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THE ORIENTATION OF YANG-MILLS MODULI
SPACES AND 4-MANIFOLD TOPOLOGY

S. K. DONALDSON

1. Introduction

This paper has two separate purposes. The first is to modify the proofs of [3]
and [6] (which considered simply connected manifolds) to obtain results on the
intersection forms of 4-manifolds in the presence of fundamental groups. As
an extension of the theorem of [3] we shall prove:

Theorem 1. If X is a closed, oriented smooth 4-manifold whose intersection
form

Q:H*(X;Z)/Torsion > Z

is negative definite, then the form is equivalent over the integers to the standard
form (-1)® (-1)® --- &(-1).

In short, the result of [3] (Theorem A in [6]) extends without change to
manifolds with arbitrary fundamental groups. For indefinite forms we shall
prove:

Theorem 2. Let X be a closed, oriented smooth 4-manifold with the following
three properties:

(1) Hi(X; Z) has no 2-torsion.

(ii) The intersection form Q on H*( X)/Torsion has a positive part of rank 1
or 2.

(iii) The intersection form is even.

Then Q is equivalent over the integers to one of the forms

(0 1) (O 1)69(0 1)
1 0/ 10 1 0/

In short, Theorems B and C of [6] extend to manifolds with no 2-torsion in
their first homology group.

Received March 26, 1986 and, in revised form, October 13, 1986.



398 S. K. DONALDSON

This second result seems less satisfactory and it is possible that more is true.
Recall that the intersection form on a 4-manifold X is even provided w,(X) €
H?*(X;Z/2) maps to zero in the universal coefficient sequence:

(1.1) Ext(H,(X;Z);Z/2) - H*(X;Z/2) - Hom(H,(X;Z,2/2)).

The manifold admits a spin structure if and only if w, is zero. Since the
group Ext(H,(X;Z),Z/2) is zero if H, has no 2-torsion, hypotheses (i) and
(iii) of Theorem 2 together imply that X is spin, but are presumably strictly
stronger.

There is an example by Habegger [12] showing that Theorem 2 would be
false without hypothesis (i). Habegger’s manifold is a quotient of a K3 surface:
it has fundamental group Z /2 and the nonstandard intersection form (-E;) &

0°3), with a positive part of rank 1. At the same time this example shows that
the hypothesis of Rohlin’s Theorem is sharp: the signature of Habegger’s
manifold is 8 while Rohlin’s theorem asserts that of a spin 4-manifold is
divisible by 16. In this example the manifold is not spin although the
intersection form is even; w, corresponds to the nonzero element in
Ext(H,,Z/2) = Z /2. Thus an interesting open problem, suggested by this
example of Habegger, is to find whether hypotheses (i) and (iii) of Theorem 2
can be replaced by the condition that the manifold be spin.

The proofs of Theorems 1 and 2 follow the pattern explained in §III of [6].
We use the solutions of the anti-self-dual (ASD) Yang-Mills equations over the
4-manifolds to obtain compact manifolds-with-boundary parametrizing
families of connections, and exploit the zero pairing between the boundary
of these and suitable cohomology classes. The first new feature that arises is
the greater complexity of the ends of the Yang-Mills moduli spaces themselves.
In general the moduli spaces M, of ASD connections on a bundle with ¢, = k
have compactifications M, involving contributions from the lower spaces
M; (j < k). If the 4-manifold has fundamental group =,, then the space M,,
parametrizing representations «; — SU(2), may itself be complicated. How-
ever from the point of view of the differential equations these flat solutions are
degenerate. They can be perturbed away and the same perturbation is then
used to modify the ends of the higher moduli spaces. Given this basic idea the
detailed constructions of perturbations in §2 below are not very enlightening.

The second new feature, which is needed here only for the proof of Theorem
1, is an account of the orientation of Yang-Mills moduli spaces. The develop-
ment of this is the other main purpose of the paper. We show the spaces are
orientable, define canonical orientations, compare these at different points in
the moduli spaces, and compute the action of the diffeomorphisms on the
orientation. These results are needed for certain other applications of gauge
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theory to topology [5], [7], [8], and are really a part of index theory. We
calculate by using excision arguments but in order to make contact with the
explicit models of [6] these are done with differential rather than pseudo-
differential operators. For manifolds without 2-torsion in H,, Fintushel and
Stern have given a simpler argument to show that many nonstandard intersec-
tion forms do not occur. In §4 we remove the assumption on H; from their
argument using these results on orientations. Meanwhile, M. Furuta has given
a proof of Theorem 1 for manifolds having H; = 0 [11]. His proof is similar to
the one we give in §§2, 3 but introduces some interesting new constructions.

The author is grateful to W. D. Neumann for useful discussions, to M.
Furuta for pointing out a mistake in the first version of the paper, and to
Harvard University and the Institut des Hautes Etudes Scientifiques for
hospitality during the writing of this article.

2. Description and deformation of moduli

(a) Flat connections over negative definite manifolds. If a smooth, oriented

4-manifold X has a negative definite intersection form, then the index Theo-
rem predicts the ““virtual dimension” of M, (X)—the moduli space parame-
trizing ASD connections on an SU(2) bundle with ¢, = k—to be
(2.1) dim M, (X) = 8k — 3 + 3b,(X).
To prove Theorem 1 it suffices to consider manifolds X with first Betti number
b,(X) equal to 0. We can use the argument of Fintushel and Stern [9]: If
surgeries are performed on loops v, representing an integral basis for the free
part of H,(X; Z), we get a new manifold with the same form on H,/Torsion,
the same torsion in H; and with b, = 0. (Another approach is to fix the
manifold X but “cut down” the moduli spaces M, to the subsets M,
representing connections whose monodromy around the loops v, is 1. This
imposes 3b,( X) constraints on the connections, dim M, = 8k — 3, and all the
arguments below may be carried out using the cut down moduli spaces.)

According to Freed and Uhlenbeck [10] the moduli space M, is, for generic
Riemannian metrics on X, a smooth manifold of the dimension given by (2.1)
except for singularities associated to Abelian reductions of the bundle. When
b, = 0 (so dim M, = 5) there is one such singularity for each reduction and so
for each pair:

(2.2) +e,ec H¥(X;Z), e?=-1.

Let A be the finite abelian group H,(X; Z) and 4 = Hom(4, S') = Ext(4,Z)
the dual group. The reductions in M, corresponding to a given element in
H?/Torsion form a principle A set since A is the torsion subgroup of H2.
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The moduli space M( X') parametrizes flat SU(2) connections and hence the
conjugacy classes of representations p : m( X) — SU(2). We divide these repre-
sentations into four kinds:

(i) The trivial representation =, — {1} corresponding to the product con-
nection §. This has isotropy group I'y = SU(2) in the gauge group of bundle
automorphisms.

(ii) Nontrivial representations =, — { +1} mapping to the center of SU(2).
These are in (1-1) correspondence with the elements of order 2 in A and also
give connections with isotropy SU(2).

(iii) Reducible representations, not of type (i) or (ii), which map to a copy of
S1 in SU(2). Up to conjugacy in SU(2) these correspond to pairs +a where
a € A, 2a # 0. The corresponding connections have isotropy S™.

(iv) Irreducible representations associated to connections with isotropy +1.

If the only representation is the trivial type (i) the arguments in [3], [10] or
[6, §III] go through unchanged. The moduli space M, has a natural compacti-
fication M, = M, U X and, since H,(X) is necessarily zero, the count of
internal singularities is the same. In general there is a compactification
M, U (M, X X) [6, §1II] but rather than analyzing this we will deform the
equations defining M, and hence the ends of M;. The key point is that the
virtual dimension of M, is negative.

(b) Deforming the equations. Let X be a Riemannian 4-manifold with
b, = 0 and negative definite intersection form. If y: S — X is a loop based at
a point x in X and A4 a connection on an SU(2) bundle P over X, let
h,(A) € (Aut P), be the holonomy of the connection around y. We will use
these to define gauge invariant perturbations of the ASD equations F_(A4) = 0.

Choose a map

¥:SU(2) - su(2),

equivariant under the adjoint actions, which inverts the exponential map when
restricted to the complement of a small ball around -1 € SU(2). The equivari-
ance of { gives corresponding maps

Yo (AutP) - (a5),

to the bundle of Lie algebras g, associated to P. If » € Q2 (X) is a self-dual
2-form supported in a small neighborhood of x, define a section

(2.3) T=1(»,7,4) € %5 (g5)

by first spreading ¢, (4, (4)) € (gp), to a section of g, defined over a
neighborhood of x (using parallel transport along radial geodesics) then taking
the tensor product with ». For fixed », y this gives a gauge invariant map from



ORIENTATION OF YANG-MILLS MODULI SPACES 401

the connections on P to ©2(g ). Let = be the set of maps defined by finite

linear combinations of these:
N

o(4) = Z g7(v, v, 4),

i=1
and for each 0 € = let M{ be the space of equivalence classes of solutions to
the equations

(2.4) F.(A4) +0(4)=0.

When o = 0 this is the usual moduli space of ASD, hence flat, connections
described in (a). The global analytical properties of the perturbed equations fit
into the framework of the infinite dimensional Fredholm equations described
in [6, §IV], to which we refer for notation: The maps 4 — o(A4) from, say, L{
connections (with p > 2) to L? 2-forms are smooth and their derivatives are
compact operators factoring through the inclusion of L in L?. So the spaces
Mg have virtual dimension -3.

Begin with the case when H,(X;Z)= 0. Then M,(X) is the union of a
compact set V' parametrizing irreducible representations of type (iv) and a
single point [6] of type (i), which is isolated from V, since H,(X;R) =0

Lemma (2.5). If A is any flat irreducible connection, then there are finite sets
{v;}/=1 of loops in X and 2-forms {v;}/_, supported in small balls around the
base points of the v, such that:

(i) The sections 7(v,,v;, A) generate the vector space H? = Q2 (g p)/Imd}.

(i) (v; U supp ;) N (y; U supp;) is empty fori # j.

(iii) Any 2-dimensional homology class in X may be represented by a surface
disjoint from the v,, supp »;.

Proof. There is a finite set of points x;,---,x, in X such that the
harmonic lift H? ¢ Q2(gp) of H? restricts monomorphically to

A2+(gP)xa

We take N = 9m and for each a choose a small ball round x, over which the
sections in H?2 have small variation and 9 distinct points inside it.

Now for each point x, the set of possible holonomies 4. (A4) for loops y
based at x, is dense in (Aut P), since the connection is irreducible. So there
are three loops Y1 Y2.00 V.o such that the yh, =e,, formabasisof (g,), .
Choose a basis w, 4, @, ,, w;, for (A% )x, and label the nine points near x,, by
X; ja = X(€; 4 w; ). Then we can choose loops v, ;, based at x; ;, whose
holonomy is close to that of vy,,, and 2-forms v, ; , approximating “8-
functions” at the x; ; ,, close to multiplies of w; , in a local-trivialization of

A2

lja’
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By general position we can arrange that these sets of loops and forms satisfy
conditions (ii) and (iii) of the lemma. Property (i) follows from the fact that,
when the approximations in the construction are made sufficiently fine, no
nonzero element of H} can be orthogonal to all of the 7(»; G Yijao A)-

Since the set V of flat irreducible connections is compact we can suppose the
Y;, ¥; (i = 1,---, N) chosen so that the three conditions of Lemma (2.5) hold
for all the points [A4] in ¥ simultaneously. We fix such a choice and consider
the N-parameter family of deformed equations:

N
F.(4)+ ) er(v,y,4)=0.
i=1
Proposition (2.6). Suppose H,(X; Z) = 0 and choose v;, v; as above. Then
for any r > 0 we can choose (&;) € RY with |(¢;)| < r such that for each index j
and any t in [0,1] C R the only gauge equivalence class of solutions to the
equation

N
E; :F (A)+ Z em(v, v, 4) + t7(v;,7,,4) = 0
is that of the trivial flat connection .
Proof. (Compare [13].) Consider the universal equation

N
F.(4)+ Z 51‘(”1"7:"‘4) =0
i=1

over the product # X R" of the space of equivalence classes of connections
% = o//g with the parameter space R". By property (i) of (2.5) this equation
has maximal rank over V' X {0} so when restricted to the product of an L{
(manifold) neighborhood U of V' in & and a ball |¢| < r, the universal zero set
Z is a manifold of dimension

dimker(d} ® 7,):kerd* ® R —» Q% (g,)
= index(d¥ ® d};) + N= N — 3.
Now for each index j in {1,-- -, N} consider the obvious projection
Z->RY > R)TY,

forgetting the jth coordinate. By Sard’s Theorem the image in RY ™' has
empty interior. It follows that for a second category subset of vectors & in
B(r) c R" there are no solutions of E .« (for any 7) in U. Considering the N
conditions simultaneously we arrange the same thing for all ;.
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But when ¢ is small enough the only solution of the equation E;, (for ¢ in
[0,1]) outside U is [6]. For, since H2(X) = 0, this flat connection is a regular
solution of the original equation. So under small deformations it persists as an
isolated solution of the new equation. If there were other solutions A, then,
letting & tend to 0, we obtain a sequence of equivalence classes of connections
with || F|| 2, ||F,||.» — 0 but with no subsequence converging to L{ to a flat
connection. This would contradict Uhlenbeck’s compactness Theorem.

We consider next the solutions of the perturbed equations when H,(X; Z) is
nonzero and there are more reducible connections in M,. We need only
consider separately these of type (iii)—the reductions of type (ii) define the
trivial flat connection on the adjoint bundle g, and their local deformation
behavior is the same as [6].

If A4 is a reduction of type (iii), corresponding to a splitting g, = R & L®2,
where the flat complex line bundle L®? is nontrivial, then a neighborhood of
[4]in M, is modelled on the zeros of an equivariant map

(2.7) CPEHI(X;LM):CP”sHi(X;Lm)

divided by the action of T, = S'. Here we have used the index theorem to
relate the dimensions of H!, H2 and these spaces can be identified with those
obtained from the cohomology of X in the twisted coefficient system L®2 In
just the same way the solutions of the universal equation

F, (A)+Z2¢1,=0
are modelled by a quotient of the zeros of a map:
(28) X:CPXRY > CP Xch = ¢

Let D be the component of the second derivative of x which maps R" to
Hom(C”,C”*"). The first derivative of ¢ at 0 vanishes, so if D(e) is an
injection for some small ¢ in R" then the corresponding deformed equation
has an isolated solution associated to the bundle reduction.

Lemma (2.9). There are finite sets {v,}, {v;} satisfying conditions (ii) and
(iii) of Lemma (2.5) such that for each reduction of type (iii) and an open dense
subset of the vectors ¢ = (g,), _, in R", the map D(¢) above is injective.

Proof. Write D(¢g) = Zf‘: 1€, D;. It suffices to show that D(¢) is injective for
some ¢ in R". We begin with a simple algebraic fact: suppose on the contrary
that D(e) fails to be injective for all & then either N;KerD, is a proper
subspace of C? or ¥,Im D, is a proper subspace of C?*!. The proof is left to
the reader. We need, then, to choose the y;, »; so that neither of these
alternatives occur.
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Now D; is obtained from the derivative (87/84)(»;,Y;, A) by projecting to
the quotient H? and restricting to the “transversal” 4 + Hj. Suppose that y
is a loop in X such that s (4) = +1. Then:

o= (&0 0], o

where P.T. denotes the local parallel transport near the base point x of v,
using the flat connection A. In turn the derivative

(6 192 € 0(a,) = [2°7],
is given by
(2.10) (%)(u) = fs P(ya) € L®?

for a € Q'(L®?). Here P, denotes the A-horizontal pull-back of sections of
Y*(ap) to the fiber over the base point. So for any element { € (L2), we
have a number ({, (8h,/84)a) obtained by integrating around 7.

Let IT: X — X Dbe the finite covering given by a fixed leaf of the horizontal
foliation of (L~2). The twisted cohomology H'(X; L®?) is isomorphic to a
subspace of the ordinary cohomology H'( X; C)—an eigenspace of the genera-
tor of the covering group. Dually the loop v lifts to a loop ¥ in X and if { is
the Lift o{ x the number (§,(8h,/84)a) is the usual pairing between H 1(X)
and H(X).

But any class in H;(X;C) is represented by an R-linear combination of
horizontal lifts of loops y. It follows from the fact that the pairing between
H'(X)and H,(X) is perfect that there are finitely many loops v, for which

(43} %}%:HI(X; L®) - @ L®?
i i '

is a monomorphism. Then, for suitable »,, no nonzero vector in H' is
annihilated by all the D, and, as in (2.5) we can arrange that no harmonic form
is perpendicular to all of Im(87,/8,).

The general position arguments for (2.6), (2.9) combine to give:

Corollary (2.11). If X has a negative definite form and H,(X;R) = 0, there
are finite sets {v,;}, {v;} satisfying conditions (ii) and (iii) of (2.5) and an
e = (g,;) in RY such that the equation

N
F+(A) + Z eiT(Vi’Yi, A) = F++ o= 0
i=1
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in % has only isolated solutions corresponding to the abelian reductions. The
cokernels H2° of the differential of F,+ o have complex dimension 1 at the
solutions of type (iii) and O at other solutions. Moreover we can suppose that the
only solutions of the equations E;, of Proposition (2.6) (j in {1,---,N}, t in
[0,1)) are either flat of types (1), (ii) or in small L{ neighborhoods of the flat
reductions of type (iii).

(c) Indefinite forms. As b = b; grows, the virtual dimension of M,
-3 — 3b, decreases (assuming always that H'(X;R) = 0). Irreducible flat
connections can be perturbed away just as in (2.6). Moreover we are able to
avoid solutions in larger families of equations. For a vector ¢ in R", any b
indices jj,---, j, in {1,---, N}, and numbers ¢,,---,¢, in [0,1] we consider
the equation

b
Ej;-”'.jh»h«wth:F++ Z g7 + 2 1,8, T, = 0,
1€ {Ju} a=1

obtained by contracting any b coordinates. In contrast to the negative definite
case, the abelian reductions of type (iii) also disappear after small deforma-
tions.

Proposition (2.12). If by (X) > 0 and H'(X;R) = 0, then there are loops
and forms, as in (2.11), and a perturbation € in R™ such that the only solutions
of the perturbed equation

F.+ Z SiT(Vi,Yi,A) =F,+e=0

correspond to the flat reductions of type (i), (i1). Moreover we can suppose that the
only solutions of the b dimensional family of equations E; ... . .. are either
flat of type (1), (i) or in small L{ neighborhoods of flat reductions of type (iii).

Proof. At an abelian flat connection A of type (ii) there is now a compo-
nent of H? = H2(X) ® H2(X; L?) fixed by the isotropy group T,. The local
universal model has the shape

x:C? X RN - CP+1+bi x RO3,

Let E be the component of the derivative of x mapping RY to R*? = H2(X).
Solutions near [ 4] are removed by the small deformation & in R"Y if E(e) is
nonzero. But

N

E(e) = H( Y gh, (A4) -,

i=1

b

where I1:Q2(X)—> H2(X) is projection. (Note that the h,(4) lie in the
trivial component of g, = R ® L®2) This can be made nonzero by choosing
the loops so that &, (A) # 0, using the fact that L®2 is not trivial.
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(d) Deforming the ends. Let «;,a, be two classes in H,(X,Z) where X
satisfies the hypotheses of Theorem 1 and has zero first Betti number. We will
compute the intersection pairing «;, @, using the moduli space M7’ of solu-
tions to a suitable perturbation F,(A) + o’(A) = 0 of the ASD equations for
connections with ¢, = 1.

Fix a perturbation o = Y¢,7(»,,v;, —) on the connections with ¢, = 0, as in
Corollary (2.11), with ¢, small. The loops y; and supports of the forms », are
disjoint from surfaces 2,, 2, representing a;,a,. Let § be small compared
with the separation between (y; U supp;), (v; U supp;) (i # j) and between
the (y, U suppy;) and Z,. For any connection 4 we define a “scale” or
“inverse concentration” A(4) > 0 as in [3]. Choose the perturbation ¢’ so
that:

(1) 6’(A) = 0 if the scale A(A4) > 6.

(i) If A(A4) < /2, then

N
0'("1) = Z Pi(A)eiTi(Vi"Yi’A),
i=1

where p, is a smooth function, p,(4) € [0,1], p; = 0 if the scale of A restricted
to the &-neighborhood of y; U suppy; is less than §/4, and p; = 1 if this scale
is bigger than 8/2. The definitions in the different regions are smoothly
patched together using bump functions.

Now choose representatives Vs , Vs, for the cohomology classes over spaces
of connections associated to £, 2,, as in [6, §III]. By general position these
can be chosen so that V5 and V3, do not meet any of the discrete set of flat
reducible connections over X. The V'’s are closed so, by Corollary (2.11), when
e is small then do not meet any of the solutions of the equations E; , on the
bundle with ¢, = 0.

We analyze the ends of the space

N=M"NVs N Vs,

If [A4,] is an infinite sequence of gauge equivalence classes in N containing no
convergent subsequences, then the same arguments as for the ASD equations
themselves show that A(A4,) tends to 0. Moreover if we “blow up” neighbor-
hoods of points where the concentration is large the rescaled connections
converge to the standard instanton with total action 872 The total action of
any solution to the equation F,(A4) + ¢’(A) = 0 on the bundle with ¢, = 1 is
872 + |la’(A)||>

We can suppose the ¢, were chosen originally to be so small that ||o’(4)||? is
less than 872 for any connection A, hence there is at most one center of
concentration of A; when i > 0 and we can assume these converge to a point
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p in x. Then p must lie on one of the intersection points =; N =,. For, by the
defining property (ii) of o', when i is large the connections A, satisfy the ASD
equations near their centers of concentration. So Uhlenbeck’s Removal of
Singularities theorem applies as in the usual case to show that the 4; converge
on the complement of p to a limit A_, a connection on the trivial bundle. This
connection must satisfy one of the equations E;, since the functions p; take
values in [0, 1]. Hence it does not lie in either V5. This implies that the point p
must lie in 2, N 2, (cf. [6, §III]). Hence we also see that A4 satisfies the
equation

(F.+0)(4,)=0.

Thus the ends of N are made up of connections with one center of
concentration near a point of 2, N 2, and close, away from this point, to one
of the reducible connections making up M. Conversely, the connection of this
kind satisfying the equation F_,(A) + o(A) = 0 can be analyzed in the same
way as the ASD connections themselves using the alternating method of [6,
§8IV, V]. This is quite clear since the perturbing term o is supported away
from the center of concentration. (Note however that we do not have a
canonical harmonic lift of the cohomology spaces H?° given by the zeros of a
formal adjoint.)

We can read off the contributions to the ends of N using the (perturbed
analogue of) Theorem (5.5) of [6]. By Proposition (3.19) of that reference we
can suppose the Vs N Vy represented locally by connections where the center
lies exactly on an intersection point of =, N X,. Initially we ignore signs.

Proposition (2.13). Let X satisfy the hypotheses of Theorem 1 and have
H(X;R)=0. If N=M" N Vs N Vs is chosen as above, the end of N
associated to a point p of 2, N 2, and a reducible connection A in Mg has the
form of an open interval if A is of type (i) or (ii). If A is of type (iii) the end is
modelled on the quotient by S* of the zeros of an equivariant map

9:SO(3) X R*— C.

Here S'  SO(3) acts on SO(3) by multiplication and acts on C with weight 1.

Perturb the situation slightly, if necessary, to get transversality and truncate
N to a compact 1-manifold-with-boundary N, as in [6, §III]. Using Lemma
(2.27) of [6] we can arrange that the contribution to the boundary of N from
each reduction of the ¢, = 1 bundle—Ilabelled by + e where e? = —1—consists
of

(2.14) (- e)(a,-e)
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points. For each intersection point of 2,,2, in x we can use Proposition
(2.13) to arrange that the contribution to ON from a reduction consists of

(2.15) { 1 point if the reduction is of type (i) or (ii),

2 points if the reduction is of type (iii)

(since the degree of the bundle SO(3) X ¢ C over S? is 2).

In §83 and 4 below we will define an orientation of the moduli spaces, and
hence N, and calculate the orientation at the different points of AN to show
that the oriented boundary is

8N=%— Z(al'e)(a2'9)+ Z o - Qy

e2=_1 Reductions

(216) of type (i), (ii)
+2 Y a; - a,.

Reductions of
type (iii)

So:

S L (e ) e)| =141y ),
e€ H?/Torsion
e?=-1
and the intersection form is standard, as asserted by Theorem 1.

The proof of Theorem 2 is easier. If X satisfies the hypotheses there, and
H,(X;R) = 0, then there are no reductions of type (ii). Hence we can find
deformed equations as in Proposition (2.12) whose only solution is the flat
product connection §. Make a further small deformation so that o(A4) = 0 if
all the h_ (A) are very close to 1. Then modify the ends of the higher moduli
spaces, as above, and use the argument of [6]. The description of the links of
the perturbed moduli spaces is unchanged since the equations are the same for
connections close to 8 over U(y; U supp »,), no orientations are involved since
the proof uses mod 2 cohomology.

3. Orientations and the determinant line bundle

(a) Determinants. The “determinant line” of a real elliptic operator

D:T(§) - I'(4,)

defined over a compact manifold is the 1-dimensional vector space

(3.1) A(D) = det(KerD) ® det(CokerD)*.
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(Here det( ) denotes the highest exterior power of a finite dimensional vector
space.) If s,,- - -, s are sections of £, generating cokerD and S:R" - T'(£,)
is the corresponding map with S(e;) = —s;, then the exact sequence

(3.2) 0 —» KerD - Ker(D & S) » RY - cokerD — 0
defines a natural isomorphism:
(3.3) A(D) = det(Ker (D & S)) ®(detR™)*.
It follows that if the operator D varies in a continuous family, then the
determinant lines of the family form a bundle over their parameter space [2]. If
the bundles £, and §, have complex structures, commuting with D, then the
determinant line has a standard orientation induced by the complex structures
on KerD and coker D. (Recall that the usual orientation of a complex vector
space with basis e;,---,e,ise; AJe; A -+ Ae, A Je,.)

Let X be any compact oriented Riemannian 4-manifold, £ - X a rank 2

unitary bundle, and g the associated SO(3) bundle. If 4 is a connection on E
let 2, be the operator:

(3.4) D,=-drod; (ay)~ (20 92)(g,).

An orientation of A(2,) will define an orientation of an appropriate Yang-
Mills moduli space—spelled out in §4 below. We shall make a small abuse of
language by talking of canonical isomorphisms between determinant lines
A(D) where more precisely we mean isomorphisms of their orientations
A(D)/R™.

The action of the gauge group on the connections lifts to the determinant
lines. For any connection A4 the stabilizer I, has a connected image in
Aut(g ), so the determinant lines A , = (2,) descend to form a bundle A
over the space %, of gauge equivalence classes. Topologically such unitary
bundles E correspond exactly to pairs (¢,(E),c,(E)) so there are infinite
families of determinant line bundles A ; = A(cy, ¢,), indexed by H*(X; Z) X Z.

(b) Excision. Suppose that a compact Riemannian manifold Z is written as
a union of open sets Z = U U V and that D:T'(§) - I'(n) is a first order real
differential operator over Z. Suppose that over U there is a bundle isomor-
phism ©:T'(§) — I'(n) relative to which D is skew adjoint: (Df,®f) = 0 for
f e Cx(&| ). Choose cut-off functions 8, y with

0<B,y<1l, B=T1lonsupp(Vvy), supp(B)c U,
supp(1 = B) < V, supp(y) € V, supp(l —y)c U.
Let Z = U U V be another manifold with a corresponding set-up: D, 0, ¢ 4,

B, 9. Suppose there is a diffeomorphism ¢ from ¥ to V, lifting to bundle
isomorphisms, and relative to this diffeomorphism the two sets of data
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correspond over the V'’s. We will construct an excision isomorphism between
the determinant lines A,, A7. This could be done easily using pseudo-
differential operators, as in [1], but those would be harder to combine with the
isomorphisms needed in §3(d), (¢) below.

For u > 0 define

(3.5) D,=D+uBO®:T(£¢) - I'(n)

over Z and similarly D over Z. Suppose A > 0 and f is a section of ¢ with
1D, f1I* < Allf]|* (all norms are L?); then

AIAIZ = <D.f,0(Bf)) = (Df,0(Bf)) + ullBfII’
> {(Df,O(Bf)) + (D(Bf),O(f))} — cllfII> + ull Bf1I?

for a fixed constant ¢, independent of u. The first term on the right vanishes so

(36) IBA1I> < (X + ) /u) I f11%.

We can suppose that the same constant ¢ gives similar inequalities for D*, D,,
and DX

Define four maps, all of which we denote by o,, from ') to I‘(é), from
I'(n) to T'(®), from T'(¢) to I'(£), and from I'(%) to I'(n), by cutting-off using
the functions v, ¥ and then applying the identification ¢ over the V’s. So for f
in I'(£):1D,0,f — o,D,f||* < ¢’|Bf||?, and we can suppose that the same
constant ¢’ (independent of u) gives similar inequalities for the other “commu-
tators.”

For each fixed u choose a map S:R" — I'(n) so that

(3.7) (D, ® S)*|| > ||¢|| for all nonzero ¢ in T'(7,),
(3.8) [IDXSv||* < 2||v||* for all nonzero v in R™.

This can be done by mapping the basis elements of R" to suitable eigenvectors
of D,D¥. Let § = oYS:[BN—> I'(7) and 7, # be L>projections onto the
kernelsof D, ® S, D, ® S.

Lemma (3.9). There is a constant uy = u(c,c’) such that when u > u,
D, ® S is surjective, and

#o0,:Ker(D,® S) > KerD, ® §
is an isomorphism.
Proof. This is quite routine, using repeatedly the fact expressed by (3.6)

that the mass of the relevant sections is concentrated over the V'’s.
First we show that if u is fixed large enough then

(D, ® $)*s] > 1lel,
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say, for all ¢ in T'(®). For if
(D, @ $)*s| <lldl,
then || 33|l < \/(c + 1) /ul|$|l (by (3.6) for D*) so:
lo, (&) = 1ol =188l = (1 = V(c + 1)/u)]d].

Whereas
|Dx(0,)|| <|[(DFo, — 0,D) ] +[o, D3

using (3.6) for D* and the hypothesis on ¢. Also ||.S *67(&))“ = 1S *$|| so

-y

< ”(Du ® S)*0o “

Io] <] o,¢

<f(b,0 $)75] +  LEDHD gy

and the assertion follows when u > 4(c + 1)(1 + V¢’ + 1)2
For such u, D, ® § is surjective and to prove that II( o, @ 1) is injective it
suffices to show that for any nonzero (f, v) in Ker(D, ® S) we have

|(D. @ $)(o,f.0)| < 5](e,f.0)

But
|DD.1 || = | Dol < V2ol
by (3.8), s0 |D,f|* < 2||v]| || f]l and
2 _ 2 + o) fI1?
18P < Al IIIIfII Il

< [Max( 35 = )10

10 10

say, if u is large enough. Then
(D, @ $)(o,f,0) || < Ve IBf 1| < (£, 0)
and |jo,f]| > /1l = |1Bf1}, so
|(o,f.0) [ > %I(7.0)]

and the assertion follows. The same argument shows that II(o, & 1) gives a
monomorphism Ker(D ® $) - Ker(D, ® S), completing the proof.
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Composing the isomorphism of (3.9) with those of (3.3) gives an isomor-
phism
€0.6.0.5.4:A(D,) — A(bu),
say. This plainly changes continuously with variations of the stabilizing map .S,
subject to conditions (3.7), (3.8). In particular, if the map S is extended to
S @& S, :R¥*M - T'(n), then the isomorphism is changed only by a positive
scalar, since we can consider the family S ® &S;, 0 < ¢ < 1. So the isomor-
phism is independent of S. Similarly, using continuity in u, we get an
isomorphism:
e6.0.,:A(D) > A(D).
We then have the standard fact
Proposition (3.10). If D, and b, are families of elliptic operators parame-
trized by a compact space T and for each t € T there are maps o0,,0,,0, as
above, varying continuously with t, then there is a continuous family of isomor-
phisms
€0,,0,.0,: A(Dz) - A(b,)

Moreover if ©,,0, can be extended over all of X compatibly with o,, then the
isomorphism agrees with the composite of

A(D) = detKerD ® ©,(detKerD) = R,
A(D) = detKerD ® O,(detKerD) = R.

This proposition follows immediately from the lemma, the fact that the
conditions (3.7), (3.8) are open, and that the constant u, depends only on ¢, ¢’
and hence on the symbol of D. The point of this section is that we have
obtained the isomorphism using only local operators.

(c) Orientations and instantons: linear algebra preliminaries. In §3(d)
below we relate the different determinant lines A(c;,—) by an excision
argument. Here we fix some conventions needed for explicit calculations.

Our guide for fixing orientations is the case when X is a complex Kahler
surface. Then the ASD connections may be identified with certain holomor-
phic vector bundles [3] and their moduli space has a complex structure.
Similarly, at the linear level, the operators &, are compatible with a complex
structure and their determinant lines have a standard trivialization.

The complexified de Rham complex of a Kahler surface X decomposes into

(3.11) d=00103:Q07> Q2 14 5 Qpatl
Contraction with the metric form w gives an operator A: Q4§19+l — Qg9
which obeys the Kihler identities

(3.12) 0* =i[A,0], 9* = -i[A,d]
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[17, p. 193). Identify the real 1-forms Q! with Q%! by taking the (0,1)
component and similarly the real self-dual forms Q2 , with Q% - w @ Q%2
Then the operator @ = —d* & d™ is identified with

(-3* ©3): 0% - (2%)° @ 292,
Here we make Q° & Q% - w into a complex space (2%)€ by:
(3.13) I-w/N2 =-1, I-1=w/2.

In the same way the twisted operators &, are identified with operators
-3* & 0, commuting with complex structures.

The space of complex structures on R* compatible with a given metric and
orientation is connected (a copy of S?). Choosing one such structure, with
complex coordinates z; = x, + ix;, z, = x, + ix;, we orient the 3-space
A2 (R*)* of self-dual forms by

(3.14) w A aA la,

where w = dxydx, + dx,dx; is the metric form and « is the (0,2) form
dz, A dz,. Then this orientation is independent of the choice of complex
coordinate system. Together with the metric it makes A% (R*)* into a Lie
algebra with the rule e, = [e,, e;], where e, e,, e, is an oriented orthonormal
basis. Of course this Lie algebra is one of the factors of R*Xx SO(4)—the
conformal linear transformation of R® For (¢,w) in R & A% (R*)* the
corresponding vector field 8(¢,w) on R* has component ¢rd/dr radially and
induces the action —ad(w) on A% (R*)*.

In standard quaternionic coordinates Z = x, + x;i + x,j + x;k we may
identify the Lie algebras A% (R*)* and ImH by mapping i, j, k to their
coefficients in the quaternionic differential form: -lm(dZdZ). Then R &
A% (R*) is identified with H and the map & is given by left quaternionic
multiplication. So for any compatible C2 = R*, § intertwines the complex
structures on the vector fields over C2and on R @ A% (R*)* = C @ A%*(C?)*.
Note also that with this convention the curvature form of the basic instanton
over S* is minus the identity, as in [6, §V(i)].

Next, let v be a vector field on a Riemannian 4-manifold X and & be the
affine space of connections on a bundle E over X. For each point 4 in &/ put

(3.15) a(v,4) = -vIF, € Q(g;) = T

This defines a vector field a(v, *) on 2/ which is related to v in the following
way: If f, is the flow on X generated by v and ®, is the flow on =/ generated
by a(v, *), then

®,(4) =/%(4).
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We can write a(v, A)=a*+ a = (-viF{)+ (-viF;), so a=a  if 4 is
ASD. A short calculation shows that, in general,

(i) -dra = (d v*)-F,+v*-d}F;,
(i) ~dja®— = [vi(d,F;)]"+1(2,g8) - F;.

Here v* is the 1-form dual to v, and II(Z,g) is the trace-free component of
the Lie derivative of the metric which pairs with F, by the isomorphism
between trace free symmetric 2-tensors and Hom(A2 , A%). Over Euclidean
4-space the 1-forms dual to vector fields §($,w) are annihilated by d~, so for
any ASD connection I over R we have a map i:R & A% (R*)* - Ker9,;
i(p,w) = a (8(¢p,w), I) (cf.[15, Lemma 8.2]).

Finally note that if X is Kahler and A4 is any connection the map v —
a” (v, A) from vector fields to Q'(g ) = Q%(g ) is complex linear, since F;
is of type (1, 1).

(d) Addition of instantons. Let x be a point in X, A be a small positive
number, and

(3.16)

p: (gE)x - (A2+,X)x
be an isomorphism of SO(3) spaces. For any U(2) connection 4 on a bundle E
over X, we denote by 4 = A’#,J, a connection formed as in [6, §1I1(i1)]. This
is done by flattening A4 over the annulus:

Q={yeX|MNWX <d(x,y) < MNYX)
and attaching a “flattened instanton” J, of scale A. Here N > 0 is a fixed
number chosen as in [6, §1V] and M will be fixed below.
A is carried by a bundle E with ¢,;(E) = ¢,(E), c,(E) = ¢,(E) + 1. We will
compare the determinant line bundles A, Aj; by explicitly comparing the
kernels and cokernels of 2, and 9, after stabilization. Define

(3.17) V.=R & A% (T*X),® TX,,
an 8-dimensional vector space whose orientation is fixed by the conventions of
§3(c) above. When X is Kahler, ¥, has a complex structure. An element
(¢, u,$) of V, defines a conformal Killing-vector field 6(¢,u) + { on TX,, as
in §3(c). Define a map

8,.:V, — (Vector fields on X)
in a similar way, using a normal coordinate system and cutting-off with a
function B, suppv C 2. Then for any connection B over X and v in V, let
i5(0) = a”(B,8,(v)).

If v=1(¢,u,A{) € V, we have

(3.18) li4(0) l2(x) > const A(1g] + Ju] + [£]).
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This follows from the approximate homogeneity of the construction with
respect to the scale A. On the other hand the form of 2;(i;(v)) can be
estimated using (3.16): d~(8,(v)*) is small and 8 (v) is approximately a
conformal Killing field. Each of the four right-hand terms in (3.16) gives one
contribution supported in the MNYA ball due to the curvature of X and
another supported in the annulus @ due to the cut-off. Calculations, very
similar to those in [3, Theorem 19] and [10, Proposition 9.29] give

. A
124(i 4(0)) |l 20x) < Const(F + e(M, A)),

where, for fixed M, e(M, \) < const /2,

Let 7 be an isomorphism of the bundles g, gz away from x which
intertwines the connections 4, A. Taubes’ argument in [14, Proposition (8.8)]
gives a uniform bound on the eigenfunctions belonging to the low-lying
spectrum of 2,;25%. It follows that if we choose a stabilizer map:

S:RY > (°e Q2)(gz)
with
(3.19)

2
(2, @ $)*a| > llalf, |2250]5 <2187, 56|~ < const|®]].

Then the map S.:RY - (2°® Q2)(g;), S.(®)=r(1 — B)S(®) stabilizes
9. Inequalities like (3.19) hold for 2;, S, with a change in the multiplying
constants to 1 — O(YA), 2 + O(YX) since ||VB]|,2 is O(WA). Let 7 be L*
projection and define

p,=mo(i;®(1—-B)re1):V, ®Ke(2,0S)—> Ker(2; ® S,).
If M is made sufficiently large and then A made small, (3.18) and (3.19) give

|24(i20) 122 < 3ia(0) [z
Arguing as in Lemma (3.7) (compare also [16]) shows that p, is a monomor-
phism. Then the Atiyah-Singer index theorem gives: index(2;) — index(2,)
=8 = dimV, so p, is an isomorphism. Note that the conditions on M, A
which must be fulfilled are independent of the connection A.

Using the orientation fixed on ¥, we get an isomorphism j, : A(4) > A(A),
induced by p,. This does not depend on the choice of 7 since two choices differ
by the image of T', in Aut g ; and this is a connected group. We have

Proposition (3.20). The isomorphism j.: A(A) = A(A) extends continuously
to any family of gauge equivalence classes of connections [ A] and points x in X.
If X is Kahler it is compatible with the complex orientations on A(A) and A(A).
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The last property holds because if X is Kahler we can choose holomorphic
normal coordinates so that 8, and hence i ; are complex linear. Then the whole
construction is compatible with the complex structures.

Remark (3.21). Suppose, more generally, D:T'(¢§) - I'(n) and D:T &) -
I'(7) are elliptic differential operators over X which, away from x, are
intertwined by a bundle isomorphism and near x have the form

D=9,0D, D=9;0D.
Then the argument above gives an isomorphism j:A(D)— A(D) which
agrees with j - / in the case when the direct sum decomposition extends over
all of X.

Corollary (3.22). For any 4-manifold X, | > 0, and U(l) bundle E — X the
line bundle A . over the space %y of connections on E is trivial.

Proof. We use the same stabilization as in [3, Lemma 10]. If ¢: S — % is
a loop and ¢':S' — %, is the corresponding loop representing connections
on E'=FE & L, where L is a complex line bundle, then (w;(Ag),¢) =
(Wi (Ag), ¢y, since ggr =g ® R & E ® L* This means that, considering
E & (det E)* ® C?, we may reduce to the case of SU(/) bundles with / > 0.
Then (as in [3]) the pairing of the loop with w,(A ;) depends only on the class
it definesin [ X, SU] = K "Y(X)/HY(X;Z) = H3(X; Z).

Let y be a loop in X and E & €7 an SU(/) bundle, where E has rank 2.
Choose a connection A* on an SU(2) bundle E* with c,(E*) = c,(E) — 1.
Then define a family of connections

¢, (1) = (A*#,,,J,) © 0
on E & C9 using a left p of y to Hom(gg, A% ,). By Proposition (3.20) the
determinant line bundle is trivial over ¢,. On the other hand, arguing as in [6,
Lemma (3.8), Proposition (3.19)], we see that the class defined by ¢, in
H?3(X; Z) is the Poincaré dual of [y]. Since Poincaré Duality gives an isomor-
phism H,(X;Z) - H3(X;Z), w,(A goc+) pairs trivially with all loops and the
determinant bundles are trivial.

(e) Reductions and complex structures. The vector space H2(X) of self-
dual harmonic 2-forms on a Riemannian 4-manifold X depends upon the
choice of metric. But the determinants, det H2, may all be identified since the
set of maximal positive subspaces for the intersection form is contractible. We
will call an orientation a, of the line

det H'(X) ® det( H*(X) ® H( X))
a homology orientation of the 4-manifold. A choice of homology orientation

clearly trivializes the line A, corresponding to the trivial SU(2) connection,
since the bundle-valued harmonic forms are then copies of the ordinary ones.



ORIENTATION OF YANG-MILLS MODULI SPACES 417

However there is a choice in the conventions one might adopt and we must
make explicit the one that we use.

If A4 is any reducible connection on a U(2) bundle, compatible with a
decomposition

E=(Co®L)®L, gr=R®L,

and a, is a homology orientation of X we can define an orientation o(L, L, «,)
of A ,. First, we fix the decomposition of g by decreeing that the generator
“1” of the trivial factor acts with positive weight on L in the (left) adjoint
representation. Then we write

A=A Ay

and use a, to orient the first term and the complex structure on L to orient
the second. Explicitly, if

a,=(0,--6,) (s, 9,),
and (py,- - -, p,); and (oy,- - -, 6,) are complex bases for Ker D ;, and Ker Dj;;,
then
o(L, L, a,)
(3.23) = (6-1)(8,-1) - (8, 1)(py - Ipy)(py - Ip2) -+~ (o, - Ip,)

® (¢ - 1)(¢, 1) -+ (¢, 1)(oy - Ioy) -+~ (o, - Io,).

If L is the trivial bundle, so
gr=5u(2) = (e;,e,,e;) withe, = 1,say, and Ie, = e,
then this agrees with the orientation
(8,6,)(8,,)(01e,) - - (©,e5)
® (910,)(d16,)(0165)(d201)(95) - - (9,83)

and compares with

(916‘1)(@291) T (®pe1)(@192) T (@pez)

®(d1e1)(dye;) - - (¢qe1)(¢1ez) e (¢q93)

by the sign (_1)[p(p—1)/2+q(q—l)/2]‘

Definition (3.24). The “standard orientation™ of the determinant line A
when E is an SU(2) bundle over a homology oriented 4-manifold (X, a,) is that
obtained from o(C,C, a,) on the trivial bundle and repeated application of the
isomorphism of Proposition (3.20).
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When X is Kihler these standard orientations agree with the complex
orientation defined in §3(c) if we fix the correct homology orientation. Use the
Hodge decomposition to write:

HY(X;R)=HY;, H9¢H2=Re®Rwo H*®
and let the element a, be defined by the complex structures on these spaces,
where we set 1-1 = -w/ V2, opposite to (3.13). It is easy to check that the
two orientations agree for the trivial bundle; then the general case follows from
the last sentence of Proposition (3.20).

Any two U(2) bundles with the same first Chern class differ topologically by
a number of “instanton additions.” So we may compare the orientations
defined at different reductions.

Proposition (3.25). Let E, E, be U(2) bundle over X with c¢,(Ey) = c¢,(E,)
which have reductions

E,=(Co®Ly)® LY, E =(Ce L)L
Then the orientations o(L,, L, a,) and o(L,, Ly, a,) compare, via repeated
applications of the isomorphisms of (3.20), with the sign (-1)la(Eo)—aZD,

Proof. If X is Kahler we can use the index theorem to compare the
orientations at the reductions with the complex orientation. The operator

2,=08RoL)-> (A 0Q2)RoL)

decomposes into three parts:

(-3* @ 3) 0% - (2°)° @ Q°2,

(-0*®3) 02" 8. L {(Q)uC a0} ecL,

(-0*®3) Q% ®c L - {(2°) ®Q°?} ® L.
The complex structures defined by L and by the base space agree on the
second term and are opposite on the third. Similarly, for the first term, our
homology orientation on the base space uses the opposite complex structure to
that defined by (-9* @ ). The complex orientation of a vector space W and
its conjugate W differ by (-1)%™c¢ ", So an orientation o(L, L', a,) compares
with the complex orientation with the sign

(_1)[ind(—é* ®93)7 —ind(-3* ®3)]
By the index theorem this is equal to
(_1)["1(L)2+Kx“'1(L)]/2.

Since the isomorphism of (3.20) is compatible with a Kahler structure we see
that o(L,, Ly, a,) and o(L,, L}, a,) compare according to the parity of

%(CI(LO)Z - CI(LI)Z) + Ky '(01(L0) - CI(LI))'
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This is the same as the parity of K- (¢;(L}) — ¢;(Lp)), since ¢;(Ly) +
2¢(Ly) = ¢;(Ly) + 2¢,(LY). Finally K - D = D?* mod 2, so Proposition (3.25)
is true when X is Kahler.

The same proof works if the base manifold X has an almost complex
structure. Then the spaces Q!(g ;) and (2° + 22)(g ;) have complex structures
and the symbols of the &, operators are complex linear. There is a linear
deformation through elliptic operators

2,=01-1)9,- 19,1
from 2, to the complex linear operator 3(2, — I2,I). We can suppose that
the almost complex structure is Kahler in a neighborhood of a point x in X.
So, by Remark (3.21), the isomorphism of (3.20) extends to compare the
determinant lines of 2§ and 2} when the instantons are added near x. When
t = % the whole discussion for the Kahler case applies and this can then be
transferred back to the 2, operators by continuity in z.

The proof of Proposition (3.25) is completed by using an excision argument.
An oriented 4-manifolds admits an almost complex structure if there is an
integral class c lifting w, and such that ¢? = 37 + 2e. An integral lift of w,
always exists and its square necessarily equals 37 + 2e¢ mod 4. It follows easily
that for any oriented 4-manifolds X there is a connected sum X#I(S? X S?)
which admits an almost complex structure. Hence Proposition (3.25) follows
from the lemma below.

Lemma (3.26). Let X, W be closed, oriented 4-manifolds and X = X#W.
Suppose a y, a are homology orientations and L, Ly and L, L' are complex
line bundles over X with

a((CeL)®Ly)=c((CoL)®L).
Let L, L, and L,, L, be the corresponding bundles over X. Then the sign
oLy, L}, ax)/o0( Lo, Ly, ax)
by which the reductions compare is equal to
o(L, Ly, ax)/0( Lo, Lj, ag).

Proof. Suppose, without loss, that
e;((Co L)L) -c,((CoLy)®Ly)=1>0.
There is a 1-parameter family B, of U(2) connections over X with Bj =
AfJ#J# --- #J and B, = A;, where the A; are reducible connections,
compatible with bundle splittings (C @ L;) ® L}, and the instantons are added
at points Xj,---, X, outside the region & C X where the connected sum is
formed.
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Define D, = -2, @ 25. We may suppose that all the connections B, are
flat over © so over this region there is an excision isomorphism © for the D,, as
in §3(b). If B, denotes the corresponding family over X, trivialized over
! ¢ W, Proposition (3.10) gives a continuous family of isomorphisms

e,:A(D,) = A(D,).
It suffices to show that these are compatible with the isomorphisms
Jilha = Ap,  JiAg > A
and with the orientations at the reductions.

We may choose the bundle isomorphisms @, © to be compatible with the
splitting into real and complex parts at ¢ = 0,1. So when ¢ = 1

eleBl'AAO'—)ABI 'AA*1
splits into

ef tAy, A

— - . ~
Ao AA1|R AAom’

C M . " - . - -
€ 'AAllLI AAolLo - AA1|L1 A/“llLo'

el maps ay - ay to ag- ay, by the last clause of Proposition (3.10). Also e is
induced by a complex linear map. Hence e, maps

o(Ly, Ly, ay) - o( Ly, Ly, ay)
to the corresponding elementin Ap - A ;.

When ¢ = 0 there is a diagram:

€o

Ay Ay Ap, - A,

0

lf li

IldetV, =R IIdetV; =R

Lemma (3.26) is equivalent to the commutativity of this diagram. In turn this is
equivalent to the commutativity of the similar diagram for the operators
D, + uB® and D, + uB® defined using Remark (3.21). But this last fact is
visibly true when u > 0 since the injections i, and i; correspond under o
and the maps j are made from the composite of these with small L%
projections.

Recall that the group H'( X; Z /2) acts on the space % of U(2) connections
and the quotient by the action is the space %, _ of connections on the SO(3)
bundle g .. The operators 9, act on g ;-valued forms so the determinant lines
descend to give a line bundle A over &, .
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Corollary (3.27).  The line bundles A ; _are trivial.

Proof. Suppose first that £ admits a reduction £E=(C & L)® L’. An
element p of H'(X; Z /2) maps a connection compatible with this reduction to
one compatible with the reduction E = (C & L) ® L’ ® L, where C,(L,) is
the image of p by the Bockstein map:

B:HY(X;Z/2) > H*(X;Z).
p sends the element o(L, L', ay) of the determinant line bundle to o(L, L’ ®
L,,ay). But fcl(Lp)2 = 0 so these are equal by Proposition (3.25). Hence A
is trivial in this case. The general case can be reduced to this by using
Proposition (3.20) to compare the actions for different values of c,.

Let f: X — X be an orientation preserving diffeomorphism. Associate to f
the sign a, = £1, by which f*: H*(X;R) - H*(X;R) acts on the homology
orientations. Suppose w is in the image of the reduction map H2(X;Z) —
H?*(X;Z/2) and is fixed by f*. If c is any lift of w, f*(c) — ¢ vanishes mod 2
and

,B(W, F) _ (_1)((f“(¢')—t)/2)2

is independent of the lift. Now if { is an SO(3) bundle with w,({) = w there is
a natural way in which f acts on the orientations of the line bundle A,. We
form an SO(3) bundle = over the mapping torus X, which restricts to § on the
fibers of X, — S!. This gives a family of &, operators parametrized by the
circle. The diffeomorphism acts on the determinant line according to the
(reduced) index of this family.

Corollary (3.28). The diffeomorphism f acts on the orientations of A, by the

sign ay - B(wy(ag), f)-
The proof is a simple application of Propositions (3.20) and (3.25).

4. Applications to moduli spaces

(a) Interior local models. If the connection induced by 4 on g5 in ASD there
is a deformation complex

(41) 2°(a) %' 2(ap) % 22(a,).

The kernels of 9, and 2% are isomorphic to the parts H} and H) & H,
respectively, of the cohomology of this complex. When H{ and H} are 0, H}
is the tangent space at [ 4] to a moduli space M of ASD connections on g .. So
an orientation of the determinant line bundle orients the moduli space and, in
particular, a homology orientation of X defines standard orientations of the
SU(2) moduli spaces, as in §3.
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In general a neighborhood of [A] in M has a finite dimensional model
¢ 1(0)/T, c H}/T,. Here T, C ¥ is the isotropy group of A4, with Lie algebra
HY. Tt acts on the left on H} and H} via the adjoint representation. For each
p in Hj let r,: H) - H} be the derivative of the action; r,(u) = [u, p]. The
map ¢ is the H2 component of the curvature of a connection close to 4 + p.

Linearizing this Kuranishi description at a point p in ¢ }(0) C Hj gives a
complex:

(4.2) H)—- H,— H3.

» %

If p represents a smooth point of the moduli space, the cohomology of this
complex is the tangent space there. Moreover the orientation of the moduli
space near [A] which is derived from a trivialization of A, and the local
triviality of the determinant line bundle agrees with that obtained from the
complex (4.2). This is just a matter of writing out the definitions and using the
fact that p represents a part of the left action of 4 on &7, whose derivative is
—d,, while 8¢ represents a part of the derivative d; of the curvature F, on /.

Explicit calculations with these determinant lines can be very confusing. The
same point set is given the structure of a continuous line bundle in different
ways depending on the conventions used in (3.2) and (3.3). Similarly the
identity map is not continuous between bundles A(D,) and A(-D,). We fix
conventions by saying that if (a;,- - -, @, ,) is a basis for KerD and B,,---, B,
for KerD*, and if D'(a;))=B;, i=1,--+,4, and D'(e;)=0, j>gq, for a
nearby operator D', then (a; A -+ Aa,,,)® (B A --- AB,) and (&,
A .-+ Aa,,,) represent nearby elements in A(D) and A(D").

Suppose that b,(X) and by (X) are 0 so that the generator 1 in H°(X)
defines a homology orientation. Let E be an SU(2) bundle with ¢,(E) =1
which admits a reduction E = L & L™!. Assume, for simplicity, that H? = 0
for the ASD connection A corresponding to the reduction. Then we can
compute the standard orientation of the moduli space M, near [ 4] in terms of
its explicit description as a cone on CP2. For we know, by (3.23), that the
standard orientation is —o(L? L', ay). But at a point p in H} = C? the
orientation o( L%, L™, ay) is

(1) &(nA p,(1) Avy A vy Avs A vs),

where n denotes the normal vector pointing away from the reduction, p,(1) is
i - n, and the v, are lifts of a standard oriented frame in TCP2. To obtain the
volume element in the moduli space corresponding to o(L?, L™}, ay) we
“cancel” (1) with (p,(1)) introducing one minus sign because of their separa-
tion by n. Thus we have:
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Example (4.3). The standard orientation of M, near a link P,= CP? is
n A (standard orientation of P,) where n is the normal pointing away from the
reduction.

Of course the same is true for the perturbed moduli spaces of §1 and we see
that there is no cancellation between the homology contributions from the
reductions.

(b) Local models of the ends. Let 4 be an ASD SU(2) connection on a
bundle E with ¢,(E) = k and x a point in X. Theorem (5.5) of [6] gives a
description of a neighborhood of the “ideal” ASD connection (A4, x) in the
compactification of the moduli space M, ,. We let N be the product of
R* X Hom((g ), A% ,) X {nbd. of x in X} with a neighborhood of 0 in H}.
There is a map ¢:N — H? representing, as in (a), a projection of the
curvature. ¢ is equivariant under the left action of 'y on N and H? and a part
of the end of M,,; is modelled on ¢!(0)/T,. So at a point n in N
representing a smooth point in the moduli space there is, again, a finite
dimensional complex

r, 8¢,
(4.4) H!-5 (TN =V, ® H}) > H?,

with cohomology TM, ,,. Here we have identified a factor V, in the tangent
space of N using the obvious left action of the conformal affine group of
(TX),. Then, since N has a fixed orientation, the exact sequence (4.4) gives an
isomorphism between the determinant of TM, ,; and A ,.

Proposition (4.5). The isomorphism of determinants given by (4.4) is the
same as that defined using the isomorphism of Proposition (3.20).

Proof. This proposition asserts the rather obvious fact that the parametri-
zations of solutions in [16] and [6] agree, up to a small error. The main point is
to get the right signs.

We can suppose that the Riemannian metric on X is flat near x. Let
{A(n)|n € N} be the family of connections,

AN p,m, p)=4a#,J,,+(1 - B)p,

where, as in §3(d), J,, is the flattened instanton with scale A and center
exp,(n). The construction of [6] gives a nearby family A*(n) of connections
such that F,(A4%(n)) € (1 — B)HY. Here we have suppressed the map 7 of
§3(d). The bundles E(n) carrying A(n) and A®(n) are identified with E away
from x. Since E(n) varies with n it does not make sense to define a derivative
dA /9n mapping to Q'(g ;) but we can define

9 ~
(A% = A): TN, > @(a 5.
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Identifying TN with V, @ H}, estimates like (4.24), (4.32), and (4.54) in [6]
give

A (47 = D)9, 4,08, 9)

< const(X/2(|g] + |u] + |£]) + A - |g] + | p| 4]))-

The ambiguity in comparing the bundles £(n) for different values of n is
represented by a gauge transformation supported in the ball B inside the inner
boundary of Q. So 34 /dn maps to

0o |

L*(X)

Q'(gz)/d; (sections supported in B)
and hence to
Q' (az)/d;([(1 - B)H 4] ").

dA* /9n can be defined similarly. Taking L>-horizontal lifts gives

Im[04/3n] € {a € Q(gz)|dsac (1 - B)H]},

U, = Im[34*/dn] € {a € Q(gz)|dja € (1 — B)H]}.

By the conditions on F_(A*) we have

U,={ac(az)|2,a € (1 - B)(H] € H})}
and 04% /dn gives an isomorphism

a:TN, =V, & H) - U,.
Define s: U, - H? @ H2 by s(a) = h if D4a = (1 — B)h. Then
seca:TN > H) ® H}

is equal to r,*¥ @ 8¢, (cf. (4.4)) where the adjoint r.* is formed using the metric
on TN, pulled back by a from the L*metric on U, and the metric

Il = [ (= B)Idp
X

on HJ.

On the other hand we can follow the approach of §3(d) using stabilizing
maps defined by H? and H2. The construction works equally well for the
connections in the linear path from A = A(n) and 4®(n). We get an isomor-
phism p:V, @& H; — U, defined by L%-projection of i ® (1 — ), and we
have defined in Proposition (3.20) an orientation of the moduli space using

soP:V, @ H, > H}® H?.

Thus to show the orientations agree we need to show that a™'o P: TN —» TN
has a positive determinant.
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But in fact, when A and |p| are small, a~! ¢ P is close to the identity. For,
since A®(n) is ASD,
iA”(n)(U) = a_(A°°(n),8x(u)) = —sx(V)JFA“’(n)'
But we can show, as in [6, (4.30)], that
I £ ©(n) ~ Fi(n)”Lz(x) < const(X + [pWA + |p|?),
and plainly

16, (¢, u, Aé) || < constVA (|| + |u| + [£]).
So

(47) |[L=(v) + 8. (0)1F]| < constVA (|¢] + |u| + [E)(A + [pVA + |p|?).

But, as explained in §3(c), -8,(v)J F; is the tangent vector at A to the flow
f*(+) on the connections generated by the flow f, of the vector field §,.(v) on
X. Now, if v = (¢, u, 0) then

f*(A(X\,p,0,p)) = A(e*X, e p,0, p)
since the rotation e™® of TX, U {c0} = S* lifts to the basic instanton bundle
A%, preserving the connection and acting on the fiber of infinity. A%, by
ad(e?) (cf. §3(c) for the signs). If the translation vector A£ is not zero a similar
equation holds with a cut-off error of L%norm O(N/* - |£>/*). Combining
(4.6) and (4.7) and supposing | p| < A we get
ie(0) = 22 (0,0)

< const N/2(|o| + |u| + |€]).
L2

But P is defined by projecting to U, = Im[dA4*® /dn] so, if |p| < A,

I(P —[84%/38n])($,u, ¢, q) [l < const(N/2(|] + |u] + |£]) + Alg]).
Whereas

IP(¢,u,A¢,q) .2 > const[A(j¢| + |u| + [£]) + 4]

(cf. (3.17)). Hence a'o P is close to the identity when A is small, and
Proposition (4.5) is proved. Clearly there are similar statements for the
addition of many instantons and for the perturbed equations of §2.

(4.8) Examples. (i) b'(X) = b2(X)=0, 4 a flat, reducible connection of
type (i) or (ii). Then T', = SU(2) and the model (4.4) is

5u(2) 5 ¥, - 0.

There is an oriented basis

Ve=1(1,e1,€5,;5; &y, &, &, &1),
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where ¢, correspond to translations and e; to a standard basis of A% . The map
r, takes a standard basis ( f, f,, f3) of 3u(2) to (-le,, —e,, —e3). In the model
of the end of the moduli space as a collar on X the vector “1” in TN
corresponds to an inward pointing normal. Hence, using the obvious homology
orientation of X, the standard orientation on this piece of M; is

(inward pointing normal) A (standard orientation of X ).

(i) bY(X)=b2(X)=0, A a flat, reducible connection of type (iii) with

H} =0.T,is acopy of S' and the model is
(H)=R)-> V, > (H}=C).
Deform the map ¢ to its leading term, say (cf. [6, §V]). If a, ia is a real basis
for H? then at a point x we can choose a frame (f, f,, f;) for g so that
a, = 0f,, ia, = 0f; where 6 € A% . Then
R(A,p) = N([p(6) - f]a +[p(6) - f;] ic).

If 8 is not O then the points lying over x where R vanishes correspond to maps
p taking 6 to a multiple / - f;. There are two components, distinguished by the

sign of I. Let 6 = le; where (e, e,,e;) is a standard frame for a A% . Then
p(e;) = f, defines a point in R~}(0). The linearized model there is given by

r(f) = —eq,
8R(e,) = N([e,, le;] - e5)a; = ~Na,
8R(e;) = N([es, le;] - @)y = N(ia).
Away from the zero set of a the end of the moduli space consists of two sheets,
each a collar on the 4-manifold and the standard orientation of the moduli
space is
(inward pointing normal) A (standard orientation of X)

on each sheet.

Deforming this picture to the perturbed equations of §2 we see that the
homology contributions of all the boundary components are of the same sign,
completing the proof of Theorem 1.

(iil) b,(X) =0, b5 (X) =1; A a flat reducible connection of type (i) or (ii)
(cf. [5]). Pick a generator w for H2(X) and give X the homology orientation
-1 A w € det(H® ® H?). The complex (4.4) is

(H)=R?) > sz—»H}le-w
r 3

and I', = SU(2). First we can divide N by SU(2) to obtain a reduced model:
(0,8) X X—= A%
($-w)
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The S-manifold (o, €) X X should be oriented by
(inward pointing normal) A (standard orientation of X).

Suppose x is a point where the harmonic form w vanishes transversally. Then
we can choose local oriented coordinates x,, x;, X,, Xx; and an oriented frame
ey, e,,e; for A% so that w = ¥3_, x,e,. Then the zero set of ¢ - w is approxi-
mated by that of w. The standard orientation of the moduli space is that
corresponding to 9/0x, A n, where n is the normal pointing into the moduli
space.

(c) The technique of Fintushel and Stern. R. Fintushel and R. Stern prove
Theorem 1 for manifolds whose intersection form represents -2 or -3 and
whose first homology has no 2-torsion [9]. Their argument uses mod2 ho-
mology and cohomology. Using the oriented moduli spaces we can extend their
argument to remove the hypothesis on H;.

Suppose L is a line bundle over a negative definite manifold X with
¢,(L)?* = =2 or -3, and suppose this is the largest nonzero number represented
by the form. We assume H,(X; R) is zero as in §2. Then Fintushel and Stern
show that the moduli space M of ASD connections on the U(2) bundle
E=C @ L is a compact space of dimension —2¢,(L)?> — 3 =1 or 3. The
reducible connections present are in 1-1 correspondence with splittings L7'L
® L,, where ¢;(L;) = ¢;(L) mod torsion. (Here we are working with U(2)
bundles, so our spaces are finite coverings of Fintushel and Stern’s moduli
spaces of SO(3) connections.) In the case when ¢,(L)? = -2 the moduli space
is, generically, a 1-manifold with |H,(X; Z)| boundary points. By Corollary
(3.22) and Proposition (3.25) the orientations of the boundary points agree so
we get a contradiction to the existence of such a 4-manifold X in this case.
When ¢,(L)? = -3 Fintushel and Stein show that a (truncated) moduli space
would be an oriented 3-manifold with boundary |H,;(X;Z)| copies of S2.
Again we can suppose that the orientations of the boundary are all equal to
those defined by the o( L2, L;'L, ay) at the reductions. Define a map

p:Hy(X;Z) - H?(M\ reductions, Z),

p([2]) = —¢,(det(ind 85 5)* ® det(inddy 4q,) ")
(cf. [6, 8§1I]). Then, as in [6, Lemma (2.27)], u(2) restricts to —2(¢,(L), Z) times
the generator on each oriented boundary component and, choosing = so that
(¢,(L),2) # 0, we again obtain a contradiction.
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