A STRICT MAXIMUM PRINCIPLE FOR AREA MINIMIZING HYPERSURFACES

LEON SIMON

It is a well-known consequence of the Hopf maximum principle that if M_{1}, M_{2} are smooth connected minimal hypersurfaces which are properly embedded in an open subset U of an $(n+1)$-dimensional Riemannian manifold N, if $\bar{M}_{1} \sim M_{1}, \quad \bar{M}_{2} \sim M_{2} \subset \partial U$, and if M_{1} lies locally on one side of M_{2} in a neighborhood of each common point, then either $M_{1}=M_{2}$ or $M_{1} \cap M_{2}=\varnothing$.

If we replace the hypothesis that $\bar{M}_{j} \sim M_{j} \subset \partial U$ by the hypothesis that the ($n-1$)-dimensional Hausdorff measure (i.e. \mathscr{H}^{n-1}) of $\bar{M}_{j} \sim M_{j} \cap U$ vanishes for $j=1,2$, then we still have either $\bar{M}_{1}=\bar{M}_{2}$ or $M_{1} \cap M_{2}=\varnothing$. However this latter alternative leaves open the question of whether or not $\bar{M}_{1} \cap \bar{M}_{2} \cap U$ $=\varnothing$, and it is this question which interests us here.

Here we settle the question affirmatively in the area minimizing case. Specifically (in Theorem 1 of $\S 1$) we show that $\bar{M}_{1} \cap \bar{M}_{2} \cap U=\varnothing$ if $M_{1} \cap M_{2}=\varnothing$ in case M_{1}, M_{2} are the regular sets (in U) of integer multiplicity currents T_{1}, T_{2} which are mass minimizing in U and which have zero boundaries in U. (Notice that in this case we have automatically that $\mathscr{H}^{n-1}\left(\bar{M}_{j} \sim M_{j} \cap U\right)=0, j=1,2$, by the regularity theory for codimension 1 currents.)

Our interest in this problem originated from the paper [1], and the question was again raised in [2, Problem 3.4]. The proof of the result (given in §2) depends rather heavily on the main results of [1].

1. Preliminaries and statement of main result

The optimal version of the main theorem concerns codimension 1 integer multiplicity locally rectifiable currents T (called simply "locally rectifiable" in [3] and henceforth simply called "integer multiplicity" here) which are mass minimizing in an open set U of the smooth $(n+1)$-dimensional oriented

Riemannian manifold N. Thus if W is open and \bar{W} is a compact subset of U, then

$$
\mathbf{M}_{W}(T) \leqslant \mathbf{M}_{W}(S)
$$

for each integer multiplicity S with $\partial S=\partial T$ in U and $\operatorname{spt}(S-T) \subset \subset W$; here ∂S is the boundary of S in the sense of currents, $\operatorname{spt}(S-T)$ denotes the support of the current $S-T$, and $\mathbf{M}_{W}(S)$ is the mass of S in $W(=\sup S(\omega)$, where the sup is over smooth n-forms ω with compact support in W and with length $|\omega| \leqslant 1$ at each point of W). We shall actually be interested in the case when $\partial T=0$ in U; i.e. when $T(d \omega)=0$ for each smooth $(n-1)$-form ω in N with support of $\omega \subset \subset U$.

We shall have occasion to use "oriented boundaries" in U; that is integer multiplicity (in fact multiplicity 1) currents T of the special form $T=(\partial \llbracket E \rrbracket)\llcorner U$, where E is an \mathscr{H}^{n+1}-measurable subset of N and $\llbracket E \rrbracket$ denotes the $(n+1)$ dimensional current obtained by integration of $(n+1)$-forms with compact support in N over the subset E. Actually if U is such that the n-dimensional integral homology of the pair ($N, N \sim U$) is zero, then any integer multiplicity current T with $\partial T=0$ in U can be decomposed (in U) into an \mathbf{M}_{U}-convergent sum $\sum T_{l}$ of such oriented boundaries in such a way that \mathbf{M}_{U} is additive (and hence so that each T_{l} is minimizing in U if T is minimizing in U). (See e.g. [3, 4.5] or [8, 27.8, 33.2].)

We shall also use the standard compactness and regularity theory for oriented boundaries which minimize mass in U; for this, and other standard facts about currents, we refer to e.g. [3], or [8, Chapters 6,7].

For any integer multiplicity T we let reg T (the regular set of T) be the set of points $\xi \in \operatorname{spt} T$ such that there is a neighborhood W of ξ in N with

$$
T\llcorner W=k \llbracket M \rrbracket,
$$

where k is an integer and M is a smooth connected compact oriented embedded hypersurface in \bar{W} with $\partial M \subset \partial W$ and with $\xi \in M$, and where $\llbracket M \rrbracket$ means the multiplicity 1 current obtained by integration of smooth n-forms (with compact support in N) over the hypersurface M. (Notice of course that $k= \pm 1$ in case T is an oriented boundary in U.) Also, we let

$$
\operatorname{sing} T=\operatorname{spt} T \sim \operatorname{reg} T
$$

For $\lambda>0$ we let (λ) denote the homothety of \mathbb{R}^{n+1} taking x to λx.
We now state the main theorem:
Theorem 1. Suppose T_{1}, T_{2} are integer multiplicity currents with $\partial T_{1}=\partial T_{2}$ $=0$ in U, T_{1}, T_{2} mass-minimizing in U, and $\operatorname{reg} T_{1} \cap \operatorname{reg} T_{2} \cap U=\varnothing$. Then $\operatorname{spt} T_{1} \cap \operatorname{spt} T_{2} \cap U=\varnothing$.

Remark 1. The main content of this theorem lies in the fact that $\operatorname{sing} T_{1} \cap$ $\operatorname{sing} T_{2} \cap U=\varnothing$. Indeed previous work of Miranda ([7], also [8, 37.10])
establishes $\operatorname{sing} T_{1} \cap \operatorname{reg} T_{2} \cap U=\varnothing$. This latter result was recently shown to be true without the minimizing hypothesis by Solomon and White [9].

Remark 2. In case $N=\mathbb{R}^{n+1}$ and g is the standard Euclidean metric, Theorem 1 is straightforward to prove if $\operatorname{spt} T_{1} \cap \operatorname{spt} T_{2} \cap U$ is a priori assumed to be a compact subset of U, because in this case we can use a standard "cut-and-paste" argument (see e.g. [1], [6, 1.20], or [8, 37.10]) to show that spt $T_{1} \cap \operatorname{spt} T_{2} \cap U=\varnothing$.

Using Theorem 1 we can establish the following corollary for oriented boundaries of least area.

Corollary 1. Suppose $T_{1}=\left(\partial \llbracket E_{1} \rrbracket\right)\left\llcorner U, T_{2}=\left(\partial \llbracket E_{2} \rrbracket\right)\llcorner U\right.$ are minimizing in U, with $E_{1} \cap U \subset E_{2} \cap U$ and with spt $T_{1} \cap U$ and spt $T_{2} \cap U$ connected. Then either $T_{1}=T_{2}$ or $\operatorname{spt} T_{1} \cap \operatorname{spt} T_{2} \cap U=\varnothing$.

Proof. Take an open geodesic ball $B_{\rho}(\xi) \subset U$ with ρ small enough to ensure that $\overline{B_{\rho}}(\xi)$ is diffeomorphic to the closed ball in \mathbb{R}^{n+1}, and let S_{1}, S_{2} be components of reg $T_{1} \cap B_{\rho}(\xi)$, reg $T_{2} \cap B_{\rho}(\xi)$. Since $E_{1} \subset E_{2}$ it follows that S_{1} lies locally on one side of S_{2} near each point of S_{1}. A well-known application of the Hopf maximum principle (see e.g. [6, pp. 103, 104]) then shows that $S_{1} \cap S_{2} \neq \varnothing \Rightarrow S_{1}=S_{2}$.

Next note that S_{j}, equipped with orientation from T_{j}, is minimizing in $B_{\rho}(\xi)$ and has zero boundary in $B_{\rho}(\xi)$ (see e.g. [8, 37.8]). Thus in the case $S_{1} \cap S_{2}=$ \varnothing we can apply Theorem 1 (with $U=B_{\rho}(\xi)$) to deduce that $\bar{S}_{1} \cap \bar{S}_{2} \cap B_{\rho}(\xi)$ $=\varnothing$. On the other hand for any such components S_{j} which intersect $B_{\rho / 2}(\xi)$ we have $\mathbf{M}\left(S_{j}\right) \geqslant c \rho^{n}$ (see e.g. [3, 5.1.6]), so at most finitely many components of reg $T_{j} \cap B_{\rho}(\xi)$ can intersect $B_{\rho / 2}(\xi)$.

Combining the above facts and using the given connectedness of spt $T_{1} \cap U$, spt $T_{2} \cap U$, the corollary now directly follows.

We now proceed to the proof of Theorem 1 . We shall need the following lemma, which is an easy consequence of the regularity theorem for codimention 1 minimizing currents.

In this lemma we let $x=\left(x^{1}, \cdots, x^{n+1}\right) \in \mathbb{R}^{n+1}$ be normal coordinates for N near x_{0}, with origin $x=0$ corresponding to x_{0} and with $T_{x_{0}} N$ identified with \mathbb{R}^{n+1} via these coordinates in the usual way. The metric g is then $g_{i j}(x) d x^{i} d x^{j}$ with $g_{i j}(0)=\delta_{i j}$ and $\partial g_{i j} / \partial x^{k}(0)=0$. We can take homotheties $\left(\lambda^{-1}\right)_{\#} T(\lambda>0)$ in terms of these local coordinates, and $\left(\lambda^{-1}\right)_{\#} T$ is minimizing relative to the metric $g_{i j}(\lambda x) d x^{i} d x^{j}$ in case T is minimizing relative to g.

Lemma 1. Let $T=(\partial \llbracket E \rrbracket)\left\llcorner U\right.$ minimize in $U, x_{0} \in \operatorname{spt} T \cap U$, and ν be the orienting unit normal for $T\left(s^{*} \nu=\vec{T}\right)$, and define Ω_{θ} to be the set of points $x \in \operatorname{reg} T$ which satisfy
(i) $\operatorname{dist}(x, \operatorname{sing} T)>\theta|x|$ and
(ii) $\sup \left\{|x-y|^{-1}|\nu(x)-\nu(y)|: y \in \operatorname{reg} T, 0<|y-x|<\theta|x|\right\}<(\theta|x|)^{-1}$.

Then there are $\rho_{0}=\rho_{0}\left(x_{0}, T\right)>0$ and $\theta_{0}=\theta_{0}\left(x_{0}, T\right)>0$ such that $\Omega_{\theta} \cap$ $\partial B_{\rho}\left(x_{0}\right) \neq \varnothing \forall \rho \in\left(0, \rho_{0}\right], \theta \in\left(0, \theta_{0}\right]$.

Proof. If the lemma is false we can find a sequence $\rho_{j} \downarrow 0$ and

$$
\begin{align*}
& \left\{x \in \operatorname{reg} T:|x|=\rho_{j}, \operatorname{dist}(x, \operatorname{sing} T)>j^{-1} \rho_{j},\right. \\
& \left.\sup _{y \in \operatorname{reg} T,|x-y|<j^{-1} \rho_{j}}\left[|x-y|^{-1}|\nu(x)-\nu(y)|\right]<j \rho_{j}^{-1}\right\}=\varnothing . \tag{1}
\end{align*}
$$

Let $T_{j}=\left(\rho_{j}^{-1}\right)_{\#} T$. From the existence of the tangent cones theorem (see e.g. [3, 5.4.3] or, [8, 37.4]) we know there is a subsequence $\left\{j^{\prime}\right\}$ (henceforth denoted $\{j\}$) and a minimizing cone $C=\partial \llbracket F \rrbracket$ in \mathbb{R}^{n+1} such that $T_{j} \rightarrow C$ (weak convergence of currents in \mathbb{R}^{n+1}), and spt T_{j} converges to $\mathrm{spt} C$ locally in the Hausdorff distance sense. By the De Giorgi-Allard regularity theorem this latter convergence is actually in the C^{2} sense locally near points of reg $C \neq \varnothing$. Thus $\exists y \in \operatorname{reg} C \cap S^{n}$, and we have fixed $\theta>0$ and a sequence $y_{j} \in B_{\theta}(y) \cap$ $\operatorname{reg} T_{j} \cap S^{n}$ with $y_{j} \rightarrow y, B_{\theta}(y) \cap \operatorname{spt} T_{j} \subset \operatorname{reg} T_{j}$, and

$$
|x-z|^{-1}\left|\nu_{j}(x)-\nu_{j}(z)\right| \leqslant \theta^{-1} \text { for } x, z \in B_{\theta}(y) \cap \operatorname{reg} T_{j}, x \neq z .
$$

However in terms of the original T this means

$$
B_{\theta_{\rho_{j}}}\left(\rho_{j} y\right) \cap \operatorname{spt} T \subset \operatorname{reg} T
$$

and

$$
|x-z|^{-1}|\nu(x)-\nu(z)| \leqslant \theta^{-1} \rho_{j}^{-1} \quad \text { for } x, z \in B_{\theta \rho_{j}}\left(\rho_{j} y\right) \cap \operatorname{reg} T, x \neq z,
$$

and since $\rho_{j} y_{j} \in \operatorname{reg} T \cap \partial B_{\rho_{j}}(0)$ and $y_{j} \rightarrow y$ this contradicts (1) for sufficiently large j.

2. Proof of Theorem 1

It suffices to consider the case when T_{1}, T_{2} satisfy the additional hypotheses

$$
\begin{equation*}
T_{1}=\partial \llbracket E_{1} \rrbracket\left\llcorner U, \quad T_{2}=\partial \llbracket E_{2} \rrbracket\left\llcorner U, \quad E_{1} \subset E_{2},\right.\right. \tag{*}
\end{equation*}
$$

for some open $E_{1}, E_{2} \subset U$. To see this, first note that we may assume (in view of the local nature of Theorem 1) that \bar{U} is diffeomorphic to a ball in \mathbb{R}^{n+1}. Let S_{j} be a component of reg $T_{j} \cap U$ equipped with a smooth orientation. Then (see e.g. [8, 37.8]) S_{j} is minimizing in $U, \partial S_{j}=0$ in U, and (by the decomposition theorem [3, 4.5.17] or [8, 27.6]) we can write $S_{j}=\partial \llbracket E_{j} \rrbracket\llcorner U$ for some measurable $E_{j} \subset U, j=1,2$. Since the density of S_{j} is bounded below by 1 on $\bar{S}_{j} \cap U$, after alteration on a set of \mathscr{H}^{n+1}-measure zero we may take E_{j} to be a component of $U \sim \bar{S}_{j}$. (Part of the conclusion here is that there is more than one-in fact exactly 2 -components of $U \sim \bar{S}_{j}$; this is of course a
standard topological fact in case $\bar{S}_{j} \sim S_{j} \cap U=\varnothing$.) Notice that then E_{j} is connected because S_{j} is. Now let $K=\bar{S}_{1} \cap \bar{S}_{2} \cap U$ (so that $\mathscr{H}^{n-1}(K)=0$ by the regularity theory, because $S_{1} \cap S_{2}=\varnothing$). By reversing orientations if necessary, we can arrange that $S_{1} \cap E_{2} \neq \varnothing$ and $S_{2} \sim \bar{E}_{1} \neq \varnothing$. Using the connectedness of S_{1}, S_{2}, and the Poincaré inequality [3, 4.5.3], together with the fact that $\mathscr{H}^{n-1}(K)=0$, it then follows that $S_{1} \subset E_{2} \cup K$ and $S_{2} \subset$ $\left(U \sim \bar{E}_{1}\right) \cup K$. We claim it follows now that $E_{1} \subset E_{2}$. Indeed otherwise (since E_{1} is connected) we could choose a closed path γ in E_{1} connecting a point in E_{2} to a point in \bar{S}_{2}, thus showing $\bar{S}_{2} \cap E_{1} \neq \varnothing$, hence $S_{2} \cap E_{1} \neq \varnothing$, which contradicts the fact that $S_{2} \subset\left(U \sim \bar{E}_{1}\right) \cup K \subset U \sim E_{1}$. Thus we have established that $S_{1}=\partial \llbracket E_{1} \rrbracket\left\llcorner U, S_{2}=\partial \llbracket E_{2} \rrbracket\left\llcorner U\right.\right.$ with $E_{1} \subset E_{2}$. Since (cf. the argument in the proof of Corollary 1) at most finitely many components of reg T_{1}, reg T_{2} can intersect a given compact subset of U, it now clearly follows that (by localizing and using suitable components S_{1}, S_{2} as above) it is sufficient to consider only case (*) of the theorem, as claimed.

We now suppose that we can find $x_{0} \in \operatorname{spt} T_{1} \cap \operatorname{spt} T_{2} \cap U$, and we show that this leads to a contradiction. As in Lemma 1 we take normal coordinates $x=\left(x^{1}, \cdots, x^{n+1}\right)$ for N with origin $x=0$ corresponding to x_{0} and with tangent space $T_{x_{0}} N$ identified with \mathbb{R}^{n+1} via these coordinates. We can of course assume without loss of generality that U is contained in this coordinate neighborhood.

Still assuming (*), we claim that we can reduce to the case when T_{1}, T_{2} have the same tangent cones at the point $x_{0}(=0)$, in the strong sense that if $\left\{\lambda_{j}\right\}$ is any sequence $\downarrow 0$, then there is a subsequence $\left\{\lambda_{j^{\prime}}\right\}$ (henceforth denoted $\left\{\lambda_{j}\right\}$) such that both $\left(\lambda_{j}^{-1}\right)_{\#} T_{1}$ and $\left(\lambda_{j}^{-1}\right)_{\#} T_{2}$ have the same cone as weak limit. Indeed suppose there is a sequence $\left\{\lambda_{j}\right\} \downarrow 0$ so that $\left(\lambda_{j}^{-1}\right)_{\#} T_{1}$ and $\left(\lambda_{j}^{-1}\right)_{\#} T_{2}$ converge to different cones $C_{1}=\partial \llbracket F_{1} \rrbracket$ and $C_{2}=\partial \llbracket F_{2} \rrbracket$ in \mathbb{R}^{n+1}. Since $E_{1} \subset E_{2}$ we have $F_{1} \subset F_{2}$ (up to a set of Lebesgue measure zero). We can now use the dimension reducing argument of [1] (appropriately modified) to give new \tilde{T}_{1}, \tilde{T}_{2} satisfying the same hypotheses as T_{1}, T_{2} (with $N=U=\mathbb{R}^{n+1}$), but having the same tangent cones at 0 . To be precise, the dimension reducing argument of [1] goes as follows:

We can suppose C_{1}, C_{2} (as above) contain a point $y \neq 0$ in the intersection of their supports by virtue of Remark 2. Then either C_{1}, C_{2} have the same cones at y (in the strong sense) or else there are distinct tangent cones $D_{1}=\partial \llbracket G_{1} \rrbracket, D_{2}=\partial \llbracket G_{2} \rrbracket$ of C_{1}, C_{2} at y with $G_{1} \subset G_{2}$. But G_{1}, G_{2} are cylinders $l \times E_{1}, l \times E_{2}$ (l the line containing y at 0), hence (after slicing with the hyperplane normal to l) we would have distinct ($n-1$)-dimensional minimizing currents $C_{1}=\partial \llbracket E_{1} \rrbracket, C_{2}=\partial \llbracket E_{2} \rrbracket$ in \mathbb{R}^{n} with $E_{1} \subset E_{2}, 0 \in \operatorname{spt} C_{1}$ $\cap \operatorname{spt} C_{2}$. Next note that no such distinct C_{1}, C_{2} can exist in case $n \leqslant 6$,
because C_{1}, C_{2} are hyperplanes if $n \leqslant 6$ by the regularity theory for codimension 1 minimizing currents (see e.g. [4] or [8, §37]). Thus the above arguments must (by induction on n) lead to a situation where we have distinct m dimensional minimizing hypercones $(m>6) \tilde{T}_{1}, \tilde{T}_{2}$, with $\tilde{T}_{1}=\partial \llbracket H_{1} \rrbracket, \tilde{T}_{2}=$ $\partial \llbracket H_{2} \rrbracket$, with $H_{1} \subset H_{2}$, and with a $y \in \operatorname{spt} \tilde{T}_{1} \cap \operatorname{spt} \tilde{T}_{2}$ such that $\tilde{T}_{1}, \tilde{T}_{2}$ have the same tangent cones (in the strong sense) at y. Also by [1, Theorem 2] $\operatorname{reg} \tilde{T}_{1}, \operatorname{reg} \tilde{T}_{2}$ are connected. By an application of the Hopf maximum principle similar to that in Corollary 1 we can then also conclude reg $\tilde{T}_{1} \cap \operatorname{reg} \tilde{T}_{2}=\varnothing$. Thus we may as well (and we shall) assume to begin with that T_{1}, T_{2} have the same tangent cones at x_{0}. (Otherwise replace T_{1}, T_{2}, x_{0} by $\tilde{T}_{1}, \tilde{T}_{2}, y$; notice that this does not upset the reduction (*).)

Now let $\rho_{0}, \theta_{0}, \Omega_{\theta} \subset \operatorname{reg} T_{1}$ be as in Lemma 1 with T_{1} in place of T and define $h(x)=\operatorname{dist}\left(x, \operatorname{spt} T_{2}\right), x \in \operatorname{spt} T_{1}$. Because T_{1}, T_{2} have the same tangent cones at x_{0} (in the strong sense), we know that, for each $\theta \leqslant \theta_{0}$, $r^{-1} \sup _{|x|=r, x \in \Omega_{\theta}} h(x) \rightarrow 0$ as $r \rightarrow 0$. In particular taking $\rho_{j} \downarrow 0$ such that
(1) $\quad \rho_{j}^{-1} \sup _{|x|=\rho_{j}, x \in \Omega_{\theta_{0}}} h(x) \geqslant \frac{1}{2} \rho^{-1} \sup _{|x|=\rho, x \in \Omega_{\theta_{0}}} h(x)$ for each $\rho \leqslant \rho_{j}$,
we have that for each $\theta<1$

$$
\begin{equation*}
\sup _{x \in \Omega_{\theta_{0},},|x|=\theta \rho_{j}} h(x) \leqslant 2 \theta \sup _{x \in \Omega_{\theta_{0}},|x|=\rho_{j}} h(x) . \tag{2}
\end{equation*}
$$

As in Lemma 1, there is a subsequence $\left\{j^{\prime}\right\}$ (henceforth denoted $\{j\}$) such that $\left(\rho_{j}^{-1}\right)_{\#} T_{l} \rightarrow C, l=1,2$, and such that $\operatorname{spt}\left(\rho_{j}^{-1}\right)_{\#} T_{l}$ converges locally in the Hausdorff distance sense in \mathbb{R}^{n+1} to $\operatorname{spt} C, l=1,2$. By the codimension 1 regularity theory (and in particular by the Allard-De Giorgi theorem-see e.g. [8, §37], [4]) and from the fact that reg C is connected [1, Theorem 2], we see that we can find C^{2} functions $h_{1}^{(j)}, h_{2}^{(j)}$ defined over connected domains $U_{j} \subset \operatorname{reg} C$ such that
$\left\{x \in \operatorname{reg} C: \operatorname{dist}(x, \operatorname{sing} C)>\theta_{j}|x|, \theta_{j}<|x|<\theta_{j}^{-1}\right\} \subset U_{j} \quad$ for some $\theta_{j} \downarrow 0$,

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left|h_{l}^{(j)}\right|_{C^{2}}^{*}=0, \quad l=1,2 \tag{3}
\end{equation*}
$$

$\left(|h|_{C^{2}}^{*}=\sup \left(|x|^{-1}|h(x)|+|\nabla h(x)|+|x|\left|\nabla^{2} h(x)\right|\right)\right.$), and such that for each $\theta \in(0,1)$ and all $j \geqslant j(\theta)$ the following hold:
(4) $\left\{x \in \operatorname{reg}\left(\rho_{j}^{-1}\right)_{\#} T_{l}: \operatorname{dist}(x, \operatorname{sing} C)>\theta|x|, \theta<|x|<\theta^{-1}\right\}$

$$
\subset G_{l}^{(j)} \subset \operatorname{reg}\left(\rho_{j}^{-1}\right)_{\#} T_{l}
$$

$$
\begin{align*}
\left(\rho_{j}^{-1}\right)\left(\Omega_{2 \theta}\right) \cap\{x: \theta<|x| & \left.<\theta^{-1}\right\} \tag{5}\\
& \subset\left\{x \in \operatorname{reg}\left(\rho_{j}^{-1}\right)_{\#} T_{1}: \operatorname{dist}(x, \operatorname{sing} C)>\theta|x|\right\}
\end{align*}
$$

In (4), $G_{l}^{(j)}=\operatorname{graph}$ of $h_{l}^{(j)} \equiv H_{l}^{(j)}\left(U_{j}\right)$, where $H_{l}^{(j)}(x)=x+h_{l}^{(j)}(x) \nu(x), \nu$ the unit normal of reg C pointing into F (recall $C=\partial \llbracket F \rrbracket$).

By (3), (4), (5), for any given $\theta \in(0,1)$ there are maps $p_{j}:\left(\rho_{j}^{-1}\right)\left(\Omega_{2 \theta}\right) \cap$ $\left\{x: \theta<|x|<\theta^{-1}\right\} \rightarrow U_{j}$ with $H_{1}^{(j)}\left(p_{j}(x)\right)\left(=p_{j}(x)+h_{1}^{(j)}\left(p_{j}(x)\right) \nu\left(p_{j}(x)\right)\right) \equiv$ x and $\frac{1}{2} u_{j}\left(p_{j}(x)\right) \leqslant \rho_{j}^{-1} h\left(\rho_{j} x\right) \leqslant 2 u_{j}\left(p_{j}(x)\right)$ for all $x \in\left(\rho_{j}^{-1}\right)\left(\Omega_{2 \theta}\right) \cap\{x: \theta<$ $\left.|x|<\theta^{-1}\right\}$ and for all j sufficiently large, where h is as in (2) and where $u_{j}=h_{1}^{(j)}-h_{2}^{(j)}$ on U_{j}. (Since $u_{j} \neq 0\left(\operatorname{reg} T_{1} \cap \operatorname{reg} T_{2}=\varnothing\right)$, we may assume that $u_{j}>0$ and U_{j}.) Then (2) implies

$$
\begin{equation*}
\sup _{x \in\left(\rho_{j}^{-1}\right) \Omega_{\theta_{0}},|x|=\theta} u_{j}\left(p_{j}(x)\right) \leqslant 4 \theta \sup _{x \in\left(\rho_{j}^{-1}\right) \Omega_{\theta_{0}},|x|=1} u_{j}\left(p_{j}(x)\right) \tag{6}
\end{equation*}
$$

for all sufficiently large j (depending on θ).
Now since reg T_{1}, reg T_{2} are minimal hypersurfaces relative to the metric $g_{i j}(x) d x^{i} d x^{j}$, we know (by virtue (3) and (4)) that the difference $u_{j}=h_{1}^{(j)}-$ $h_{2}^{(j)}$ satisfies an equation of the form

$$
\begin{equation*}
\Delta_{C} u_{j}+\left|A_{C}\right|^{2} u_{j}=\operatorname{div}\left(a_{j} \cdot \nabla u_{j}\right)+b_{j} \cdot \nabla u_{j}+c_{j} u_{j} \tag{7}
\end{equation*}
$$

with a_{j}, b_{j}, c_{j} converging uniformly to zero on compact subsets of reg C; here Δ_{C} is the Laplacian on reg C and A_{C} is the second fundamental form of reg C.

Since $u_{j}>0$, by virtue of (7) and the connectedness of reg C we can use the Harnack inequality for divergence-form elliptic equations (in \mathbb{R}^{n}-see e.g. [5, §8.8]) to deduce

$$
\begin{equation*}
\sup _{K} u_{j} \leqslant c_{K} \inf _{K} u_{j}, \quad j \geqslant j(K), \tag{8}
\end{equation*}
$$

for each compact $K \subset \operatorname{reg} C$. Hence the $C^{1, \alpha}$ Schauder theory (e.g. [5, §8.11]) tells us that

$$
\begin{equation*}
\left|u_{j}\right|_{C^{1, \alpha}(K)} \leqslant c_{K} \inf _{K} u_{j} \tag{9}
\end{equation*}
$$

for any compact $K \subset \operatorname{reg} C$ and for sufficiently large j (depending on K). Then letting y_{0} be any fixed point of reg C we conclude there is a subsequence $\left\{u_{j^{\prime}}\right\}$ (henceforth denoted $\left\{u_{j}\right\}$) such that $\left(u_{j}\left(y_{0}\right)\right)^{-1} u_{j}$ converges locally in the C^{1} sense on reg C to a positive solution u of

$$
\begin{equation*}
\Delta_{C} u+\left|A_{C}\right|^{2} u=0 \tag{10}
\end{equation*}
$$

with $u\left(y_{0}\right)=1$. In particular

$$
\begin{equation*}
u>0, \quad \Delta_{C} u \leqslant 0 \quad \text { on reg } C . \tag{11}
\end{equation*}
$$

We now want to apply the Harnack theory of [1] to u. Since C is minimizing, $\mathscr{H}^{n-2}(\operatorname{sing} C)=0$ and $\mathbf{M}\left(C\left\llcorner B_{\rho}(y)\right) \leqslant c \rho^{n} \forall \rho>0, \quad y \in \operatorname{spt} C\right.$. Because of this it is easy to construct a sequence of functions $\left\{\varphi_{j} \subset C_{c}^{\infty}(\right.$ reg $C)$
such that $\varphi_{j} \equiv 1$ on $\left\{x \in \operatorname{reg} C: j^{-1}<|x|<j, \operatorname{dist}(x, \operatorname{sing} C)>j^{-1}\right\}, 0 \leqslant \varphi_{j} \leqslant$ 1 everywhere on reg C, and

$$
\begin{equation*}
\int_{\text {reg } C \cap B_{R}(0)}\left|\nabla \varphi_{j}\right|^{2} \rightarrow 0 \tag{12}
\end{equation*}
$$

for each fixed $R>0$. Now for $Q>0$ let $u_{Q}=\min \{u, Q\}$, so that by (11) we have

$$
\begin{equation*}
\int_{\operatorname{reg} C} \nabla u_{Q} \cdot \nabla \zeta \geqslant 0 \tag{13}
\end{equation*}
$$

for each nonnegative Lipschitz ζ with compact support in reg C. Let $\psi \in$ $C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right), \psi_{*}=\psi \mid \operatorname{reg} C$, and replace ζ in (13) by $\varphi_{j}^{2} \psi_{*}^{2} u_{Q}^{-1}$. Then (13) gives

$$
\int_{\operatorname{reg} C} u_{Q}^{-2}\left|\nabla u_{Q}\right|^{2} \psi_{*}^{2} \varphi_{j}^{2} \leqslant c \int_{\operatorname{reg} C}\left(\left|\nabla \psi_{*}\right|^{2} \varphi_{j}^{2}+\psi_{*}^{2}\left|\nabla \varphi_{j}\right|^{2}\right),
$$

so that by (12) and the fact that $\varphi_{j} \rightarrow 1$ uniformly on compact subsets of reg C, we have

$$
\begin{equation*}
\int_{B_{R}(0) \cap \mathrm{reg} C}\left|\nabla u_{Q}\right|^{2}<\infty \quad \text { for each } R>0, Q>0 \tag{14}
\end{equation*}
$$

Also, replacing ζ by $\varphi_{j} \psi_{*}$ in (13), and letting $j \uparrow \infty$, we have

$$
\begin{equation*}
\int_{\operatorname{reg} C} \nabla u_{Q} \cdot \nabla \psi_{*} \geqslant 0 \tag{15}
\end{equation*}
$$

for each nonnegative $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right)$, where again $\psi_{*}=\psi \mid \operatorname{reg} C$.
In view of (14) and (15) we can indeed apply the Harnack theory of [1] in order to deduce that

$$
\inf _{\operatorname{reg} C \cap B_{2}(0)} u_{Q} \geqslant c \int_{\operatorname{reg} C \cap B_{2}(0)} u_{Q} .
$$

Letting $Q \uparrow \infty$ we thus have

$$
\inf _{\operatorname{reg} C \cap B_{2}(0)} u \geqslant c \int_{\operatorname{reg} C \cap B_{2}(0)} u>0
$$

In terms of the functions u_{j} this tells us in particular that for nonempty compact $L \subset \operatorname{reg} C \cap \bar{B}_{3 / 2}(0)$ there is $j_{0}=j_{0}(L)$ such that

$$
\underset{L}{\inf } u_{j} \geqslant c u_{j}\left(y_{0}\right) \quad \forall j \geqslant j_{0}
$$

where c is independent of L. Thus in view of (8) we deduce that there is $j_{1}=j_{1}(K, L)$

$$
\begin{equation*}
\inf _{L} u_{j} \geqslant c_{K} \sup _{K} u_{j} \quad \forall j \geqslant j_{1} \tag{16}
\end{equation*}
$$

for any compact $L, K \subset \operatorname{reg} C \cap \bar{B}_{3 / 2}(0)$ with $L, K \neq \varnothing$, where $c_{K}>0$ depends on K but not on L.

But now, taking $K=p_{j}\left(\left(\rho_{j}^{-1}\right) \Omega_{\theta_{0}} \cap \partial B_{1}\right)$ and $L=p_{j}\left(\left(\rho_{j}^{-1}\right) \Omega_{\theta_{0}} \cap \partial B_{\theta}\right)$, we see that (6), (16) are contradictory for sufficiently small θ. This completes the proof of Theorem 1.

References

[1] E. Bombieri \& E. Giusti, Harnack's inequality for elliptic differential equations on minimal surfaces, Invent. Math. 15 (1972) 24-46.
[2] J. Brothers (Editor) Open problems in geometric measure theory, Proc. Sympos. Pure Math. (Arcata), Vol. 44, Amer. Math. Soc., Providence, RI, 1985, 369-377.
[3] H. Federer, Geometric measure theory, Springer, Berlin, 1969.
[4] \qquad , Singular sets of area minimizing rectifiable currents with codimension 1 and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970) 767-771.
[5] D. Gilbarg \& N. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer, Berlin, 1983.
[6] R. Hardt \& L. Simon. Area minimizing hypersurfaces with isolated singularities, J. Reine Angew. Math. 362 (1985) 102-129.
[7] M. Miranda, Sulle singularità della frontiere minimali, Rend. Sem. Mat. Univ. Padova 38 (1967) 181-188.
[8] L. Simon, Lectures on geometric measure theory, Proc. Centre for Math. Analysis \#3, Australian National University, 1983.
[9] B. Solomon \& B. White, in preparation.
Australian National University

