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IRRATIONALITY AND THE Λ-COBORDISM
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I. Introduction

Underlying each smooth complex projective variety there is a compact

differentiable manifold, and Hodge Theory links the topological cohomology

of the space with its algebraic geometry. Despite this link there remains a

striking difference between the successes of the two theories—the differential

topology of manifolds and algebraic geometry of varieties—in problems of

classification. For varieties there is a clearer picture in low dimensions,

algebraic curves and surfaces, while for manifold topology high dimensions are

more tractable. Smale's /z-cobordism theorem gives a practical method for

comparing the diffeomorphism types of simply-connected manifolds of dimen-

sion 5 or more, but for 4-manifolds the proof of the Λ-cobordism theorem

breaks down.

In four dimenisons the first order Yang-Mills equations for gauge fields, like

the Laplace equations of Hodge theory, give a path through partial differential

equations between geometry and topology. On the one hand the solutions are,

roughly speaking, generalizations of the holomorphic bundles over a complex

surface. On the other hand their moduli spaces carry topological information.

In this paper we exploit this path to define and calculate a new invariant for

certain smooth 4-manifolds: we will see that the new invariant goes beyond the

classical ones and our results indicate that there is a detailed structure in the

differential topology of 4-manifolds quite analogous to that in the geometry of

complex surfaces.

The manifold we used to test our invariant was discovered by I. Dolgachev

in 1965 [4]. Dolgachev was motivated by the Castelnuovo-Enriques criterion
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for the rationality of an algebraic surface S:

q(S) = 0
S r a t i o n a l

[14, p. 536]. The "irregularity" q(S) is half the first Betti number and hence a

homotopy invariant. But, while the "geometric genus"

is similarly identified by Hodge Theory as an (oriented) homotopy invariant,

the plurigenus P2(S) = d i m Γ ( # J ) is not, since the holomorphic sections of

Kl are not tied to the de Rham cohomology. Severi asked whether the

modified conditions

depending only on the homotopy type of S, imply that the surface is

rational. Dolgachev's surface Z—irrational but homotopy equivalent to

P 2 # 9P2—shows that this is not the case. We will use our new invariant to

prove, in a similar spirit to this algebraic geometry discussion, that Z is not

diffeomorphic to P 2 # 9P 2 .

Wall showed in [30] that there is an /j-cobordism between two simply

connected, homotopy equivalent 4-manifolds. So Z and P 2 # 9 P 2 are h-

cobordant nondiffeomorphic manifolds and they give a counterexample to the

"Λ-cobordism conjecture" for smooth 4-manifolds. That is, the failure of the

usual proof of the Λ-cobordism theorem is irreparable. Of course, by Freed-

man's classification [11] the two manifolds are homeomorphic and the results

we obtain here distinguishing different smooth structures on the same topologi-

cal 4-manifold are complimentary to those on the nonexistence of smoothings

found using gauge fields. (Examples of nonsimply-connected 4-manifolds

which are homeomorphic but not diffeomorphic have been found by Cappell

and Shaneson [3].)

The main result of this paper was published in [7] and most of the technical

background has been developed in [8], [9]. The first half of the paper gives the

definition of the invariant, culminating in Theorem (2.15). The invariant is

fairly complicated so it is worth pointing out here that one can define a whole

range of invariants for various 4-manifolds [10] and these are in some ways

simpler than the rather special case discussed here. The advantage of this

special case lies in our ability to do calculations which take up the second half

of the paper. In the Appendix we extend the discussion to allow for fundamen-

tal groups.
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The approach we take here is slightly different from that in [7] (rearranging

the use of Poincare Duality in §II(b)) and takes advantage of a suggestion of T.

Cochrane and C. Taubes. The author is also grateful to M. F. Atiyah and

M. Reid for useful discussions and to M. Ville for translating [7].

II. The invariant Γ

(a) Let X be a smooth, simply-connected, closed oriented 4-manifold whose

intersection form has type (1, n). So the positive cone Ω in H2(X; R),

(2.1) Ω = {θ(ΞH2(X;R)\θ'θ>0},

has two connected components. For each element e in H2(X; Z) with

e e = -1 let We denote the intersection of the hyperplane eL in H2(X; R)

with Ω. The union of these "walls" forms a locally finite system of hyper-

surfaces partitioning Ω into a set *€x of "chambers": the connected compo-
nents of Ω \ (U, We\

The invariant Γ^ of X which we will define in this section is a map

with the following formal properties:

(2.2)(Ϊ)TX(-C)=-TX(C).

(ii) If C_l9 Cλ are chambers in the same component of Ω and if a path

between C_1? Cx meets walls Weγi Wej,-
 m,Wek, where et C_λ < 0 < et Cl9

then

(iii) If / : Xγ -> X2 is an orientation preserving diffeomorphism between two

such manifolds, then Γ^(/*(C)) = /*(Γ^ 2(C)).

(2.3) Remarks, (i) If n > 1, then Theorem B of [8] asserts that the intersec-

tion matrix, in a suitable integral basis, is diag(l,-l, , - l ) . If n = 1, there

are two possbilities:

lo -l/' U or
(ii) The quotient Ω/R* is a model for ^-dimensional hyperbolic space ί)M

and the quotients of the walls We divide i}n into chambers in a similar way. To

each chamber in ΐ)n there corresponds two elements ±C of ^ . Property

(2.2)(i) means that, up to a sign, we can regard our invariant as a function of

the chambers in hyperbolic space. For example when n = 2 we obtain the

configuration of walls in the hyperbolic plane shown in Diagram 1.
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(Pattern repeats to infinity)

DIAGRAM 1

(b) Roughly speaking the cohomology classes TX(C) will be defined by the

homology classes of suitable Yang-Mills moduli spaces. We will assume some

familiarity with the references [13], [8], [9]. Let E -+ X be an SU(2) bundle

with c2(E) = 1. Denote by & the infinite dimensional space of gauge equiva-

lence classes of connections on E and by ^ * c 3δ the dense open subset

representing irreducible connections. For each Riemannian metric g on X the

moduli space M = M{g) is the subset of 2 defined by the anti-self-duality

(ASD) equation

using the metric g. The metric also determines a line in Ω u {0} c ^ 2 ( I ; R )

made up of the cohomology classes represented by g-self-dual harmonic forms.

Choosing a component of the cone Ω is equivalent to choosing a definite basis

element ω for the self-dual harmonic forms—normalized so that Jω A ω = 1,

say. Write [ω] for the corresponding point in Ω. It is elementary from Hodge

theory that the moduli space contains a reducible connection precisely when
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[ω] does not lie in one of the chambers. For each wall We= W_e containing

[ω] there is a unique point in M(g) Γ\[&\&*] corresponding to a reduction

E = L e Θ L;\ cx(Le) = e. We will use the following three properties of the

Yang-Mills moduli spaces M(g).

(a) For generic metrics g on X the moduli space is a smooth manifold cut

out transversely by the ASD equations [13, Proposition 3.20]. This means that

the cohomology of the Atiyah-Hitchin-Singer deformation complex vanishes in

dimension 0 and 2 for all solutions A, and so άimH\ = dimM = 2 agrees

with the virtual dimension predicted by the index theorem. In particular, for

such generic metrics the line of self-dual harmonic forms does not lie in any

wall and there are no reducible ASD connections on E.

(β) A choice of component of Ω, i.e. harmonic form ω, defines an orienta-

tion of M. We fix our conventions in line with [9] so that X is given the

" homology orientation"

-1 Λ ω e Λ 2 ( # ° Θ H2

+)

and we use this to define a "standard orientation" of M as in [9, §§IΠ, IV].

Reversing the choice of component of Ω reverses the standard orientation

of M.

(γ) There is a finite-dimensional model for the end of M using Taubes'

construction of a map:

parametrizing "concentrated" solutions of an "infinite dimensional part" of

the ASD equations. Choose a harmonic form ω as above and let Λ -> X X (0, ε)

be the 3-plane bundle πf(A\ x). Then there is a section Φ of Λ such that τ

maps the zero set Z = Z(Φ) c X X (0, ε) to M, and the complement of τ(Z)

in M is compact. Furthermore regular zeros of Φ correspond to regular

solutions of the ASD equations and the standard orientation of M corresponds

to a standard orientation in the finite-dimensional model (see [26], [8], [9]).

These three properties are all that is needed to define the invariant Γ^,

although for calculations we will also make use of the following explicit

approximation to Φ. If ω is the section Λ given by our choice of harmonic

form, then

(2.4) Φ(jc,λ) = 8ττ2λ2ω(x) + Λ(x,λ), (x,λ) εJfx(0,e),

where Λ, dh/dX, and λdh/dλ are O(λ3) [8, Lemma 5.4]. Use the coordinate

t = ]/λ in the R-factor of X X (0, ε) to adjoin a boundary, t = 0. Then (2.4)
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implies that λ"2Φ has a C1 extension t o l x [0, ε), equal to ω on X X {0}. So
if ω vanishes transversely on a submanifold γ in X, then the end of M is a
collar over γ. For generic metrics on X the harmonic form ω will have this
property, by the discussion of [8, §VI].

(c) Fix a generic metric g on X and a g-self-dual harmonic form ω. We will
define an invariant depending, at the outset, on g and ω using three simple
topological constructions.

First, we can construct a universal bundle E over J * X l with structure
group ί/(2) [8, Proposition (2.20)]. Define a map

(2.5) μ:H2(@*;Z)^H2(X;Z)

by £(/) = /\ c2(E). This is the adjoint of the map

μ:H2(X;Z)-+H2(<%*,Z)

used in [8] and so, for the simply-connected manifold X, μ determines μ. In
any case μ is independent of the choice of universal bundle E.

Now suppose the moduli space M(g) happens to be compact. Then it carries
a fundamental homology class [M(g)] in H2(@*) (using the standard orienta-
tion of (/?)) and we can use the universal bundle to define a cohomology class
μ([M(g)] in H2(X). The second construction we need identifies a correction
term associated to the description of the end of the moduli space which will
give a class in H2{X) when M is not compact. (In fact the contribution from
the moduli space will be twice the fundamental class).

For each "level" a in (0, ε) write I α = I X { α } c I X ( O , ε ) J f l = I f l n Z ,
Za = Z Γ) X X [a, ε). By Sard's Theorem the intersection Xa Π Z is transverse
for almost all a and in that case Za is a manifold with boundary Ya. Let
Na = τ(Ya) c M and Ma be the union of τ(Zα) and the compact piece
M\τ(Z). So Ma is a manifold with boundary Na (see Diagram 2).

Fix a in general position and suppose a relative class

is given, which maps to twice the fundamental class in H^Y^ under the
boundary map of the pair (Xa,Ya). Then, with the appropriate orientation
conventions, the difference

(2-6)
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X x (0,e)

DIAGRAM 2

in H2(@*,Na) will have a unique lift /(α,M,έJ to H2(@*) (since H2(Na) = 0).
Similarly, suppose a < β are two levels in general position and ea, eβ are given
as above. Write Xaβ = X X [α, /?] and Zaβ = Xaβ Π Z. The combination
2[Zα)8] - ea + eβ can be regarded as an element in H2(Zaβ U l α U A^). If
there is a class eaβ in #3(Xα/?, Zα/? U l f l U Xβ), mapping to 2[Zα/?] - ea + ^
under the boundary map, then it follows that /(α, M,ea) = l(β,M,eβ) in
J Ϊ 2 ( # ).

The classes eα, ^α/8 posited above can be found in the topology of the model
for the end of the moduli space. Let Φ ± c Λ | ^ ^ y be the orthogonal
complement of Φ. (It is a 2-plane bundle with a standard orientation, although
we postpone discussing these signs for a moment.)

The Euler class ^(Φ-1) lies in H2(Xa\Ya); we take ea to be its dual
homology class in H2(Xa9Ya). Since Ya is a submanifold of Xa, the duality
isomorphism H2(Xa,Ya) = H2(Xa\Ya) used here can be defined by the
composite of the excision

H2(Xa,Ya) = H2(Xa,dva), H2(Xa\Ya) = H2(Xa\va)
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of a tubular neighborhood va of Ya, with Lefschetz Duality H2(Xa\va) =

H2(Xa,dva). To check the boundary properties of ea we use the Thorn

isomorphism for the 2-sphere bundle dva -> Ya. The section Φ vanishes

transversely on Z so the bundle Φ -1 can be identified with the tangent bundle

along the fibers over dva and this means that e(Φ x ) restricts to e(S2) = 2

times the generator on #2(fiber). Going over to homology this calculation

verifies that ea has the desired properties. In just the same way the Euler class

of the bundle Φ1 over Xaβ\Zaβ dualizes to give the required relative

homology class eaβ. (Of course this argument is essentially the same as that

showing that twice the Euler class of a 3-plane bundle vanishes [22, Property

9.4, P 98].)

So, with the fixed metric and harmonic form, we define in this way an

element / of H2(@*; Z). If ω does not vanish anywhere on X, then by (2.4) M

is compact and / has two distinct contributions, one from e(Φ±) and one from

2[M], in (2.6). But only this combination makes good sense for general metrics.

The third step in our definition is to check the orientations and to give an

explicit description of the contribution from Φ in the case when ω does not

vanish.

For the orientations we suppose, as in [9, (4.10), Example (iii)], that

( x o , x 1 , x 2 , j c 3 ) i s a system of oriented local coordinates around a point in the

zero set γ of ω (relative to some metric) and that there is a local frame ε1? ε2,

ε3 for Λ2

+ x such that
3

« = Σ *A-
7 = 1

The coordinate x0 is chosen so that ελ Λ ε2 Λ ε3 is the orientation of Λ2

+

defined in [9, §IΠ(c)]. Then the standard orientation of M was calculated

(loc.cit.) to be given by

3
"Ξ— Λ w>

where n is the vector pointing "into" the moduli space, and 3/3x0 corre-

sponds to translations along γ.

Orient ω^ by the rule that ε± has orientation ε2 Λ ε3. Then the dual of

e(ίo±) is represented locally by the half-plane P = {x2 = x3 = 0, xλ> 0},

taken with multiplicity 2 and orientation 3/3x0 Λ d/dxv So the oriented

boundaries oϊ2M and P are equal and this rule is the correct one for orienting

Φ -1 to achieve cancellation.

On the other hand, at points where ω does not vanish it defines an almost

complex structure on the 4-manifold (such that 2ω/|ω| is the standard metric

2-form) and this rule corresponds to the identification ω±= A2

CTX (i.e., the
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(0,2) forms; see [9, §111]). So, if (for some other metric) ω does not vanish, the
approximation (2.4) to Φ shows that eiΦ1) is -cλ(Kx), where Kx is the
canonical bundle of the almost complex structure.

Finally, the duality formula equating the composite

(2.7) H2(X;Z) -> H2(<%*;Z) -> H2(X;Z)
μ T *

with Poincare Duality [8, §111] leads to the adjoint form:

H2(X) -> H2{3S*\Z) -> H2(X;Z),
(2.8) 2 } τ* 2 *

= P . D .

So applying μ to the contribution from Φ -1 gives a contribution of cλ{Kx) to
Γ.

In sum we have:
Proposition (2.9). // g is a generic metric on X and ω is a g self-dual-closed

form, then the construction above defines a cohomology class

in H2(X\ Z). // ω is nowhere zero, so M is compact, then Γ(G, ω) = 2μ([M])
4- cx{Kx) where M has the standard orientation defined by ω and Kχ in the
canonical bundle of the almost complex structure for which 2ω/\ω\ is the metric
form.

Note that

(2.10) Γ (g ,-ω) = -Γ(g,ω),

since changing the sign of ω changes the orientations throughout.
(d) We now compare the elements Γ(g, ω) in H2(X) for different Rieman-

nian metrics and show that their totality gives an invariant Tx with properties
(2.2)(i)-(iii). The comparison involves generic paths in the space of Rieman-
nian metrics and two cases arise, according to the presence of reducible
solutions to the ASD equations.

Proposition (2.11). Let g_1? gλ be generic metrics on X which can be joined
by a path gt (t e [-1,1]) of metrics for which the cohomology classes [ωt] of the
self-dual harmonic forms lie in a single chamber C in Tx. Then T(g_x, ω_λ) =

Proof. This is a simple transversality argument, similar to [16, Chapter 3].
The hypothesis on the metrics gt means that all the moduli spaces M(gt) lie in
^ * . Work with the space 0t of Ck Riemannian metrics (k » 0) and let s/ be
extended to include L[ connections (some p > 2). These are Banach manifolds
so we can use the ordinary implicit function theorem.
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Consider first the ends of the moduli spaces. We may regard the self-dual

harmonic forms, for all different metrics, as defining a section of a 3-plane

bundle Λ over X X Si. According to [8, §VI] this section vanishes transversely

on a codimension 3 submanifold G c l x f , say. The zero sets γ c X f or the

different metrics are the fibers of the projection of G to 3i. The generic metrics

8-i9 Si G & w e r e chosen so that XX {g_χ}, X X {gλ} are transverse to G. It

follows that, since X is compact, there is a map

i/: [-1,1] X 5 ^ f

(some N > 0 and BN (zRN the unit ball), with H(t,η) = gt if η = 0 or

|f| = 1, such that H X lx is transverse to G. So (H X 1X)~\G) is a submani-

fold of X X [-1,1] X BN and we can apply Sard's Theorem to find arbitrarily

small regular values ξ of the projection

(HXIX)-\G)-*BN.

This means that we can suppose the path gt chosen so that their harmonic

forms ωt—considered as a section of a bundle over X X [-1,1]—vanish

transversely. For if the original path did not have this property a nearby path

# ( / , £ ) will do.

Let

•* = U (M(g,),0 c^*x[-l,l].
/e[-l,l]

The boundary description of §III(b)(γ) extends to describe the end of this

family of moduli spaces. The end is modelled on the zero set iΓ of a section Φ

of the bundle Λ ^ I X [-1,1] X (0, ε) and Ψ is approximated by ωr So if ωt

vanishes transversely the end is a collar on the 2-dimensional zero set.

In [13, §3] Freed and Uhlenbeck show that the "universal" moduli space—a

subset of ^ * X &— is a submanifold. So, repeating the transversality argu-

ment above, we can perburb the path g, slightly to smooth the compact part of

Jί not already covered by the description of its end. Thus we can suppose Jί

is a 3-manifold with two boundaries M(g_λ), M(g1). Now choose a level a in

(0, ε) with Xa X [-1,1] transverse to SIS and Xa X {-1}, Xa X (1) transverse

to the sets Z[~ι\ Z^ considered in (c) above. Then ^a = (Xa X [-1,1]) Π 2S

is a cobordism between Y}~1) and 7α

(1). The dual of

is a class in H3(Xa X [-1,1], Xa X {-1,1} u %) with boundary e(l) - e(~l) +

2%. So 2Jta - τ + ( ^ ( Ψ ± ) Λ ) gives a homology in # * x [ - l , l ] between

l(~l) X {-1} and l^ X {1}; thus, projecting to # * , l{~l) = I™ i n H2(@*; Z).
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In general we have:
Proposition (2.12). Let g_v gx be generic metrics on X and choose correspond-

ing harmonic forms ω_v ωλ so that [ω_J, [ωj lie in the same component of Ω.
Then

where {e1?- -,ek} = {e e H2(X;Z)\e - e = -1, ω_λ e < 0 < ωλ e).
Proof. The discussion of [8, §VI] shows that there is a path of metrics gt

from g_λ to gλ such that the corresponding path [ωj in Ω passes transversely
through any wall it meets. Suppose, for simplicity, that [ωj meets just one wall
We, ω_x e < 0 < ωx e, and crosses it when t = 0. Then the moduli space
M(g0) contains a point associated to a reducible connection A, compatible
with a splitting E = L~ι Θ Le. The deformation theory models a neighbor-
hood of this point in M(g0) on a quotient φ-^OyS1, where φ: Cq+2 - ^ R θ C 9

is an equivariant map (see [8, §IV]). In just the same way the behavior of the
family of moduli spaces M(gt) near this reduction, for \t\ < τ, is modelled by a
map χ: Cq+2 X (~τ, τ ) - > R θ C 9 extending φ. For the discussion of homol-
ogy it is not loss to suppose that q = 0 (adding a small perturbation by hand if
necessary, as in [5], [13, §4]. Then χ takes its values in the copy of the
1-dimensional space H\{X) = R ω0 corresponding to the trivial factor in the
Lie algebra bundle g E = R θ L2

e. As in [9] we fix signs so that the R factor
acts with positive weight on Le. Now χ(Z, /) represents the ω0 component of
the curvature of a connection A + p(Z,t) which is reducible when Z = 0. It
has the property that

F(A+p(09t))-χ(0,t)ω0

is gt ASD so

ωr(F(A + p(09t))) = χ(0,t)ωr ωo.

The curvature F(A + p(0,t)) represents -2πcx(Le) = -2πe and ωt ω > 0.
So the condition that ωt passes transversely through We9 and the sense in
which it crosses, implies that dχ/dt < 0 when t = Z = 0. This means that
projection to the Z-factor maps a small neighborhood of (0,0) in χ-1(0)
equivariantly and diffeomorphically to a small ball in C2. Cut out the corre-
sponding neighborhood from the moduli space J( = U,(M(g,), t) c 3$ x
[-1,1]—the remainder is contained in ^ * X [-1,1]. Using the argument in
Proposition (2.11), away from the reduction, we get a homology in ^ *
between / ( - 1 ) and /(1) ± 2Pj, where Pj c 36* is the 2-sphere corresponding to
{|Z| = δ}/Sι in the local model. Given Pj its usual complex orientation: by
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[8, Lemma (2.28)] we have

(2.13) <M(a),Pj> = -<a,e>

for a in H2(X; Z). Since πx(X) = 1 and H2(X) is free this implies that

(2.14) £(pi) = -e.

To find the right sign for the change in Γ(g,,ω,) consider a case when
χ(Zl9 Z2, /) = \Zλ\

2 + |Z 2 | 2 - t. Then as / increases through 0, the moduli
space gains a copy of Pj as a new component. The results of [9] (especially
Example (4.5)) show that the standard orientation of M on this component is
opposite to the usual complex orientation of Pj. So

/(i) = /(-i) _ 2 [ P J

in i/ 2 (^*) and Tig^ωJ = T(g_vω_λ) + 2e. Now Proposition (2.12), in
general, follows from this special case by counting, with the correct signs, all
the walls crossed. (It does not matter if the path [ωj crosses many walls
simultaneously since the different reductions are separated in !%.)

So we have obtained the main theorem of this paper.
Theorem (2.15). There is a unique way to define a map TX:

(£X-*H2(X;Z)
with the three properties in (2.2) such that for any generic metric g on X and
g-self-dual form ω, TX(C) = Γ(g, ω), where C is the chamber containing [ω].

The proof follows immediately from (2.9)-(2.12).

III. Stable bundles over algebraic surfaces

(a) Review of complex geometry. In this section we suppose that the

4-manifold X admits a complex structure and Kahler metric. For such a metric
the holonomy group of the cotangent bundle is reduced from SO(4) to ί/(2)
and the bundle of self-dual 2-forms decomposes as

(3.1) Λ 2

+ = R ίoθ Kx.

Here ω is the usual metric form and Kx is the canonical bundle of complex
(2,0) forms.

One consequence of this differential geometry for the manifold in the large
is the Hodge Index Theorem

(3.2) b

That is, the self-dual harmonic forms split into a 1-dimensional piece spanned
by ω and a piece identified with the holomorphic 2-forms. So the manifold has
an intersection form of type (1, n)—as in §11—if and only if its geometric
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genus pg is zero. Also, the complex structure picks out a preferred component

of the positive cone ω; the cone containing the cohomology class of the Kahler

metric.

Suppose also that X is an algebraic surface (for topology this is no real loss

of generality since it is known that any Kahler surface deforms to an algebraic

one [18, Theorem 16.1]). Then it is natural to consider "Hodge

metrics"—Kahler metrics whose form ω defines the cohomology class cλ(H)

e H2(X; Z) of an ample line bundle H -> X. So the sections of some positive

power Hd given an embedding X ^ PN whose hyperplane sections are curves

in X Poincare dual to d[ω]. Conversely we can identify the cohomology

classes of ample line bundles. An element of H2( X\ Z) is the first Chern class

of a holomorphic bundle if it has type (1,1) and on any compact complex

surface S we have the "Nakai criterion."

Proposition (3.3) [2, p. 127]. A line bundle ££-* S is ample if and only if

cλ(^)2 > 0 and c^SP) c > 0 for every complex curve c in S.

(b) The ASD moduli spaces. If g is a Hodge metric on an algebraic surface

X there is an algebro-geometric description of the moduli spaces of g—ASD

connections similar to the description of the harmonic forms in the Hodge

Index Theorem. Most of the account following applies to general surfaces; for

those of interest in this paper, with pg = 0, the moduli space M(X, g) will be

compact since the harmonic ω is the Kahler form and does not vanish

anywhere.

If dA : ίl°(E) -> Ωι(E) is the covariant derivative of a unitary connection A

on a complex vector bundle E -> X, we define derivatives dA, 3^ in the

holomorphic and anti-holomorphic directions:

^ = 3 , 0 3 , : Q°(E) -> Qlfi(E) θ Ω

As usual, there is a similar operator

If A is ASD then the bundle decomposition (3.1) implies that dA = 0 and a

version of the Newlander-Nirenberg Theorem ([23], [1, §5]) asserts that this is

the integrability condition for θ^. If it is satisfied, there are local trivializations

of E by sections s satisfying dAs = 0, and these define a holomorphic structure

on E. Since X is projective algebraic this holomorphic structure will also be

algebraic—admitting a system of rational transition functions [14, pp. 171,

207].

Thus the integrability theorem gives a map from the moduli space of ASD

connections on an SU{2) bundle E -> X to the set of equivalence classes of

algebraic 2-plane bundles $ with trivial determinant.
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The main theorem of [6] describes this map more precisely. Such an

algebraic bundle £ is said to be stable if all line bundles S£ admitting nonzero

holomorphic maps «£?-» $ have

(3.4) d e g ^ = o ^ # < 0 .

Here H is an ample line bundle compatible with the metric and we adopt the
usual notation confusing line bundles and their cohomology classes. Then,
assuming for simplicity that there are no reducible ASD connections on E, we
have

Proposition (3.5) [6]. The forgetful map assigning a ^-operator to a connection

induces a (1-1) correspondence between a moduli space of ASD connections on E

and the equivalence classes of stable bundles S with Λ2<f = Θx and c2($) =

c2(E).

This gives an algebro-geometric description of the ASD moduli spaces as
sets. To get our hands on their fundamental homology classes we enhance the
description by comparing the deformation theories of ASD connections and
algebraic bundles.

The points in the ASD moduli space in the neighbohrood of an orbit [A] are
described by the Kuranishi method, splitting the equations into finite and
infinite dimensional parts. This can be done in many different ways and we
will use a minor variation of the set-up in [8, §IV]. Working in the transversal
slice

[A + a\d*a = 0}

we consider, for small a, any smooth family

ua:HΪ->Ω2

+(QE)

of maps transverse to Im d^. Then the nonlinear equation

can be solved by the implicit function theorem: the solutions, for small α, are
parametrized by a map:

Relative to this parametrization the nearby points in the moduli space are the
zeros of the map

given by the remaining component of E+ (so E^+i(p) = ui(p)(φ(p)). One sees
readily that changing the choice of transversals Ua and parametrization i(p)
changes φ to a different model φ1 with Φι(p) = yp° Φ° δ(p), where δ is a
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diffeomorphism defined on a small neighborhood of 0 in H\ and p •-> γ is a

smooth map from a similar neighborhood to GL(//^).

On the algebraic, or complex analytic, side we use the analogue for bundles

of Kuranishi's original construction [20]. Let E be the C 0 0 bundle underlying

a given stable holomorphic bundle $ with Λ2<f = Θx. Denote by stf the

complex affine space of 3-operators:

compatible with the given trivialization of Λ2, and by ^ c the "complex gauge

group" of special linear automorphisms of E. Then $ is represented by an

operator 3 0 in J / and the set of holomorphic structures on E is the quotient

by ^ c of the subset ( F 0 ' 2 = 0} of J ? . Here

is the map assigning the tensor 3 2 to a 3-operator ( E n d o £ c E n d £ denotes

trace-free endomorphisms). Stability is an open condition so, for the local

discussion of a neighborhood of [$] in the moduli space Ms of stable bundles,

we need not distinguish between the moduli of arbitrary holomorphic bundles

and the stable ones.

We construct a sheaf of rings ΰMs on Ms from a presheaf Q. If U is open in

Ms then an element of Q(U) is represented by a ^-invariant holomorphic

function / on a subset V c stf lying over U. Two such representations (/ l 5 Vλ),

(/ 2 ,F 2 ) are equivalent if there is a g in ^ c such that V2 = g(Vι) and

Λ ~~ fi ° S ι s induced by an invariant function of Foa \ v . (The precise defini-

tion of holomorphic functions on these infinite-dimensional spaces is not very

critical. We could, for example, take a version of si based on Banach spaces.)

If we write

J / = ( 3 0 + a\a G Ω ^ E n d o E ) } ,

then

(3.6) F° ' 2 (3 0 + α) = 30α + H « ? « ]

(extending 3 0 to act on End E) and the complex gauge group ^ c acts by

(3.7) g(3 0 + a) = 30 + {g<*g-1 + gUg~1)}-

Kuranishi's method applies the implicit function theorem to (3.6), (3.7) to

give a finite-dimensional model for the sheaf 0M in terms of the Dolbeault

cohomology groups:

£; 30) = //'(
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Using the same notation as before we get holomorphic maps:

(3.8) * - > 3 0 + . / ' ( " ) ,

ψ : Hι(End0 S) -> # 2 (End 0 δ)

such that Foa(do+j(π)) = V^ψiπ)) for small π in H\Έnάo£). (Once
again the model ψ depends upon a choice of transversal maps Vm from
i/ 2 (End 0 £) to Ω°'2(End0£).) The stable bundle δ has #°(End 0 *) = 0 [24,
p. 172] so the stabilizer of 90 in ^ c is { ±1}. It follows then that the stalk of
ΘM at [<f ] is naturally isomorphic to the germs of holomorphic functions at 0
in /^(Endg^) divided by the ideal generated by the components of ψ. That
is, to the structure sheaf of the "universal local deformation" T = {ψ = 0} c
H 1(End0 £*). Moreover, as Kuranishi shows in [20], a local universal family—a
locally free sheaf over a neighborhood of {0} X X in the complex analytic
space T X X—exists, and the universal properties of this characterize T
intrinsically. Restricting to the stable bundles means that these local deforma-
tions fit together to define a separated analytic moduli space Ms (in fact it is a
quasi-projective variety). When c2(δ) is odd this is a "fine" moduli space,
admitting a universal sheaf E over Ms X X, by the same argument used in [8,
Proposition (2.20)], [24].

To compare Ms with the ASD moduli space M fix a Hermitian metric on E,
compatible with the trivialization of Λ2. Then sf is naturally identified with
the space sf of SU(2) connections via the 3-operator dA associated to a
connection. For any such connection A we use (3.1) to write

F; = iPλ • ω θ F

(of course End o £ = QE ® C and the bundles of (2,0) and (0,2) forms are
isomorphic as real bundles). Proposition (3.3) asserts that the ^ c orbits in
( F 0 ' 2 = 0} containing solutions of FA = 0 are exactly those of the stable
bundles, and the solution in each orbit is unique up to 9, the special unitary
gauge group. Locally, in the neighborhood of an irreducible ASD connection
A, this follows easily from the implicit function theorem. If we write a = a —
«*, where a is in Ω0 1(End0£), the gauge fixing equation d%a = 0 combined
with the condition FA+a = 0 gives an equation of the form

(3.9) 8 > + { α , α } = 0 ,

where { , } is an algebraic bilinear term. The derivative of the ^ c action (3.7)
at g = 1, a = 0 (with 80 = 3̂ ) is

(w,α) •-> a — dAu.
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So the solutions of (3.9) give a smooth transversal to the ^ c action, since the

Laplacian d*dA = \dAdA on Ω°(End0E) is invertible. That is, for any connec-

tion A + (β - β*) close to A ( J 8 G tiOΛ(EndoE)), there exists a unique

element gβ of ^ c , close to 1, such that the (0,1) part of gβ(A + β - β*) - A

satisfies (3.9).

The Kahler identities give natural isomorphisms

(3.10) //'(End 0<0 = HA, i = 1,2,

between the cohomology groups of the Atiyah-Hitchin-Singer deformation

complex and sheaf cohomology groups associated to the holomorphic bundle $

defined by A (see [9]). Suppose we define a local model ψ, as above, for Ms

using the constant harmonic lift HA"
2 c Ω°'2(End0 £) , so

Then F°*(giiv)(dQ + j(π))) lies in gι{π)H%%\y Since F vanishes on the

unitary connection A 4- /(TΓ) corresponding to g i (7 r )(90 + ./(π)) O U Γ model φ

for M agrees with ψ (under the isomorphisms (3.10)) if we use the family of

transversals

Uβ_β. = Adgβ:

In the simple case when i/ 2(End 0 ^ ) vanishes for all points [£] in Ms (and

also there are no reducible solutions) the moduli space M is smooth and cut

out transversely by the ASD equations. The Kahler metric is then one of the

generic metrics considered in §2. The "standard orientation" of M correspond-

ing to the homology orientation -1 Λ ω of X was chosen in [9, §IΠ(c)] to

agree with the complex orientation of Ms and we can calculate the contribu-

tion to Γ using the holomorphic universal family

(3.11) μ(M) = [ M s ] \ c 2 ( E ) .

So for the homology calculation we do not need to know the ASD connections

explicitly. (Another way of saying this is that for any family T of indecompos-

able holomorphic bundles there is an associated homotopy class of maps

T -> ^ * defined by choosing any smooth family of Hermitian metrics on the

bundles.) So we have:

Proposition (3.12). IfXis a simply-connected algebraic surface withpg(X) = 0

and H -> X is an ample line bundle such that all H-stable bundles $ with

c2(S>) = 1, Λ2<?= Θx have i/2(End0*?) = 0 and there are no line bundles <£

with S£ H = 0, Se- &= - I , then

where C is the chamber containing cλ(H).



158 S. K. DONALDSON

If H2(Έnd0£
>) does not always vanish and the contribution to Γ is defined

by the moduli space M' for a nearby generic metric, it is reasonably clear that

the class μ ( M ' ) can still be extracted from the ringed space (Ms,ΘMs)9

together with the universal family over Ms X X. Rather than attempt this in

general however we shall stick to a simple example which arises in applications

[12], [25]. Suppose there are no reducible solutions; for every point [$] in Ms

we have dimH2(Enά0S
>) = q, dimHι(Enά0S) = 1 + q, and a local model ψ

has the shape:

ψ ( z o , z 1 , . . . , z ^ ) = ( z Γ , . , z ^ ) .

Thus the reduced space M™d is a smooth Riemann surface, and M is

identified with this as a point set.

Proposition (3.13). In this case

Tχ(c) = 2( Πm.-jfj/i*] WE) + Cl(Kx).

Proof. The vector spaces H2(Έnd0 S) = H\ fit together to define a bundle

H2 -> M, which can be regarded by the choice of lifting as a subbundle of that

defined by the Ω + spaces.

Similarly we can choose a family of ^-dimensional subspaces of the

/ ί 1 ( E n d 0 ^ ) ' s , transverse to the zeros of the ψ's, defining a bundle Q -> M.

Putting together the maps i on the fibers gives an embedding

I:(N c Q) -> 38*

of a disc bundle N in Q. The local models combine to give a map:

Φ:N -> H2.

To calculate homology we need not restrict ourselves to the manifolds

defined by ASD equations. If σ is any section of the bundle Ω^-* ^ * which

is a "compact perturbation" of F+ then the solutions of Ff + σ(^) = 0 serve

equally well (cf. [5], [9]). We consider sections σ which extend a fiber-

preserving map

ε:N^ Hi

over /(N). (More precisely, we use the transversals u to embed H\ in Ω+ over

N and suppose these are chosen to be compatible with the holomorphic

description, as above.) Then if σ is small the solutions of F£ + σ(A) = 0 in

^ * and of Φ + ε = 0 in N correspond under /. Choosing ε in general position

makes the zero set of Φ 4- ε a 2-manifold M * and if ε is small this does not

meet dN. Since N retracts onto M the homology class of / ( M * ) is a multiple

d[M], where d = mx mq is the degree of the map Φ on the boundary of a

fiber of the disc bundle. Then extend ε over ^ * to define σ.
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(3.14) Remark. Although we have used abstract perturbations here it is
possible to predict the behavior of the moduli space under a small change in
the Riemannian structure—defined by μ: Λ2_-> Λ2

+, say (cf. [8, §VI]). For [A]
in M let εμ(A) be the projection of μ(FA) to H%. Then if εμ vanishes
transversely on M and μ is small the zero set of Φ + εμ in Λ̂  will be
diffeomorphic to the moduli space of the new metric.

(b) Calculations and corollaries.
(i) Dolgachev surfaces. Let ( / = 0), (g = 0) be two general cubic curves in

CP 2 and Y be the algebraic surface obtained by blowing up the nine common
zeros of / and g. From its definition Y is a rational surface and the underlying
smooth oriented 4-manifold is the connected sum C P 2 # 9CP2. At the same
time Y is an "elliptic surface"—the rational map

//g:CP 2 -CP 1

induces a holomorphic map Y -> CP1 whose fibers are copies of the cubic
curves (/ 4- λg = 0). By choosing /, g in general position we can arrange that
the only singular cubics in this pencil are irreducible curves with one ordinary
double point.

In [4] Dolgachev constructs a new complex surface Z by performing
logarithmic transformations on two smooth fibers in Y. We will only consider
the simplest case, when the multiplicities of the logarithmic transformations
are 2 and 3 (for other cases see [13], [25]). So the new surface also admits a
holomorphic map Z -» CP1 and, except for a pair of multiple fibers F2, F3,
the fibers in Z can be identified with those in Y. The homology and linear
equivalence classes of F2, F3 are related to those of a general smooth fiber F in
Z b y

(3.15) [ * 1 - 2 [ F 2 ] = 3[F3].

This Dolgachev surface Z gave a negative answer to the question of Severi
mentioned in §1. We next outline a proof of this, together with a number of
other standard facts.

Proposition (3.16). (i) Z is an irrational algebraic surface with pg(Z) = 0.
Moreover there is an ample line bundle H -* Z such that for any effective divisor
D, not equivalent to a multiple ofKz, H D > H Kz.

(ii) The ^-manifold underlying Z is simply connected and homotopy equivalent,
smoothly h-cobordant and homeomorphic to that underlying Y.

Proof. Both parts of the proposition follow from the description of the
canonical classes Kγ, Kz in terms of the elliptic fibrations

(3 17) Kr=-F,
y } K=F+F + F= +$F=FF
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(see [14, pp. 147, 187, 572]). Here we have made an abuse of notation,

identifying the general fibers F in the two manifolds, and use the standard

representation of line bundles by divisors. This means that pg(Z) = h°(Kz) =

0 for the zero divisor of a section of Kz would be a positive linear combina-

tion of F, F2, F3 (since all fibers are irreducible) but \F cannot be represented

in this way. Note in passing that Kz generates the subgroup (F9 F2, F3) of

H2(Z) and then an argument of Kodaira [19, Lemmas 2 and 6] shows that the

homology class of Kz is primitive.

To prove (i) we observe that if D is any effective divisor, then F D > 0

and F D = 0 if and only if D is equivalent to a combination of fibers.

Choose a homology class c with c Kz = 1. Replacing c by c + nKz if

necessary we can suppose c2 > 0. Since pg(Z) = 0, c is a (1,1) class, repre-

sented by a holomorphic line bundle ££. The Riemann-Roch formula [2,

p. 21] implies that when m is large h°(^m) + h°(Kz <S> Se~m) » 0, but

F cλ(Kz ® Se~m) < 0 so Λ°(ϋ:z β) Se~m) = O and «^w has a large space of

holomorphic sections. Hence c D ^ 0 for any effective divisor Z> and this

means that the bundle H = ££® Kz has the desired properties. For cλ(H)2 > 0

and cx(H) - D = c - D + 2KZ D is positive because each term is nonnegative

and if Kz D = 0, Z) - JAΓZ and c D > 0. Thus the Nakai criterion (Pro-

position (3.2)) shows that H is ample, and if D is effective,

cx{H) D > 2 > 1 = H Kz.

Finally, X is certainly irrational since there is a holomorphic section of Kz,

vanishing on the fiber F3.

For part (ii) of the proposition we refer to Kodaira's argument in [19] to

show that, like 7, is simply connected. Then, since Kz is nonzero in H2(Z, Z/2)

and represents w2(Z), the intersection form of Z is odd. So the assertions

follow (using the classification of forms [28] and the theorems of Milnor [21],

Wall [29], and Freedman [11]) if we show that Z has an intersection form of

type (1, 9). But the Hodge index formula gives

and Riemann-Roch (Noether's formula) yields

1 = 1 - 2bλ(Z) + Pg(Z) = ^ ( C l ( Z ) 2 + c2(Z)).

So the Euler characteristic c2(Z) is 12 and b2(Z) = 10, as required.

(3.18) Remark. Roughly speaking the logarithmic transformations change

the complex geometry of the manifold by "changing the sign" of the canonical

bundle. Positive multiples of Kz are represented by effective divisors, so

Kz H > 0, while negative multiples of Kγ are effective. In general rationality
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of surfaces is linked to some positivity of the anti-canonical bundle, hence

positivity of the curvature of Kahler metrics [17].

(ii) There is a general method which analyses the rank 2 holomorphic

bundles δ over a surface using the sections of twisted bundles δ <S> ££ (see [14,

pp. 726-731], [15], [24]). If a section vanishes at isolated points, the bundle can

be recovered from local data associated to the points and global data in the

cohomology of a line bundle. For the bundles we study in this paper the power

of this method is increased by the following observation, which effectively goes

back to Schwarzenberger [26].

Lemma (3.19). // X is an algebraic surface with q(X) = pJX) = 0 and

δ'-> X is a rank 2 holomorphic bundle with c2(δ) = 1, Λ (δ) = ΘX9 which is

stable with respect to some ample line bundle, then δ Θ Kx has a nonzero

holomorphic section.

Proof. Riemann-Roch gives

h°(δ) + h\δ) > χ(δ) = 2χ(0) - c2(δ) = 1.

But if δ is stable, h°(δ) = 0 (take S£= Θx in Definition (3.4)) so h\δ) > 0.

Then, by Serre duality,

h2(δ) = h°(δ* ® Kx) = h°(δ® Kx),

since the trivialization of Λ2 defines an isomorphism δ = δ*.

Corollary (3.20). There are no stable bundles £ with c2(δ) = 1, Λ2(E) = Θγ

over the rational surface Y.

Kγι has holomorphic sections (with zero divisors the fibers of Y -> CP 1) so

Kγ H < 0 for any polarization H -> Y and Lemma (3.19) contradicts the

stability of δ.

Theorem (3.21). Fix an ample line bundle H -> Z as in Proposition (3.16).

For every H-stable bundle δ-> Z with c2(δ) = 1, A2δ=Θz we have

H2(Έndoδ) = 0. There is a holomorphic equivalence between the moduli space

Ms of such bundles and the multiple fiber F2 c Z. The second Chern class of the

universal family E -> Ms X Z is the Poincare dual of the "diagonal" ΔF 2 c F2

X F2a F2X Z.

Proof. Let 5 b e a nonzero section of δ<8> Kz, as in Lemma (3.19). We see

first that s has isolated zeros; for if it vanishes on an effective divisor D there

would be a nontrivial map

and, since (Kz - D) H < 0, we would get a contradiction to the stability of

δ. Then c2(δ® Kz) = c2(δ) + cλ{Kz)
2 = 1 and the formula expressing c2 as

the sum over the zeros of multiplicities shows that there is just one zero and S

vanishes transversely there.
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In sum, the section s expresses the sheaf Θ(£) as an extension

(3.22) 0 -> Θ(KZ

1) ^ 0(#) -» Θ{KZ) 0 / z -> 0,

where J2 is the ideal sheaf of a point z in Z. Such extensions of sheaves are

classified by a group Extx( Jz ® # z , # f *) which fits into an exact sequence:

H\K?) - ΈXΪ{JZ 0 * z , Z^1) - {Kz

3)z - #
(3.23) Hi

C

The last map of the sequence is the evaluation at z of a section of Kz, and an

element of Ext( Jz ® Kz, Kz

ι) gives a locally free sheaf as the middle term if

and only if it does not map to zero in (Kz

3)z. Θ{£) is locally free so the

1-dimensional space of holomorphic sections of Kz constrains z to lie on their

zero divisor F2 c Z. Take the tensor product of (3.22) with Kz to get

0 -+ 0 -> Θ{£® Kz) -» θ(κl) ®JZ -> 0.

The space of global holomorphic sections of 0{Kz) ®JZ vanishes (since F2

and F3 are disjoint) so the section S is unique up to scalars, and changing s to

λs multiplies the extension class by λ.

Conversely, Riemann-Roch gives

hi{Kzi) = h°(KΪ)-h°{Kϊη -1 = 0,

so for each point z in F2 we can construct a bundle Sz, unique up to

isomorphism, such that δz ® Kz has a section vanishing at z.

Next we see that all the bundles $z are //-stable. Suppose JSP is a line bundle

with oSP // > 0 and α :.£?-> ̂  is a holomorphic map. Then the composite

o£?-> <fz -> ^ z Θ ̂  is zero, since otherwise A ẑ ® ϋ?" 1 is represented by an

effective divisor D and so (Kz - (Jί?)) // = /) // > A"z // (by the choice

of H in Proposition (3.16)(i)), contradicting J? H > 0. Thus α factors through

Kz

ι Λ <fz. But // (JSP+ A"z) < 0 so ^ ° ( H o m ( ^ , ϋ:^1)) = 0 and a is identi-

cally zero. Hence <f>z satisfies the condition for //-stability.

Put together this means that the moduli space Ms of an //-stable bundle can

be identified with the Riemann surface F2. It is also a reduced space, with

// 2 (End 0 Sz) = 0 for all z. This can be seen from the exact sequences

o -> Θ(KZ) -> Θ(g® κl) -> Φ(A:1) ®^Z ^ o,

o ^ Φ(I?) -* (̂̂ <8> ̂ Θ Λ:Z) ̂  o(g® κl) ®JZ -+ o.

The section φ of ̂ Γ2

3 vanishes at z so the first sequence shows that H°(£ <S> AΓ|)

is 1-dimensional but, since φ has a simple zero, //°(<f Θ AΓ| ® ̂ ) = 0 and the

second sequence shows that //°(<f Θ <f <g> Kz) = ^ 2 ( E n d ^ ) * is 0.
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Finally, we can construct the universal family E -> F2 X Z by the 3-
dimensional version of the same method. Let J^F C ΘFIXZ be the ideal sheaf
of ΔF2 = {(z, z ) E f 2 x Z | z E F 2 } . The normal bundle v of ̂ F2 in Fx X Z is
0 θ π2*(K^) and Λ2Ϊ> S irfiA'l | F ? ) . There is a class in

which gives a locally free extension

of sheaves over F2 X Z (see [24, pp. 93-107, and remark at top of page 111]).
On each slice (z) X Z, π?(Kz) is trivial and this extension restricts to (3.22).
So from this construction we see that c2(E) = c2(πf(Kz

3 \ Fi) ® π2*(Kz) ® $)
is Poincare dual to the zero set Δ F .

Combining these stable bundle calculations with our main theorems gives, in
contrast to Proposition (3.16)(ii):

Theorem (3.24). The Dolgachev surface Z is not diffeomorphic to the rational

surface Y.

To prove this we compare the invariants Γy, Γz. If Cγ is a chamber in
H2(Y) containing the class of an ample line bundle, then

Ty(Cy) = Cl(Ky)

since the moduli space is empty. On the other hand, if C z is a corresponding
chamber containing the class of the ample bundle of Proposition (3.16)(i)

ΓZ(CZ) = Cι(Kz) + 2P.D.(F2) = ΊCι{Kz).

Here P.D. denotes the Poincare dual and we have used the formula:

[F2]/P.D.(A,.2 c F2 X Z) = P.D.(F2).

At this point there are a number of ways of seeing that there can be no
diffeomorphism f:Y^>Z compatible with the Γ-invariants. Perhaps the most
natural is to use a sign attached to the invariant. (For much more general
information see [13] and [25].) A theorem of Wall [30, Theorem 2] says that all
the isometries of H2(Y;Z) are realized by diffeomorphisms of Y so these
diffeomorphisms act transitively on the chambers in H2(Y) (consider the
reflections in the walls We). Hence we may suppose / * ( C Z ) = CY. Then
Tγ(Cγ) ωγ < 0 for any ωγ in CY (because Tγ(Cγ) is a null vector so the sign
is constant on Cγ and if ωγ is a Kahler class we can use Remark (3.18)); while
ΓZ(CZ) ωz > 0 for any ωz in C z (same reasoning). This contradicts the
existence of /.
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Appendix

We have worked with simply-connected 4-manifolds in this paper for
convenience but the results extend easily to take account of fundamental
groups. This follows the lines of [9] very closely so we will leave some details
for the reader to fill in.

Suppose X4 has a form of type (1, n) and that Hx(X\ R) = 0. Let A be the
finite group HomlH^X; Z), S1) and write \A\ = a + 2b, where a is the
number of elements z in A (or equivalently HX{X\ Z)) with 2z = 0. We still
have 2-dimensional moduli spaces M(g) defined by ASD connections over X
but the ends of these may be complicated by the presence of representations
πx(X) -> SU(2). However, just as in [9, Corollary (2.11), Proposition (2.12),
(2.13)] we can find a small perturbation σ' of the ASD equations defining a
moduli space Ma' with boundary components corresponding only to the
representation irx(X) -> {±1}. Regarded as SO(3) connections these are all
isomorphic so the boundary description is the same as in §11 above. We can
define classes Γ(g, ω, σ') in H2(X; Z), as before, so that

in the case when ω is nowhere vanishing and Ma' is compact. (Here we have to
extend formula (2.8) to the case when Hλ(X\ Z) Φ 0.)

If the small perturbation σ', supported near the end of M(g), is varied
continuously in a 1-parameter family the cohomology class Γ(g, ω, σ') will be
unaffected so long as M°'{g) does not gain any more ends. The irreducible
representations cause no problem here: their moduli space has virtual dimen-
sion -6 so, after perturbation of the equations, irreducible solutions can be
avoided in a 1-parameter family. This gives the corresponding control of the
ends of the spaces Mσ*(g), as in [9, §Π(d)]. On the other hand, at the b
remaining abelian reductions there are two distinct "directions" in which the
ASD equations can be deformed, corresponding to a choice of bundle " L " in
the splitting L θ L"1. (This is the sign of E(ε) in the discussion of [9,
Proposition (2.12)].)

To see this clearly suppose that irλ{X) is abelian and that for each flat
connection L θ L"1, H\{X\ L2) is two dimensional. (After perturbation we
reach this picture anyway.) Then Theorem (5.5) of [8] describes the correspond-
ing end of M(g) as a subset of Σ X (0, ε), where Σ -» X is the 2-sphere
bundle

Σ = Hom(R φ L2, λ\x)/S\

Under the map τL: Σ X (0, ε) -» ^ * defined by Taubes construction, the end
of M(g) corresponds to the zero set

Z = { / = * ! = ί 2 = 0 } c Σ X(θ,ε).
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Here / is a real valued function and sv s2 are sections of the complex line

bundle over Σ X (0, ε) associated to the circle action on Hom(R θ L2, Λ2

+).

This is T ® L~2 where T is the standard line bundle over Σ, of degree 2 on the

fibers. Now for δ Φ 0 consider the perturbed equations

{/= 8 , ^ = ^ = 0}.

These close off the end of the moduli space and the difference in homology

between the two cases 8 > 0, δ < 0 is clearly given by the homology class of

{sλ = s2 = 0} in Σ X {ε/2}, i.e.,

where φ in H2(Σ) is the Poincare dual of cλ(T ® L~2). One can compute that

jίiτL*(φ) is a multiple, m cλ(L) say, in H2(X\ Z).

So if we choose a line bundle L in the splitting and the perturbation σ',

corresponding to δ > 0 say, the class

is independent of the choice L±ι. That is, we take the "av^iαge" of the two

possibilities.

In this way we associate a cohomology class to the perturbed moduli space.

As the metric varies there are now \A\ reductions at which singularities appear

each time the period points cross a wall. Formula (2.14) extends to the case

when Hλ(X) Φ 0. In sum we obtain:

Theorem (4.1). // X is a smooth, compact, oriented, ^-manifold with

H^X',%) = 0, b^i X) — 1, then the construction above defines a map

with properties (i), (ii), (in) of (2.2), where in (ii) we take the sum over the \A\

elements of H2(X\ Z) associated to a given wall between the chambers.

Example. Let S be a "Godeaux surface" [2, p. 170]: the quotient of

{Σ?.χz? = 0} c C P 3 under the Z/5 action generated by g(zλ, z2,z3,z4) =

(αz 1, a2z2, a3z3, aΛz4) (a5 = 1). We take the Hodge metric on S defined by the

Fubini-Study metric on P 3 , with ample line bundle Ks. π^S) and the torsion

part of H2(S) are isomorphic to Z/5; let L be the flat complex line bundle

corresponding to the representation sending g to a. The four line bundles

Ks ® L\ i = 1,2,3,4, each have one-dimensional spaces of sections—corre-

sponding to the coordinate functions z, . These cut out the curves

and each pair cf , c} meets transversely in a single point.
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If <?-> S is a stable bundle, with Λ2<^ = Os and c2(S) = 1, arguments like

those in §111 above show that HQ{$® Ks) is one-dimensional and a generator

vanishes transversely at the points

Pi = q Π c 4 , P2 = C2Γ\C3.

The relevant extension group is isomorphic to (Kς3)pι θ (K^3)P2 = C 2 and

a pair (λ l 5 λ 2 ) gives a bundle if each component λf is nonzero. Homothetic

vectors in C 2 give isomorphic bundles. Conversely one finds that all these

bundles are stable and the moduli space Ms is a copy of C* (and is reduced).

This fits in with what we know about the ends of the ASD moduli space.

The complex structure Λ2

+= Ks Θ R defines two preferred sections S+, S_c Σ

(poles of the 2-spheres) and an equatorial S bundle E c Σ -> S. The homoge-

neous approximation to the equations sλ = s2 = 0 modelling the end [8,

Lemma 5.4] associated to the reduction L θ L"1 has solutions:

2[S+Π π~ι(c2)] U 2[S_Π flr-1(c3)] U π-ι(p2).

Here the factor 2 indicates that the surfaces are defined with multiplicity 2.

In fact the components lying over c2, c3 correspond to "semistable" bundles

defined as extensions

respectively.

The extra equation ( / = 0 ) cuts out the equatorial bundle E and the

intersection E Π τ7"1(/?2) corresponds to one of the ends of Ms = C*. Simi-

larly for the other end, associated to the reduction L1 θ L"2.

Let c be the singular curve in the product P x X S:

c = P 1 X { / ? 1 } u P 1 X ( / ) 2 } u { 0 } X c 2 U { o o } X c 1 .

There is an isomorphism

and this defines a bundle F = E <8> Ks over P } X 5 with a section vanishing

transversely on c. E restricts to C* X S c Px X S as the universal bundle over

the moduli space and restricts to {0} X S, {oo} X S as the semis table bundles

L-*£^ L1 ®&P2, L2 -> S'^ L~2 β) &pι

respectively. This corresponds to compactifying the moduli space by deforming

the ends into the hemispheres ( / > 0 ) c τr"1(/?1), ττ~1(/72). There are three

different contributions to Γ; the one from the moduli space is
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averaged over the choice L±ι gives 2cλ(Ks). We get 2 X 4cλ(Ks) from the
zero sets of S, in Σ and cx(Ks) for the boundary correction term.

So if C is the Chamber containing cλ(Ks) we have

Γ(C) = l l C l ( t f s ) .

(4.2) Corollary. ΓΛere is no diffeomorphism / :S -> S such that f*(Ks) is
isomorphic to Ks ® Lι for i = 1,2, 3,4.

I. Hambleton and M. Kreck have recently shown that these maps do exist as
homeomorphisms.
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