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0. Introduction

The classical total curvature of a simple closed smooth (C°°)-curve γ in

euclidean three-space IR3 is

K(y)=j\p\ds9

where s is arclength and p is the curvature density. Denoting by [γ] the isotopy

class of the knot, define the classical total curvature of the isotopy type of γ as

the greatest lower bound

Call the z-coordinate of a system of euclidean coordinates (x, y, z) the height.

Then consider the number of critical points at relative maximal heights on any

y' e [γ] for which z\y' is nondegenerate. The minimum of these numbers for

γ ' isotopic to γ is called the bridge index B[y] of γ. Fox [4] gave lower bounds:

(0.1)

where 1 + σ^γ) is the minimal number of generators of the fundamental

group of the complement I R 3 \ γ , and λ(γ) is a number defined in Fox's

differential calculus for knots and can be computed for any knot [1]. The

invariants λ ( γ ) and B[y] - 1 (see [13]) are additive for connected sums of

knots.

There exist knots for which B(y) > 1 + σ^γ), namely the torus knots yp q,

p > q > 3, with B(y) =q>l + σι = 2 [14], and knots for which σλ > 1 > 0

= λ (see [13]).
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The combined efforts of Fary-Fenchel-Fox-Milnor [2], [3], [4], [10], [11] lead

to

Theorem 1. The classical total {absolute) curvature of a knot y is

K(y) = j \p\ds>K[y] = 2τr B[y] > 2ττ.

For a nontrivial knot equality is never attained:

K(y)>2π-B(y).

Equality, only possible for the unknot K(y) = 2τr, occurs only for plane convex

curves.

The classical total (absolute) curvature K(M) = / \Kpdop\ of an embedded

closed surface M in three-dimensional euclidean space is the integral of the

absolute value of the Gaussian curvature on the surface, and has the simple

equivalent definition as the area counted with multiplicity of the image in the

unit sphere of the associated Gauss (or normal) map.

Let / : T c R3 be an embedding of a torus T in euclidean three-space R3.

We compactify R3 by one point oo to obtain a 3-sphere S3 = IR3 U oo. If each

of the two components of the complement S3\T is standard, that is,

diffeomorphic to a regular neighborhood of a circle in IR3, then T is un-

knotted; it is isotopic to a geometrically standard round torus. Otherwise,

when T is knotted, exactly one of the two components Tu is standard. We will

say that a knot γ in R3 is a core curve for the torus T if it lies in this standard

component, γ c Tu c S3, and there is a diffeomorphism

η:{Sι xD, Sι X 3Z), S1 XO)-^ ( T \ Γ,γ) c S 3,

where D is the unit disc with boundary dD in R2, Sι is the unit circle, and

7^ = τu U T is the closure of Tu in 5 3 . There are many core curves for Γ,

but any two are ambiently isotopic in Tu.

Let K[T] be the greatest lower bound ofK(T') for all T' isotopic in U3 to T.

It is called the classical total curvature of the isotopy type [T] of T. We will

prove our

Theorem 2 (The generalized Fary-Fenchel-Fox-Milnor theorem). The classi-

cal total absolute curvature of a torus T embedded in euclidean three-space R3

obeys:

(0.2a) K(T)=

where y is any core curve and B[y] its bridge index. For a knotted torus, equality

is never attained:

(0.2b) K(T)> 8 i r - 5 [ γ ] ,



THE TOTAL CURVATURE OF A KNOTTED TORUS 373

Equality can occur only when B[y] = 1 which implies the torus is unknotted and

(0.2c) K(T) = 8ττ.

Recall that an immersed surface M in U3 is tight in case K(M) = β 277,

where β = 4 — χ ( M ) is the sum of the Z 2-Betti numbers of the surface.

Before discussing the proof of Theorem 1, we first place the theorem in

proper historical perspective. First, in 1976 Langevin and Rosenberg [7] proved

that if K(T) < I677, then the torus is unknotted. Later, Meeks [8], [9] and

Morton [12] gave independent and different proofs that when the total

curvature of an embedded surface Mg of genus g is less than 4ττ(3 4- g), then

the surface is isotopic to the standard embedding of the surface. An embedding

f:M-* R3 of a closed surface M is called isotopy tight when its total

curvature is minimal in its isotopy class:

κ(f) = κ[f].
The theorem of Meeks and Morton implies that a knotted surface Mg in U3

with total curvature 477(3 4- g) must be isotopy tight. Kuiper and Meeks [6]

proved that there do exist isotopy tight surfaces Mg for every genus g greater

than two with K(Mg) = 47r(3 + g), but not for genus one or two. An

important corollary from our statement of the generalized Fary-Fenchel-Fox-

Milnor theorem is that every isotopy tight torus is actually tight and therefore

unknotted. It is still unknown if there exists an isotopy tight surface of genus

two that is not tight. Theorem 2 is proved in steps:

After recalling known lemmas in §1, we show in §2 that a torus embedding

f:T cU3 obeys the inequality K[T] < 8ττ£[γ]. In §3 we construct a core

curve γ so that K[T] > 8ττ£[γ], which proves K[T] = 8*r£[γ]. In §4 we

conclude by proving the inequality K(T) > K[T] for a knotted torus. The

appendix, §5, gives the proof of a known theorem on knots, which we use in

§2.

1. An elementary property of the total curvature functional

and a review of the fundamental lemma

The total Gaussian curvature of a surface and the total classical curvature of

a knot are related to another functional called the total curvature functional T,

which makes sense for any smooth immersion of a closed /c-manifold Mk into

^-dimensional euclidean space Rn. Consider the SO(«)-invariant measure on

the set of all height functions in R n that vanish at the origin O e IR ". The total

curvature functional τ(F) of the smooth embedding f:Mk c Un is defined to

be the mean or expectation of the number of critical points μ(z ° f) for all
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height functions z:Un -> R, with respect to an SO(« )-in variant measure. In

the case of a knot / : γ c R 3 or a closed surface embedding f:M c R3, the

classical curvatures are related to the new ones as follows:

(1.1) ΛΓ(γ) = τr τ ( γ ) and K(M) = 2ir τ(M),

where by abuse of notation we write τ(γ) = τ ( / ) and τ ( M ) = τ ( / ) respec-

tively. In terms of τ our formulas are simpler: In Theorem 1, for a knot γ in

R 3,

τ{y)>τ[Ί\=2B[Ί]

with equality only for plane convex curves; and in Theorem 2, for a torus

embedding/: Γ c R 3 ,

(1.2) τ(T)>τ[T] = 4B[y]

with equality cw/y for a tight torus, τ(Γ) = 4.

The following elementary lemma is straightforward to prove from the

definition of r.

Lemma 1.1. If M is a closed k-manifold embedded in M" and dNε(M) is the

boundary of a regular ε-neighborhood of M for some small positive ε, then

(1.3) τ(dNe(M)) = 2τ(M).

In particular for a knot γ in R3:

(1.4) τ(97Ve(γ)) = 2τ(γ),

hence by (0.3)

Suppose that / : M c R3 is an embedding of a closed surface in R3. If there

exists a neighborhood N(f) in the space of embeddings /of M i n R 3 in the

C^-norm such that for every affine transformation A of R3 and for every/' in

N(f) the equation τ(/) < τ(Af') is true, then / is called relatively isotopy

tight. It follows from this definition that every isotopy tight surface is relatively

isotopy tight. The following theorem will be of the utmost importance in our

later analysis of isotopy tight tori and its proof can be found in [6].

Fundamental Lemma 1.2. If f\M c R 3 is a relatively isotopy tight embed-

ding of a surface of genus g and total Betti number β = 2 + 2g in three-

dimensional euclidean space, then:

(A) There exists an integer k and k convex surfaces dBx, ,dBk, such that

the set Mκ >0 of all points p of M with positive Gaussian curvature K(p) > 0 is

exactly the analogous set for Uf=1 θi?,:

Mκ>0= u

and τ(F) = β 4- 4(k - 1).
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(B) The unique principal component M* of dBi Π M which contains (dBi)κ> 0

is obtained from 92?, by deleting disjoint open plane convex discs in 92?,.. We now

reserve the word top circle of M for the boundary of such a disc.

(C) The plane Π(γ) of atop circle γ supports some open neighborhood U c M

of Π(γ) Π M*\ that is U lies in one of the two closed half spaces bounded by

Π(γ) . The set Π(γ) ιΊ Mf is then called a relative top set.

Conversely a surface M c R 3 which satisfies properties (A), (B), (C) is

relatively isotopy tight.

2. An upper bound on the total curvature

For any knot γ in R 3 and δ > 0 construct as follows two model tori T^ in

R 3 with T(T/) < 4 £ [ γ ] + δ.

Let C be a smooth simple closed curve in the half-plane {(x,0, z) | x > 0}

chosen so that the bounded component Q of its complement is convex and so

that C Π z-axis = {(0,0, z)\ \z\ < 2} z> C Π 5 l 5 where £ x is the ball of radius

1. For small ε > 0 let Cε be the curve at distance ε from C inside Q.

Definition. Given δ > 0, a knot γ in R 3 with bridge index k is in

8-position if

(a) γ - Bλ = C - Bl9

(b) z I γ is nondegenerate with 2 k critical points,

(c) τ(γ) < 2B[y] + 8/2.

Lemma 2.1. Given δ > 0, any knot in R 3 is ambient isotopic to a knot in

8-position.

Proof. Use the appendix (Lemma 5.1) to isotope γ so that it satisfies (a)

and (b). Then there is an isotopy of R 3 which is the identity on C — Bλ and on

C Π Bγ is (JC, y, z) -* (x/t, y/t, z), 1 < ί < λ. Then for λ large, after the

isotopy,

τ ( γ ) < τ [ γ ] + δ / 2 = 21?[γ]+δ/2 .

For a knot γ in R 3 and δ > 0 let Γγ

+ be the boundary of some small

ε-tubular neighborhood of an isotope γδ of γ in δ-position. In particular, let

TJ be an ε-tubular neighborhood of C. Then by Lemma 1.1, τ[Γγ

+] < τ(Γγ

+)

= 2τ(γ) < 4B[y] + δ and τ[Γ0

+] = τ(T0

+) = 4.

Let Γo~ be the torus obtained by rotating Cε about the z-axis. Then, by

construction, T(TQ) = 4. In general, let T~ be the smooth torus (Γγ

+ Π Bλ) U

(To - * i ) .

For any height function h, the number of critical points μ(/ i °Γ γ

+ )-

μ(h o Γ") = μ(h c Γo

+) - μ(h » To~) so τ(Γγ

+) - τ(Γγ-) = τ(Γ0

+) - τ(T0~) = 0.

Therefore τ(T~) = τ(Γγ

+) < 4B[y] + 8.
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Lemma 2.2. For γ a core curve of a torus T in IR3 τ[T] < 42?[γ].

Proof. T is isotopic in S3 to the boundary of a tubular neighborhood of γ.

It follows that, for any δ > 0, T is isotopic in R 3 either to Γγ

+ or T~,

depending on whether the compactification point lies outside or inside the

tubular neighborhood. Thus τ[T] < 4B[y] + δ.

3. Construction of a core curve γ, and the proof of r [ T ] = 4B [ γ ] ι

Lemma 3.1. For a smooth torus embedding / : Γ c [R3, let z be a height

function so that the restriction

φ = zof= z\T:T -+ IR

is nondegenerate with all critical points at different heights. Then there exists a

smooth Jordan curve y on T, such that φ | γ is nondegenerate with all critical

points of φ | γ contained in the set of index one critical points of φ, and if p is such

a critical point on γ, then neither of the two Jordan curves a and β that make up

the figure 8 level set component W(p) of φ containing p, bounds a disc on T.

Also for any regular value u of φ, and any component V of φ~ι{u), the Jordan

curves γ and V intersect in one single point or not at all.

Remark. The same conclusion holds for any Morse function φ : T -> IR

with critical points at different levels.

Proof. The level set component W(p) = a U β of an index one critical

point p of the height function <p is an immersed circle with one double point in

the horizontal plane z = z(p). It is the union of two embedded circles a and β

which meet in the common point p, where each has a corner. Evidently there is

a small continuous deformation of β inside T near the saddle point p, by

which β is made disjoint from a. By elementary surface topology of the torus

we can distinguish three types of wedges W(p) = a U β in T:

(a) Neither a nor β bounds a disc in T; a and /?, suitably oriented, are

homologous and represent the same essential homology class in HX(T, Z).

(b) Exactly one among a and /?, say β, bounds a disc in T and then the

other a represents an essential one-cycle {a} Φ 0.

(c) Both a and β bound discs: { a} = {/?} = 0.

Let / be the number of critical points of type (a), m the number of type (a)

or (b), and n the total number of critical points of index one, / < m < n. Any

two nonbounding circles obtained as above for index one critical points pt and

1 Morton [12] already gave a proof leading to 4Z?[γ] < τ(T) for Γ i n t a solid torus. However, he
argues by contradiction and does not actually construct the core curve γ.
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Pj Φ Pi are at different levels and disjoint in Γ, so all are embedded circles in
one and the same homology class in Hλ(T, Z).

If W{p) is of type (b), then by elementary surface topology, T\W{p) has
two components, one (by definition of type (b)) an open disc with boundary β,
and the other an open annulus with a as limit at one end and W(p) = a U β
as limit set at the other end. These ends of the annulus approach W{p) from
different sides of the plane z = z(p).

If W(p) is of type (a) then again T\ W(p) has two components, one an
open disc having W(p) as limit set, and the other an open annulus having a as
limit set at one end and β as limit set at the other end. The ends of the annulus
approach W(p) from the same side of the plane z = z(p).

Let pv - , pm be the m > 2 index one critical points of type (a) or (b), with
associated level set wedges W{pt\- —,W(pm). Then there are 2m ^ 4 compo-
nents in

m

τ\ U w(Pί).
ι = l

Each component is either an open annulus without critical points for φ, with
limit set contained in two distinct level sets W(pi) and W(pj), j Φ /, or it is an
open disc with limit set contained in one single level set W(pt) of φ. Observe
that any such annulus is transversal to every horizontal plane between the ends
and any horizontal section of each open annulus represents an essential
homology class on T, and as these sections are mutually disjoint they are
homologous in HX(T\ Z) if suitably oriented.

At each end of each annulus there is a critical point, so that we can make a
sequence that closes, consisting of closures of annuli Al9A2,

m , Ar and
relevant critical points pv , pr9 for which

Pi G A i Π Ai+l> Pi = Pi + r> A i = A i + r

The union of these annuli together with the open discs, one adjacent to each
among pv , pr, yields a closed surface which is part of T. This must be all of
Γ, and therefore r = m.

Since φ l l n t ^ , ) has no critical points, there exist smooth Jordan arcs
γ, c Aj satisfying:

(1) γ, Π dAj = {/>,_!, Pi), i modm,
(2) γ = UJlx γ, is a piecewise smooth Jordan curve, smooth at points of type

(a), and
(3) φ I γ has critical points precisely at { pl9 , pm}.
If α; does not bound a disc in T but β, does bound a disc in Γ, then the

function φ | γ is strictly increasing or decreasing in a neighborhood of the point
pr Thus, after a small perturbation of γ at each such critical point pt of /, we
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may assume that the perturbed curve γ is smooth and has no longer a critical

point near pr It is straightforward to check that γ satisfies the remaining

properties described in Lemma 3.1, which completes the proof of the lemma.

Observe that φ | γ has 2 k = / critical points, where / is the (even) number of

index one critical points of type (a) of φ on T.

Lemma 3.2. // T is an embedded torus in R3, with total curvature τ(Γ), then

there exists a core curve y for which 4B[y] < τ(Γ).

Proof. By definition of τ as an average there exists a height function

z : R3 -> IR, such that φ = z | T is nondegenerate with the smallest number, say

2«, critical points and at different heights. The number of index one critical

points is then n and In < r(T).

In Lemma 3.1 we constructed a Jordan curve on Γ, which curve we now call

γ, for which φ | γ is nondegenerate with 2 k = I < m < n critical points. Then

It remains to construct a core curve γ isotopic to γ, so that B[y] = B[y].

The required γ will be a copy of γ, inside the closure of the standard

component Tu of S3\T.

Let φ | γ attain its minimal value λ at the critical point p, φ(p) = λ. For

8 > 0 sufficiently small we can assume by Lemma 3.1.

(1) φ"1((λ, η]), η = λ + δ, contains no critical point of φ,

(2) the smooth 1-manifold φ'1^) contains components ξl9 ξ2, Jordan curves

near to p, and these are the only components of φ~1(i]) which do not bound

discs on T.

Let F = z~ι(η) be the plane at height z = η and let £3, ,fr be the other

components of P ΓΊ T. Each of them bounds a disc in T. Suppose ξj, j > 3, is

an innermost circle among ξv- , ξr in P. It bounds a disc Dλ in P and a disc

D2 in T. Then Z)1 U D2 is an embedded two-sphere and one of the two open

three-balls components of 5 ' 3 \ ( D 1 U Z>2), S3 = U3 U oo, has no point in

common with T. So D2 in T can be ambient isotoped m S3 over that

component and after a slight final perturbation we have annihilated ζj from

P Π T. Only some small neighborhood of D2 in T is involved in this ambient

isotopy of T. In particular U™=1Ai and γ are untouched by this isotopy of Γ,

where At are the annuli defined in the proof of Lemma 3.1. Proceeding in the

same way inductively, we reach a situation where either ξx or ξ2, say ξl9 is

innermost and it bounds an open disc D in P disjoint from (the new image of)

T. By Alexander's theorem [13] the component of S3\T which contains the

interior of D is a standard component Tu. Since γ intersects precisely in one

point an essential curve in T bounding a disk in Γ", γ is isotopic to a core
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curve γ of T. Then

4B[y] < 4k ^ 2n < τ(Γ),

which completes the proof of the lemma.

Since 4B[y] < τ(T') holds for any T isotopic to Γ, Lemma 2.1 implies the

corollary: τ[T] = 4B[y\

4. Isotopy-tight knotted torus

Theorem 2b. There is no isotopy-tight knotted torus in U3.

Proof. Let / : T c IR3 be a knotted isotopy tight torus with total curvature

We will deduce a contradiction.

If z IT is a nondegenerate height function, then it has exactly 4k critical

points of which 2 k are of index one, which we can assume to have different

heights. By the construction in §3 of the core curve γ there must be at least

2i?[γ] = 2k index one critical points of type (a). Hence all are of type (a) and

their wedges Wt = α ; V /?,, / = 1, , k, have nonbounding components ai and

βi in T. Recall Lemma 1.2, where k convex surfaces dB, are constructed with

principal compact parts of M = T:Mf = T+ c 32?,., / = 1, , k, obtained

by deleting from each dBt open convex plane discs. The remaining part of T,

Γ\Uf = 1 7] + , has open components, say Tj~ 9 j = 1, , r, whose ends have a

union of one or more plane convex top-circles as limit sets.

The Gauss-curvatures on T{

+ and Tj~ are K > 0 and, K ^ 0, respectively.

Suppose T+ has only one boundary component, the top circle ξ. Assume ζ lies

in the horizontal plane z = 0 which then supports Tt

+. If zf is a height

function very near to z and z'\T is nondegenerate, then it has near to ξ a

critical point of index one with associated wedge W = a U β. This wedge is

contained in some small neighborhood in T of the disc T+. So a and β are

both bounding in T which is a contradiction. Therefore, Tt

+ is obtained from

θi?, by deleting at least two open plane convex discs, and the Euler characteris-

tic is

A component T~ cannot have only one end with limit set a top-circle either,

because the distance to the plane of that top-circle would have to have a

positive maximum on the open disc Tj~, for which points of positive curvature

K > 0 are needed in Tj~. So also χ(7}~) < 0. It might be that on 35, two open

discs deleted are in the same plane and even tangent to each other, so that T+
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would not be a two-dimensional surface with boundary. But then we can

enlarge the parts Tt

+ a little bit by adding small collars from \Jr

JΊmlTj~ to

obtain a surface with boundary. It is easily seen that under all circumstances

there is the sum-formula:

k r

o = χ(r) = Σx(τΓ)+ Σ'x{sτr).
i - l 7 = 1

As χ(7;.+ ) < 0 and χ(7}~) < 0, it follows that

χ(7].+ ) = 0, / = l , ,/c, and χ(7}~) = 0, y = l , , r .

We conclude that for all i and j , 7]+ is obtained from 32?,- by deleting exactly

two open plane convex discs, and T~ is an open annulus. Then we obtain a

cyclically ordered covering of T by alternating pieces Tt

+ and open annuli T~:

Γ = Γ 1

+ U Γ 2 ~ U J I

2 " U Uτ£ u 77,

where

37;+ = ξ. U η, , .
/ mod/c.

7)~ is the closure of T~ in Γ, £1? τj1? £2, τj2

 a r e successive essential

top-circles on Γ, and all such are counted.

For any set X c (R3 denote by Jf?(X) the smallest convex set containing X,

the convex hull of X. A variant of Lemma 5.1 in [6] for our case is

Lemma4.1. 7)+ njP(ξi+ι) = 0, andTι

+

+ι Π ̂ (η,-) = 0 , /mod A:.

Proof. Let the top-circle ξ/ + 1 be in the horizontal plane Π(ξ i + 1 ) with

equation z = 0 and T,+

+ι under the plane. Suppose Tt

+ meets the plane disc

J f ( σ x ; + 1 ) , hence in its interior (see Figure l(a)). We fill the ends of the

annulus T~ with the convex disc Jίf(ξi+ι) and ^ ( η , ) to obtain a piecewise

smooth immersed two-sphere

s2=τr

Since T~ has nonpositive curvature, we see that the sphere S2 lies in the

convex body «^(£/+i U η ;).

Take points p and q in the interior of T(

+ c 3i?z, near to maximal and

minimal height points of z on T{

+ respectively. Connect p and q by one arc σx

inside 7]+, and one arc σ2 outside J^{T^ U £ / + 1 U η,.), starting at p going

vertically up and arriving at q vertically up. The arcs σx and σ2 can be chosen

such that σx U σ2 is an embedded circle σ, which meets the immersed

two-sphere S2 only in one point of the plane disc J^(ξi+ι) and the intersection

is transversal. This is impossible. The same argument gives the second relation.
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Lemma 4.2. // ξi+ι has a point x in ^(7^ + ), then

(i) Vlnjr(Tt

+

+l)= 0.

a)

FIGURE 1

Proof. See Figure l(b). As x e ξi+ι c Tt

+

+1 is a point in 3^{T^ we see

that T++ι has a point in ^ ( 7 ^ ) . By Lemma 4.1 we know

τr+1n[τr u^(η,)] = 0,
so the convex surface dBi+1 can get out of Jf(7]+) only through the disc

JP(ξi). But then £ / + 1 = 3tf{Jf+{) cannot meet ^ ( η , ) , nor ηi9 and the lemma

follows.

If ξi+1 has no point in JF{T+), then

(ϋ) ί l . + 1 π j r ( τ ; + ) = 0 .

So we can assume either (i) or (ii). We will assume (i).

Lemma 4.3. // η, ΠJίT(Tι

+

+ι)= 0 , then

JTiT+JcjeiT+J and ηi+ι n JT(T++2) = 0 .

Proof. See Figure l(b). Choose a height function z so that the disk

Jf(ηi+ι) is horizontal and in the plane z = 0. If η, 0 ^ ( 7 ) ^ ! ) = 0 , then the

horizontal disk Jf(τj/+1) separates the ends η, and ξ / + 1 of T~ from each

other, and T~ meets the convex ball

for almost all small t ̂  0 in a smooth 2-manifold with smooth boundary,

which must be an annulus because z cannot create handles (no maxima or

minima) on (the interior of) T~+ι. With a small vertical ambient isotopy we can

therefore assume 8 itself to be one smooth circle (in fact one can prove that δ

must be a smooth circle from the beginning). The annulus A c T~ between
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ξi + ι and δ divides J^(Tt

+

+1) in two parts. Let W be the closure of the part that

contains ηi+ι. Its boundary is dW = J ] +

+ 1 U ^ U A , where Δ is the plane

annulus between δ and Ί ] / + 1 .

The highest point of Tt~+1 lies inside W, as well as on the top circle ξi+2,

hence also on T++2. The convex body Bi+2= 3V(T+_2) as well as T++2 therefore

has a point inside W, and 7j+2 cannot escape through dW except through

Δ c j ^ ( η / + 1 ) . But by Lemma 4.1 this is excluded also, as 7]+2 Γ\Jί?(ηi+ι) = 0 .

Therefore 7)+2 c W c Jf(Tf+1), and so JPTf

+

+2 c ^ P Γ c J f (7;+x) as well as

η / + 1 Π J^(7] + 2 ) = 0 , and Lemma 4.3 is proved.

Conclusion. By Lemma 4.2 we can assume η( Π ̂ ( 7 ) + i ) = 0 so that the

conclusion of Lemma 4.3 holds for our case. Then we can apply Lemma 4.3

inductively starting with index z = 1 for / = 1,2,3, , fc, k + 1 = 1 modk

and get the impossible sequence of proper inclusions

This proves Theorem 2b.

5. Appendix. A lemma on knots

Lemma 5.1. // γ is a knot in U3 with bridge index k, then there exists a knot

a isotopic to γ which satisfies:

(1) z I a is a Morse function with 2k critical points.

( 2 ) α Π 5 1 = {/>€ΞR 3: |/>|<1}.

( 3 ) α Π dBλ = {(0,0,1), (0,0,-1)}.

(4) There is a closed interval Ida with 3 / = a Π dBλ and z | / has no interior

critical points.

( 5 ) / lies in the vertical half disc

P= {(x,y,z)eBl:y = 0,x>0}.

(6) The component C of P\I that contains (1,0,0) is disjoint from a.

Remark. Observe that Lemma 2.1 is an immediate consequence of Lemma

5.1; just apply a suitable ambient isotopy to a as obtained in Lemma 5.1 under

which any point q moves in its horizontal plane z = z(q).

Proof. The existence of a knot aλ satisfying all of the properties except (6)

is clear. Choose the knot aλ to satisfy not only properties (l)-(5), but suppose

also that aλ is transverse to C, and that the intersection points of C Π aλ are

not critical for z \ aλ and have different z-values.

Choose one of these points p and for convenience let z(p) = 0. Take a

small closed interval neighborhood / of p on a such that z\J is nondegener-

ate (monotone) and such that

V= {(x,y9z) G Bι:3(t,y,z) e / and x> t)
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is an embedded closed disc disjoint from ax\J (see Figure 2). The piecewise
smooth knot

a2 = (aλ U 3K)\Int/

is C°-isotopic to av

0,0,0)

Let σ be a smooth arc in dBλ that connects the ends of the arc dV Π dBλ

such that z | σ has no interior critical points and σ Π C = 0 . The piecewise
smooth knot

a3 = (a2 U σ)\Int(3KΠ dBx)

is C°-isotopic to α2, av and γ. After a small perturbation we obtain a smooth
knot α4 which is isotopic to γ, satisfies properties (l)-(5), and has one less
intersection point with C than av After a finite number of such isotopies, one
for each point of C Π av we find the required knot a for which (l)-(6) hold.
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