιU(a)] = λ7o[«] for some λ e Q, λ > 0.

Finally if V is a cobordism between surfaces To and Tx of the same genus andj0

is injective, then V is an I-cobordism.

Proof, (a), (b), and (c) follow immediately from Lemma 1.4 and the fact that

for a torus T there is a bijection between projective classes of Hλ(T) and

oriented essential simple closed curves.

To complete the proof note that Lemma 1.4 implies that Λ(^i(^i» Q)) c

JQ^H^TQ; Q)). Therefore if a e H^T^), there exists a properly embedded

surface R such that [dR Π 7\] = ra for some nonzero integer r. If Z? G ker^,

then 0 = (6, Λ) = (6, α). Since this is true for every a, b = 0.

Definition 1.6. Let M be a compact oriented 3-manifold, S a properly

embedded oriented surface in M, and P a toral component of dM such that

P Π S = 0. M is Sp-atoroidal if boundary parallel tori are the only surfaces

which are 7-cobordant to P by cobordisms contained in M — S. If k is a knot

in M disjoint from S and M — N(k) is Sp-atoroidal, where P = dN(k), then

we say that M is Sk-atoroidal. If the boundary component P or knot k is

understood, then we say that M is S-atoroidal.

Theorem 1.7. Lei M be a Haken 3-manifold whose boundary is a torus and

H2(M) Φ 0. Let S be any Thurston norm minimizing surface representing a

nontrivial class y e H2(M). If M is S-atoroidal, then with at most one exception

(up to isotopy) the manifold N obtained by filling M along an essential simple

closed curve in dM possesses taut foliations J^o and J ^ such that

(1) S is a compact leaf of both J^o and JFV

(2) Ĵ Q is of finite depth,

(3) J ^ is C 0 0 except possibly along the toral components of S, and

(4) the core C of the filling is transverse to J^o and ϊFx and C is of infinite

order in πx(N).

Proof. Step 1. There exists a sequence

)4 4

of sutured manifold decompositions with the following properties:
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(1) Each (M, , γf) is taut and each separating component of Si+ι is a product
disc.

(2) Some component of yn is the torus dM.
(3) (Mn, yn) is a union of a product sutured manifold and a sutured manifold

(H, 8) = T2 X / where 3M = Γ 2 X 0, δ Π (Γ 2 X 1) Φ 0 .
Proof of Step 1. Suppose that the sequence

has been constructed and satisfies (1) and (2) of Step 1. Let Sk+ι be a
maximal set of nonboundary parallel, pairwise disjoint, pairwise nonparallel
properly embedded product discs in (Mk,yk). Extend our sequence by

Sfc + l

(Mk,yk) ~> (Mk+l9yk+ι) to obtain a new one which still satisfies (1) and (2)
and furthermore (Mk+Vyk+1) possesses no nonboundary parallel product
discs.

Let (H,8) be the component of (Mk+vyk+ι) containing dM. dH contains
no 2-sρheres since (H,8) is taut. If the natural map Hx(dH - dM) -> Hλ(H)
is injective, then Lemmas 1.4 and 1.5 imply that H is an J-cobordism and
dH - dM is a torus Q. Since M is S-atoroidal, H = dM X /. Apply (1) to the
integer / < k for which H first appears as a component of Mi+ι to conclude
that β Π γ H 1 # 0 . Now use Theorem 4.2 of [2] to find a sutured manifold
hierarchy of (Mk+Vyk+1) - (H,8) and use this hierarchy to extend our
sequence to one satisfying Step 1.

On the other hand if Hλ(dH - dM) -> Hλ(H) is not injective, then there
exists a nontrivial y e H2(H,dH) such that [y ΠdM] = 0. By Lemma 0.4
there exists a nonseparating surface S^.^ such that y = [^+2] = H2(H,dH)

Sfc + 2

and such that the decomposition (Mk+vyk+ι) ~> (Mk+2,yk+2) extends our
sequence and still satisfies (1) and (2). Note that dSk+2 Π dM = 0, since
[y Π dM] = 0. By §4 of [2] we obtain the sutured manifold complexity
inequalit ies C(Miy γ 7) < C{Mp y.) if i > j a n d C(Mk + 2, yk + 2) <

C(Mk + ι,yk+1). The preceding paragraph and the fact that sutured manifold
complexity takes values in a well-ordered set imply that our sequence will
satisfy the conclusions of Step 1 after a finite number of extensions.

Step 2. With at most one exception (up to isotopy) the manifold N obtained
by filling M along an essential simple closed curve in dM possesses a sutured
manifold hierarchy whose first term is obtained by decomposing along S.

Proof of Step 2. For each / attach a solid torus to each dM c ΘM, to obtain
the sequence
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By Step 2, the component H of Nn containing dλf satisfies H = D2 X Sι and

s(yn) Π H is a union of 0 Φ 2r parallel essential simple closed curves in

dD2 X Sι. Let λ be one such suture. If N was not obtained from the filling,

corresponding to the case where λ bounds a disc in H, then decomposing

(Nn, 8n) along a D2 X pt. extends our sequence to the desired sutured manifold

hierarchy.

Proof of Theorem 1.7. Apply Theorem 5.1 of [2] to the sutured manifold

hierarchy of Step 2 to obtain the desired foliations. By construction S is a leaf

of these foliations and the core C of the filling is transverse to the foliation. By

Novikov [10], C is homotopically of infinite order, q.e.d.

There is a natural generalization of Theorem 1.7 in the case that M has

more than one boundary component. We state this generalization in terms of

sutured manifolds. The proof is verbatim the proof of Theorem 1.7.

Theorem 1.8. Let (M, γ) be a taut connected sutured manifold, P be a toral

component of γ, and suppose that H2(M,dM — P) Φ 0. Let S be a properly

embedded nonseparating surface in M such that dS Π P = 0 and the decompose
s

tion (Λf, γ) ~> ( M l 5 yx) yields a taut sutured manifold. If M is SP-atoroidal, then

with at most one exception {up to isotopy) the sutured manifold (TV, γ — P) =

(TV, δ) obtained by filling M along an essential simple closed curve in P possesses

foliations J "̂o and J ^ such that:

(1) J^o and J*i are tangent to R(δ).

(2) For i = 1,2, J^ is transverse to 8 and J^ | δ has no Reeb components.

(3) Every leaf of ^0 and J ^ nontrivially intersects a transverse closed curve

or transverse arc with endpoints in R(y) unless dN = R+(8) or R_(δ) in which

case this holds only for interior leaves.

(4) // dS c γ, then S is a leaf of ^ and J ^ .

(5) J*o is of finite depth.

(6) J ^ is C°° except possibly along toral components of R(y) U S.

(7) The core C of the filling is transverse to J^o and J ^ and C is of infinite

order in πλ(N).

2. Applications

Definitions 2.1. Two unoriented knots kλ and k2 are equivalent in the

compact oriented 3-manifold M if there exists an orientation preserving

homeomorphism /: (M, kλ) -> (M, k2). A knot k is determined by its comple-

ment in the oriented 3-manifold M if for any knot k' c M, k is equivalent to

k' if and only if there exists an orientation preserving homeomorphism

between M — k and M — k'.
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Remarks 2.2. There exists an orientation preserving homeomorphism be-
tween M - N(k) and M - N(k') if and only if there exists an orientation
preserving homeomorphism between M — k and M — k\

If every nontrivial Dehn surgery on k yields a manifold not homeomorphic
(by an orientation preserving homeomorphism) to M, then k is determined by
its complement. If M — N(k) is irreducible, then it is well known that the
converse is almost true. If a nontrivial surgery on a knot determined by its
complement yields M, then there exists a homeomorphism /: (M —
N(k\dN(k)) -+ (M - N(k),dN(k)) such that f(m) Φ ±m where m is the
meridian of k. Since / is also orientation preserving and /(λ) = + λ, where λ
is the longitude, / is of infinite order. It follows by the Jaco-Shalen, Johannson
theory [7], [8] that either λ bounds a disc D in M — N(k) or two copies of λ
bound an annulus A such that 0 Φ [dA] e Hx($Ή{k)\ (If M - N(k) Φ D2 X
S1, then by [8, §27] fn is isotopic to a map which is a product of "Dehn
twists" along embedded annuli and tori. A Dehn twist, as defined in [8], along
a surface T c M is a homeomorphism of M which is the identity on M —
N(T). Only twists along annuli A such that 0 Φ [dA] <Ξ Hλ(dN(k)) will affect
f\dN(k), thus d[A] = 2[λ].) Conversely if such a D or A exists, then there
exist an infinite number of distinct surgeries on k which yield M.

Corollary 2.3. If k is a knot in S2 X Sι which is not contained in a 3-cell,

then k is determined by its complement.

Proof. If k is homologically nontrivial, then the trivial surgery is the
unique surgery on k which yields a homology S2 X Sι.

If k is homologically trivial, let S be a closed connected nonseparating
orientable surface of smallest genus. By hypothesis, genus S > 0. Since S is
compressible in S2 X Sι it will follow from Corollary 2.4 that S will remain a
minimal genus (therefore incompressible) nonseparating surface in any mani-
fold obtained by nontrivial surgery on k. Since S2 X Sι contains no incom-
pressible surfaces of positive genus the result follows.

Corollary 2.4. Let M be a Haken manifold whose boundary is a nonempty

union of tori. Let S be a Thurston norm minimizing surface representing an

element of H2(M, dM) and let P be a component of dM such that PΠS= 0 .

Then with at most one exception (up to isotopy) S remains norm minimizing in

each manifold M(a) obtained by filling M along an essential simple closed curve

a in P. In particular S remains incompressible in all but at most one manifold

obtained by filling P.

If M is also SP-atoroidal then M(a) is also irreducible.

Proof. Haken (see [6]) has shown that for any compact 3-manifold there is
an integer n such that any n pairwise disjoint incompressible surfaces have two
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distinct ones parallel. It follows that in M there is an /-cobordism V (possibly
a boundary collar) from P to an incompressible torus T such that V Π S = 0
and N = M — V is SΓ-atoroidal. Note that S is norm minimizing in N.

Let M(a) and V(a) (resp. N(8)) denote the manifolds obtained by filling M
and V (resp. N) along an essential simple closed curve a (resp. δ) on P (resp.
Γ). Let j β c Γ b e either the one exceptional simple closed curve which arose
by applying Theorem 1.8 (or equivalently Theorem 1.7 if dM = P) to N
(where T is the distinguished boundary component and γ = dN) or 0 if no
exceptional curve arose. Therefore if δ Φ β, then by Thurston (see [2, 2.5]) S is
norm minimizing in N(δ). By Novikov and Alexander (see [2, 2.8]) N(δ) is
irreducible. Let a be a simple closed curve in P such that t(ά)Φ β (t as
defined in Lemma 1.5).

If T is incompressible in M(a), then S remains norm minimizing in M(a).
To see this, let R be an incompressible surface such that [R] = [S] e
H2(M(a),dM(a)). [R Π Γ] = [S Π Γ] = 0 e i/^Γ), so one can obtain a
surface // by attaching annuli to R — N(T) and deleting # Π F(α) which
satisfies [H] = [R] e H2(M(a% 3M(α)), χ(i/) > χ(#), and if n K(α) = 0 .
Since 5 is norm minimizing, χ(S) > χ(H) > χ ( ^ )

If T is compressible in M(a), then by Lemma 1.5 the compression must be
along the curve t(a) c T. Therefore t(a) bounds a disc in V(a), V(a) = D2 X
S^H^α), and M(α) = N(t(a))#W(a) for some closed 3-manifold W(a).
Since 5 remains norm minimizing in N(t(a)), S remains norm minimizing in
M(a).

Since t(a) = β for at most one a the result follows.
Corollary 2.5. Let k be a knot in D2 X Sι of winding number 0 (i.e.,

(k, D2 X pt.) = 0) such that k is not contained in a 3-cell in D2 X Sι. If M is
obtained by nontriυial surgery on k, then M Φ D2 X S1. In particular dM is
incompressible.

Proof. Let S be a Thurston norm minimizing surface in D2 X S1 - N(k)
such that ΘS is a meridian of 3D2 X Sι. S is not a disc since k does not lie in
a 3-cell. By Corollary 2.4 S remains norm minimizing, hence incompressible in
M. dM is incompressible because any compressing disc of dM would, by
Lemma 1.4, have boundary isotopic to dS contradicting the incompressibility
of S.

Corollary 2.6. Let fλ\ W -* S\ f2: W -> S2 X Sι be embeddings of W =
D2 X S1 such that, for i = 1,2, ft(W) is a standardly embedded solid torus [i.e.,
fi(W) = N(pt. X S1)]. If k is a nontriυial knot in W, then ft(k) is a nontriυial
knot for some i, i.e., it does not bound a 2-cell.

Proof. We need only consider the case that k is homologically trivial in W,
for otherwise f2(k) is homotopically nontrivial. If k lies in a 3-cell but is
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nontrivial, then fλ(k) is nontrivial in S3. Therefore we can assume that k is
homologically trivial and that k does not lie in a 3-cell. Let S c W — N(k) be
a minimal genus surface with dS = k. By Corollary 2.4, for all but at most one
filling on dW, S remains minimal genus. Therefore for some /, f(S) is a
minimal genus surface for ft{k).

Remark. Corollaries 2.5 and 2.6 give positive solutions to three old prob-
lems of J. Martin (see [9], problems 1.18A, B, C). Problem 1.18B, an important
special case of 1.18A, was independently proven by Scharlemann and Bleiler
[1]. I would like to thank B. Wajnryb for bringing Martin's third problem to
my attention.

The problem of when nontrivial surgery on a knot k c D2 X Sι yields
D2 X S1 is further investigated in [4].

Corollary 2.7. Let M be a Haken 3-manifold such that dM contains a toral

component P. If H2{M,dM — P) Φ 0, then with at most one exception {up to

isotopy) the following holds. If M(a) is obtained by filling M along the essential

simple closed curve a c P, then the core of the filling is of infinite order in

Proof. Let C denote the core of the filling.
Case 1. dM is a union of tori and M is Sp-atoroidal for S a norm

minimizing surface representing an element of H2(M,dM) such that dS Π P
= 0 .

Proof. Apply Theorem 1.8.
Case 2. dM is a union of tori.
Proof. Let S be a norm minimizing surface representing an element of

H2(M, dM) such that dS Π P = 0. Let Γ, V, N, and β be as in the proof of
Corollary 2.4. Let a be an essential simple closed curve in P such that
t(a) Φ β. C is of infinite order in Hλ(V(a)\ hence in ^(V(a)), since the
natural map HY{P) -> HX(V) is injective and C generates Hι(P)/[ά\ = Z. If
T is incompressible, then C is of infinite order in πι(M(a)). If T is compress-
ible, then as in Corollary 2.4, V(a) = (D2 X Sι)#W(a) for W(a) a closed
3-manifold. Note that each dD2 X pt. is isotopic to t(a). C is homotopic in
πx{V(ά)) = Z * πx(W) to a word which projects nontrivially into Z, since it is
homologous to an element of HX(T) outside the subspace spanned by [ί(α)].
Therefore C projects in 771(M(α)) = ττι(N(t(a)))* πι(W(a)) to an element of
ττι(N(a)) demonstrated to have infinite order in Case 1. Since t(a) = β for at
most one α, Case 2 follows.

Case 3. General case.
Proof. If dM is incompressible, then D(M) = { M doubled along M — P }

satisfies the hypothesis of Case 2. Since dM is incompressible, the result for
D(M) implies the result for M.
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If 3M is compressible, then let H be the manifold obtained by splitting M

open along a maximal set of compressing discs to obtain a 3-manifold with

incompressible boundary. The component H containing P satisfies the hy-

potheses of the corollary and ^(//(α)) is a free factor in πγ(M(a)). By the

previous paragraph the conclusions of the corollary hold for H and there-

fore M.

Corollary 2.8. Let M be a compact oriented manifold whose interior supports

a hyperbolic structure with finite volume. Suppose that there exist P a component

of dM and S a Thurston norm minimizing surface representing an element of

H2(M,dM) such that S Π P = 0 . With at most one exception (up to isotopy)

the following holds. If a is an essential simple closed curve in P, then the

manifold obtained by filling M along a possesses a taut foliation ^ such that &

is transverse to dN and !F \ dN has no 2-dimensional Reeb components. Further-

more N is irreducible, S is norm minimizing in N, and the core of the filling is of

infinite order in π^N).

Proof. By Thurston [12] M is irreducible and atoroidal. The result follows

from Theorem 1.8 and the results of Novikov and Thurston (see [2, 2.5 and

2.8]).

Corollary 2.9. Let M be a compact 3-manifold such that H2(M) Φ 0. Let k

be a knot in M such that k is homotopically trivial and M — N(k) is atoroidal

and irreducible. Then each nontrivial Dehn surgery on k yields an irreducible

3-manifold N and the core of the filling is of infinite order in πλ(N).

Proof, k is homotopically trivial so H2(M — N(k)) Φ 0. In particular

there exists a closed Thurston norm minimizing surface S Φ S2. Apply Theo-

rem 1.7 to M — N(k) to conclude that for all but possibly one surgery on k,

the surgered manifold possesses a taut foliation 3F such that S is a leaf and

the core of the filling is transverse to J*". Since k is homotopically trivial in M

the exceptional surgery must be the trivial one. The result now follows from

Novikov's and Thurston's theorems.

Corollary 2.10. // M is a closed reducible 3-manifold and k is a knot in M

such that M - N(k) is irreducible and S-atoroidal for some S representing a

norm minimizing element of H2(M — N(k)), then nontrivial surgery on k yields

an irreducible 3-manifold.

Remark 2.11. Corollaries 2.9 and 2.10 give a tiny bit of supporting evi-

dence for the Poincare conjecture. They show that all surgeries on a large class

of knots yield manifolds which contain no fake 3-cells.

Theorem 2.12. Let M be a torus bundle over Sι. If k is a knot in M which

does not lie in a 3-cell, then k is determined by its complement.

Idea of Proof. M determines the homology group Hλ(M) and a set J / of

matrices in SL(2, Έ). Incompressible surfaces in M satisfy the geometric
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properties of Lemma 2.13. We will show that any nontrivial surgery on k

yields a manifold not homeomorphic to M (by an orientation preserving

homeomorphism) by showing that one of these properties or invariants is

changed. By Remark 2.2 the result will follow.

Lemma 2.13. Let M be an oriented torus bundle over S1. M determines a

matrix A e SL(2, Z) with the property that the monodromy of any torus fibration

of M is either of the form BAB1 for B e SL(2,Z) or CAιCι for C e

[GL(2,Z)-SL(2,Z)].

Let S be an incompressible surface in M and let J** denote a torus fibration.

Then χ(S) = 0, and S is isotopic to either a leaf of J5"or to a surface transverse

to J*\ If S is a nonseparating torus, then S is the fiber of a torus fibration of M.

If S is nonorientable, then \S Π F\ = 1 for each leaf F of J*\ // S is orientable

and separating, then S = dN(K) for some Klein bottle K.

Proof. Let F be a fiber of J*\ A choice of basis for Hλ(F) determines a

unique monodromy map A e SL(2, Z) as follows. Let X be any vector field in

M transverse to J*" such that X and the basis of F induce the given orientation

on M. A is the linear homeomorphism isotopic to the homeomorphism of F

obtained by flowing F to F along X. Two choices of X yield homotopic maps,

hence the same A. If one reverses the order of basis elements of Hλ(F) and

uses -X (to maintain the same orientation of M) one obtains the monodromy

map

*-[? ί k [! il
Two bases of F which differ by an element B e SL(2, Z) yield monodromies

which are conjugate by B. We have now shown that for a fixed fiber F of M

the set of monodromies is that given in the first paragraph of the lemma.

Let M = T2 X U be the infinite cyclic cover corresponding to this fibration

and S a lift of S. Since ^ ( M ) is abelian so is π^S). Therefore χ(S) = 0. By

[11], S can be isotoped to be either transverse to # Ό r be a leaf of J^. If F is a

leaf of J£\ then F — N(S) is a union of annuli; hence, M — N(S) is an

annulus bundle over S1. Therefore if S is a nonseparating torus, M — N(S) =

S X /, so S is a fiber of a fibration. If S is oriented and separating, then

S = dN(K) for some Klein bottle K. It remains to show | F Π S| = 1 if S is a

Klein bottle.

If M contains a Klein bottle K, then by choosing a basis for Hλ(F) so that

the first generator g is a component of F Π K we see that Ag = -g so that the

monodromy is [~\ _[]. To show that \F Π K\ = 1 it suffices to assume that

r = 0, for if a K existed (in a bundle with r Φ 0) with \FΠK\Φl, then by

doing a Dehn surgery along a component of F Π K one would have con-

structed an example in the bundle with r = 0. If r = 0 there exist Klein bottles
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Kλ, K2 in M such that Kλ Π F is isotopic to g and K2 Π i 7 is isotopic to the

second generator. Observe that \F Π K\ = \F Π K Π K2\ is odd since K is

nonorientable. Since there are only four isotopy classes of essential simple

closed curves in a Klein bottle (hence, in K2 and K), the only possibility is

that in both K and K2, K Π K2 is the core curve of a Mobius band and

\FΠK\ = 1.

We now complete the proof of the first assertion of the lemma. Let Ff be the

fiber of another fibration. By choosing a basis for Hλ(F) so that the first

generator g is a component of F Π F\ we see that Ag = g so that the

monodromy is [ι

0 []. Therefore M is explicitly constructed by doing a multiple

Dehn twist to an essential simple closed curve C in a fiber of the 3-torus T3. If

M Φ Γ 3 , then fibers of M come from geodesic tori in T3 which are disjoint

from C. By following such tori as they sweep out M, we observe that the

monodromy of any fibration of M can be taken to be A.

Proof of Theorem 2.12. Case 1. 0 # [k] e ^ ( M , Q).

Proof. Only the trivial surgery on k yields a manifold with the same

homology groups as M.

Case 2. k Π F Φ 0 for every nonseparating torus in M.

Proof. Assume that k is homologically trivial in HX{M, Q). Let S be a

Thurston norm minimizing surface in M — N(k) homologous in H2(M) to

[F] where F is a torus fiber. By the hypothesis of Case 2, χ(S) < 0. By

Corollary 2.4, if N is obtained by nontrivial surgery on k, then 5 is norm

minimizing hence incompressible in N. By Lemma 2.13, N is not a torus

bundle over Sι. q.e.d.

By Lemma 2.13 and Case 2 we can assume that there exists a fiber F which

is disjoint from k. Let Q = M - JV(F) = Γ 2 X / and ζ>' = ρ - #(Jfc).

Case 3. There exists no annulus A of the form γ X / c g such that γ is an

essential simple closed curve in T2 and A Π k = 0 .

Proof. Glue the components of 3β together to obtain Γ 3 . Let S be a norm

minimizing surface representing a class in H2(T3 — N(k)) distinct from F. By

the hypothesis of Case 3, χ(S) < 0. As in Case 2 we conclude that nontrivial

surgery on K c T3 does not yield a T2 bundle over Sι. This implies that N

surgered along k does not yield T2 X /, so M nontrivially surgered along k

does not yield a T2 bundle over Sι. q.e.d.

Let W = Q - N(A) = D2 X S1, where A is an annulus in Q' of the form

γ X / where γ is an essential simple closed curve in F.

Case 4. k is homologically trivial in W.

Proof. If a nontrivial surgery on k yields Af, then the corresponding

surgery on N must yield a T2 X I. Since T2 X I is irreducible and every
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essential torus is boundary parallel, the corresponding surgery on W must yield
a D2 X Sι. By Corollary 2.5, dW becomes incompressible after nontrivial
surgery along k.

Case 5. A: is not isotopic to the core of W and the result holds for knots
isotopic to the core of W.

Proof. By Lemma 1.5 if distinct surgeries on k c W yield D2 X Sι, then
the corresponding curves on dW which bound discs in the surgered W are
distinct. Therefore if distinct surgeries on k yield M, then distinct surgeries on
C, the core of W, yield M.

FIGURE 2.1

Case 6. A: is contained in a fiber F of a fibration 3F over S1.
Proof. First note that this case is equivalent to the case that k is isotopic to

the core of W, since W can be viewed as N(C), where C is a simple closed
curve in a fiber. Give dW a natural framing (Figure 2.1) as follows. Let μ be an
essential simple closed curve in dW which bounds a disc in W and let λ be an
essential simple closed curve in dN Π dW. Let N(m/p), W(m/p), and
M(m/p) denote the manifolds N, W, and M surgered along k so that the
meridian of the filling glues to a curve homologous to mμ + pλ. By changing
the sign of /?, if necessary, we can assume that m ^ 0.

We now show that if m Φ 1, then N(m/p) Φ T2 X /, hence M(m/p) Φ M.
N(m/p) is obtained by attaching a thickened annulus to a solid torus (Figure
2.2(a)), where a meridian of the solid torus intersects a boundary component of
the annulus m times. Therefore N(m/p) can be viewed as a mapping cylinder
of a thickened bouquet of m circles, hence 771(Λ (̂m//?)) contains a free group
on m generators. Therefore N(m/p) = T2 X / implies that m = 1. One could
argue geometrically as follows. Decompose the sutured manifold (H, γ) (where
H = N(m/p) and R+(y) and R-(y) each consist of a boundary torus) along
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a product annulus A to obtain the sutured manifold (//', γ') (Figure 2.2(b)),
where H' = D2 X S1 and each suture of γ' is homotopic to m times a
generator of πλ(D2 X Sι). Since decomposing along product annuli preserves
the quality of being a product and (H\ γ') is a product if and only if m = 1,
our assertion follows.

f decompose along
a product annulus
to obtain

glue
with
180°
twist

a) b)

FIGURE 2.2

M{\/p) is a torus bundle over Sι whose monodromy is given by the matrix
A[ι

0 {] = D, where A e SL(2,Z) is the monodromy of the fibration &. We
now show that if M(l/p) is homeomoφhic to M, by an orientation preserving
homeomorphism, then p = 0. By Lemma 2.13 such a homeomorphism exists if
and only if D is conjugate t o ^ ^ b y a 5 E GL(2,Z) where det(£) = ± 1 .
Since trace is an invariant of conjugacy the existence of such a B implies that
A is upper triangular. An easy calculation now yields p = 0.

Corollary 2.14. Let M be a connected sum of Ml9- , Mr where each Mf is

either an oriented torus or sphere bundle over S1. If k is a knot in M which does

not lie in a 3-cell, then k is determined by its complement.

Proof. By the Milnor-Kneser prime decomposition theorem [5] it suffices
to consider the case that M — k is irreducible. If r = 1, then the result follows
by Corollary 2.3 and Theorem 2.12. If r > 2, then H2(M - k) Φ 0, so a norm
minimizing surface S disjoint from k exists. If M is 5-atoroidal, then apply
Theorem 1.7 to conclude that nontrivial surgery on k yields an irreducible
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3-manifold. Otherwise apply the argument of the proof of Corollary 2.4 to
conclude that nontrivial surgery on k yields N#W, where H2(W) = 0 and N
is irreducible.
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