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A STRICT MAXIMUM PRINCIPLE
FOR AREA MINIMIZING HYPERSURFACES

LEON SIMON

It is a well-known consequence of the Hopf maximum principle that if Mv

M2 are smooth connected minimal hypersurfaces which are properly embedded

in an open subset U of an (n + l)-dimensional Riemannian manifold N, if

Mι ~ Mv M2 ~ M 2 c 9[/, and if Mλ lies locally on one side of M2 in a

neighborhood of each common point, then either Mx = M2 or Mλ Π M2 = 0 .

If we replace the hypothesis that Mj - My c 3t/ by the hypothesis that the

(n — l)-dimensional Hausdorff measure (i.e. Jίfn~λ) of Mj ~ MjΓλ U vanishes

for 7 = 1,2, then we still have either Mλ = M2 or Mλ Π M2 = 0 . However

this latter alternative leaves open the question of whether or not Mλ Π M2Π U

= 0 , and it is this question which interests us here.

Here we settle the question affirmatively in the area minimizing case.

Specifically (in Theorem 1 of §1) we show that MlC\M2(MJ=0 if

Mλ Π M2= 0 in case Mv M2 are the regular sets (in U) of integer

multiplicity currents 7\, T2 which are mass minimizing in U and which have

zero boundaries in U. (Notice that in this case we have automatically that

Jί?n~1(Mj ~ Mj Γ\ U) = 0, j = 1,2, by the regularity theory for codimension

1 currents.)

Our interest in this problem originated from the paper [1], and the question

was again raised in [2, Problem 3.4]. The proof of the result (given in §2)

depends rather heavily on the main results of [1].

1. Preliminaries and statement of main result
The optimal version of the main theorem concerns codimension 1 integer

multiplicity locally rectifiable currents T (called simply "locally rectifiable" in

[3] and henceforth simply called "integer multiplicity" here) which are mass

minimizing in an open set U of the smooth (n + l)-dimensional oriented
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Riemannian manifold N. Thus if W is open and W is a compact subset of U,
then

for each integer multiplicity S with dS = dT in U and spt(S - T) c c W;
here 3S is the boundary of S in the sense of currents, spt(& — T) denotes the
support of the current S — T, and MW(S) is the mass of S in W (= supS^co),
where the sup is over smooth «-forms ω with compact support in W and with
length |ω| < 1 at each point of W). We shall actually be interested in the case
when dT = 0 in U; i.e. when T(dω) = 0 for each smooth (n — l)-form ωiniV
with support of ω c c U.

We shall have occasion to use "oriented boundaries" in U\ that is integer
multiplicity (in fact multiplicity 1) currents Γof the special form T = (9[is])Lt/,
where E is an Jίfn+^measurable subset of N and IE] denotes the (n + 1)-
dimensional current obtained by integration of (n + l)-forms with compact
support in TV over the subset E. Actually if U is such that the w-dimensional
integral homology of the pair (N,N ~ U)is zero, then any integer multiplicity
current T with dT = 0 in ί/can be decomposed (in U) into an M^-convergent
sum ΣT[ of such oriented boundaries in such a way that M^ is additive (and
hence so that each Tι is minimizing in U if T is minimizing in U). (See e.g. [3,
4.5] or [8, 27.8, 33.2].)

We shall also use the standard compactness and regularity theory for
oriented boundaries which minimize mass in U; for this, and other standard
facts about currents, we refer to e.g. [3], or [8, Chapters 6,7].

For any integer multiplicity T we let regΓ (the regular set of T) be the set
of points ξ G spt T such that there is a neighborhood W of £ in N with

TιW=k{M]9

where k is an integer and M is a smooth connected compact oriented
embedded hypersurface in W with 3M c dW and with ^ G M , and where [Λ/J
means the multiplicity 1 current obtained by integration of smooth H-forms
(with compact support in JV) over the hypersurface M. (Notice of course that
k = ± 1 in case T is an oriented boundary in U.) Also, we let

singΓ= s p t Γ - regΓ.

For λ > 0 we let (λ) denote the homothety of Un+ι taking x to λ c.
We now state the main theorem:
Theorem 1. Suppose Tv T2 are integer multiplicity currents with 37\ = dT2

= 0 in £/, Tl9T2 mass-minimizing in U, and reg7\ Π regΓ2 (Ί U = 0. Then
spt 7\ Π spt T2 Π U = 0.

Remark 1. The main content of this theorem lies in the fact that sing7\ Π
sing T2 Π U = 0 . Indeed previous work of Miranda ([7], also [8, 37.10])



A STRICT MAXIMUM PRINCIPLE 329

establishes sing 7\ n reg T2 Π U = 0 . This latter result was recently shown to

be true without the minimizing hypothesis by Solomon and White [9].

Remark 2. In case N = Un + 1 and g is the standard Euclidean metric,

Theorem 1 is straightforward to prove if spt Tλ Π spt T2 Π U is a priori

assumed to be a compact subset of U, because in this case we can use a

standard "cut-and-paste" argument (see e.g. [1], [6,1.20], or [8, 37.10]) to show

that spt 7\ Π spt T2 Π U = 0 .

Using Theorem 1 we can establish the following corollary for oriented

boundaries of least area.

Corollary 1. Suppose 7\ = (dlEjyU, T2 = (3[£2])Lί/ are minimizing in

U, with Exn U c E2C\ U and with spt Tx Π U and spt T2 Π U connected.

Then either 7\ = Γ2 or spt J\ (Ί spt T2 Π ί/ = 0 .

Proof. Take an open geodesic ball Bp(ξ) c ί/ with p small enough to

ensure that Bp(ξ) is diffeomorphic to the closed ball in Un + ι, and let Sv S2 be

components of reg7\ Π 2?p(£), regΓ2 n £ p(£). Since £\ c £ 2 it follows that Sλ

lies locally on one side of S2 near each point of Sv A well-known application

of the Hopf maximum principle (see e.g. [6, pp. 103, 104]) then shows that

Sx Π S2 Φ 0 => Sλ = S2.

Next note that Sj, equipped with orientation from 7̂ , is minimizing in Bp(ξ)

and has zero boundary in Bp(ξ) (see e.g. [8, 37.8]). Thus in the case Sλ Π S2 =

0 we can apply Theorem 1 (with U = Bp(ζ)) to deduce that Sx Π S2n Bp(ξ)

= 0 . On the other hand for any such components Sj which intersect Bp/2(ξ)

we have M(Sy ) > cpn (see e.g. [3, 5.1.6]), so at most finitely many components

of reg Tj Γ)Bp(ξ) can intersect Bp/2(ξ).

Combining the above facts and using the given connectedness of spt Tx Π U,

spt T2 Π I/, the corollary now directly follows.

We now proceed to the proof of Theorem 1. We shall need the following

lemma, which is an easy consequence of the regularity theorem for codimen-

tion 1 minimizing currents.

In this lemma we let x = (Λ:1, , X / I + 1 ) G Un + ι be normal coordinates for

N near JC0, with origin x = 0 corresponding to x0 and with Tx N identified

with Un + ι via these coordinates in the usual way. The metric g is then

gij(x) dxιdxJ with g/y(0) = δ/y and dgij/dxk(0) = 0. We can take homotheties

( λ " 1 ) ^ (λ > 0) in terms of these local coordinates, and ( λ - 1 ) # Γ is minimizing

relative to the metric g/7 (λx) dxι dxj in case T is minimizing relative to g.

Lemma 1. Let T = (dlE})ιU minimize in U, x0 Ξ spt T Π ί/, and v be the

orienting unit normal jor T (so *v = T)9 and define Ώ,Θ to be the set of points

x e reg T which satisfy

(i) dist(x, singΓ) > β\x\ and
(ii) sup{|x - y\'ι\v(x) - v(y)\: y e= regΓ, 0 < \y - x\ < θ\x\} < (θ\x\yι.
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Then there are p 0 = ρo(xo, T) > 0 and θ0 = θo(xo, T) > 0 such that 2Θ Π

dBp(x0)Φ 0 V p e ( O , p o ] , ί e ( O , ί o ] .

Proof. If the lemma is false we can find a sequence py J, 0 and

e regΓ:|x| = py, dist(x,singΓ) >y"1p/,

y<^τegT,\x-y\<j-ιpj

Let 7} = {p~ι)#T. From the existence of the tangent cones theorem (see e.g. [3,

5.4.3] or, [8, 37.4]) we know there is a subsequence {j'} (henceforth denoted

{j}) and a minimizing cone C = d{F} in Rn + 1 such that 7} -> C (weak

convergence of currents in IR"+ 1), and sptTJ converges to sptC locally in the

Hausdorff distance sense. By the De Giorgi-Allard regularity theorem this

latter convergence is actually in the C 2 sense locally near points of reg C Φ 0 .

Thus 3y G r e g C Π Sn, and we have fixed θ > 0 and a sequence y} e Bθ(y) Π

reg Tj Π S"7 with yy -> j ; , ^ ( j ) Π spt 7} c reg 7}, and

I* - z\~ι\vj{x) - vj{z)\ < θ~ι ίoxx.z e 5,(j>) n reg7)-, x # z.

However in terms of the original T this means

and

|x - z\~ι\v(x) - v(z)\ < θ-ιpjι forx,z e S f l p y(py^) Π regΓ, x ^ z,

and since p.y^ G regΓ ΓΊ 85p.(0) and >>y -> ̂  this contradicts (1) for sufficiently

large j .

2. Proof of Theorem 1

It suffices to consider the case when 7\, T2 satisfy the additional hypotheses

for some open EvE2o U. To see this, first note that we may assume (in view

of the local nature of Theorem 1) that U is diffeomorphic to a ball in R Λ + 1 .

Let Sj be a component of reg T- Π U equipped with a smooth orientation.

Then (see e.g. [8, 37.8]) Sj is minimizing in ί/, 9Sy = 0 in U, and (by the

decomposition theorem [3, 4.5.17] or [8, 27.6]) we can write Sj = dlEjliU for

some measurable E c [/, j = l , 2 . Since the density of 5y is bounded below

by 1 on 5y Π U, after alteration on a set of Jί?n+^measure zero we may take

Ej to be a component of ί/ ~ Sy. (Part of the conclusion here is that there is

more than one—in fact exactly 2—components of Γ/ ~ 5y; this is of course a
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standard topological fact in case Sj ~ Sj Π U = 0.) Notice that then E- is

connected because Sj is. Now let K = Sλ Π S2 Π U (so that JίTn~ι(K) = 0 by

the regularity theory, because Sx Π S2 = 0 ) . By reversing orientations if

necessary, we can arrange that Sλfλ E2Φ 0 and S2~ EλΦ 0. Using the

connectedness of Sv S2, and the Poincare inequality [3, 4.5.3], together with

the fact that JίTn~\K) = 0, it then follows that S1a E2U K and S2 c

(ί/ ~ -Ex) U Jf. We claim it follows now that Ex c E2. Indeed otherwise (since

Eλ is connected) we could choose a closed path γ in Ex connecting a point in

E2 to a point in S2, thus showing S2Π Ex Φ 0 , hence S2Π Eλ Φ 0 , which

contradicts the fact that S2 c (U ~ Ex) U # c £/ - £ l β Thus we have estab-

lished that Sλ = Θ I E J L I / , S2 = dlE2\ιU with £ x c £ 2 . Since (cf. the argu-

ment in the proof of Corollary 1) at most finitely many components of reg7\,

reg T2 can intersect a given compact subset of U9 it now clearly follows that (by

localizing and using suitable components Sl9 S2 as above) it is sufficient to

consider only case (*) of the theorem, as claimed.

We now suppose that we can find xQ G spt 7\ Π spt T2 Π U, and we show

that this leads to a contradiction. As in Lemma 1 we take normal coordinates

x = (x1,- , x w + 1 ) for N with origin x — 0 corresponding to x0 and with

tangent space TXQN identified with Un + 1 via these coordinates. We can of

course assume without loss of generality that U is contained in this coordinate

neighborhood.

Still assuming (*), we claim that we can reduce to the case when 7\, T2 have

the same tangent cones at the point x 0 ( = 0), in the strong sense that if { λ y} is

any sequence | 0 , then there is a subsequence {λy} (henceforth denoted {λ •})

such that both (λy 1)#Γ 1 and (λy 1)#Γ 2 have the same cone as weak limit.

Indeed suppose there is a sequence ( λ y } | 0 so that ( λ " 1 ) ^ and ( λ ^ ) # Γ 2

converge to different cones Cx = d{Fj and C2 = 3[JF 2 ] in R n + 1 . Since Eλ c E2

we have Fλ c F2 (up to a set of Lebesgue measure zero). We can now use the

dimension reducing argument of [1] (appropriately modified) to give new 7\,

t2 satisfying the same hypotheses as 7\, T2 (with N = U = Mn + 1), but having

the same tangent cones at 0. To be precise, the dimension reducing argument

of [1] goes as follows:

We can suppose Cv C2 (as above) contain a point y Φ 0 in the intersection

of their supports by virtue of Remark 2. Then either C1? C2 have the same

cones at y (in the strong sense) or else there are distinct tangent cones

Dλ = 9 [ G J , D2 = 3[G2I of Q , C2 at y with Gx c G2. But Gl9 G2 are

cylinders / X Ev I X E2 (/ the line containing y at 0), hence (after slicing with

the hyperplane normal to /) we would have distinct (n — l)-dimensional

minimizing currents Cλ = 3 [ £ j , C2 = 3 [ £ 2 ] in Un with Eγ C £ 2 , 0 G s p t Q

Π sptC 2 . Next note that no such distinct Q , C 2 can exist in case n < 6,
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because C l 5 C2 are hypeφlanes if n < 6 by the regularity theory for codimen-

sion 1 minimizing currents (see e.g. [4] or [8, §37]). Thus the above arguments

must (by induction on n) lead to a situation where we have distinct m-

dimensional minimizing hypercones (m > 6) 7\, T2, with Tι = dlH1}, T2 =

3[ ί f 2 ] , with Hx c H2, and with a j ; e spt7\ Π sptf2 such that 7\, f2 have

the same tangent cones (in the strong sense) at y. Also by [1, Theorem 2]

reg7\, reg 7^ are connected. By an application of the Hopf maximum principle

similar to that in Corollary 1 we can then also conclude reg 7\ Π reg f2 = 0 .

Thus we may as well (and we shall) assume to begin with that 7\, T2 have the

same tangent cones at JC0. (Otherwise replace Tλ,T2,x0 by 7\, Γ2, y\ notice

that this does not upset the reduction (*).)

Now let po,θo,ίlθ c reg7\ be as in Lemma 1 with 7\ in place of T and

define h(x) = dist(x, sptΓ2), x e sρt7\. Because Tv T2 have the same tangent

cones at x0 (in the strong sense), we know that, for each θ ^ θ0,
r " l s u P w = r , j c e Ω / ( ^ ) -^ 0 as r ^ 0. In particular taking py. J,0 such that

(1) pjι sup h(x) > ^p" 1 sup h(x) for each p < py,

we have that for each θ < 1

(2) sup h(x)^2θ sup λ(jc).

As in Lemma 1, there is a subsequence {j'} (henceforth denoted {j}) such

that (pjl)#Tf -> C, / = 1,2, and such that s p t ί p " 1 ) ^ converges locally in the

Hausdorff distance sense in Un + ι to sptC, / = 1,2. By the codimension 1

regularity theory (and in particular by the Allard-De Giorgi theorem—see e.g.

[8, §37], [4]) and from the fact that regC is connected [1, Theorem 2], we see

that we can find C 2 functions h[J\ hψ defined over connected domains

Uj c regC such that

[x e regC:dist(x,singC) > 0,1*1, 0y < |JC| < θ~ι) c Uj for some θjiO,

lim μ ω | * 2 = 0, /= 1,2

(\h\^2 = sup(\x\~1\h(x)\ +\vh(x)\ + \x\\v2h(x)\)), and such that for each

θ e (0,1) and all j > j(θ) the following hold:

(4) {x e reg(p-1)#Γ/:dist(x,singC) > θ\x\, θ < \x\ < θ'1}

V / \ 'J } \ Ί.Θ / \ ' II J

reg(p;1)#Γ1 :dist(x,singC) > θc i x e
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In (4), G\j) = graph of h\j) = H}j\Uj), where HfJ\x) = x + h\j\x)v(x\ v
the unit normal of regC pointing into F (recall C = 3IF]).

By (3), (4), (5), for any given θ e (0,1) there are maps /?y:(p/"
1)(Ω2^) Π

{x:θ < \x\ < θ-1} -> ί^.with i / 1 ° ) ( Λ U ) ) ( = M ^ ) + Λ ^ ( Λ ( ^ ) ) K Λ ( ^ ) ) ) Ξ

x and in//*/*)) < pjMPjx) < ZujiPjW) for all x e (p/XΩ^) n {x:0 <

IJC| < θ~1} and for all j sufficiently large, where h is as in (2) and where

Uj = h[j) - hψ on Uj. (Since Uj Φ 0 (reg7\ Π regΓ2 = 0), we may assume

that Uj > 0 and Uj.) Then (2) implies

(6) sup Uj(Pj(x))^4θ sup Ujipjix))
ι ι

for all sufficiently large j (depending on θ).

Now since reg7\, r e g ^ are minimal hypersurfaces relative to the metric

giJ(x)dxidxj, we know (by virtue (3) and (4)) that the difference Uj = h[j) -

hψ satisfies an equation of the form

(7) Δ c W y + \Ac\\j = div(a, VUj) + bj VUj + CJUJ,

with aJ9 bj, Cj converging uniformly to zero on compact subsets of regC; here

Δ c is the Laplacian on reg C and Ac is the second fundamental form of reg C.

Since wy > 0, by virtue of (7) and the connectedness of reg C we can use the

Harnack inequality for divergence-form elliptic equations (in Un—see e.g. [5,

§8.8]) to deduce

(8) sup Uj < cκ inf uj9 j>j(K),
K

 κ

for each compact K c regC. Hence the C l α Schauder theory (e.g. [5, §8.11])

tells us that

(9) |W/lcι β(*) < cκinϊUj
JK

for any compact K c regC and for sufficiently large j (depending on K).

Then letting y0 be any fixed point of reg C we conclude there is a subsequence

{ uy } (henceforth denoted { wy}) such that (Uj(yo))~
ιUj converges locally in the

C 1 sense on reg C to a positive solution u of

(10) Δcw +|Λ c | 2 w = 0

with u(y0) = 1. In particular

(11) u > 0, Δcw < 0 on regC.

We now want to apply the Harnack theory of [1] to u. Since C is

minimizing, j r w " 2 (s ingC) = 0 and M(CιBp(y)) < cpn Vp > 0, y e sptC.

Because of this it is easy to construct a sequence of functions (φ c Ct°°(regC)
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such that φ7 Ξ 1 on (JC <Ξ regC y"1 < |x| <j, dist(x,singC) >j~1}, 0 < φy

1 everywhere on reg C, and

(12) /

for each fixed R > 0. Now for Q > 0 let uQ = min{w, β ) , so that by (11) we

have

(13) f VuQ vξ>0

for each nonnegative Lipschitz ξ with compact support in regC. Let ψ

CC°°(IRw+1), ψ* = ψ |regC, and replace f in (13) by φjφiug1. Then (13) gives

ί u-Q

2\vuQ\
y regC

so that by (12) and the fact that φy -> 1 uniformly on compact subsets of reg C,

we have

(14) ί Ivi/ρl < oo for each R > 0, Q > 0.

Also, replacing f by φ^ψ* in (13), and letting j | oo, we have

(15)

for each nonnegative ψ e CC°°(IRW+1), where again ψ* = ψ |regC.

In view of (14) and (15) we can indeed apply the Harnack theory of [1] in

order to deduce that

inf uo> c I
ree Cn J9,(0) * Jτreg CΠ B2φ)

Letting Q f oo we thus have

u0.

inf u> c I u > 0.
n# 2(0) ^regCΠ^CO)regCn#2(0)

In terms of the functions wy this tells us in particular that for nonempty

compact L c regC Π B3/2(0) there is j 0 =jo(L) such that

inf Uj

where c is independent of L. Thus in view of (8) we deduce that there is

h=MK,L)

(16) inf Uj > cκ sup Uj V/ ^ ^
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for any compact L, K c regC Π B3/2(0) with L, KΦ 0, where c^ > 0
depends on # but not on L.

But now, taking K = /^((p ^Ω^ Π 8^) and L =^/((pτ1)Ω^o n 3^), we
see that (6), (16) are contradictory for sufficiently small θ. This completes the
proof of Theorem 1.
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