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THE ORIENTATION OF YANG-MILLS MODULI
SPACES AND 4-MANIFOLD TOPOLOGY

S. K. DONALDSON

1. Introduction

This paper has two separate purposes. The first is to modify the proofs of [3]
and [6] (which considered simply connected manifolds) to obtain results on the
intersection forms of 4-manifolds in the presence of fundamental groups. As
an extension of the theorem of [3] we shall prove:

Theorem 1. // X is a closed, oriented smooth 4-manifold whose intersection

form

Q:H2(X',Z)/Ίorsion->Z

is negative definite, then the form is equivalent over the integers to the standard
form (-1) θ (-1) θ θ(- l ) .

In short, the result of [3] (Theorem A in [6]) extends without change to
manifolds with arbitrary fundamental groups. For indefinite forms we shall
prove:

Theorem 2. Let X be a closed, oriented smooth 4-manifold with the following

three properties:

(i) Hλ(X; Έ) has no 2-torsion.

(ii) The intersection form Q on H2(X)/Ύovsion has a positive part of rank 1

or 2.

(iii) The intersection form is even.

Then Q is equivalent over the integers to one of the forms

0 1\ /0 1\ /0 1

l o] U o ] θ U o
In short, Theorems B and C of [6] extend to manifolds with no 2-torsion in

their first homology group.
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This second result seems less satisfactory and it is possible that more is true.
Recall that the intersection form on a 4-manifold X is even provided w2(X) e
H2(X; Z/2) maps to zero in the universal coefficient sequence:

(1.1) Έxϊ(Hx(X\Z)\Z/2) -* H2(X;Z/2) -> Hom(i/2(X; Z,Z/2)).

The manifold admits a spin structure if and only if w2 is zero. Since the
group Έxt(Hλ{X\Z\Έ/2) is zero if Hλ has no 2-torsion, hypotheses (i) and
(iii) of Theorem 2 together imply that X is spin, but are presumably strictly
stronger.

There is an example by Habegger [12] showing that Theorem 2 would be
false without hypothesis (i). Habegger's manifold is a quotient of a K3 surface:
it has fundamental group Z/2 and the nonstandard intersection form (-Es) Θ
(i J), with a positive part of rank 1. At the same time this example shows that
the hypothesis of Rohlin's Theorem is sharp: the signature of Habegger's
manifold is 8 while Rohlin's theorem asserts that of a spin 4-manifold is
divisible by 16. In this example the manifold is not spin although the
intersection form is even; vv2 corresponds to the nonzero element in
Ext(HvZ/2) = Z/2. Thus an interesting open problem, suggested by this
example of Habegger, is to find whether hypotheses (i) and (iii) of Theorem 2
can be replaced by the condition that the manifold be spin.

The proofs of Theorems 1 and 2 follow the pattern explained in §111 of [6].
We use the solutions of the anti-self-dual (ASD) Yang-Mills equations over the
4-manifolds to obtain compact manifolds-with-boundary parametrizing
families of connections, and exploit the zero pairing between the boundary
of these and suitable cohomology classes. The first new feature that arises is
the greater complexity of the ends of the Yang-Mills moduli spaces themselves.
In general the moduli spaces Mk of ASD connections on a bundle with c2 = k
have compactifications Mk involving contributions from the lower spaces
Mj (j < k). If the 4-manifold has fundamental group 771? then the space Mo,
parametrizing representations ΊT1 -> SU(2), may itself be complicated. How-
ever from the point of view of the differential equations these flat solutions are
degenerate. They can be perturbed away and the same perturbation is then
used to modify the ends of the higher moduli spaces. Given this basic idea the
detailed constructions of perturbations in §2 below are not very enlightening.

The second new feature, which is needed here only for the proof of Theorem
1, is an account of the orientation of Yang-Mills moduli spaces. The develop-
ment of this is the other main purpose of the paper. We show the spaces are
orientable, define canonical orientations, compare these at different points in
the moduli spaces, and compute the action of the diffeomorphisms on the
orientation. These results are needed for certain other applications of gauge
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theory to topology [5], [7], [8], and are really a part of index theory. We
calculate by using excision arguments but in order to make contact with the
explicit models of [6] these are done with differential rather than pseudo-
differential operators. For manifolds without 2-torsion in Hv Fintushel and
Stern have given a simpler argument to show that many nonstandard intersec-
tion forms do not occur. In §4 we remove the assumption on Hλ from their
argument using these results on orientations. Meanwhile, M. Furuta has given
a proof of Theorem 1 for manifolds having Hλ = 0 [11]. His proof is similar to
the one we give in §§2, 3 but introduces some interesting new constructions.

The author is grateful to W. D. Neumann for useful discussions, to M.
Furuta for pointing out a mistake in the first version of the paper, and to
Harvard University and the Institut des Hautes Etudes Scientifiques for
hospitality during the writing of this article.

2. Description and deformation of moduli

(a) Flat connections over negative definite manifolds. If a smooth, oriented

4-manifold X has a negative definite intersection form, then the index Theo-
rem predicts the "virtual dimension" of Mk(X)—the moduli space parame-
trizing ASD connections on an SU(2) bundle with c2 = k—to be

(2.1) d i rnM^*) = Sk - 3 + 361(X).

To prove Theorem 1 it suffices to consider manifolds X with first Betti number
bλ(X) equal to 0. We can use the argument of Fintushel and Stern [9]: If
surgeries are performed on loops γ, representing an integral basis for the free
part of Hλ{X\ / ) , we get a new manifold with the same form on /^/Torsion,
the same torsion in Hλ and with bx = 0. (Another approach is to fix the
manifold X but "cut down" the moduli spaces Mk to the subsets M'k
representing connections whose monodromy around the loops γf. is 1. This
imposes 3bι(X) constraints on the connections, dimM^ = 8/c - 3, and all the
arguments below may be carried out using the cut down moduli spaces.)

According to Freed and Uhlenbeck [10] the moduli space Mx is, for generic
Riemannian metrics on X, a smooth manifold of the dimension given by (2.1)
except for singularities associated to Abelian reductions of the bundle. When
bx = 0 (so dim Mx = 5) there is one such singularity for each reduction and so
for each pair:

(2.2) +<?,£> e i J 2 ( X ; Z ) , e2 = - 1 .

Let A be the finite abelian group Hλ{X\ Έ) and A = Hom(Λ, Sι) = Ext(Λ, Έ)
the dual group. The reductions in Mλ corresponding to a given element in
i/2/Torsion form a principle A set since A is the torsion subgroup of H2.
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The moduli space M0(X) parametrizes flat SU(2) connections and hence the
conjugacy classes of representations p: πx(X) -> SU(2). We divide these repre-
sentations into four kinds:

(i) The trivial representation πλ -> {1} corresponding to the product con-
nection θ. This has isotropy group Γ̂  = SU(2) in the gauge group of bundle
automorphisms.

(ii) Nontrivial representations πλ -> {±1} mapping to the center of SU(2).
These are in (1-1) correspondence with the elements of order 2 in A and also
give connections with isotropy SU(2).

(iii) Reducible representations, not of type (i) or (ii), which map to a copy of
Sι in SU(2). Up to conjugacy in SU(2) these correspond to pairs +a where
a e A9 2a Φ 0. The corresponding connections have isotropy S1.

(iv) Irreducible representations associated to connections with isotropy ± 1 .
If the only representation is the trivial type (i) the arguments in [3], [10] or

[6, §111] go through unchanged. The moduli space Mλ has a natural compacti-
fication Mx = Mλ U X and, since Hλ(X) is necessarily zero, the count of
internal singularities is the same. In general there is a compactification
Mλ U (Mo X X) [6, §111] but rather than analyzing this we will deform the
equations defining Mo and hence the ends of Mv The key point is that the
virtual dimension of Mo is negative.

(b) Deforming the equations. Let I be a Riemannian 4-manifold with
bΎ = 0 and negative definite intersection form. If γ: Sι -> X is a loop based at
a point x in X and A a connection on an SU(2) bundle P over X, let
hγ(A) e (AutP) x be the holonomy of the connection around γ. We will use
these to define gauge invariant perturbations of the ASD equations F+(A) = 0.

Choose a map

equivariant under the adjoint actions, which inverts the exponential map when
restricted to the complement of a small ball around -1 e SU(2). The equivari-
ance of ψ gives corresponding maps

to the bundle of Lie algebras gP associated to P. If v e Ω\(X) is a self-dual
2-form supported in a small neighborhood of x, define a section

(2-3) τ = φ , γ , Λ ) e Ω 2

+ ( g / > )

by first spreading ψx(hγ(A)) e (QP)X to a section of QP defined over a
neighborhood of x (using parallel transport along radial geodesies) then taking
the tensor product with v. For fixed v, γ this gives a gauge invariant map from
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the connections on P to Ω+(gP). Let Σ be the set of maps defined by finite

linear combinations of these:
N

σ(A) = Σ ^T(pi9yi9A)9

i = l

and for each σ e Σ let Mζ be the space of equivalence classes of solutions to

the equations

(2.4) F+(A) + σ(A) = 0.

When σ = 0 this is the usual moduli space of ASD, hence flat, connections

described in (a). The global analytical properties of the perturbed equations fit

into the framework of the infinite dimensional Fredholm equations described

in [6, §IV], to which we refer for notation: The maps A -> σ(A) from, say, L{

connections (with p > 2) to Lp 2-forms are smooth and their derivatives are

compact operators factoring through the inclusion of L{ in Lp. So the spaces

M£ have virtual dimension -3.

Begin with the case when HX(X\Έ) = 0. Then M0(X) is the union of a

compact set V parametrizing irreducible representations of type (iv) and a

single point [θ] of type (i), which is isolated from F, since Hλ(X\ U) = 0.

Lemma (2.5). If A is any flat irreducible connection, then there are finite sets

{ϊ/}"-i of loops in X and 2-forms { f̂-}"=1 supported in small balls around the

base points of the yi such that:

(i) The sections T(Ϊ>Z, γ , A) generate the vector space H\ = Ω+(g P ) / I m d\.

(ii) (γ, U supp vt) Π (γ,- U supp vj) is empty for i Φ j .

(iii) Any 2-dimensional homology class in X may be represented by a surface

disjoint from the γ/5 suppp,.

Proof. There is a finite set of points xv - ,xm in X such that the

harmonic lift i/J c Ω+(g P) of H} restricts monomorphically to

m

Θ Δ2Λΰr)x.
« = 1

We take N = 9m and for each a choose a small ball round xa over which the

sections in H% have small variation and 9 distinct points inside it.

Now for each point xa the set of possible holonomies hγ(A) for loops γ

based at xa is dense in (Aut P)x since the connection is irreducible. So there

are three loops γ l Λ , γ2 α, γ3 a such that the ψAγ β = eia form a basis of (<ZP)Xa.

Choose a basis ωx α, ω2a, ω3a for (A2

+)Xa and label the nine points near xa by
xij,a = x(ei,a>ωj,a) Then we can choose loops yiJa based at xtj^a whose

holonomy is close to that of yia, and 2-forms vija approximating "δ-

functions" at the xiJa9 close to multiplies of ω α in a local trivialization of

Λ2

+
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By general position we can arrange that these sets of loops and forms satisfy
conditions (ii) and (iii) of the lemma. Property (i) follows from the fact that,
when the approximations in the construction are made sufficiently fine, no
nonzero element of H\ can be orthogonal to all of the τ(viJa, γ/v/,α, A).

Since the set V of flat irreducible connections is compact we can suppose the
γ/5 Vj (i = 1, , N) chosen so that the three conditions of Lemma (2.5) hold
for all the points [A] in V simultaneously. We fix such a choice and consider
the iV-parameter family of deformed equations:

N

FΛ*)+ Σ εiτ(vi9yi,A) = 0.

Proposition (2.6). Suppose HX(X; Έ) = 0 and choose vt, γf as above. Then

for any r > 0 we can choose (ε,-) e UN with |( εz) | < r such that for each index j

and any t in [0,1] c U the only gauge equivalence class of solutions to the

equation

N

Ejy.F+(A)+ Σ eιτ(vi,yi,A) + tτ(vJ,Ύj,A) = 0

is that of the trivial flat connection θ.

Proof. (Compare [13].) Consider the universal equation

F+(A)+ Σ «,•(*„γ, .Λ) = o
ι = l

over the product 38 X IRN of the space of equivalence classes of connections
& = s//g with the parameter space IR N. By property (i) of (2.5) this equation
has maximal rank over V X {0} so when restricted to the product of an L{
(manifold) neighborhood f/of V in & and a ball |ε| < r0 the universal zero set
Z is a manifold of dimension

dimker(έ/Jθ r^ ker^* Θ UN ^ Q

= index(d* θ d\) + N = N - 3.

Now for each index j in (1, , N} consider the obvious projection

forgetting the y'th coordinate. By Sard's Theorem the image in IR^"1 has
empty interior. It follows that for a second category subset of vectors ε in
B(r) a MN there are no solutions of Ejt (for any t) in U. Considering the iV
conditions simultaneously we arrange the same thing for all j .
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But when ε is small enough the only solution of the equation Ejt (for / in
[0,1]) outside U is [θ]. For, since H\(X) = 0, this flat connection is a regular
solution of the original equation. So under small deformations it persists as an
isolated solution of the new equation. If there were other solutions Aε, then,
letting ε tend to 0, we obtain a sequence of equivalence classes of connections
with ||i<Ί|L2, HF+II^ -> 0 but with no subsequence converging to L{ to a flat
connection. This would contradict Uhlenbeck's compactness Theorem.

We consider next the solutions of the perturbed equations when Hλ(X\ Έ) is
nonzero and there are more reducible connections in Mo. We need only
consider separately these of type (iii)—the reductions of type (ii) define the
trivial flat connection on the adjoint bundle QP and their local deformation
behavior is the same as [θ].

If A is a reduction of type (iii), corresponding to a splitting gP = IR Θ L®2,
where the flat complex line bundle L 0 2 is nontrivial, then a neighborhood of
[̂ 4] in Mo is modelled on the zeros of an equivariant map

(2.7) C* s Hι(X; L®2) -> C ' + 1 = H\(X; L®2)
ψ

divided by the action of TA = Sι. Here we have used the index theorem to
relate the dimensions of H1, H\ and these spaces can be identified with those
obtained from the cohomology of X in the twisted coefficient system L®2. In
just the same way the solutions of the universal equation

are modelled by a quotient of the zeros of a map:

(2.8) χ : C * x R " - > C ' + 1 , χ | c *x { o } = Φ.

Let D be the component of the second derivative of χ which maps IR^ to
Hom c(C / 7,C / ; + 1 ). The first derivative of φ at 0 vanishes, so if D(ε) is an
injection for some small ε in UN then the corresponding deformed equation
has an isolated solution associated to the bundle reduction.

Lemma (2.9). There are finite sets {γ,}, {vf} satisfying conditions (ii) and

(iii) of Lemma (2.5) such that for each reduction of type (iii) and an open dense

subset of the vectors ε = (εi)ε=0 in MN, the map D(ε) above is infective.

Proof. Write D(ε) = Σ^ε,-/),-. It suffices to show that D(ε) is injective for
some ε in IR .̂ We begin with a simple algebraic fact: suppose on the contrary
that D(ε) fails to be injective for all ε; then either fl/KerD,- is a proper
subspace of C^ or Σ ImD, is a proper subspace of Cp+ι. The proof is left to
the reader. We need, then, to choose the γ,, vi so that neither of these
alternatives occur.
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Now Di is obtained from the derivative (δτ/SA)(vi9yi9 A) by projecting to
the quotient H\ and restricting to the "transversal" A 4- H\. Suppose that γ
is a loop in X such that hy(A) = ± 1. Then:

where P.T. denotes the local parallel transport near the base point x of γ,
using the flat connection A. In turn the derivative

Λ J

is given by

for a e ΩX(L®2). Here Pγ denotes the ^-horizontal pull-back of sections of
Y*(Qp) to the fiber over the base point. So for any element ζ e (^~ 2) x

 w e

have a number (f, (δΛγ/δyl)α) obtained by integrating around γ.
Let Π : X -> X be the finite covering given by a fixed leaf of the horizontal

foliation of (L~2). The twisted cohomology Hι(X; L®2) is isomorphic to a
subspace of the ordinary cohomology Hι{X\ C)—an eigenspace of the genera-
tor of the covering group. Dually the loop γ lifts to a loop γ in X and if ξ is
the lift of x the number (ξ,(δhy/δA)a) is the usual pairing between Hι(X)
and Ht(X).

But any class in Hλ(X;C) is represented by an U-linear combination of
horizontal lifts of loops γ. It follows from the fact that the pairing between
H1(X) and Hλ(X) is perfect that there are finitely many loops γ, for which

is a monomorphism. Then, for suitable vt, no nonzero vector in Hι is
annihilated by all the Di and, as in (2.5) we can arrange that no harmonic form
is perpendicular to all of Imίδij/δ,).

The general position arguments for (2.6), (2.9) combine to give:
Corollary (2.11). // X has a negative definite form and Hλ{ X; R) = 0, there

are finite sets {γ,}, {^} satisfying conditions (ii) and (iii) of (2.5) and an
ε = (εy) in U N such that the equation
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in & has only isolated solutions corresponding to the abelian reductions. The

cokernels H%° of the differential of F++ σ have complex dimension 1 at the

solutions of type (iii) and 0 at other solutions. Moreover we can suppose that the

only solutions of the equations Ejt of Proposition (2.6) (j in (1, , N}, t in

[0,1]) are either flat of types (i), (ii) or in small L[ neighborhoods of the flat

reductions of type (iii).

(c) Indefinite forms. As b = b^ grows, the virtual dimension of M o,

—3 — 3Z?, decreases (assuming always that Hι(X; U) = 0). Irreducible flat

connections can be perturbed away just as in (2.6). Moreover we are able to

avoid solutions in larger families of equations. For a vector ε in MN, any b

indices j \ , - , j h in {1, , TV}, and numbers tl9- , tb in [0,1] we consider

the equation

b

Ej^jh^th'
F++ Σ εf.τf.+ L '«*; Λ = 0,

obtained by contracting any b coordinates. In contrast to the negative definite

case, the abelian reductions of type (iii) also disappear after small deforma-

tions.

Proposition (2.12). // b£(X) > 0 and H\X\ R) = 0, then there are loops

and forms, as in (2.11), and a perturbation ε in UN such that the only solutions

of the perturbed equation

correspond to the flat reductions of type (i), (ii). Moreover we can suppose that the

only solutions of the b dimensional family of equations E^ ... j h , t l . . . th

 a r e either

flat of type (i), (ii) or in small L{ neighborhoods of flat reductions of type (iii).

Proof. At an abelian flat connection A of type (ii) there is now a compo-

nent of Hi = H2

+(X) Θ H\(X\ L1) fixed by the isotropy group Γ,. The local

universal model has the shape

χ : C P X U N -

Let E be the component of the derivative of χ mapping IR^ to Uh* = H\{X).

Solutions near [̂ 4] are removed by the small deformation ε in IR^ if E(ε) is

nonzero. But

where Π:Ώ2+(X)^> H2

+(X) is projection. (Note that the hy(A) lie in the

trivial component of qP = U Θ L®2.) This can be made nonzero by choosing

the loops so that hγ (A) Φ 0, using the fact that L®2 is not trivial.
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(d) Deforming the ends. Let al9a2 be two classes in H2(X,Z) where X
satisfies the hypotheses of Theorem 1 and has zero first Betti number. We will
compute the intersection pairing av a2 using the moduli space M[f of solu-
tions to a suitable perturbation F+(A) + o\A) = 0 of the ASD equations for
connections with c2 = 1.

Fix a perturbation σ = Σε T^γ,-, -) on the connections with c2 = 0, as in
Corollary (2.11), with ε, small. The loops γ, and supports of the forms vi are
disjoint from surfaces Σl9Σ2 representing ava2. Let δ be small compared
with the separation between (γ/ U supp^ ), (γy U supp^ ) (/ Φ j) and between
the (γ, U suppp,-) and Σk. For any connection A we define a "scale" or
"inverse concentration" λ(A) > 0 as in [3]. Choose the perturbation σ' so
that:

(i) o\A) = 0 if the scale λ(A) > δ.
(ii) If λ(A) < δ/2, then

°U)= Σ ft(>l)eΛ(p,γ,>l),
ι = l

where p, is a smooth function, pt{A) e [0,1], p, = 0 if the scale of A restricted
to the δ-neighborhood of γ, U supp vt is less than δ/4, and p, = 1 if this scale
is bigger than δ/2. The definitions in the different regions are smoothly
patched together using bump functions.

Now choose representatives VΣ , VΣ for the cohomology classes over spaces
of connections associated to ΣVΣ2, as in [6, §111]. By general position these
can be chosen so that VΣ and VΣ do not meet any of the discrete set of flat
reducible connections over X. The F's are closed so, by Corollary (2.11), when
ε is small then do not meet any of the solutions of the equations E^t on the
bundle with c2 = 0.

We analyze the ends of the space

N = M{f n vΣι n vΣi.

If [A;] is an infinite sequence of gauge equivalence classes in N containing no
convergent subsequences, then the same arguments as for the ASD equations
themselves show that λ(^4/) tends to 0. Moreover if we "blow up" neighbor-
hoods of points where the concentration is large the rescaled connections
converge to the standard instanton with total action 8ττ2. The total action of
any solution to the equation F+(A) + σ'(A) = Oon the bundle with c2 = 1 is

We can suppose the ε, were chosen originally to be so small that ||σ'(Λ)||2 is
less than 8ττ2 for any connection A, hence there is at most one center of
concentration of Ai when / » 0 and we can assume these converge to a point
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p in x. Then p must lie on one of the intersection points Σλ Π Σ 2 . For, by the

defining property (ii) of σ', when / is large the connections At satisfy the ASD

equations near their centers of concentration. So Uhlenbeck's Removal of

Singularities theorem applies as in the usual case to show that the At converge

on the complement of p to a limit A^, a connection on the trivial bundle. This

connection must satisfy one of the equations Ejt since the functions p, take

values in [0,1]. Hence it does not lie in either VΣ. This implies that the point p

must lie in Σλ Π Σ2 (cf. [6, §111]). Hence we also see that A^ satisfies the

equation

Thus the ends of N are made up of connections with one center of

concentration near a point of Σx Π Σ2 and close, away from this point, to one

of the reducible connections making up Mζ. Conversely, the connection of this

kind satisfying the equation F+(A) + o(A) = 0 can be analyzed in the same

way as the ASD connections themselves using the alternating method of [6,

§§IV, V]. This is quite clear since the perturbing term σ is supported away

from the center of concentration. (Note however that we do not have a

canonical harmonic lift of the cohomology spaces H^σ given by the zeros of a

formal adjoint.)

We can read off the contributions to the ends of N using the (perturbed

analogue of) Theorem (5.5) of [6]. By Proposition (3.19) of that reference we

can suppose the VΣ Π VΣ represented locally by connections where the center

lies exactly on an intersection point of Σx Π Σ2. Initially we ignore signs.

Proposition (2.13). Let X satisfy the hypotheses of Theorem 1 and have

Hλ(X\ R) = 0. If N = M{' Π VΣι Π VΣi is chosen as above, the end of N

associated to a point p of ΣιCλΣ2 and a reducible connection A in MQ has the

form of an open interval if A is of type (i) or (ii). If A is of type (iii) the end is

modelled on the quotient by Sι of the zeros of an equivariant map

φ:SO(3) XR + ->C.

Here Sι c SO(3) acts on SO(3) by multiplication and acts on C with weight 1.

Perturb the situation slightly, if necessary, to get transversality and truncate

TV to a compact 1-manifold-with-boundary N, as in [6, §111]. Using Lemma

(2.27) of [6] we can arrange that the contribution to the boundary of N from

each reduction of the c2 = 1 bundle—labelled by ±e where e2 = -1—consists

of

(2.14) («i * ) ( « 2 - e )
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points. For each intersection point of ΣVΣ2 in x we can use Proposition
(2.13) to arrange that the contribution to dN from a reduction consists of

(1 point if the reduction is of type (i) or (ii),

\ 2 points if the reduction is of type (iii)

(since the degree of the bundle SO(3) X s iC over S2 is 2).
In §§3 and 4 below we will define an orientation of the moduli spaces, and

hence N, and calculate the orientation at the different points of dN to show
that the oriented boundary is

dN = - Σ («i e)(<*2' e) + Σ «i

(2.16)
Reductions

of type (i), (ii)

+ 2 Σ «χ
Reductions of

type (iii)

So:

-\\A\- Σ («i e ) ( α 2 <
e e //2/Torsion

and the intersection form is standard, as asserted by Theorem 1.
The proof of Theorem 2 is easier. If X satisfies the hypotheses there, and

Hλ( X; U) = 0, then there are no reductions of type (ii). Hence we can find
deformed equations as in Proposition (2.12) whose only solution is the flat
product connection θ. Make a further small deformation so that a (A) = 0 if
all the h (A) are very close to 1. Then modify the ends of the higher moduli
spaces, as above, and use the argument of [6]. The description of the links of
the perturbed moduli spaces is unchanged since the equations are the same for
connections close to θ over U(γf U supp^ ), no orientations are involved since
the proof uses mod 2 cohomology.

3. Orientations and the determinant line bundle

(a) Determinants. The "determinant line" of a real elliptic operator

defined over a compact manifold is the 1-dimensional vector space

(3.1) Λ(D) = det(KerD) ® det(CokerZ>)*.
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(Here det( ) denotes the highest exterior power of a finite dimensional vector
space.) If sv- , sN are sections of ξ2 generating cokeri) and S: UN -> Γ(£2)
is the corresponding map with S(et) = -si9 then the exact sequence

(3.2) 0 -> KerZ) -* Ker(Z> Θ S ) ^ R ^ cokerD -> 0

defines a natural isomorphism:

(3.3) A(D) = det(Ker(Z) θ 5)) ®(detR")*.

It follows that if the operator D varies in a continuous family, then the
determinant lines of the family form a bundle over their parameter space [2]. If
the bundles ξλ and ξ2 have complex structures, commuting with D, then the
determinant line has a standard orientation induced by the complex structures
on KerD and coker/λ (Recall that the usual orientation of a complex vector
space with basis el9 , en is eγ A Jeλ A Λ en A Jen.)

Let X be any compact oriented Riemannian 4-manifold, E -^ X a. rank 2
unitary bundle, and g E the associated SO(3) bundle. If A is a connection on E
let SfA be the operator:

(3.4) 2A = -rf φ d+ :Qι{αE) - (0° Φ Ω2

+)(g£).

An orientation of Λ ( ^ ) will define an orientation of an appropriate Yang-
Mills moduli space—spelled out in §4 below. We shall make a small abuse of
language by talking of canonical isomorphisms between determinant lines
A(D) where more precisely we mean isomorphisms of their orientations
A(D)/U+.

The action of the gauge group on the connections lifts to the determinant
lines. For any connection A the stabilizer Γ̂  has a connected image in
Aut(g£), so the determinant lines Λ^ = (@>A) descend to form a bundle AE

over the space <%E of gauge equivalence classes. Topologically such unitary
bundles E correspond exactly to pairs (cι(E),c2(E)) so there are infinite
families of determinant line bundles AE = Λ(c l5 c2), indexed by H2(X; Z) X Z.

(b) Excision. Suppose that a compact Riemannian manifold Z is written as
a union of open sets Z = U U V and that D: Γ(£) -> Γ(τj) is a first order real
differential operator over Z. Suppose that over U there is a bundle isomor-
phism Θ : Γ(£) -> Γ(τj) relative to which D is skew adjoint: (Df, Θ/> = 0 for
/ G Cc°°(£ I u). Choose cut-off functions /?, γ with

0 < β, γ < 1, )S = 1 on supp(vγ), suppί^β) c U,

supp(l - | 8 ) c K , supp(γ) c F, supp(l - γ ) c [ / .

Let Z = U U F be another manifold with a corresponding set-up: Z), θ, | , η,
)β, γ. Suppose there is a diffeomorphism σ from F to F, lifting to bundle
isomorphisms, and relative to this diffeomorphism the two sets of data
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correspond over the V 's. We will construct an excision isomorphism between

the determinant lines ΛD, Λ£. This could be done easily using pseudo-

differential operators, as in [1], but those would be harder to combine with the

isomorphisms needed in §3(d), (e) below.

For u > 0 define

(3.5) Du = D + uβθ

over Z and similarly D over Z. Suppose λ > 0 and / is a section of ξ with

II A,/H2 < λll/ll2 (a 1 1 norms are L 2); then

<Df,θ(βf)) + »\\βf\\2

+ (D(βf)Mf))} - c\\f\\2 + u\\βf\\2

for a fixed constant c, independent of u. The first term on the right vanishes so

(3-6) ll/*/H2<((λ + c ) Λ ) | | / | | 2 .

We can suppose that the same constant c gives similar inequalities for £>*, Du,

and Z)*.

Define four maps, all of which we denote by σγ, from Γ(£) to Γ( | ) , from

T(η) to Γ(τj), from Γ( | ) to Γ(£), and from Γ(ή) to Γ(η), by cutting-off using

the functions γ, γ and then applying the identification σ over the F's. So for /

in Γ(ξ): | |Z) M σ γ /-σ γ /) M / | | 2 < cΊ|iβ/||2, and we can suppose that the same

constant cf (independent of u) gives similar inequalities for the other "commu-

tators."

For each fixed u choose a map S: IR N -> Γ(η) so that

(3.7) \\(DU Φ S)*φ| | > HΨH for all nonzero ψ in T(ηλ),

(3.8) \\D?Sv\\2 < 2\\v\\2 for all nonzero vinUN.

This can be done by mapping the basis elements of U N to suitable eigenvectors

of DUD*. Let S = σyS:MN -+ Γ(η) and TΓ, π be L2-projections onto the

kernels of Du θ S, Z)o θ 5.

Lemma (3.9). 77ẑ re is a constant u0 = w(c, c') swc/z /Aα/ w/ẑ w w > u0,

Du Φ S is surjectiυe, and

π o σγ : Ker(Dω θ 5 ) - > KerZ)M Φ ,S

is an isomorphism.

Proof. This is quite routine, using repeatedly the fact expressed by (3.6)

that the mass of the relevant sections is concentrated over the V 's.

First we show that if u is fixed large enough then



ORIENTATION OF YANG-MILLS MODULI SPACES 411

say, for all φ in Γ(τ/). For if

then \\βφ\\ < /(c + l)/w||φ|| (by (3.6) for D*) so:

K ( Φ ) | | > l | φ | | ~\\βΦ\\ > ( l ~ Ac + l)/u)\\φ\\.

Whereas

\Du*(σyφ)\\ < | ( z > * σ γ - σ γ Z ) * ) φ | + \\oyDu*φ\\

using (3.6) for D* and the hypothesis on φ. Also | |5*σ γ (φ)| | = | |S*φ| | so

'c

and the assertion follows when w > 4(c 4- 1)(1 + y/c' + 1 ) 2 .

For such u, Du® S is surjective and to prove that Π(σ γ Θ 1) is injective it

suffices to show that for any nonzero (/, υ) in Ker(DM Θ S) we have

But

b y (3.8), s o | |£> M /U 2 < 2 | M | Il/U and

||2

say, if w is large enough. Then

\\{bu<B$)(ayf,v)\\

and ||σγ/|| > | | / | | - ||/5/||, so

Ilk/. Oil >*»(/. Oil
and the assertion follows. The same argument shows that Π(σ γ Θ 1) gives a

monomorphism Ker(Z)M θ S ) - > Ker(DM Θ S ) , completing the proof.
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Composing the isomorphism of (3.9) with those of (3.3) gives an isomor-

phism

say. This plainly changes continuously with variations of the stabilizing map *S,

subject to conditions (3.7), (3.8). In particular, if the map S is extended to

S Θ Sλ: RN+M -> Γ(η), then the isomorphism is changed only by a positive

scalar, since we can consider the family S Θ εS l 5 0 < ε < 1. So the isomor-

phism is independent of S. Similarly, using continuity in w, we get an

isomorphism:

We then have the standard fact

Proposition (3.10). If Dt and Dt are families of elliptic operators parame-

trized by a compact space T and for each t e T there are maps σn Θr, Θ, as

above, varying continuously with t, then there is a continuous family of isomor-

phisms

Moreover if Θ,,Θ, can be extended over all of X compatibly with ar then the

isomorphism agrees with the composite of

A(D) = detKerD ® Θ,(detKerZ>) s R,

Λ(Z)) = detKerl) ® Θ^detKerZ)) = R.

This proposition follows immediately from the lemma, the fact that the

conditions (3.7), (3.8) are open, and that the constant w0 depends only on c, cf

and hence on the symbol of D. The point of this section is that we have

obtained the isomorphism using only local operators.

(c) Orientations and instantons: linear algebra preliminaries. In §3(d)

below we relate the different determinant lines Λ(c 1 ? -) by an excision

argument. Here we fix some conventions needed for explicit calculations.

Our guide for fixing orientations is the case when X is a complex Kahler

surface. Then the ASD connections may be identified with certain holomor-

phic vector bundles [3] and their moduli space has a complex structure.

Similarly, at the linear level, the operators 3)A are compatible with a complex

structure and their determinant lines have a standard trivialization.

The complexified de Rham complex of a Kahler surface X decomposes into

(3.11) d=d®d: Ω£'« -> Ω£+1'« -> Ω£'«+ 1.

Contraction with the metric form ω gives an operator Λ:Ω^ + 1 ' ^ + 1 -• Ωfyq

which obeys the Kahler identities

(3.12) 3* = /[Λ,3], 3* = - i[Λ,3]
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[17, p. 193]. Identify the real 1-forms Ω^ with Ω^1 by taking the (0,1)

component and similarly the real self-dual forms Ω+ x with Ω^ ω Θ Ω^2.

Then the operator 9> = -d * Θ d+ is identified with

(-3*θa):Ω0/^ (ΩjfθΩ0/

Here we make Ω° θ Ω^ ω into a complex space ( Ω ^ ) c by:

(3.13) / ω/yfϊ = -1, / 1 = ω/yfϊ.

In the same way the twisted operators 3>A are identified with operators

-θjf θ 3^ commuting with complex structures.

The space of complex structures on IR 4 compatible with a given metric and

orientation is connected (a copy of S2). Choosing one such structure, with

complex coordinates zλ = x0 + ixv z2 = x2 + όc3, we orient the 3-space

Λ2

+([R4)* of self-dual forms by

(3.14) ω Λ a Λ /α,

where ω = dxodxλ + dx2dx3 is the metric form and a is the (0,2) form

dzγ A dz2. Then this orientation is independent of the choice of complex

coordinate system. Together with the metric it makes Λ 2

+(R 4)* into a Lie

algebra with the rule eλ = [e2, e3], where el9 e2, e3 is an oriented orthonormal

basis. Of course this Lie algebra is one of the factors of R + X SO(4)—the

conformal linear transformation of U4. For (φ,w) in U θ Λ 2

+ (R 4 )* the

corresponding vector field δ(φ, w) on IR4 has component φr 3/3r radially and

induces the action -ad(w) on Λ 2

+(R 4)*.

In standard quaternionic coordinates Z = x0 + xxi + x2j + x3k we may

identify the Lie algebras Λ 2

+(R 4)* and lmH by mapping i,j\k to their

coefficients in the quaternionic differential form: -lm(dZdZ). Then IR θ

Λ2

+(IR4) is identified with H and the map 8 is given by left quaternionic

multiplication. So for any compatible C 2 = IR4, δ intertwines the complex

structures on the vector fields over C 2 and on IR θ Λ 2

+ (R 4 )* = C θ Λ°-2(C 2 ) * .

Note also that with this convention the curvature form of the basic instanton

over S4 is minus the identity, as in [6, §V(i)].

Next, let υ be a vector field on a Riemannian 4-manifold X and srf be the

affine space of connections on a bundle E over X. For each point A in J / put

(3.15) a(v9A) = -VJFA G Q1(QE) = Tst.

This defines a vector field a(v, *) on J / which is related to v in the following

way: If /, is the flow on X generated by v and Φ, is the flow on s/ generated

by a(v, * ) , then

Φ,(A)=f*(A).
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We can write a(υ, A) = a + + a~= (-VJFA) + (~viFA), so a = a~ if A is
ASD. A short calculation shows that, in general,

(3 16) ( ί ) ~d>= {d~V^ 'FA+V*'
 d t t >

(ii) -d+Aa*- = [vi(dAFA-)] + +Π(&vg).FA-.

Here v* is the 1-form dual to v9 and H(&og) is the trace-free component of
the Lie derivative of the metric which pairs with FA by the isomorphism
between trace free symmetric 2-tensors and Hom(Λ2_, Λ2

+). Over Euclidean
4-space the 1-forms dual to vector fields δ(φ,w) are annihilated by d~, so for
any ASD connection / over R we have a map i:R Θ Λ2

+(R4)* -> Ker^7;
/(φ, w) = fl~(δ(φ, w), /) (cf. [15, Lemma 8.2]).

Finally note that if X is Kahler and A is any connection the map v ->
a~(υ, A) from vector fields to Q\QE) = Ω 0 1(g£) is complex linear, since FA

is of type (1,1).
(d) Addition of instantons. Let x be a point in X, λ be a small positive

number, and

be an isomorphism of SO(3) spaces. For any U(2) connection A on a bundle E
over X, we denote by A = A'#p Jλ a connection formed as in [6, §IΠ(ii)]. This
is done by flattening A over the annulus:

Ω = [y G X\MN~l)/λ < d(x,y) < MN^}

and attaching a "flattened instanton" Jλ of scale λ. Here N > 0 is a fixed
number chosen as in [6, §IV] and M will be fixed below.

A is carried by a bundle E with q ( £ ) = cτ(E), c2(E) = c 2 (£) + 1. We will
compare the determinant line bundles AE, AE by explicitly comparing the
kernels and cokernels of 3)Λ and Q)A, after stabilization. Define

(3.17) VX = U® A\(T*X)X Θ TXχ9

an 8-dimensional vector space whose orientation is fixed by the conventions of
§3(c) above. When X is Kahler, Vx has a complex structure. An element
(Φ, w, ζ) of Kx defines a conformal Killing-vector field δ(φ, u) + f on Γ ^ , as
in §3(c). Define a map

8x'vx^ (Vector fields on X)

in a similar way, using a normal coordinate system and cutting-off with a
function /?, suppvβ c Ω. Then for any connection B over X and ϋ in Fx let

If 17 = (φ,«,λ?)e Fx we have

(3.18) | | / » | | L 2 ( ^ > const λ( |φ| + \u\ +



ORIENTATION OF YANG-MILLS MODULI SPACES 415

This follows from the approximate homogeneity of the construction with
respect to the scale λ. On the other hand the form of @AOA(V))

 c a n ^ e

estimated using (3.16): d~(δx(υ)*) is small and 8x(v) is approximately a
conformal Killing field. Each of the four right-hand terms in (3.16) gives one
contribution supported in the MN]/λ ball due to the curvature of X and
another supported in the annulus Ω due to the cut-off. Calculations, very
similar to those in [3, Theorem 19] and [10, Proposition 9.29] give

K - ( ί ' » ) \\L\X)

where, for fixed Af, ε(M, λ) < const λ3/2.
Let T be an isomorphism of the bundles g£, g^ away from x which

intertwines the connections A, A. Taubes' argument in [14, Proposition (8.8)]
gives a uniform bound on the eigenfunctions belonging to the low-lying
spectrum of @A^A- I* follows that if we choose a stabilizer map:

with

(3.19)

Then the map ST:R" -> (Ω° Θ Ω+Xo^), ST(Θ) = τ(l - β)S(Θ) stabilizes
®λ. Inequalities like (3.19) hold for 3)^ Sτ with a change in the multiplying
constants to 1 - O(\/λ), 2 + O(γ/λ) since ||Vj8||L2 is O(]/λ). Let π be L2-
projection and define

pτ = π°(iA θ ( l - β)τ® l):Vx® K e r ( ^ Θ S) ^ K e r ( ^ - θ Sτ).

If M is made sufficiently large and then λ made small, (3.18) and (3.19) give

HίM«»It < lll^ί")111-
Arguing as in Lemma (3.7) (compare also [16]) shows that pp is a monomor-
phism. Then the Atiyah-Singer index theorem gives: index(^) — index(^)
= 8 = dimFx so pp is an isomoφhism. Note that the conditions on M, λ
which must be fulfilled are independent of the connection A.

Using the orientation fixed on Vx we get an isomoφhism j x : Λ(Λ) -> Λ(^4),
induced by pτ. This does not depend on the choice of r since two choices differ
by the image of Γ̂  in Aut g E and this is a connected group. We have

Proposition (3.20). The isomorphism j x : A(A) -* A(A) extends continuously
to any family of gauge equivalence classes of connections [A] and points x in X.
If X is Kάhler it is compatible with the complex orientations on A(A) and



416 S. K. DONALDSON

The last property holds because if X is Kahler we can choose holomorphic
normal coordinates so that δx and hence iχ are complex linear. Then the whole
construction is compatible with the complex structures.

Remark (3.21). Suppose, more generally, D: Γ(£) -> T(η) and D: Γ(£) ->
Γ(ή) are elliptic differential operators over X which, away from x, are
intertwined by a bundle isomorphism and near x have the form

D = @A® D\ D = % Θ D'.

Then the argument above gives an isomorphism j:A(D)->A(D) which
agrees with j x I in the case when the direct sum decomposition extends over
all of X.

Corollary (3.22). For any 4-manifold X, I > 0, and [/(/) bundle E -» X the
line bundle A E over the space &E of connections on E is trivial.

Proof. We use the same stabilization as in [3, Lemma 10]. If φ: Sι -> &tE is
a loop and φ': Sι -> 88E> is the corresponding loop representing connections
on E' = E θ L, where L is a complex line bundle, then (wι(AE)9φ) =
(w^Λ^/), φr>, since g r = g £ θ i θ £ ^ L*. This means that, considering
£ θ (det £ ) * θ C ^ , w e may reduce to the case of SU(/) bundles with / » 0.
Then (as in [3]) the pairing of the loop with w1(Λ£) depends Only on the class
it defines in [X, SU] s K'ι(X)/H\X; Z) = H3(X; Z).

Let γ be a loop in Jί and £ θ C ? a n SU(/) bundle, where E has rank 2.
Choose a connection 4̂* on an SU(2) bundle E* with c2(E*) = c2(E) — 1.
Then define a family of connections

Φγ(t) = {A*#p(t)Jλ)eθ

on £ Θ C ? using a left p of γ to Hom(g£, A\x). By Proposition (3.20) the
determinant line bundle is trivial over φγ. On the other hand, arguing as in [6,
Lemma (3.8), Proposition (3.19)], we see that the class defined by φγ in
H3(X\ Έ) is the Poincare dual of [γ]. Since Poincare Duality gives an isomor-
phism HX(X; Έ) -> H3(X\ Z), wι(AEΦCq) pairs trivially with all loops and the
determinant bundles are trivial.

(e) Reductions and complex structures. The vector space H\(X) of self-
dual harmonic 2-forms on a Riemannian 4-manifold X depends upon the
choice of metric. But the determinants, det //+, may all be identified since the
set of maximal positive subspaces for the intersection form is contractible. We
will call an orientation ax of the line

άs\H\X) ® det(H2(X) θ H\{X))

a homology orientation of the 4-manifold. A choice of homology orientation
clearly trivializes the line Λ# corresponding to the trivial SU(2) connection,
since the bundle-valued harmonic forms are then copies of the ordinary ones.
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However there is a choice in the conventions one might adopt and we must
make explicit the one that we use.

If A is any reducible connection on a U(2) bundle, compatible with a
decomposition

and ax is a homology orientation of X we can define an orientation o(L, L\ ax)
of Λ^ First, we fix the decomposition of $E by decreeing that the generator
" 1 " of the trivial factor acts with positive weight on L in the (left) adjoint
representation. Then we write

AA = AA\R * AA\L

and use ax to orient the first term and the complex structure on L to orient
the second. Explicitly, if

and (pj, , pr); and (σ1; , σs) are complex bases for KerDA^L, and
then

o(L,L',ax)

(3.23) = (*i 1)(*2 1) • (*, • l)(Pi * I ) ( P 2 fa) ' ' (P,

® (φ! l)(φ 2 1) • (φ, l ) ( σ i 7σx) (σ, Iσs).

If L is the trivial bundle, so

QE= §u(2) = (eι,e2,e3) with ^x = 1, say, and /e2 = e3,

then this agrees with the orientation

and compares with

by the sign (_i)[/»</
Definition (3.24). ΓΛ^ "standard orientation" of the determinant line AE

when E is an SU(2) bundle over a homology oriented 4-manifold (X,ax) is that
obtained from 6>(C,C,αx) on the trivial bundle and repeated application of the
isomorphism of Proposition (3.20).
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When X is Kahler these standard orientations agree with the complex
orientation defined in §3(c) if we fix the correct homology orientation. Use the
Hodge decomposition to write:

Hι(X;U) = if1'0; H° Θ H2

+= R Θ Rω θ i / 2 ' 0

and let the element ax be defined by the complex structures on these spaces,
where we set / 1 = -ω/ }/ϊ, opposite to (3.13). It is easy to check that the
two orientations agree for the trivial bundle; then the general case follows from
the last sentence of Proposition (3.20).

Any two U(2) bundles with the same first Chern class differ topologically by
a number of "instanton additions." So we may compare the orientations
defined at different reductions.

Proposition (3.25). Let Eo, Ex be U(2) bundle over X with cλ(EQ) = cλ{E^)
which have reductions

Eo = (C Θ Lo) ® L'O9 EX = (C® Lλ) ® L[.

Then the orientations o(Ll9L\,ax) and o(L0, L'0,a'x) compare, via repeated
applications of the isomorphisms of (3.20), with the sign (-l)[£>i(LΌ)-ίi(LΊ)]

Proof. If X is Kahler we can use the index theorem to compare the
orientations at the reductions with the complex orientation. The operator

2)A = ΩX(IR Θ L) -> (Ω1 Θ Q2

+)(R θ L)

decomposes into three parts:

(-3*9 3) : S ! ° ^ ( Ω ° ) c θ Ω 0 ' 2 ,

(-3* e a j ^ Ω0'1 ®CL^ {(Ω°)UC θΩ 0 ' 2 } 0 C L ,

(-β θ ^ Q 0 ' 1 ^ ! ^ {(Ω°)ΘΩ0'2} Θ C L.

The complex structures defined by L and by the base space agree on the
second term and are opposite on the third. Similarly, for the first term, our
homology orientation on the base space uses the opposite complex structure to
that defined by (-3* θ 3). The complex orientation of a vector space W and
its conjugate W differ by (-l)dimcw/. So an orientation o(L, L',ax) compares
with the complex orientation with the sign

/ .\[ind(-3*θθ)z:-ind(-8*θ3)]

By the index theorem this is equal to

Since the isomorphism of (3.20) is compatible with a Kahler structure we see
that o(L0, LQ, ax) and o(Lv L'v ax) compare according to the parity of

Kx-(Cι(L0) - cλ{Lλ)).
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This is the same as the parity of Kx (cλ(L[) - cλ(L'Q)\ since cτ(L0) +

2cλ(L'o) = cx{Lλ) + 2cλ{L\). F i n a l l y ^ D = D2 mod 2, so Proposition (3.25)

is true when X is Kahler.

The same proof works if the base manifold X has an almost complex

structure. Then the spaces Ω\$E) and (Ω° + Ώ,2

+)(QE) have complex structures

and the symbols of the 3)A operators are complex linear. There is a linear

deformation through elliptic operators

&A = (1 - t)2)A - tWAI

from 3)A to the complex linear operator \(βA - I@AI). We can suppose that

the almost complex structure is Kahler in a neighborhood of a point x in X.

So, by Remark (3.21), the isomorphism of (3.20) extends to compare the

determinant lines of 3)A and 3>\ when the instantons are added near x. When

t = j the whole discussion for the Kahler case applies and this can then be

transferred back to the 3)A operators by continuity in t.

The proof of Proposition (3.25) is completed by using an excision argument.

An oriented 4-manifolds admits an almost complex structure if there is an

integral class c lifting w2 and such that c2 = 3τ + 2e. An integral lift of w2

always exists and its square necessarily equals 3τ + 2e mod 4. It follows easily

that for any oriented 4-manifolds X there is a connected sum X#l(S2 X S2)

which admits an almost complex structure. Hence Proposition (3.25) follows

from the lemma below.

Lemma (3.26). Let X, W be closed, oriented 4-manifolds and X = X#W.

Suppose ax, a.χ are homology orientations and Lo, LQ and Lv L\ are complex

line bundles over X with

Cι((C Θ Lx) 0 L'o) = q((C Θ L J ® L;).

Let L, Lo and Lv L[ be the corresponding bundles over X. Then the sign

o(L1,L'1,ax)/o(L0,L'0,ax)

by which the reductions compare is equal to

Proof. Suppose, without loss, that

c2((C Θ Lλ) 0 L\) - c2((C Θ L o ) ® L'o) = / > 0.

There is a 1-parameter family Bt of U(2) connections over X with Bo =

A0#J#J# - #J and Bλ = Av where the At are reducible connections,

compatible with bundle splittings (C θ L, ) ® L , and the instantons are added

at points Xλ,- , Xt outside the region S l c l where the connected sum is

formed.
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Define Dt = -$)B θ 2%o. We may suppose that all the connections Bt are
flat over Ω so over this region there is an excision isomorphism θ for the Do as
in §3(b). If Bt denotes the corresponding family over X, trivialized over
Ώ c W, Proposition (3.10) gives a continuous family of isomorphisms

It suffices to show that these are compatible with the isomorphisms

Ί\AA -^ A n , / : Λ ; —> Λ b

and with the orientations at the reductions.
We may choose the bundle isomorphisms Θ, Θ to be compatible with the

splitting into real and complex parts at t = 0,1. So when t = 1

\ ' Bx Ao Bι Aι

splits into

ef maps α^ ax to α^ ax, by the last clause of Proposition (3.10). Also ef is

induced by a complex linear map. Hence ex maps

o\Lι, L\9 oίxj - oyL0, LQ, OLX)

to the corresponding element in Λ^ Λ^.
When t = 0 there is a diagram:

A D * A A " A D * A A

b b
ΠdetK, = R ΠdetF^ = R

Lemma (3.26) is equivalent to the commutativity of this diagram. In turn this is
equivalent to the commutativity of the similar diagram for the operators
Do + uβθ and Do + uβθ defined using Remark (3.21). But this last fact is
visibly true when u » 0 since the injections ix and ik correspond under σ
and the maps j are made from the composite of these with small L2-
projections.

Recall that the group Hι(X; Z/2) acts on the space 38E of U(2) connections
and the quotient by the action is the space SSQ of connections on the SO(3)
bundle Q E. The operators 3)Λ act on g ̂ valued forms so the determinant lines
descend to give a line bundle Λn over 38n .
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Corollary (3.27). The line bundles Λn are trivial.
» E

Proof. Suppose first that E admits a reduction E = (C Θ L) ® ZΛ An

element p of Hι{X\ Z/2) maps a connection compatible with this reduction to

one compatible with the reduction E = (C Θ L) ® L' ® Lp where Cλ{Lp) is

the image of p by the Bockstein map:

p sends the element o(L, L\ ax) of the determinant line bundle to o(L, Lr ®

Lp, ax). But fcλ(Lp)
2 = 0 so these are equal by Proposition (3.25). Hence AQE

is trivial in this case. The general case can be reduced to this by using

Proposition (3.20) to compare the actions for different values of c2-

Let / : X -> X be an orientation preserving diffeomorphism. Associate to /

the sign af = ± 1, by which / * : H*{X\ U) -> H*(X; U) acts on the homology

orientations. Suppose w is in the image of the reduction map H2(X;Z) ->

H2(X\ Z/2) and is fixed by/*. If c is any lift of w, f*(c) — c vanishes mod2

and

is independent of the lift. Now if ξ is an SO(3) bundle with w2(ξ) = w there is

a natural way in which / acts on the orientations of the line bundle Λξ. We

form an SO(3) bundle Ξ over the mapping torus Xf which restricts to ξ on the

fibers of Xf-> S1. This gives a family of 2Λ operators parametrized by the

circle. The diffeomorphism acts on the determinant line according to the

(reduced) index of this family.

Corollary (3.28). The diffeomorphism f acts on the orientations of Λ^ by the

sign af β(w2(QE)J).

The proof is a simple application of Propositions (3.20) and (3.25).

4. Applications to moduli spaces

(a) Interior local models. If the connection induced by A on Q E in ASD there

is a deformation complex

(4.1) Ω O ( ) " Ω 1 ( )

The kernels of 3)A and 3>% are isomorphic to the parts H\ and H% θ H\,

respectively, of the cohomology of this complex. When i/J and Hj are 0, H\

is the tangent space at [Λ] to a moduli space M of ASD connections on Q E. SO

an orientation of the determinant line bundle orients the moduli space and, in

particular, a homology orientation of X defines standard orientations of the

SU(2) moduli spaces, as in §3.
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In general a neighborhood of [A] in M has a finite dimensional model
ή>~ιφ)/TA c H\/YA. Here Γ̂  c ^ is the isotropy group of A, with Lie algebra
i/J. It acts on the left on H\ and i/2 via the adjoint representation. For each
p in H\ let rp: i/J -> ifj be the derivative of the action; rp(u) = [w, p]. The
map ψ is the i/ 2 component of the curvature of a connection close to A + p.

Linearizing this Kuranishi description at a point p in φ~ι(0) c i/J gives a
complex:

(4.2) î Γ? - H\ - ffj.

If p represents a smooth point of the moduli space, the cohomology of this
complex is the tangent space there. Moreover the orientation of the moduli
space near [A] which is derived from a trivialization of Λ^ and the local
triviality of the determinant line bundle agrees with that obtained from the
complex (4.2). This is just a matter of writing out the definitions and using the
fact that p represents a part of the left action of 9 on J / , whose derivative is
-d*, while δφ represents a part of the derivative d% of the curvature F+ on s/.

Explicit calculations with these determinant lines can be very confusing. The
same point set is given the structure of a continuous line bundle in different
ways depending on the conventions used in (3.2) and (3.3). Similarly the
identity map is not continuous between bundles A(Dt) and A(-Dt). We fix
conventions by saying that if (α l 5 , <*q+p) is a basis for Ker D and βι,-—,βq

for KerZ>*, and if #'(«,) = βi9 i = 1, -,q, and D'(ctj) = 0, j> q, for a
nearby operator D\ then (aλ A ••• /\aqJrp) Θ (βλ Λ ••• Aβq) and (aq+ι

Λ Λ aq+p) represent nearby elements in A(D) and Λ(D').

Suppose that bλ(X) and b${X) are 0 so that the generator 1 in H°(X)
defines a homology orientation. Let E be an SU(2) bundle with c2(E) = 1
which admits a reduction E = L Θ L"1. Assume, for simplicity, that H\ = 0
for the ASD connection Λ corresponding to the reduction. Then we can
compute the standard orientation of the moduli space Mx near [̂ 4] in terms of
its explicit description as a cone on CP 2 . For we know, by (3.23), that the
standard orientation is -o(L2,L~ι,ax). But at a point p in H\ = C 2 the
orientation o(L2, L"1, ax) is

(1) ®(Λ Λ Pp(l) Λ O ^ ^ Λ ^ Λ U4),

where n denotes the normal vector pointing away from the reduction, pp{\) is
i - n, and the vi are lifts of a standard oriented frame in ΓCP2. To obtain the
volume element in the moduli space corresponding to o{L2,L~ι,ax) we
"cancel" (1) with (pp(l)) introducing one minus sign because of their separa-
tion by n. Thus we have:
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Example (4.3). The standard orientation of Mx near a link Pe = C P 2 is

n A (standard orientation of Pe) where n is the normal pointing away from the

reduction.

Of course the same is true for the perturbed moduli spaces of §1 and we see

that there is no cancellation between the homology contributions from the

reductions.

(b) Local models of the ends. Let A be an ASD SU(2) connection on a

bundle E with c2(E) = k and x a point in X. Theorem (5.5) of [6] gives a

description of a neighborhood of the "ideal" ASD connection (A,x) in the

compactification of the moduli space Mk+1. We let N be the product of

IR + X Hom(($E)x, A\x) X (nbd. of x in X] with a neighborhood of 0 in H\.

There is a map φ:N -> H\ representing, as in (a), a projection of the

curvature, φ is equivariant under the left action of Γ^ on N and H\ and a part

of the end of Mk + 1 is modelled on φ~ι(0)/ΓA. So at a point n in N

representing a smooth point in the moduli space there is, again, a finite

dimensional complex

(4.4) H«r-X{TN^Vx®H\)^Hl

with cohomology TMk+ι. Here we have identified a factor Vx in the tangent

space of N using the obvious left action of the conformal affine group of

(TX)X. Then, since N has a fixed orientation, the exact sequence (4.4) gives an

isomorphism between the determinant of TMk+ι and Λ^.

Proposition (4.5). The isomorphism of determinants given by (4.4) is the

same as that defined using the isomorphism of Proposition (3.20).

Proof. This proposition asserts the rather obvious fact that the parametri-

zations of solutions in [16] and [6] agree, up to a small error. The main point is

to get the right signs.

We can suppose that the Riemannian metric on X is flat near x. Let

{ A(n) I n e N } be the family of connections,

A(λ9p,η,p)=A'#pJKη+(l-β)p9

where, as in §3(d), / λ η is the flattened instanton with scale λ and center

cxpx(η). The construction of [6] gives a nearby family ^4°°(«) of connections

such that F + ( ^ 4 ° ° ( H ) ) G (1 - β)H%. Here we have suppressed the map T of

§3(d). The bundles E(n) carrying A(n) and A°°(n) are identified with E away

from x. Since E(n) varies with n it does not make sense to define a derivative

dA/dn mapping to Ωx( g E) but we can define
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Identifying TN with Vx Θ H\, estimates like (4.24), (4.32), and (4.54) in [6]

give

\{A
(4.6) II όn

< const(λ3/2(|φ| + | w | + | € | ) + λ • | 9 | + \p\ \q\\).

The ambiguity in comparing the bundles E(n) for different values of n is
represented by a gauge transformation supported in the ball B inside the inner
boundary of Ω. So dA/dn maps to

Q1(QE)/^A (sections supported in B)

and hence to

Qι(ύt)/dA{[(l-β)H°A]x).

dA°°/dn can be defined similarly. Taking ZΛhorizontal lifts gives

Im[θi/3«] ε {a ε Ω 1 ^ ) \d*a ε (1 - /β)ffj},

Un = \m[M»/<ln] ε {α ε Q ^ g ^ l ^ α ε (1 - yS)^0}.

By the conditions on F+(Λ°°) we have

t/β = {β ε Q^βί) | ^ » α ε (1 - /8)(H° ε Hj)}

and dA°°/dn gives an isomoφhism

a:TNH=VxeHl-+Un.

Define j : !/„ ̂  H^0 θ ffj by s(a) = A if ^ooΛ = (1 - )8)A. Then

soa:TN->H%® Hj

is equal to r* Φ 8φn (cf. (4.4)) where the adjoint r* is formed using the metric
on TNn pulled back by a from the L2-metric on Un and the metric

on //o.
On the other hand we can follow the approach of §3(d) using stabilizing

maps defined by H% and H%. The construction works equally well for the
connections in the linear path from A = A(n) and A°°(n). We get an isomor-
phism p:Vx® H\ -* Un defined by L2-projection of iA*> θ (1 - β\ and we
have defined in Proposition (3.20) an orientation of the moduli space using

Thus to show the orientations agree we need to show that a1 ° P: TN -> TN
has a positive determinant.
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But in fact, when λ and \p\ are small, a~ι ° P is close to the identity. For,
since A°°(n) is ASD,

'><„>(") = a-(A<"(n),δx(°)) = -δx{V)iFΛ~{ny

But we can show, as in [6, (4.30)], that

l|J>(n) - FA(n)\\L\x) < const(λ + |/7|;/λ + |/7|2),

and plainly

| |δ x(φ,W,λ |) | |L Oc < const V f̂lΦI + \u\ + If I).

So

(4.7) H V H + δ » J / > | | < const^( |φ | + \u\ + |f|)(λ + \p\J\ + |/>|2).

But, as explained in §3(c), -δx(v)iFj is the tangent vector at A to the flow
/_*(•) on the connections generated by the flow ft of the vector field δx(v) on
X. Now, if v = (φ, w, o) then

since the rotation e~φ of TXX U {oo} = 5 4 lifts to the basic instanton bundle
Λ2_, preserving the connection and acting on the fiber of infinity. Λ2

+, by
ad(eφ) (cf. §3(c) for the signs). If the translation vector λ£ is not zero a similar
equation holds with a cut-off error of ZΛnorm O(λ9/4 | | | 3 / 4 ) . Combining
(4.6) and (4.7) and supposing \p\ < λ we get

ί ΰA°° II

' X " ) " "SΓ("' 0) < constλ3/2(|φ| + \u\ + \t\).
a r ι \\L2

But P is defined by projecting to Un = Im[3v4°°/3«] so, if \p\ < λ,

| | (P -[dA°°/dn])(φ9u9λξ,q)y < const(λ3/2(|φ| + \u\ + |f|) + λ | 9 | ) .

Whereas

| |P(φ,i/,λf ,?) | |^ > const[λ(|φ| + \u\ + HI) + |?|]

(cf. (3.17)). Hence a'1 ° ? is close to the identity when λ is small, and
Proposition (4.5) is proved. Clearly there are similar statements for the
addition of many instantons and for the perturbed equations of §2.

(4.8) Examples, (i) bι(X) = b\{X) = 0, A a flat, reducible connection of
type (i) or (ii). Then Γ̂  s SU(2) and the model (4.4) is

( ) Vx->0.

There is an oriented basis

K = ( I , e l 9 e 2 , e 3 , e o , e l 9 ε 2 9 ε 3 i ) ,
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where ε, correspond to translations and et to a standard basis of Λ2

+. The map
rn takes a standard basis (fl9 f2, f3) of §u(2) to (-lev -e2, -e3). In the model
of the end of the moduli space as a collar on X the vector " 1 " in TN
corresponds to an inward pointing normal. Hence, using the obvious homology
orientation of X, the standard orientation on this piece of Mλ is

(inward pointing normal) Λ (standard orientation of X).

(ii) b\X) = b\{X) = 0, A a flat, reducible connection of type (iii) with
H\ = 0. Γ̂  is a copy of Sι and the model is

(ff»SR)-K^(ffi3C).

Deform the map φ to its leading term, say (cf. [6, §V]). If α, ia is a real basis
for H\ then at a point x we can choose a frame (fι,f29f3) for g £ so that
αx = θfi> iaχ = % where θ e Λ2

+ x. Then

If 0 is not 0 then the points lying over x where R vanishes correspond to maps
p taking θ to a multiple / fv There are two components, distinguished by the
sign of /. Let θ = leλ where (el9e29e3) is a standard frame for a Λ2

+JC. Then
P(ei) = // defines a point in i^~1(0). The linearized model there is given by

KΛ) = -^i,

Away from the zero set of a the end of the moduli space consists of two sheets,
each a collar on the 4-manifold and the standard orientation of the moduli
space is

(inward pointing normal) Λ (standard orientation of X)

on each sheet.
Deforming this picture to the perturbed equations of §2 we see that the

homology contributions of all the boundary components are of the same sign,
completing the proof of Theorem 1.

(iii) bt(X) = 0, b2(X) = 1\ A a flat reducible connection of type (i) or (ii)
(cf. [5]). Pick a generator ω for H\(X) and give X the homology orientation
-1 Λ ω e det(//° Θ H\). The complex (4.4) is

oφ

and Γ̂  = SU(2). First we can divide iV by SU(2) to obtain a reduced model:

(o,ε)xX > Λ 2

+ .
(Φ ω)
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The 5-manifold (0, ε) X X should be oriented by

(inward pointing normal) Λ (standard orientation of X).
Suppose x is a point where the harmonic form ω vanishes transversally. Then
we can choose local oriented coordinates x0, xl9 JC2, JC3 and an oriented frame
ev e2, e3 for Λ2

+ so that ω = Σ^x x ^ . Then the zero set of φ ω is approxi-
mated by that of ω. The standard orientation of the moduli space is that
corresponding to 3/3JC0 Λ n, where n is the normal pointing into the moduli
space.

(c) The technique of Fintushel and Stern. R. Fintushel and R. Stern prove
Theorem 1 for manifolds whose intersection form represents -2 or -3 and
whose first homology has no 2-torsion [9]. Their argument uses mod 2 ho-
mology and cohomology. Using the oriented moduli spaces we can extend their
argument to remove the hypothesis on Hv

Suppose L is a line bundle over a negative definite manifold X with
cλ(L)2 = -2 or -3, and suppose this is the largest nonzero number represented
by the form. We assume Hλ{X\ R) is zero as in §2. Then Fintushel and Stern
show that the moduli space M of ASD connections on the U(2) bundle
E = C θ L is a compact space of dimension -2cλ(L)2 - 3 = 1 or 3. The
reducible connections present are in 1-1 correspondence with splittings L\ιL
θ Lv where cλ{Lλ) = cλ(L) mod torsion. (Here we are working with U(2)
bundles, so our spaces are finite coverings of Fintushel and Stern's moduli
spaces of SO(3) connections.) In the case when cλ(L)2 = -2 the moduli space
is, generically, a 1-manifold with \Hλ{X\T)\ boundary points. By Corollary
(3.22) and Proposition (3.25) the orientations of the boundary points agree so
we get a contradiction to the existence of such a 4-manifold X in this case.
When cλ{L)2 = -3 Fintushel and Stein show that a (truncated) moduli space
would be an oriented 3-manifold with boundary \HX(X;Z)\ copies of S2.
Again we can suppose that the orientations of the boundary are all equal to
those defined by the o(L\, L\ιL, ax) at the reductions. Define a map

μ:H2(X;Z) -> H2(M\reductions,/),

μ([Σ]) = -c1(det(ind3Σ f Σ)2 ® dtt(ind»^E9Lγι)

(cf. [6, §11]). Then, as in [6, Lemma (2.27)], μ(Σ) restricts to -2(cx(L), Σ) times
the generator on each oriented boundary component and, choosing Σ so that
(c^L), Σ) Φ 0, we again obtain a contradiction.

References

[1] M. F. Atiyah & I. M. Singer, The index of elliptic operators. I, Ann. of Math. 87 (1968)
484-530.

[2] The index of elliptic operators. IV, Ann. of Math. 93 (1971) 97-118.



428 S. K. DONALDSON

[3] S. K. Donaldson, An application of gauge theory to four-manifold topology, J. Differential
Geometry 18 (1983) 279-315.

[4] , Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable
vector bundles, Proc. London Math. Soc. 50 (1985) 1-26.

[5] , La topologie differentielle des surfaces complexes, C. R. Acad. Sci. Paris 301 (1985)
317-320.

[6] , Connections, cohomology and the intersection forms of 4-manifolds, J. Differential
Geometry 24 (1986) 275-341.

[7] , irrationality and the h-cobordism conjecture, J. Differential Geometry 26 (1987)
141-168.

[8] , Polynomial invariants for smooth 4-maniJbids, to appear.
[9] R. Fintushel & R. Stern, SO(3)-connections and the topology of 4-manifolds, J. Differential

Geometry 20 (1984) 523-539.
[10] D. S. Freed & K. K. Uhlenbeck, Instantons and 4-manifolds, Math. Sci. Res. Inst. Publ., Vol.

1, Springer, New York, 1984.
[11] M. Furuta, Perturbation of moduli spaces of self-dual connections, University of Tokyo,

preprint.
[12] N. Habegger, Une variete de dimension 4 avec forme d'intersection paire et signature - 8 ,

Comment. Math. Helv. 57 (1982) 22-24.
[13] H. B. Lawson, The theory of gauge fields in four dimensions, CBMS Regional Conf. Ser. in

Math., Amer. Math. Soc, Providence, RI, 1985.
[14] C. H. Taubes, Self-dual connections on non-self-dual 4-manifolds, J. Differential Geometry 17

(1982) 139-170.
[15] Stability in Yang-Mills theories, Comm. Math. Phys. 91 (1983) 235-263.
[16] , Self-dual connections on manifolds with indefinite intersection matrix, J. Differential

Geometry 19 (1984) 517-560.
[17] R. O. Wells, Differential analysis on complex manifolds, Springer, New York, 1980.

UNIVERSITY OF OXFORD




