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A GENERALIZATION OF BERGER’S THEOREM
ON ALMOST
1/4-PINCHED MANIFOLDS. 11

O. DURUMERIC

1. Introduction

Let (M", g) be a compact, smooth Riemannian manifold and let K(M, g),
d(M,g), i(M,g), and (M, g) denote its sectional curvature, diameter, injec-
tivity radius, and Riemannian universal cover, respectively. In this paper, we
investigate Riemannian manifolds of positive sectional curvature. For normali-
zation, we take K(M, g) > 1. Let S"(1), RP"(1), CP", HP", CaP? denote the
standard sphere of radius one, the projective spaces on real, complex numbers,
and quaternions, and the Cayley plane with their standard metrics, respec-
tively. S$”(1) and RP"(1) have constant sectional curvature 1, while the rest
have 1 < K(-) < 4. The diameter of S"(1) is #, and the rest have diameter
/2. These Riemannian manifolds, except RP"(1), are all of the compact
simply connected symmetric spaces of rank 1, up to a constant factor of the
metric.

If K(M, g) = 1, then (M, §) is isometric to S"(1) [37, p. 69)]. By the classical
Sphere Theorem [1], [26], [7): If 1 < K(M, g) < 4, then M is homeomorphic
to S". This result is optimal by the examples above. In [1], M. Berger proved
the rigidity theorem: If 1 < K(M, g) < 4, then either M is homeomorphic to
S” or (M, §) is isometric to a symmetric space of rank 1. Recently, M. Berger
obtained that for even n, there exists a universal constant ¢(n) > 0 depending
only on n such that if 1 < K(M", g) < 4 + &(n), then either M" is homeo-
morphic to " or diffeomorphic to CP"/2, HP"/*, or CaP? [2].

Some generalizations of the above were given involving the diameter of
(M, g). Bonnet: If K(M, g) > 1, then d(M, g) < = [7, p. 27]. The rigidity for
the maximal diameter is obtained by Toponogov: If K(M,g)>1 and
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d(M, g) = m, then (M, g) is isometric to S"(1) [7, p. 100]. Grove and Shiohama
generalized the Sphere Theorem: If K(M, g) > 1 and d(M, g) > n/2, then M
is homeomorphic to a sphere [21]. Gromoll and Grove showed that Berger’s
rigidity theorem can also be generalized [15]-[18]: If K(M",g)>1 and
d(M, g) = m/2, then either (i) M" is homeomorphic to S”", isometric to
CP"/2, HP"/4, (ii) M" is simply connected and has the cohomology ring
structure as of CaP2, or (iii) M" is not simply connected, with (M, g) being
isometric to S"(1) or CP"/2,

In this paper, we will prove some results which extend [15], [17] in the
cohomological sense, and generalize [2). These results were announced in [11].

The author wishes to thank U. Abresch, D. Gromoll, K. Grove, W. Meyer,
and W. Ziller for helpful discussions and bringing to his attention that the
limit metric is C. S. Peters proves that the limit metric is C* in the general
case in [32]. Using similar methods we will give a proof of the limit metric
being C! in a particular sense (see §5.0) for the completeness of our paper, and
obtain further properties which will be used in the proof of the main results.

2. Main results

Theorem I. Let n>2, K> 4, and ¢, > 0 be given. There exists §, =
0,(K, n,&y) > 0 such that for any n-dimensional smooth Riemannian manifold
(M, g) with

H1<K(M,g)<K,

(i) d(M, g) > w/2 — §,, and

(ii1) i(M, g) > &, if nis odd,
we have either

(a) M is homeomorphic to a sphere, or

(b) m(M,p)=0 and H*(M, Z) is a truncated polynomial ring with one
generator in HN(M, Z), where n = k\, nis even, k € N*, k >2, A =2, 4 or
8, andif A\ = 8thenk =2 andn = 16, or

() m(M, p) + 0 and there exists a C®-Riemannian metric g’ on M with
K(M,g)>1 and d(M, g")=n/2, that is (M,g’) is isometric to S"(1) or
Ccpn/?,

Remarks. (1) If n is even, condition (iii) is irrelevant and 8, = 8,(K, n)
since i(M, g) > n/(2VK). By the work of Cheeger [6], condition (iii) can be
replaced with a lower bound for the volume of M, for all n.

(2) (b) is not the best possible conclusion which should be “diffeomorphic to
CP"/2, HP"/4, or CaP2.” Under a stronger hypothesis this can be obtained
(Theorems IIA and B).
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(3) In (c), if n is even, then there are at most two possibilities:

(i) (M, g’) is isometric to RP?5(1), n = 25, s € N*.

(i1) (M, g’) is isometric to CP°/I, n = 2s, s > 3 and odd, where I is an
orientation reversing involution of CP’; there is only one such space up to
isometry.

If n is odd, then (M, g’) is isometric to S"(1) (see [17] and [37]). Hence the
diffeomorphism types of M are completely determined.

Theorem IIA. Let n > 4, K > 4 be given. There exists §, = 6,(K,n)> 0
such that for any n-dimensional smooth Riemannian manifold (M, g) with

1< K(Mg)<K,

(i) H*(M,Z) = Z{x]/x**, k>3, x € HNM,Z) for A =2 or 4, and
m (M, p)= 0, and

(ii}) 3p;y, py, p3 € M such that d(p;, p;) > /2 — §;(K,n), V1 <i<j<3,
then we have M diffeomorphic to CP* or HP*.

Theorem IIB. Let n > 4, K > 4 be given. There exists 8, = 6,(K,n) >0
such that for any n-dimensional smooth Riemannian manifold (M, g) with

(1)1 < K(M,g)<K,

(i) 7,(M, p) =0 and H*(M,Z) = Z[x]/x?, x € H\(M,Z) for A = 2, 4,
or 8, and

@iii) d(M, g) > m/2 — 8, and VpNp,Ap; such that d(p,, p,) > n/2 — §;
implies that d(p;, p;) > /2 — &, fori =1 and 2,
then we have M diffeomorphic to CP?, HP?, or CaP?.

Corollary 1. Let n > 2, K > 1 be given. 38, = 8,(K, n) > 0 such that any
smooth Riemannian manifold (M, g) with 1 < K(M,g)< K and i(M, g) >
7/2 — 8, is homeomorphic to a sphere or diffeomorphic to RP", CP*, HP*, or
CaP?

The proof of Corollary I follows from Theorems I, IIA, IIB, [10, Theorem 2],
[21] and [37]. Obviously [2] is a corollary of Corollary 1.

Corollary II (see [17])). Let (M, g) be a C®-Riemannian manifold with
KM, g)=>1, dM,g)=m/2, m(M,g)=0, H*M,Z)=Z[x]/x* x¢€
H¥M,Z).YpNVp,3p; € M, such that d( p,, p,) = m/2 implies that d( p,, p;)
= d(p,, p;) = 7/2, if and only if (M, g) is isometric to CaP? with its standard
metric.

Corollary II does not follow from the statement of Theorem IIB but it
follows from its proof.

The main idea in proving these theorems is taking a sequence of C*-
Riemannian metrics (M, g,,) with K(M,g,)>1 and d(M,g,) 7 7/2, ob-
taining a limit metric which is not necessarily smooth and repeating a proof
modelled on [15], [17]. The limit metric is C'* a priori and there are examples
which are not C? in the general context [32]. Even though the first variation
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formula is still valid, the second variation and Jacobi field techniques fail. The
proof of [15], [17] is for C*® metrics; so, although the main idea and steps of
our proof are as in [15], [17], most of their proofs and even the proofs of some
basic facts of Riemannian geometry have to be modified or changed com-
pletely.

In §3, we give the basic notation and definitions. The properties of the limit
metric are developed in §§4-5. In §4, we give the proofs of basic results, and in
§5, differentiability of the metric and local properties are investigated. §6
contains the proof of Theorem I. The nonsmoothness of the limit metric effects
especially the proof of Theorem 6.10. The “differentiability of the metric in a
particular sense” is used in constructing a local parallel translation to obtain
the smoothness of the fibers of some fiber bundles in 6.17. We could not
obtain the smoothness of these fiber bundles in 6.23, and this is the point
where the arguments fail to obtain results on the diffeomorphism types in the
general context. However with stronger hypotheses, results on diffeomorphism
types can be obtained (Theorems IIA and B). §7 contains the proofs of them.

3. Basic notation

In this text, M" denotes a compact smooth n-dimensional manifold with no
boundary. If (M, g) is a C®-Riemannian manifold, K(M, g) denotes its
sectional curvature.

Let (M, g,) be either a C* or C°limit Riemannian metric. d (p,q) =
d(p, gq; g,) denotes the distance function of g, d(M, g,) denotes the diameter
of (M, g,). i(p, M; g,) and i(M, g,) denote the injectivity radius at a point p
of M or of the manifold with respect to g,. Given a C!-submanifold 4 of
(M, g,), then TM, U(M, g,), UN(A, g,), UT(A4, g,) and U(M, g,)| A denote
the tangent bundle, unit sphere bundle, unit normal bundle to 4, unit tangent
bundle to 4, and unit tangent bundle of M restricted to A4, where inner
product is taken by g. This g, will be dropped only when it is g, i.e., the limit
metric.

For any metric space (X,d), pe X, AC X, re[0,0), we define
B(p,r,X,d)={x€ X|d(x,p)<r} and N(A4,r,X,d)={x € X|d(x, A)
< r}, with B(p,r, X,d) and N(A, r, X, d) their closures, respectively.

Unless otherwise stated, a normal minimal geodesic y from p to g with
respect to g satisfies 0 < d(p,v(t); g) =t < d(p,q; g). In this case we say
that y is a mg(p,q;g). If y is the only such geodesic, then it is the
umg( p, ¢; g). The set of all mg(p,q; g) is MG(p, q; g). If y is any C! curve,
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I(y, g) denotes its length with respect to g. Forany X C (M, g), pE M, yisa
mg( p, X; g) means that y is a mg(p,q) for some g € X with /(y, g) =
a(p, X; g).

Any letter of dependence may be dropped if there is no ambiguity.

4. Limit metric and its properties

In this section we refer to [20, particularly Chapters 3, 5, and 8] for all
notation, definitions, and background.

Let S(n, A, gy, D) be the collection of all compact smooth n-dimensional
Riemannian manifolds (M, g) with |K(M, g)| < A?>, d(M,g)< D and
i(M, g) > ¢, for given fixed D, g, A > 0. Define V, to be the class of
Riemannian manifolds (M, g) of dimension n, where M is of class C'! (that is
there is a notion of differentiable functions with Lipschitz differential) with
continuous metric tensor, and the distance functions d,: M — [0, D] defined
by d (y) = d(x, y; g) are of class C!! (locally and excluding x) with their
derivatives A-Lipschitz Vx € M.

If we combine some of the results in [20, 5.3, 8.23, 25, 28 on pp. 65, 123, 125,
129] (for other proofs also see Peters [32]), we obtain

4.1.0. Theorem (Gromov [20], also see [25], [32]). S(n, A, &y, D) € V) for
some N depending on A. The convergence of metric structures on S(n, A, g, D)
in the senses of Hausdorff and Lipschitz coincide. The space of pointed Rieman-
nian manifolds (M, g; p), where (M, g)€ V,, d(M,g) < D, i(M, g) > ¢, is
compact with respect to Hausdorff and Lipschitz metrics. Hence, given a
sequence of pointed C*-Riemannian manifolds (M., g, P,,) in S(n, A, &y, D),
there exists a convergent subsequence with Hausdorff limit (M, g, Po) € Vi,
and for sufficiently large m, M, is homeomorphic to M,,.

4.1.1. As observed in the proof of 8.28 of [20]:

(@) (M, 8,.» D) = (M, 8o, o) in the sense of Lipschitz and Hausdorff
means that (M, g,., p,,) converges to (M,, g,, p,) as metric spaces in the
sense of Hausdorff, and for r <¢,, B = B(0,r) € R" is furnished with a
Riemannian metric g,, and a distance function d,, given by the identification
with B(p,,, r; M,,) via normal coordinates. B is also furnished with a limit
distance function d,, satisfying the fact that d,,/d converges to 1 uniformly
on (B X B) — diag(B).

(b) M, is an n-dimensional C'! manifold since inf{i(M,, g,)|m € N*}
> .

(c) d°:B, — {x) - R*is of class C, where B, = B(x, r, My, d,), r < &,
and d%(y) = dy(x, y). In fact, d7: B, — {x} = R* converges uniformly to
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d? in the C! sense on the common identification to B — {x} as in (a). Hence
d,/d, > 1in the C! sense.

(d) The metric tensor g, of M, is continuous and g,, — g, uniformly on
some coordinate charts (see §5.0).

(e) Vu,, v, € TM,, — {0}, arccos(g,,(vy, v2)/([Vll - 102l0)) = $ (01, 02).
Once the convergent subsequence g,, — g, is taken, then lim,, , _ g,,(v,,0,)
= go(v,, v,), and hence

”}i_{nw Pm(v1,07) = $o(v1,0,).

4.1.2. Since the curvature is bounded uniformly, second derivatives of the
distance functions are uniformly bounded, and the differentials dg,, are
uniformly bounded in some coordinates. The distance functions and g,, are
bounded on B. Using the Arzela-Ascoli Theorem, convergent subsequences
are extracted [20]. (See §§5.0, 5.1.)

4.1.3. We are concerned with compact manifolds, hence by taking a finer
subsequence, and omitting base points, we can work with (M, g,.) = (M, g,)-

4.1.4 (see [32]). Let M be in the same diffeomorphisms class [M]. In this
case (M, g,)— (M,g,) in the sense of (4.1.0) means that on a fixed C*
manifold M, there is a sequence of C*-Riemannian metrics g, which are
converging to a C°-Riemannian metric g, uniformly with the stated properties
above. Throughout this paper, the notation g,, = g, means that the convergence
is in this sense.

4.2.1. Given p,, p, in (M, g,), there exists a curve y from p, to p, such
that the length of y with respect to g, is equal to dy( p;, p,) (see [20], Chapter
I). y can be parametrized such that d(y(?,), v(?,)) = |t; — t,]. Such a curve is
called a normal minimal geodesic of g,. A curve is called geodesic if it is
minimal locally.

4.2.2. Lemma. Since M, is compact with no boundary, any geodesic is C*.

4.2.3. Proof (see 5.9, 5.10). Let ¢ < ¢, and y:(-¢, &) = M, be a normal
geodesic. Since 4" — a’l? in the C! sense locally, vd; - V,,O uniformly on
B(p,e) = {p} Vp € M. d satisfies the first variation formula locally. It
follows that y has to be tangent to vd?, otherwise d( p, y(t)) = t — t,, where
v(ty) = p, € >t > t; > —¢, would not increase linearly with constant deriva-
tive 1.

4.3. Definitions. (1) In the simply connected space form of constant
sectional curvature «, define p(«; a, b; k) to be the distance between the two
points which are end points of two minimal geodesics of lengths a and b
starting from the same point and with an angle of a between their initial
tangents, where 0 < a < 7, a,b > 0,and if k > O then a,b < 7/ Vi .
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(2) S™(x) denotes the sphere of radius k=72 with the standard metric, where
k> 0.

(3) In a geodesic triangle in $?(1), with sides of length a, b, and ¢, all < 7,
define a(a, b, ¢) to be an angle between the sides of length b and c.

4.4. Lemma. There exists a unique exp:TM — (M, g,) compatible with g,
that is it takes rays of TM, emanating from 0 to geodesics of (M, g,) from p,
Vp € M, and all geodesics are obtained in this fashion.

Proof. Assume 5.9, 5.10.

44.1. let g, —> gy as in 41. Let r, € M be such that r, €
B( py, €9, M, 8,), where p, is as in 4.1.1, and r, € B. Let r,, represent r, in
(B,8,)- For sufficiently large m, and small R < ¢, exp, , :B' =
B(0O,R,TB,, g,) > B = (B, g,) is defined Vm > m,. ||d(exp, )llco < C(A, R)
on B’. Hence f, = exp, . is a bounded and equicontinuous family on B’.
There exists a subsequence which we denote by f, converging uniformly to a
continuous function f,: B’ - B. We define exp, : B’ — (B, g,) to be f,.

44.2. Let g, € B — {r,} such that dy(qy, ry) < R. d; = d,, so, for suffi-
ciently large s, q, € f,(B’), and Jv, € B’ with g, = f,(v,) and v,(2) =
f (vt /llvglls) is a mg(ry, qo; 8)- U, has to converge to a unique v, € B’, since
f, = f, uniformly. v, # 0 by g, # py, d,/dy — 1 and i(M, g,) > €. v,(¢) =
fo(tvo/llvglle) is the limit of the mg(ry, q¢; g,)’s v,(¢), hence its length is
dy(ry, qo) between ry and g, and it is mg(ry, go; 8o) (see 5.9, 5.10). This shows
that f, maps rays from 0 in B’ to minimal geodesics from r, in (B, g,) locally
and f, is onto B(ry, R, B, g;).

4.43. Let y(¢) be a normal geodesic in (B, g;) such that y(0) = r,. By
423, y is C' and tangent to vd, which is Lipschitz (see 4.1.1(c)). Even
though vd 2) (7o) 1s not defined, y’(¢) is well defined V¢ > 0. By the uniqueness
of the solutions of first order ODE given by Lipschitz functions, and f;, being
onto locally, we have f,(¢y’(0)) = y(¢). Hence:

4.44. Around r, all geodesics from r, are only given by f,. f, is well
defined, it does not depend on the choice of the convergent subsequence of f,,.
In fact once g,, = g, is fixed, then f,, — f;; in order to be compatible with g,
fo is unique and all subsequences of f,, converge to f.

4.4.5. Suppose given wy,w, € B’ — {0} with |lwy||, = ||w,llo. For suffi-
ciently large m,

dp(£u(01), £,(02)) = 3do(fo(w1), fo(wy)):= Cy.
By Toponogov’s Theorem [7, p. 42],

£ (#5(0),72(0)) = Co(Cy, AL lIwyllg) if m > 0,
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where v,(1) = exp, (tw,/|w/l,,) for m>0. If C, >0, then C,>0 and
£ 0(¥5(0), 3(0)) # O (see 5.10). Hence any geodesic is uniquely determined
locally with its initial point and tangent vector. This is true for all r, (see 4.1.3)
since M is compact, 0 = @. It follows that exp,: TM — (M, g,) is globally
defined, it is unique, and all normal geodesics of (M, g,) are obtained from it.

4.4.6. Remark. exp: TM — (M, g,) is continuous, but it may not be
differentiable. It is differentiable only in the radial directions. Also
d(exp, )(r,,) = Identity Vm, this makes 4.4.5 possible. f,, = f, in the cO
sense, not C1.

4.5. Toponogov lemma. Suppose given p,q,r € (M, g,), a mg(p, q, &) V>
and a mg(p,r; g,) 0, where (M, g,) = (M, g,) as in 41 with K(M, g,) > «
Vm > 1. Let d,, Vm > 0 be the associated distance function to g,,. Then

do(g,7) <p(£o(v' (), 8(p)); do(p,49), do(p.7); k).

45.1. Remarks. (1) If g, is C*®, then this is the classical Toponogov
Theorem [7, p. 43].

(2) A local version of this lemma is given in [2, p. 138, Lemma 3]. We do not
assume that the triangle obtained by attaching a mg(q,r; g,) lies in
B(p, e, M, go).

4.5.2. Proof. Define q, = y(dy(p,q) —1/s) and r, = 0(dy(p,r) —1/s)
for sufficiently large s. Assume 5.9, 5.10.

Let s be fixed. Consider y,, and 6, to be any mg(p,q,; g,,) and any
mg( p, 1,; §,,), respectively. 1(v,,, g,,) = d,,(p,q,). Since d,,/d, = 1 in the C!
sense when d,,, d, < &), and uniformly on M, given § > 0, 3N = N(8) such
that Vm > N(§)

(Yo 81m) d,(p.q,)
2meoml _ql<§ and |l ql<s.
(Y, 80) do(p.q,)
Hence, Vm > N(§),
(Y, 80) 28
- 1l< i
do(p,q,) 1-48

Therefore I(v,,, 8,) = do(P,q,) as m = co. Hence, we take a convergent
subsequence of vy,, converging to y,, a mg( p, 4,; g,)- Yo has to coincide with y
between p and ¢,; since

I(vo, &) + I(Y‘[do(p,q) - % do(p,q)],go) = do(p9),

4.2.2 implies that yj(q,) = v'(g,) and 4.4.5. This shows that y, does not
depend on the choice of the convergent subsequence of v,,. By 5.10 and 4.4.5,
Y.(P) = ¥'(p). Similar results can also be obtained for 6,. By 4.1, g, — 1
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uniformly as a quadratic form restricted to U(M, g,). Hence, ¥8, 0 < § < 1,
3N = N(8) such that Vm > N(§),

£ o(1(P),0,(p)) < (1 +8) %4(v'(p),6'(p))
and
Pm(0,0) < (148)%,(v,0) Vo,0" € TM, —{0}.
By Toponogov’s Theorem [7, p. 43]:
d,,(q,,1.) < p(%(¥5(). 6,(P)); d(P.4.), d,(p,1)3 k)

<p((1+8) %(v'(p).0(p): d(p.a.), d,(p.r)ix).
Hence Vé > 0,

do(q,r,) < p((1+8)6o(v(p).0'(P)); do(p.a,), do(p. 1) k),

do(g,,1,) < p($o(v(p).0(p)); do(p.4,).do(p.1.); k).
Now let s — oo to obtain

do(q,r) <p(%4(v'(p).0°(P)); do(p,q), do(p.1r); ).

4.6.1. Corollary. Let p,q € (M, g,), Y be a mg(q, p; g), v € TM, — {0}
be such that % y(v,v(q)) < m/2 — ¢, where ¢ > 0, and (M, g,) be as in 4.5.
There exists 0 <& = 8(e, k) < e, such that dy(p,exp,, tv)<dy(p,q) Vi,
0 <1<

4.6.2. Corollary. Letp,q € (M, g,) and q be a local maximum for d( p, -).
Given any v € TM,, Amg(q, p; 8,) Y such that ®o(¥'(q),v) < 7/2.

One proves 4.6.2 by using 4.6.1 in [7, p. 107].

4.6.3. Remark. The first variation formula is valid on such (M, g,) by [2].
We obtain the above results as a consequence of a stronger result, 4.5. In fact
Toponogov Lemma 4.5 implies stronger results such as 4.7. A similar form of
4.7 can be proved by using a corollary of Rauch II, [7, p. 31], which is a second
variational technique in the C* case.

4.7.Lemma. Let (M, g)) beasin 4.1 and 4.5 withk = 1. Letp,q € (M, g,)
and v € UM, g,), with dy(q, p) < do(q,exp, , tv) < m/2, Vt € [-§,8] for
some 8, 0 <8 < d(q,p). Let r=exp,8v and vy, 6 be mg(q, p; g,) and
mg(q, r; g,) respectively, such that 0 < % ,(v'(q),0'(q)) < m/2. Define w(s)
€ U(M, g,), to be the unique vector with 0 < s < 7/2, $4(y'(q),w(s)) =s,
and % o(6°(q), w(s)) = Is = % (0'(9),Y'(9))|. Then ¥s,0 < s < 7/2,

do(equ8w(s),expp80) <dy(q,p).

4.7.1. Proof. By 4.6.1, % ,(v,Y'(p)) = 7/2. By 4.2.2, Y'(q) # 0’(q) and
w(s) is well defined. dy(p,q) <dy(q,r) < p(7/2;8,dy(p,q);1):= a, by
45.

£0(0(9),7'(q)) > a(8,dy(g,r), do(q, p)) > a(8,do(q, p), ag) = aq,
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where the last inequality follows from a(dy(p, q),6,a,) < 7/2 and dy(q,r)
> do(q, p)- $o(0'(9),w(s)) < |s — ag| < 7/2. By 45:

do(exp,8w(s),r) < p(%$o(8'(q),w(s)); 8, do(g,7);1)
< P(|S - a5 8, do(‘b")ﬂ)

< p(ls - a,l; 8, aO;l) <p(3—ay; 8, apl),

A)

since 0 < 8 < dy(p,q) <a, and 0 < @y < 7/2. On S*(1) by the second
variation formula, p(7/2 — a,:8, ay; 1) < dy(p, q).

5. Local properties of the limit metric

5.0. The main purpose of this section is to prove 5.9-5.12. 5.9 and 5.10 are
used in §4, and 5.12 in §§6-7. In order to prove these one needs to have that
the limit metric g, of 4.1 is C! in some differentiable coordinate charts. S.
Peters obtained Gromov’s result [20, 8.28], and showed that in fact g, is C**
in some C%% coordinate charts by applying the harmonic coordinates and
estimates of Jost and Karcher [23] to his proof [31] of finiteness results in [32].
§5 can be read from two viewpoints. The first one assumes the work of
Gromov [20] and obtains 5.1-5.5 which give the differentiability notion in a
sufficient sense for the rest of the section. For the second viewpoint, it was
mentioned in Greene and Wu [14] that the proof of Gromov [20] was unclear,
since the equicontinuity of the g,’s in the normal coordinates (4.1.2) would
seem to require a uniform bound on the covariant derivatives of the curvature
tensor. For this viewpoint, either one repeats Gromov’s proof 8.28 [20] (one
may also use coordinate charts defined by distance functions) in harmonic
coordinates by using the estimates of [23] explained in 5.2, or simply assumes
the results of Peters [32] which imply 4.1, 5.1, and 5.5, then considers 5.2-5.4
as a preparation of the harmonic coordinates for 5.9-5.12. At this point, we
emphasize that for an arbitrary C* metric, the geometric results 5.9-5.12 and
4.4-4.7 may not be valid.

5.1. In the view of 5.0, we may assume that g, — g,. Let p, € M, and
choose R, sufficiently small, m, sufficiently large so that Vm > m;,

B(py,Ro/2;8,) € B(po, Ry &)= U, € B(py,2R;8,) S Uy S M,

U, is open, and there is a C*® coordinate chart x: U, —» R". We may assume
that the coordinate chart x (not necessarily normal) can be taken with
148 Il co.v, < C(A, Ry, n) by 5.0 and either (i) by [20, 8.28], U, C B of 4.1, [23,
p. 34], the relation of d,, and g,, |K(M,g,)| < A’ (one may also use
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coordinate charts defined by distance functions), or (ii) by [23] as explained in
5.2, or (iii) by [32, Theorems 1.6 and 4.5]. Let g7 be the components of g, in
the coordinates x. Hence [|0(g/7)/3x /|0y, < C'(A, Ry, n)Vm > m,.

52.1. Let m be fixed. One follows the construction of the harmonic
coordinates in [23]. Almost linear coordinates L, are constructed around p,,
for a given orthonormal frame at p,. By Theorem 2.1 of [23, p. 62], |dL,, —
Pl < C(A,n,e)-d,(x, py)?, where P, is defined by parallel translation
along radial geodesics from p,. An averaging process gives canonical coordi-
nates which do not depend on the choice of o.n. frame. One finds
h?:B(po, R; §,) = R with A(g,)h7" = 0, h{"|[9B(po, R; 8n) =
I"|9B(py, R; 8,,) for 1 <i < n, where L, = (I{",15,---,17), and A(g,,) is
the laplacian for some R chosen small enough and independent of m ([23] and
5.2.4). One takes H, = (h{", h7,---,h™) and g = g, (grad h?", grad h7"). In
[23, (5.5), p. 65] it is shown that H,:B(po, R, g,,) > R" = TM, , |dH,, — 1d|
< cnA’R? on B(py, R; g,), and ||dg,|lc02s < C(AR, n)A*R?/8% on
B(py, (1 — 8)R; g,,) [23, Theorem 5.2], where Id is defined by radial parallel
translation of g,,,.

522. Asin[23,p.62], G, =L,cexp, , :TM, - TM,, G,(0) =0, and
Ve > 038 > 0, where § does not depend on m, such that |dG,, — I|, < ¢ if
v € TM, and |jv||l, < 8(n, A, gy, €). By 5.7 we can take I as the identity map
of R".

5.2.3. R, > 0 can be chosen sufficiently small and independent of m such
that G,|B(0, R,,TM, , g,) is 1-1. By taking R, <eg, exp, , is 1-1 on
B(O,R,,M, g,) and L, is 1-1 on B(p,y, Ry, M, g,,). The averaging process
does not affect the uniform estimates on the differentials.

524. H,|9B(py, R, g,) = L,|9B(py, R, g,,)- We choose R < R, inde-
pendent of m in order to make L, |0B 1-1 and H,, of maximal rank (see (5.5)
of [23]). Any map from an n-disc which is 1-1 at the boundary and of maximal
rank in the interior is not only 1-1 locally but 1-1 on the whole disc.
H,|B(py R, M, g,)is 1-1, an open map of maximal rank.

5.3.1. Choose R sufficiently small to satisfy the conditions of [23, 5.2] and
R < R,/2.1f we consider h" to be functions of the local coordinates x, then

anm

J w [ 9h7) _
jgcaxj(gm B (axk))_o'

Let R, > 0 and m, > m; be such that U, = B(p,, R;; ;) S B(po, R, &)
Vm > m, and R, < R. Let U; = B(p,, R,/2;8,) and U’ be the corre-
sponding subsets of R” via the coordinates (x,, x,,- -+, x,), i = 1,2,3.
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53.2. ||h7(x)||c1ey; are uniformly bounded Vm > m,, independent of m,
where a > 0 can be chosen to be independent of m. This is an immediate
consequence of Theorem 6.5 of [29, p. 284]; since g,, — g,, the linear equa-
tions in divergence form A(g,,)h’, = 0 are uniformly elliptic, A} are uni-
formly bounded on U,, and d,(U;,dU;) > R,/2. This can also be proved by
using Theorem 3.1 of [23] and Theorem 4.1 of [29, p. 399].

5.33. Hence for fixed i, {h}'(x)}5-,, and {dh](x)};_,, form
equicontinuous families on U,. By Arzela-Ascoli Theorem, one extracts a
convergent subsequence of A"(x), which is also denoted by A7, such that
h™"(x) = h%x) in the C! sense, i.e. h™(x) = h%(x) and dh7(x) = dh?(x)
uniformly on U;, where 2%(x) is a C' map. Hence H,, — H,, in the C' sense,
where H, is a C' map from U, into R" by using local coordinates
(x1, X3, +, x,,) on Uj.

5.4.1. Define H,,:U, - R" by H,(p)=H,(p)— H,(p,) for m=0 or
m > m,. H], — H{ in the C' sense and H,(p,) = 0 all m. By (5.5) of [23],
|dH,(p,) — Id| < C,;V/n A’R%. We can choose R in 5.2.4 small enough that
|detdH, (p,)| = 8 > 0, independent of m. So dH;(p,) is of maximal rank.
Choose 0 < R; < R, such that H{: U, = B(p,, R;; g,) = R" is 1-1 and of
maximal rank. 3m; > m, such that N};_, H,(U,) contains an open set
V C Hy(U,), containing 0. 3m, > m; such that N_, (H,,|U,)"'(V) con-
tains an open set U C (H{ |U,) }(V), containing p,.

5.4.2. Definition. Hj:U — V is called a LHCS, limit harmonic coordinate
system.

543. Let g* = ((H,|U)")*g,. Obviously (U, g,) is isometric to
(H,(U,), g¥) Vm > my,. If (yy, y5,-" -, »,) is the coordinate system for R”,
then as in [23, pp. 60, 61],

gnlHo(p) = L 27 (H,(p)) dy ® dy,
ij

where  /4(H,,(p)) = g,(grad hj, grad h%)(p) Vp € U,. U, C Uy =
B(po, Ry/2; 80) € B(po, Ry, 80) = U, € B(py, R; 8,,) and g, = go, s0 Im;
> mgsuch that B(p,, R,/2, 8,) € B(py,3R/4; g,,) Vm > ms. Hence

(1) By (5.8) of [23], ||dgX||co < C'(A, R, n) and

(ii) by Theorem 5.2 of [23], ||dgX||c2» < 16c(AR, n)A*R? on H/(U,) with
respect to the distance function 4} on H,(U,), using parallel translation of

8m-
5.44. Let v, v, € TR’ for some g € V. Then

g:.(Up Uz) = gm(Hr:l;l(Ul)’ Hr:,_*l(vz))-
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Since H/:' — H{:' and g,, — g, uniformly,
: * _ -1 -1
"}Enw gm(Ux’ Uz) = go(Ho* (Ul)’ Hg. (Uz))-

If we define g} = Hj*g,, then g* — g¥, at least pointwise. Since (g*|U)
satisfy the conditions of 4.1, there exists a subsequence which is also denoted
by gX converging to g& uniformly and d} — 4§ as in 4.1. For sufficiently
large m, dX(p,q) < 2d§(p,q) Vp,q € V. By [5, Chapter 6], or by 5.7 below
and uniform bounds of 5.4.3 on the Christoffel symbols, one can compare the
Euclidean and Riemannian parallel translations on V. Hence, there are uni-
form bounds on C**® norms of g* on V with respect to the fixed metric d.
Finally, dg* forms an equicontinuous and bounded family on ¥, and by
Arzela-Ascoli Theorem one extracts a uniformly convergent subsequence of
dg* converging necessarily to dgg. This also proves that g has to be C*.

5.5. Theorem (see [32] for a stronger version). Given a sequence g, of
C*®-Riemannian metrics on a C®-manifold M" with |K(M,g,)| < A%
d(M,g,) < Dandi(M,g,) > &, there exists a subsequence g, of g, such that

(1) g, — 8, in the sense of 4.1.

(ii) g, is C* in the following sense; Vp € M, 3 an open set U containing p,
and a C* local coordinate chart H{ on U such that g, is C* with respect to this
coordinate chart. H{ is a C* limit of harmonic coordinate charts H, with respect
to g,. A an open set V.C NY_, H/(U) such that if g, is considered as a metric on
H{(U)C R" as gf = H/'*g,, then g}t — g¢ in the C" sense on V.

Proof. See5.1-54.

5.6. Remark. In [32], S. Peters has stronger results on the differentiability
of the metric. Our main aim is to prove Proposition 5.12, and 5.5 is sufficient
for that.

5.7.1. Let X(z):R — R” be the solution of the first order linear ODE
X’ = AX’ with X(0) = v,, where A(¢):R — R”’ is continuous and 14| < C
Vi. Ve >0, 38 = 8(¢, |vyl, C) independent of X(z) and A(r) such that
|X(2) — vyl <eif 0 gt <8

5.7.2. In local coordinates parallel translation is defined by first order
linear ODE whose coefficients are Christoffel symbols for a C* metric. The
bounds on Christoffel symbols enables us to compare Euclidean and Rieman-
nian parallel translation locally. Obviously the bounds on dg in a coordinate
system determines the bounds on the Christoffel symbols of g.

5.8.1. Assume the hypotheses and notations of 5.1-5.5. For the smooth
metric g¥ on V define "’I‘I-’j as the Christoffel symbols, as usual in terms of
partial derivatives of /. Since g¥ — g¢ in the C' sense on V, T}, »°T},
uniformly, where °T/, is defined in the same way as “T},. °T}/ are continuous on
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V. Let y(¢) be a C! curve in V and let E(¢) be a C! vector field along y(?).
We say that E(¢)isin P(V, H},y) if E(¢t) = ¥,;b'(¢)d/dy, and

db' Orf 1 dy; _
7+,Z,( /b ) (v(1)) =0 VL

5.8.2. Remark. H| is not shown to be C? and in any change of coordinates
the Christoffel symbols are involved with second order derivatives of the
transition maps. Hence with this information one cannot construct a well-
defined parallel translation. However, the transition maps are shown to be C?
in [32], and hence there is a well-defined parallel translation on (M, g,).

5.8.3. It follows from the theory of systems of linear ODE, [24, p. 137, Satz
1] or [9, Chapter 10], that for any given C! curve y and v, € R", there exists
unique E € P(V, Hj,v) with E(0) = v,.

5.84. Lemma. If E\(t), E,(t) € P(V, H},v) then g§(E(¢), E, (1)) is con-
stant.

5.85. Proof. Let Y,=0/0y, E(1)=1Xb'(2)Y, and E,(t)=Xc/(1)Y.
Then
lim £ gx(E,(1), Ex(1) = lim 4 5 bielgh ((1))

k de Sk NIV x dt i Y

— 0

- %’Z belgli(v(1)) = %33‘(51“)’ Ey(1)),
since g/ — g) in the C' sense. ’
VOE, (1) = zn: dTI;I + Z;kriz(Y(t))bi(Y(t))% Y
and hence _ )
Jfim g£(9{VE(1). £x(1) = 0

since E|(t) € P(V, Hj,v), where v %) denotes the covariant derivative of the
C* metric gF. Also

L g2 (E(1), Ey(1) = g2(VEOE (1), Ex(1)) + g2 ( E(0).9PE,(1)).

Consequently (d/dt)g&(E (1), E5(2)) = 0.

59. LetU, gy, and g, be asin 5.4 and 5.5, and let K be a compact subset
of U with int(K') # &. Consider a sequence of normal geodesics v,, where v,
is with respect to g,, k > 0, and v,(0) € int(K). ¥, = H/y, is a geodesic of
the C** metric g, and ¥ = (Vo1 Fe, **» i) With

d? . coond oo d,.
(59.1) E(‘Yk,l) + IZJ: kI‘i[j(‘Yk(t)):E(‘Yk,i)E(Yk,j) =0.
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g¥F(), 7(1) =1 and g5 — g} uniformly, therefore g&(¥/,¥;) and
[1¥2(?)|| g~ are uniformly bounded. Since "I',-’j are uniformly bounded indepen-
dent of k, so are d?/dt*(¥,,). There exists a subsequence which is also
denoted by ¥, such that ¥,(0) = p, € Hy(K) and ¥;(0) > TR, with g§(v,)
= 1. Define F,(t) = (7,(¢), ¥:(¢)). { F,(¢)} is an equicontinuous and bounded
family with F,(0) = ( py, vy). We extract another subsequence F,(¢) such that
F, () converges uniformly to F,(¢) which is continuous.

5.10. Lemma. Given a sequence of geodesics v,, in (M, g,,), then there exists
a subsequence converging to vy, in the C' sense where vy, is a geodesic of (M, g,).

5.10.1. Proof. By 5.9 and 5.3.3, it is sufficient to prove that vy, is a geodesic
of g, (see 4.4.2). YVt , 1, |t; — t,] < &,

di(7o(11), %0(12)) = kli“:o d¥(7,:(11),%:(1,)) = It, = 15,

1%6() g = tim [ %(2) [l = 1,
k— o0
and hence /(%,|[t,, t,], g&) = |t; — t,| Therefore vy, = H;'¥, is a geodesic of
goin M.
5102 If (up,uy---,u,) € V (5.5), then define Z, = (ZL, Z2,- - -, Z2")
and

u,, fl<i<gn,
n
ZHuy, uyy Uy, t) = Py .
k( 1> %2> s %2n> ) _Z I‘ij(ul’...’un)ui-*-n.uj"—n lfn+1<l<2n‘
i,j

Using the notation of 5.9, for small ¢, (5.9.1) is equivalent to
t
F(0) = F(0) + [ Zi(F(5), 5) ds.

Since F, (1) = Fy(t) and *T/; »°T}; uniformly, all functions are bounded and
uniformly continuous; we have Z (F,(s),s) = Zy(Fy(s),s) uniformly and
hence Fy(t) = Fy(0) + [§ Zo(Fy(s), s) ds.

5.10.3. Therefore, y,(¢) is C? and satisfies (5.9.1) for k = 0, which is
equivalent to ¥4(t) € P(V, Hy, 7). Yo(t) € M is not necessarily C 2, since H
is not necessarily C2.

5.11. Lemma. Let S be a totally geodesic 2-surface in (M, g,), andletp € S
be arbitrary. Choose U around p as in 5.4 and 5.5. Let y(t) be a geodesic of g,
in S passing through p. Define E(t) to be one of the continuous vector fields along
(1) with E(t) € TS, |IE(t)llg, = 1, 8o(E(2),¥'(1)) = 0. Then dHg(E(1)) =
E(t) € P(V, H},7), where H and V are as in 5.4 and 5.5 and ¥ = H_y.
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5.11.1. Proof. Let p’ = H{(p)and T(¢) = ¥'(¢). Asin 5.8.5,
d .- d .. Lo
0= E(gg(E,E)) = Jim g(E,E)

= 11m *E,E)= hm 2g(VME, E),

gk
dt
where v ¥ is the connectlon of the C°° metnc gk, and E is differentiable
by using 5.10.2 and 5.10.3.

5.11.2.

0= %(g({(E,T)) = klim [g/’("(v;/‘)E’T) + g;:(E,V;-k)T)]
— 00
= Jim g2(v{E,T)
since lim, _, , VT = 0 by 5.10.2 and 5.10.3.

5113. Let § = H{(S), N UN(S 83),y € TR, and X and Y be dif-
ferentiable vector fields in 7S around p’. Define

Sy(X,Y)= hm gt (v{PY, N)(p)-

This limit exists by "I‘ ! and g being convergent, and it only depends on X,
and Y,. Sy(X,Y): TS X TS — R is a symmetric bilinear form. S w(X, x)
=0 by 5.10.3. Hence VNE UN(S, 80)y» Sy=0 and 0= Sy(T, E)=
lim, _,, g¥(VVE, N)(p').

S.114. By 5.11.1-5113, Vv € TR}, lim, gHVOE, v)(p’) = 0.
Hence lim, _, ., (V{¥E)(p’) exists and equals 0in TR?%. In local terms, this is
equivalent to E € P(V, H}, ¥) (see 5.8.1).

5.12. Proposition. Let S| and S, be totally geodesic 2-surfaces in (M, g,)
intersecting along a geodesic y. Then the angle between the surfaces along vy is
constant with respect to g,. This is still true if S; are totally geodesic surfaces with
boundary and v lies at the boundary of both.

5.12.1. Proof. For any point p on vy, choose U and LHCS V around p as
in 5.4 and 5.5. By 5.8.4 and 5.11, the angle between H{(S;) and H{(S,) along
H{(v) is constant with respect to g&. Hj is C' and g& = H{g,, hence the
result follows locally and then globally. If y lies at the boundary of both S,
and S,, 5.11 can be proved by using a limit argument.

6. Proof of Theorem I
The main steps of this proof follow Gromoll-Grove [15], [17] closely, on a
limit metric. On the other hand, since the limit metric is not necessarily smooth
or even C2, the arguments should be modified or changed. We will provide the
proofs for the modified arguments, the rest will be stated only. Occasionally
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basic facts of C*-Riemannian geometry will have to be proved explicitly for
the limit metric. In §6A dual convex sets 4 and B are constructed in a limit
metric obtained in 6.1. 4 and B may have boundaries or not. Each case is
investigated in §§6B, C, and D.

Proof of Theorem 1. This is an immediate consequence of 6.1-6.3, 6.31,
Theorems 6.10, 6.22, 6.23, 6.35 and 6.38, Hamilton [22], and the generalized
sphere theorem, Grove and Shiohama [21].

6A. Main construction.

6.1.1. (Similarly as was done in [2].) Given K > 4, n > 2, and ¢, > 0, by
the Finiteness Theorems of Cheeger [6], [7], and [31], there are finitely many
diffeomorphism classes of C*-Riemannian manifolds (M, g) with

1<K(M,g)<K, i(Mg)>e, d(M,g)<=, dim(M)=n.
0 2

Let M, M,, M,,---, M, represent all such distinct classes, s > 1. Define
inf{8|3g on M, with C¥g, 7/2 >d(M,, g)>n/2 -39, i(M;, g) > €y, 1 <
K(M,g)< K} to be §[M,] and 8y(K,n,¢y) = min({{[M,]|§[M,;] # 0} U
{7/2}). Obviously 8,(K, n, &;) > 0 and if » is even, then §, = 8,(K, n) since
i(M, g) > n/2/K.

6.1.2. Proposition. Any C*-Riemannian manifold (M, g) with1 < K(M, g)
<K, i(M,g)> ¢, and 7/2 — §,(K,n,e5) < d(M, g) has either d(M, g) >
w/2, or d(M, g) < /2 with §{M] = 0. Hence M either satisfies any common
property of the diffeomorphism classes [ M;] with §[ M;] = 0, or is homeomorphic
to a sphere by [21].

6.1.3. Let (M, g)be as in 6.1.2 with d(M, g) < /2 with §[M] = 0. There
exists a sequence of C*-Riemannian metrics g,, on M such that

1<K(M,g,)<K, i(Mg,)>¢e, 7/2-1/m<d(M,g)<mu/2
Vme N™.

By Gromov’s Compactness Theorem 4.1.0 [20], we extract a subsequence which
we denote also by g, such that g, — g, (4.1), where g, has the properties
obtained in §8§4 and 5. Unless otherwise stated, in all of the following M or
(M, g,) denotes this limit metric with the distance function d,.

6.14. SinceVm 3p,, p,, € M suchthat #/2 > d,(p,, py,) = 7/2 —1/m,
and M is compact, 3p,, po € M with dy(py, py) = 7/2. Vp,qE M,
d,(p,q) < m/2, hence dy(p,q) < m/2 and d(M, g,) = 7 /2.

6.1.5. Dual sets as in [15], [17]: For X € (M, g,) define X' = {x €
M|dy(x,X)=m/2}. X< X” and X' = X . By 6.1.4, there exists a pair of
dual compact sets 4 and B in (M, g,) with A’ = B and B’ = A.
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6.2.1. Definition. In this text, a set X C (M, g) is said to be convex if
Vp,q € X, any mg(p,q; g) € X. X is said to be r-convex if any minimal
geodesic of length < r with endpoints in X liesin X [15].

6.2.2. A and B are convex sets. Given any p,q € A and any mg(p,q) v,
the closest point on y to B cannot have distance < 7/2 to B, by 4.2.2, 46.1,
and 4.5 (see [15], [17] and [2]).

6.3. Both 4 and B are totally geodesic C! submanifolds of M without or
with boundary which may not be C!. For the proof, see [2, third sublemma, p.
144). Also one can modify the arguments of [8, pp. 417-418] for this case. In
this text, the interior or boundary of a convex submanifold are taken with
respect to the topology of the submanifold. for convention d{point} # &. In
the following A and B always denote such compact convex dual submanifolds of
(Ma gO)

6B. The case of 04 # & and 0B # @.

6.4. Definitions. 1. (Vm > 0. See [19].) Let p,q € M. g is called a non-
trivial critical point for the function d,(p,-) if ¢ # p and Vv € TM, — {0}
there exists a mg( p, g; g,,) v, such that %, (v/(¢),v) < 7/2.

2. Let X be a convex set in (M, g) with 0X # &. For any p € X, define
C,X={veTM,|v=0,or3§ =8(v)>0,exp,v[0,8(v)] C in(X)}.

3. Let U € S"(1) be any subset. Define CH(U) to be the smallest subset of
S§" with (i) U € CH(U) and (ii) for any nonantipodal pair x, y € CH(U), the
shortest arc joining x to y lies in CH(U).

4. Let p,q € (M, g), X C M. The link from p to g (# p) is defined to be
L(p,q;8) = {Y'(p) € UM, g),|y isamg(p,q; g)}. The link from p (& X)
to Xis L(p, X;8) = {v € UM, g)|exp, ,vd(p, X; 8) € X}.

6.5.1. Combining 6.4.1-6.4.3, ¢ is a nontrivial critical point for d( p, -) if
and only if CHL(q, p) contains an antipodal pair.

6.5.2. For convex 4, A — 94 is a totally geodesic a-dimensional submani-
fold and, Vp € A — 04, CpA is an g-dimensional subspace of TM,. If
p € 04, then one can show that Cp is an a-dimﬂensional convex cone contained
in a closed half of an a-dimensional subspace C, in TM,. (see [8, pp. 419-420,
Proposition 1.8])

6.6. Lemma. Let A, be a closed convex set in (M, g,) with 04, # &, and
p € A, — 3A4,. Then d( p, -) has no nontrivial critical points in 94,.

6.6.1. Proof. For any q € 94,,36 > 0 such that {v € équl“UHo < § and
exp,v € B(q, 8,int(A4,))} is an open subset of C,4,.

6.6.2. Let g € 34, be any point. Suppose that CHL(g, p) contains a pair
of antipodal points. Define S, = C’PA N y(M, 80), and let D; be a closed
hemisphere in S, such that CHL(q, p) € C,N UM, C D, C S, and S, = dD,
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in $;.If L(q,p)N S, = &, then L(q, p) C int(D,) in S;, and CHL(q, p) C
int(D;). But, int(D,) contains no pairs of antipodal points; so, L(g, p) N S,
# @.Let v € L(q,p)NS,. Then v € S, C, N UM, C 3C, N UM, in S,.
exp,(v - [0 do(q, p))) € A;, and by 6.6.1, 3¢; > 0 such that exp,(v[0, el]) c
94,. Let ¢’ = €Xp, &0. ThenC contains both +((d/dt)(equAtv)|, 0) =

qu is contained in a half-space sow € 8(C NUM,)in Cy N UM,. By a
similar argument e, > ¢, such that exp,([0, &,]v) C 8A By the connectedness
of an interval in R, one obtains p € d4, which is not the case. Hence,
CHL(q, p) contains no pairs of antipodal points and recall 6.5.1.

6.7. Lemma. Let A, be a closed convex set in (M, g,), q € 94, p € int(4,),
Y be a mg(p, q; 8o), and do(p,q) = do(p,034,). Then

C,—{0) = {ve 1% (v, ~v'(q) < m/2}.

6.7.1. Proof. See|[8, Lemma 1.7, p. 419] together with 4.6.1.

6.8. Lemma. Letp’,q’ € int(A,), 04, # @, where A, is a closed convex set
in (M, g,) of 6.1.3, and v, be any mg(p’,q’; g,). Then the function f(t) =
do(v5(2),04,):[0,dy(p’,q")] = R cannot have any local minimum at t, €
0,do(p",9")).

6.8.1. Proof. Suppose that y N 94 # . Let p € 04 with

Yo([o do Do, P ,))) C int(4,).
Then vy4(py) € C,, which is open, and v4( py) € C, . This is not possible since

C,, is a closed cone contained in a closed half of C So, v, C int(4,) and
f>0.

6.8.2. Suppose 3¢, and & such that (¢, — 8,2, + &) C (0,dy(p’,¢")) and
Vie (t,— 8,1, +8), f(t)= f(ty). Let yy(¢y) =p. 3q € 34; such that
do(p,q) = do(p,34;) = f(t,). Choose a sequence t,, n € N*, with 7, +
§>1,>1,.1, t, 1, and {y,};,, where v, is a mg(q,v(z,); 8) and
¥, — v uniformly where y is a mg(q, p; g,)- Then y C int(4,)U {q}.
£o(Y'(P), ¥§(ty)) = m/2 by 4.6.1, and v,(q) = Y'(q) by 4.2.2, 4.4, and 5.10.
For sufficiently large N, let 6 = y, so that 8 C int(A4,), $,(0'(¢9),Y'(q)) <
7/2, and & =ty — t, < min(gy, do(q, p)). 0 # v, so one defines w(s):
[0,7/2] = C‘q N UM, as in Lemma 4.7. By 6.7, if s <m/2, w(s) € C; so,
3n(s), 0 <n(s) < oo, such that exp,w(s)-(0,n(s)) C int(4,) and choose
n(s) to be maximal. Define r(s) = exp,n(s)w(s) if n(s) < co. Then r(s) €
d4,. Define B, = «,(8'(9),Y'(q))-

6.8.3. Claim. 3s, € (By,7/2] such that exp,8'w(s,) € 94;. Clearly n(B,)
> dy(q,y(ty)) > 8. Let ny = inf{n(s)| By < s < 7/2}.

683.1. If ny> 8", then exp,{w(s)r|0 <¢ <9 and By<s<m/2}C
int(4,) and exp,(0,8"lw(7/2) € 4. w(m/2) L ¥ ‘(q), hence w(w/2) € C -C,
and exp,(0, 8'Jw(7/2) C 34, by 6.7.
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6.83.2. If n, <&, then define I, = {s € [B,7/2)|n(s)> 8"} and I, =
{s € [By,7/2)|n(s) < 8’}. We may assume that I, U I, = [B,, 7/2), since
otherwise 6.8.3 holds. I, # @, I, # @,s03s, € I, N I,. Let s, € I, s, € L,
n € N*, such that s, — s, and s, = 5. Let 7, = limn(s,) and 5, = lim7(s,),
1, < 8’ < 1. exp,w(sy)m, is a limit point of {exp,w(s,)n(s,)|n € N"} C 94,
which is closed, and hence exp,w(so)n, € 94;. If n; < co, then similarly
exp,w(so)n; € 94,. If either n; = &’ or n, = 8, then 6.8.3 holds. If 0 < 7, <
8" < m; < oo, then exp,w(sy)[0,n,] € 4,, and exp,w(s0){0,m;,m,} C 94;. By
a similar argument to 6.6.2, exp,w(s,)[0, ;] C 34,, particularly exp,w(s,)8’
€ d4;. If m, =0, then s, = 7/2 and exp,[0, n,]w(7/2) C 94, by a similar
argument to 6.8.3.1. If n; = co and 7, > 0, then exp,[0, o]w(s,) C 4, and
exp,m,w(Sy), ¢ S 34;; by an argument similar to 6.6.2 exp,[0, co]w(sy) C 94,
So, 6.8.3 holds.

6.84. By Lemma 4.7 and Claim 6.8.3, there exists a point exp,w(s()d’ €
04, with

f(tn) = do(vo(1y),94,) < do(Yo(’o +8), €xp, (W(So)s'))
<dy(q,p) = f(1,),

where 1y =1, + 8’ € (1, — 8,¢, + §). By obtaining a contradiction to the
assumption of 6.8.2, one proves Lemma 6.8.

6.9. Proposition. Let A and B be dual, compact, convex sets in (M, g,) as in
6.1-6.3. If 0A + O, then there exists a unique p, € A with dy(py,04) =
max{dy(p,04)| p € A} and dy( p,, -): M — R has no nontrivial critical points
inM — {p,}', where BC { po}' = {p € M|d(p, pp) = 7/2}.

6.9.1. Proof. Clearly p, exists. Suppose Ip, € A with p, # p; and
do(Po,04) = do( pj,94). Let v be any mg( py, pg; 8o) and f(#) = do(v(1),34),
f<dy(py, 04). By 6.8, such f does not exist and hence p,, is unique.

69.2. Let g€ A4 — {p,} be any point and ¢ = dy(g,04). Define 4¢ =
{q’ € A4]dy(q',34) > c}. Given qy,q, € A°, and any mg(q;,q,; 8o) ¥, the
function f(¢) = dy(y(t),34) has to attain its minimum at the end points by
6.8. Hence y C A° and A° is convex. p, € int(A4€) in A4, d(py,04) > ¢ by
6.9.1, and g € 94° in A. By 6.6, g cannot be a critical point for d,( p,, -)-

693. Let g€ M — (AU {p,}) be any point, and let y; and y, be
mg(q, p,) and mg(q, q,), respectively, where g, € B and d(q, q,) = dy(q, B).
do(q,490) < 7/2, dy(q, py) < 7/2, and dy(py,q,) = 7/2. By 4.5 and 6.1.5,
$o(¥1(q), v5(q)) > m/2. Vv € L(q, p,) and hence Vv € CHL(q, p,), we have
$o(v, v,(q)) > m/2. CHL(q, p,) cannot contain a pair of antipodal points,
and by 6.5.1 the proposition follows.
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6.94. Let 34 # @ and p, be as above. 3 dual convex sets 4, and B, such
that po€ 4, € A4 and BC {p,} C B,. 904, # & by 462, 6.4.1, 6.4.2, and
6.9.2. dy( py, 04,) may not be maximal. However, by replacing 4, B with A4,
B, we may assume that 3p, € 4 such that { py}’ € B and d( p,,- ) has no
nontrivial critical points on M — B. One can proceed similarly if B # ¢, but
not simultaneously for both.

6.10. Theorem. Let A and B be dual, convex sets in (M, g,) as in 6.1-6.3,
and 6.9.4. If 9A # D and OB # O, then M is homeomorphic to a sphere.

Proof. The main idea of our proof is similar to [15], [17], and [21].

6.10.1. Let g,, g, be as in 6.1.3. Choose p, € 4 as in 6.9.4 and g, € B
with d(q,,9B) = max{d,(q,0B)|q € B}. 35, 0 < & < w/2, such that M =
N; U N, where N, = B(p,,8;g, and N, = B(q,,9;g,). Otherwise, by
compactness Ip € M with dy(p, qy) = do(p, py) = m/2, which is not
possible by 4.6.2, 6.4.1, 2, 6.9.2 for B, q,, and 6.94. Vm > 0, Vp € (M, g,,)
define §4'( p) = min{r| for some v € UM, g,),, CHL(p, po;8m) S
B(o, r; UM, g,)),, £,)} 87(Ny) = sup(8J(p)| p € Ny}, and 85(p),
05'(N,) in a similar way. Let % = min{ % ,(v,w)|v € L(p, py; 8,) and
w € L(p,q0; 8»)} and n"(X)=inf{(n;|p € X} where X C M. By 6.9.3,
83(p)<m/2 VpeE M~ B, 8)(p)<m/2 Vp € M~ {q,), and 7> m/2
Vpe M- ({q,} Y B). For any p, = p and any g € M, the limit set of
L(p,.q;8,)1s asubsetof L(p,q,g,,) for a fixed m > 0. Hence 38, > 0 such
that 89(N,) < m/2 — 28,, 83(N,) < m/2 — 28,, and n"°(N; N N,) > 7/2 +
24,.

6.102 (M,g,)— (M, g, asin4.1. By4.5.2 and 5.10, if v,, is mg( p, ¢; 8,.)
Vm > 1, then the limit set of y,’s is the subset of MG(p,q; g,). Hence,
Imy # 0 and &8, such that 87°(N) <7w/2 -8, 65°(N,)<7/2 -3,
" (NNN)=>7/2+8, M=N;UN,, N;CN,, and N, C N,, where N,
= B(py83; 8,,,) and N, = B(qq, 83; &n,)-

6.10.3. By applying the mollifier techniques of [21] to d,, ( py, -) on N; and
d,(qo ) on N, we can obtain two smooth functions f,:N,,, = [0, 7/2],
i=1,2, such that f,(py)=/(q,)=0, Vf;#0, and f;>0 on N, —
{ Po»490); Vf; is transversal to both dN; and 9N, for i = 1,2. One observes
that 6.10.2 has the essential information of [21, Lemma 1.3 and Proposition
1.5, pp. 204-205]. Now it is straightforward to show that M is homeomorphic
to a sphere, following [21] for the C* metric g, .

6C. The case of 04 = @ and 9B # J.

6.11. By 6.10, there is no loss of generality in assuming that d4 = & in
this section.

6.12. Lemma. Let (M,g,) be as in 6.1, p,, p,, p; €(M,g,), and
Pl P Py € SX(1) with 0 < do(p,, p)=d(plyp)) <m/2, 1<i<j<3. Let
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0, and m; be mg(p; .1, Pis2; 8o) and umg(p/, 1, pi.,; standard) fori=1,2,3,
indices mod 3, respectively. If

0< §0(‘0£(P1)’03'(P1)) =% ("’1,2(P1)7"I’3(P1)):= ag <,
then

do(ps,05(2)) = d( py.ms(2)) Ve [0,d(py, p,)].

6.12.1. Proof. Let a, = dy(p;, p;+1), indices mod 3. Fix ¢, € (0, a;). Let
p(s) be a mg(6;(10), p3; 8o), ar:= % o(-05(¢o), w'(0)), and /= d(n;(1,), p3)-
By 4.5, 3u, = 0 with dy(65(¢,), p3) = [ — uy. For

u € [0,1 - max(|ty — as),a; — a, — t,])]

define B,(u), B,(u) with0 < B, < ,

cos B,(u) - sin(! — u) = (cosa, — costy - cos(/ — u))/sint,,
cos B,(u) + sin(/ — u) = (cosa, — cos(a, — t,) - cos (I — u))/sin(a; — t,).
By 45, a; > By(uy) and 7 — a; > B,(u,). Since 0 < ay, a; — ¢ty < 7/2,

(d/du)((sin (! — u))(cosB,(u) + cosB,(u))) <0 for u > 0.
B,(0) + B,(0) = =, hence cosB,(0) + cosB,(0)=0. For u > 0, sin(/ — u)-
(cos By (u) + cos B,(u)) < 0, so, By(u) + B,(u) > 7. Since 7 = a; + (7 — a;)
= Bi(uy) + Bo(ugy), we conclude that u, = 0, which proves the lemma by ¢,
being arbitrary.

6.13. Proposition. If p, r€ A, q€ B, v, is a mg(p,r; g,) of length
a <m/2, and v, is a mg(q, p), where A and B are as in 6.1-6.3, 6.11, then
there exists a unique mg(q,r) v, and 2-surface L bounded by v, v,, and v,
where L is totally geodesic and isometric to the inside of a triangle in S*(1) with
the side lengths a, 7/2, w/2.

6.13.1. Remark. If we compare Lemma 8 of [2] with 6.13, in our case
g, < i(M, g,) < m/2

Proof. We first prove for a < ¢,/2.

6.132.  £,(v5(p),¥{(p)) = m/2by4.6.1,6.1.5, and 6.11. On S*(1), choose
p,q’,r" with d(p’,q’)=d(q’,r’)=a/2 and d(p’,r') = a. Let 7,1, and
15 be umg( p’, r’), umg(q’, p’), and umg(q’, r’), respectively, and let L’ C
S2(1) be the region bounded by 7, and which has area a. Let f=
expp°¢°(exppl)‘1:L’ — L:= f(L"), where (expp,)'1 = B(p/,3n/4) —
B(0,37/4), ¢ is an isometric imbedding of TSZ(l)p, into (TM,, g,) with
d(exp,’q’) = —mv5(p)/2, and $(exp,'r’) = ay{(p).

6.133. For 0 < s < m/2, define r/ = n3(7/2 — 5), v] = (exp,' )(r)), n3(2)
= exp,t0/||ufll, f(r}) = r,, and yi(1) = f(n3(1)). For 0 < s < £/2, do(p,1,)
< g, and yj(¢) is mg(p,r). By 45, dy(r,r)<d(r/,r’) and dy(r,q) <
d(rl,q").

m/2 =dy(q,r) <dy(q.r,) +do(r,r)<d(q,r)+d(r,r')=mn/2;
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so, dy(r, r)=d(r),r") = s. Define v;() = f(15(¢)), 0 < ¢ < #/2. By Lemma
30of[2,p. 138), I(v;][a, b), g) < b —a,if (7 —g)/2 <a<b<w/2.y,isa
mg(r, ,,r). Let Lj € L’ be bounded by 7, n$/%, and n,|[(7 — &,)/2,7/2].

6.134. Claim. f:L| — L,:= f(L})is an isometry. Let g7, g5 € L}. Choose
g3, 44 on m3(¢) with g; € umg(p’,q/,,), i=1,2. Let ¢,=f(q)), 1 <i<4
Then dy(q3,494) = d(43,44) by 6.13.3, d(q3,93) = do(q,,93) by 6.12, and
similarly d(q3, q1) = do(42, 91)-

6.13.5. L, is totally geodesic since it is the image of a Riemannian
manifold under a distance preserving map, locally.

6.13.6. One proves the following similarly to 6.13.3-6.13.5. For 0 < s <
7/2, define p; = n,(m/2 — 5) and p, = f(p;). Then d(p;,r’) = do(p,, 1) by
6.12. Let 7% be the umg(r’, p!) and vi(¢) = f(n5(¢)). For 0 < s < ¢y/2,
Yi(t) € B(p, &y; 8,) and they are mg(r, p,) by 6.12, [2, Lemme 3, p. 138],
and arguments similar to 6.13.3. Let L), C L’ be bounded by n,,7%/?, and
M, |[(7 — €9)/2,m/2]. Then f|L}:L, » L,:= f(L}) is an isometry and L, is
totally geodesic.

6.13.7. L, U L, is totally geodesic. Is; > g,/8 such that umg(p;,r;)
6, € int(L} U Lj). Let R] € L} U L) be bounded by 74, 1,73, and ;. Then
fIR1: Ry = R;:= f(R}) is a local isometry and R; is totally geodesic. Since
Y, and y;' are minimal, dy(p,,r,) = d(p;,r,) by 6.12 and hence f(,) is
mg( py,, 1;,)-

£o((£26,)(p).-1(p,)) = #(8(2,), -12( p2,)) = B(s1) < 72
and do(p,,r,) = a(s;) < e

6.138. Replace p,r, p',r',v1,7/2, L', @, and f with p,,r,, p;, 1), f(6,),
B(s1), L' — R}, a(sy), and f, = exp,, © <1>sl<>(expp;1)‘1 which is defined simi-
larly, respectively. By repeating 6.13.3-6.13.7 one obtains R, C L’ — R} and
s, > &,/4, replacing R} and s,. R, = f, (R}) is totally geodesic and locally
isometric to S%(1) by fi;- Ri U R, is totally geodesic since (L, U L,) N R, 1s
open in (L, U L,)UR, by 6 Cint(L]U L)). Hence f:= R{UR),—>
R, U R, is a well-defined local isometry. By induction, one obtains that
f:i= L > L is a local isometry, and L is totally geodesic. For any ¢ < a, the
image p, of the minimal geodesic from g’ to n,(¢) in L’ under f, is a geodesic
of length 7 /2 from ¢ to y,(#), so it is minimal and lies in L.

6.13.9. Now let a < 7/2. Apply 6.13.2-6.13.8 to p, q,v,(€0/2), Y1, and v,
to obtain LM as above. Then apply 6.13.2-6.13.8 to v,(&,/4), ¢, v1(30/4), Y1,
and p, , to obtain L®. LON L@ is open in LY U LD, So LV U LD is
totally geodesic and locally isometric to S?(1). Inductively one obtains L
which is totally geodesic, and f:= L’ — L defined for a < 7/2 is a local
isometry. Since p, is minimal one repeats 6.13.4 to see that f is an isometry.
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6.13.10. Uniqueness of L and vy, = p, follows 5.12.

6.14. Corollary. Let A and B as in 6.1-6.3,6.11.Vp,r € A and Vq € B,

(1) Yv € L(q, p; g) Iw € L(q,r; gy) such that % ;(v,w)=dy(p,r);

(2) There is a natural bijection between L(q, p; g,) and, L(q,r; g,) locally.

6.15. Definition. Let 4 and B be convex sets in (M, g,) as in 6.1-6.3, 6.11.
For any p,r€ 4, q€ B, v € L(p,q; g,), and any mg(p,r) vy, we define
P(v,q)(v) to be the unique vector in L(r,q) such that in 6.13 —yj(p) = v,
Y1 = v, and —y3(r) = P(v, q)(v).

6.16. Vp € (M, g,), there is a natural metric on U(M, g,),, namely
$o(wi, wy) Vwy,w, € U(M, g,). With this metric, U(M, g,), is isometric to
S"1(1).

6.17.1. Fix g € B, and define N(p,q) = (Span L(p,q)) N U(M, g;), Vp
€ A. By 5.12, P(y,q) is an isometry from L(p,q) onto L(r,q) with 6.16,
where y is any mg( p, r). Hence dim N(p, ¢) = dim N(r,q) Vp,r € A. Let
dim N(p,q) =X —1, 1 <X < n. 3 unique extension P(y,q):N(p,q)—
N(r, q) such that P is an isometry (6.16). For any p, r € 4, let €( p, r) be the
collection of all curves from p to r in 4 which are geodesics of 4 except at a
finite number of points. P(f,q) is defined for § € €(p,r). Let G(p,q) =
{P(6,9)|0 € ¢(p, p)}. G is a subgroup of the isometry group of N( p,q) =
SX¥~1(1). G is an algebraic subgroup of O(X). Let v, € L( p, q) be arbitrary.
G(p,q)v, € L(p,q) which is closed. Gv, = Gv, C L(p, q), where G is the
closure of G in O(X). G is a lie subgroup of O(X) and the orbit G(v,) is a
compact smooth submanifold of U(M,g,),. Let E, = {(P(8,q)v,|r € 4,
0 € ¢(p,r)} € UN(A4, g;)- Then

E,= (P(8,4)(Goy)Ir € 4,8 € ¢(p,r))
= (P(v.q)(Gv,) Ir € 4,y € MG(p, 1)},

{P(y,9)Gvy)|r € A,y € MG(p, r)} is a subfiber bundle of UN(4, g,) and
equal to E. B

6.17.2. The fibers o67(r)  of the fiber bundle o: E, — 4 are smooth com-
pact submanifolds P(y,q)Gv,) of UN(4,g,), for any mg(p,r) y in A.
Obviously, 6 ~Y(r) € L(r, q; go)-

6.18. Remark. 6.17 is quite similar to the proof of Proposition 3.4 in [17] in
which parallel translation and holonomy are used (see 5.8.2).

6.19. Lemma [17). Let F—> E 3 B, be a fiber bundle where F is a closed
manifold and E is homeomorphic to S™. Let E, C E be a subset such that o | E:
E, — B, has a structure of a fiber bundle: F, = E, — B, where F, is a closed
submanifold of F. Then E, = E.

Proof. See[17, Proposition 3.4] and also 6.27.5.
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6.20. Let F — SV — B, be a fiber bundle where F and B, are compact
manifolds with F and B, # point,and N € N*.

6.20.1. If N = 1, then this has to be a finite covering of S by S. So we
may assume that N > 2.

6.20.2. Let F be connected, hence B, be simply-connected. By [4], F has
the homotopy type of S, S3, or S”. If F = S, then B, has the homotopy type
of CP¥ If F = S3, then B, has the integral cohomology ring isomorphic to
those of HPX. If F ~ S7, then B, is homeomorphic to S (also by [33]). N has
to be odd, by x(SV) = x(By)x(F).

6.20.3. If F is not connected, then o:S" — B, lifts to 6:S" > B, and
one obtains Fy <> S — B, where F, is any connected component of F. If F
is discrete, then SV — B, is a covering map.

6.20.4. If N is even, then S¥ — B, is a covering map and m(B,) = Z,.

6.20.5. If N is odd and F is not connected, then B, is as in 6.20.2.

6.20.6. In all cases, dim F + 1 divides N + 1.

6.21. Proposition [17). Let A and B be as in 6.1-6.3, 6.9.4. If 0A = & and
0B # @, then B = {q,}, A = cutlocus(q,), B = normalcutlocus(A4), and
UNA is homeomorphic to S" 1.

6.21.1. Proof. This can be proved by using 6.9, passing to an appropriate
C*-metric g, as in 6.10.1 and 6.10.2, and obtaining a smooth function f
from d,, (g, ) by techniques of [21], where /> 0 and ||Vf||# 0 on M —
({ g0} YU N(A4, ¢, gy)) for small ¢ and Vf is transversal to dN(4, ¢; g,), to show
that UNA is homeomorphic to S”~ L. The rest follows as in Proposition 3.4 of
[17] by wusing 6.17 and 6.19. U,., L(p, q0; 80) = UN(4, g,) and
UpeAL(qO’ P 80) = U(M, gO)qoby 4= 2.

6.22. Theorem. Let A and B be convex sets in (M, g,) as in 6.1-6.3, 6.9.4.
If 0A = &, 9B # @, and m, (M, p) # 0, then (M, g,) is isometric to RP"(1).

6.22.1. Proof. If n =2, then A is a closed geodesic of length = by 4.6.2,
6.13, and 6.21. M is locally isometric to S2(1) except possibly on {g,} and 4
by 6.13. By convexity and dim(A4) = 1, any geodesic in 4 of length 7 /2 is
minimal. For any p € A, the dual set of { p} contains at least two points and
cannot have boundary (6.10). Hence there are other pairs of dual sets 4 and B
as in the hypothesis. Hence M is locally isometric to S%(1), and therefore
isometric to RP2(1).

If n > 3, then m(4, p;) = m(M — {py}, p1) — (M, p,) for some p, € 4
by 6.21. In the fiber bundle S¥ ™! = UNA, = §""!' = UNA — A, X =1 by
7,(A, p,) # 0 and 6.20. So, dim 4 = n — 1 and L(p,q,) = UNA,, is a pair of
antipodal points for all p € 4. L(q,, p) is a pair of antipodal points by 4.6.2.
Let f:S""'(1) = UM, — A""' be given by f(v) = exp, 7v/2. By 4.5 and
6.16, f is distance decreasing, locally 1-1, and hence a local isometry by 6.14.1.



126 O. DURUMERIC

The L(q,, p)’s being antipodal pairs implies that (4, gy|A) is isometric to
RP""}(1). Let q;,9, € M be arbitrary, and p,, p, € 4 such that dy(q,,q;) +
do(q;, p;) = m/2 for i = 1,2. Choose p, € A with dy(p,, p;) =7/2, i =1,2.
The sets A4, = {p € M|dy(p, p,) = 7/2} and B, = { p,} are convex dual
sets by 4 = RP"(1), and 04, = & by 6.10. 4, is isometric to RP""*(1).
90> 91- 92 € A;. Hence, Vo, v, € TM,  with [vjllo, llvalle < 7/4,
do(eXpgy, U1, €XPy U3) = p( % o(v1, 02); V4llos [102llos 1) (4.3.1). (M, go) is locally
isometric to S"(1) around g,. The same is true for p, € 4 by using 4, and B,
and hence for ¢, € 4,. q; € M was arbitrary, hence (M, g,) is locally isomet-
ric to $"(1). m(M, p;) = m(A4, p;) = Z,. Using A = cutlocus (g,), one con-
structs an isometry from RP"(1) onto (M, g,).

6.23. Theorem. Let A and B be convex sets in (M, g,) as in 6.1-6.3, 6.9.4,
and with A = @, 0B + &, and m(M, p) = 0. We define a = dim A and
A = n — a. Then, we have the following: A =2, 4, or 8. n = kX for k € N¥,
k> 2. If A =2, then M" has the homotopy type of CP*. If A\ = 4 or 8, then
H*(M,Z) = Z[x]/x**' where x € H\(M,Z). If \=8 then k=2 and n =
16. That is if X = 4 or 8 then M has the cohomology ring structure of HP* or
CaP?,

6.23.1. Proof. 1f n =2, then A has to be a closed geodesic, and by 6.22.1,
M is locally isometric to S”(1) which has diameter «. So, n > 3. 0 = 7(M, p)
= m(4, p) by 6.21. The fiber bundle UNA, = S* ' < UNA = §""! - 4°
and 6.20 will give A = 2,4, or 8. H*(A,Z) = Z[x]/x*, where a = (k — 1)A,
x€ HNA,Z), k>2, a>2, n>4,by 620. If A=8 then k=2 and 4 is
homeomorphic to S8 By 6.21, 4 is a strong deformation retract of M — {q,}.
For the inclusion i: 4 = M — {q,}, i*: H¥(M — {q,},Z) - H*(A,Z)is an
isomorphism. The cohomology exact sequence for the pair (M, M — {q,})
with Z coefficients has the following part:

HI(M, M~ {q,}) > HY(M) 5> H(M = {g,)) > HO" (M, M ~ {g,)),

where j: M — {q,} =@ M is the inclusion map. If 1 <g<n—1, then
HY(M, M — {g,})=0. So, I=i** HYM,Z)— HYA,Z) is an isomor-
phism for 0 < g <n—2. m(M, p)=0; so, H* Y (M,Z) =0 and H"(M,Z)
= Z. Therefore, HI(M,Z) = Z if A|q and 0 < g < n; = 0 otherwise. Let y
be the generator of HNM,Z). A < n — 2, and x = I(y) generates H (4, Z).
I(y")=(I(y))'=x'"+#0, and hence y'# 0 for 1 </ <k — 1. y*+ 0 since
there is no torsion in H*(M,Z) and the pairing H? ® H"~9 — Z is nonsingu-
lar [36, p. 159, 5.27]. Hence y’ generates HN(M,Z),0 < I < k, and H*(M,Z)
= Z[y]/y**L If A =2, then by [4], [3, pp. 189, 190] and [27] M" has the
homotopy type of CP*,
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6D. The case of ¢4 = dB = &.

6.24. By 6.10, 6.22, and 6.23, there is no loss of generality in assuming that
94 = 0B = & in this section. We define a = dim 4 and b = dim B, a,b > 0.

6.25. Definition. For any p,q € (M, g,) we define T(p,q): L(p,q)—
L(q, p) by T(p,q)¥'(p) = -¥'(q) for any mg(p, q) v.

6.26. Let g, € B. Construct E=E, asin 6.17. then F> E >4 is a
fiber bundle, where F, E, and A are closed manifolds with the possibility that
F has many components or is discrete. Let E’ be {v € UN(B, g,),,|p € 4,

weE, v=T(p,q,)w)). Then F’ > E’ 5 A is a fiber bundle with F’ and
E’ being homeomorphic to F and E respectively, where ¢’(v) = exp, mv/2.

6.27. Proposition [17). Let A, B, E’ be as in 6.24 and 6.26. Then E’ =
UN(B, 8),, = S"=b=1 Consequently, U,c4L(q0, P) = UN(B, 8p),, M=
exp,, [0, m/2JUN(B, g,), and the normal cutlocus of B is A. By symmetry, the
similar statements are true if A and B are interchanged and q, is replaced by
po € A.

Proof. See[17] for a slightly different proof for the C* case.

6.27.1. Let ¢, > 0 be asin 4.1. Let S = {exp, e¢w/2|v € UNB, }, SN B
=&, 0<dy(S,B)=¢ <& Let ¢’ €S*Q1), v, € US*(1),, and p’ =
exp, vom/2. e, > 0 such that d(p’,exp, w) < 7/2 — &/2 if w € US*(1),,,
(W, uy) < €,and g/2 <t < 7/2

6.27.2. Choose &; < ¢ /2 such that N, = N(4, ¢3; g,) and dN, are homeo-
morphic to the unit normal disc bundle of 4 in M and UNA, respectively, dN,
is a differentiable submanifold of M, and similarly for B with N, =
N(B, &5; g5)- 3¢, > 0 with N, U N; = N; U N, = M, where

N, =N(A,7m/2 — €4, 8,) and Ny = N(B,7/2 — ¢4, 8,).

Let N = N, — N,. ThenVp € N, d(p, A) and dy( p, B) arein [e,, 7/2 — &,].
By 4.5, 3e5 > 0 such that Vp € N, Vv € L(p, 4;8,), Vw € L(p, B; g,),
to(v,w)>7m/2 + 2e5. Vp €N any mg(p, 4; g,) cuts 0N, orthogonally.
Vp € dN,, any mg( p, A) makes an angle > 2&; with dN,. Any sequence of
mg(p, 4;8,,) Yn, m € N¥, has a C! convergent subsequence converging to
Yo» a mg( p, 4; g,) (see 5.10), and similarly for B. Hence 3m,, such that

(i) VpEN, Vv e L(p, 45 8y,), YW E L(p, B; g,.), $ o(0,w) > 7/2
85,

(i) Vp € N any mg(p, 4; g,,,) cuts IN, transversally;

(ii)) Vp € 9N, any mg( p, 4; g,,,) cuts IN, transversally of an angle > &;.

One applies the mollifier techniques of [21] to the function d,, (-, A) of the
C* metric g, to obtain a smooth function f with |[vf|+# 0 on N with vf
transversal to dN, and 9N,.
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6.27.3. N, is homeomorphic to the unit normal disc bundle of 4 in M.
Using the integral curves of Vf one constructs 4: [0,1] X (M — N,) > M — N,
with 4(0, p)=p, h(l, p) € AVp € M — N,, and h(p,t)=p Vp E A, Vt €
[0,1]. Hence A is a strong deformation retract of M — N,.

6.274. Let ¢: [0,7] — [ey/2,7/2] be continuous with ¢(0) = 7/2 and
9 (e, 7)) = &5/2. Let f: UN(B, g0),, = M by f,(v) = exp,, , vé(d(v, E)
(see 6.16, 6.26). If d(v, E’) > ¢, then dy( f,(v), B) > &. If d(v, E’) < &, then,
by 6.27.1 and 4.5, dy(f1(v), A) < 7/2 — & /2. Hence, f;: UN(B, g,),, > M
— N, and f, = h(l, fi(v)): UN(B,g,),, = 4 with fi(v) € 4 and f,(v)=
h(1, f1(v)) = fi(v) = exp, 7v/2 = ¢’(v) Vv € E’ (see 6.26).

6.27.5. (See [17, Proposition 3.4].) Suppose E’ # UN(B, g,), = S" "L
3H: [0,1] X E’ » UNB, with H(0,v) = v and H(1,v)=v,€ E’ Vv € E".
fH:[0,1] X E" - A with f,H(0,v) = o’(v) and f,H(1,v) = f,(v,) = p,. By
the homotopy covering theorem [34, p. 54], 3H: [0,1] X E’ — E’ with ¢’H =
f,H and HO,v)=v Yo € E’. HQ1,E’)C 0" '(py) = F'. dim F’ < dim E’
and both F’ and E’ are closed Z,-oriented manifolds. The identity map of E’
cannot be homotopic to a map which sends the top homology class to 0. Hence
E’ = UN(B, g¢),,

6.27.6. E’ < L(qy,4;80) S UN(B, g),, and hence all are equal. ¢, € B
is arbitrary. A is the normal cutlocus of B and vice versa. The rest follows.

6.28. Let p, p, € A and g, ¢ € B. We have the fiber bundles F = E 5 A,

and F’ = E’ 5 A asin6.17,6.26. 6" }(p) € L(qo, p). E’ = UNB, = §" *!
and hence F’ = 6’"'(p) = L(q,, p) by 6.27. So L(p, q,) = 6 "'(p) = F which
is a compact smooth submanifold of UNA, by 6.17. By symmetry, Vp,q,
L(p,q), L(q,p) are smooth compact submanifolds of UNA, and UNB,
respectively. E is homeomorphic to $"°~1,

6.29. By 4.6.2, F’ is not a point. If F’ is connected, then 7;(A4) = 0 and
F’ ~ S* 1 where A = 2, 4, or 8 by 6.20. Clearly dim F’ = dim F = A — 1. If
F’ is not connected, then either 4 is E’ itself with A = 1 or 3 a fiber bundle
Fy = E’ — A, where F; is any connected component of F’ with F, = S*7',
A =2, 4, or 8 and whenever dimE’ > 1. If dimE’ =1, then E’ > A is a
finite covering of S* by SL. dimE’=n—b —1,s0 a + b + A = n, A divides
all a,b, and n. Since L(p,q) is homeomorphic to L(q, p) via T of 6.25,
obtaining the above bundles for B results with the same fiber, but the total
spaces of the bundles might be different spheres.

6.30. Remark. In the case of 04 = @ and B = {q,}, the L(p,q,) are

equal to UNA,, but one cannot_conclude that the L(g,, p) are smooth
submanifolds of U(M, g,),, since P is not defined on {g, }.
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6.31. Under the conditions of 6.24, n = a + b + A > 3. By Hamilton’s
results [22], any compact Riemannian 3-manifold of positive Ricci curvature
admits a metric of constant sectional curvature 1. Hence, there is nothing to
prove in Theorems I and II in the simply connected case when n = 3. In the
following we assume that n > 4 when M is simply connected. Also we take A
and B with dimA < dimB. a<n -3, since 0 <A<a<b m(M,q)=
m(M — A,q) = m(B,q) by 6.27Vq € B.

6.32. If m(M,q)= 0, then the fibration S***~1 = UN(4, g,), — B gives
b > 2 and the fiber L( p, q) is connected. So, L(q, p) is connected Vq € B,
pEA m(A,P)=0 by A>2 (see 6.29), and the fibration S***~1 =
UN(B, g,), = A" with connected fibers.

6.33. Proposition. If A and B are convex sets in (M, g,), as in 6.1-6.3, 6.24,
and m (M, p) = 0, then A # 8, where X is given by 6.29.

6.33.1. Proof. Suppose that A = 8. Then a = b = A = 8§ by 6.20.2. 4 and
B are homeomorphic to S%. Let C = {exp, tw|v € UN(B, g,),,, t € [0,7/2]}
for some g, € B. C is a topological submanifold of M since L(p,q,) = S’ in
UN(4,g,), Vp € 4, and 4 is a strong deformation retract of C — {q,} by
6.27. By a similar proof to 6.23.1, H*(C,Z)= Z[x}/x?, x € H¥C,Z).
B — {g,} is homeomorphic to D® M — C = {exp,iv|q € B~ {q,}, v €
UN(B, g;),, t €[0,7/2)} and is homeomorphic to D**; this map can be
extended to a continuous map from D?* onto M by 6.27. So C is a strong
deformation retract of M — { p,}, p, ¢ C. By a similar proof to 6.23.1,
H*(M,Z) = Z|x]/x*, where x € H3 M, Z). Such a manifold does not exist
by [35].

6.34. Proposition. Let A and B be convex sets in (M, g,) as in 6.1-6.3 and
6.24, and m,(A, p) = m(B,q) = 0. Let a = a’X and b = b’\ where \ is given
in 6.29. Then X\ =2 or 4. If A\ =2 then A and B are isometric to CP* and
CPY, respectively. If \ = 4, then A and B are isometric to HP* and HP"
respectively.

Remark. A is a C! submanifold and ¢’: E’ — A4 is C°; neither is known to
be C* at this point.

6.34.1. Proof. Let q, € B be arbitrary and fixed. Consider E” = L(q,, A)
= UN(B, g,),, = S$"~"~!(1) as an abstract manifold, with the C* metric d of
6.16, by 6.27. Recall 6.28, 6.29: 6”: E’ — A, ¢’"'(p) = L(q,, p) is a compact
smooth submanifold of E’. Let p,,p, € 4, p, # p,. Let v € o"l(pl), vy be
any mg(py, Py 8o and w = T(p,,4o)° P(v,40)°T(q0, p1)(v). By 6.13,
$o(w, v) = do(py, o), d(v,07(p,)) < do( 1> P2)- Vu € 0”7 Y(py),

do(py, P2) = do(exp,, mv/2,€xp,, u/2)

<p(®o(u,0),7/2,7/2;1) = $o(u,0) = d(u,v),
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by 4.5. Hence the fibers of 6’: E’ — A are equidistant: Vp,, p, € 4, Vv €
o' (py), d(v,0"X(py) = do( Py, Pa).

6.34.2. The fibration of the smooth manifold (E’,d)= S" ®"}(1) has
smooth equidistant fibers S! or S3 (6.28, 6.29, 6.32, 6.33). We will show that
this is a smooth fibration.

6343. Let p,€ 4, Ff=0""p,), v, €F; be fixed. Define D=
B(po» €0/2; 4, 8o)- Yp € D, Jumg(py, p) v, Let vy = T(qo, po)(vp)- By the
uniqueness of the surfaces obtained in 6.13, £, (p) = T(p,qo)° P(¥,> 90)(v5):
D —> E’"isC% Forwe UTA,, t €10,¢,/2], f,(exp,, tw) is a geodesic arc in
E” starting from vy, which is normal to Fy at v, by 6.34.1 and 4.5, and f, is
1-1. ¢,: UTA, — UN(F),,, defined by ¢, (w) = (d/dt)(f, (exp,,tw))0), is
1-1 and continuous. dimUN(Fy)=n—-b—-1—-A=a-1=dimUT4,.
Hence ¢, is a homeomorphism, and so is f,: D — {exp, tw|t € [0, &,/2],
w € UN(Fy), }. Any geodesic arc of length p < &,/2, normal to Fy at v,
corresponds to a umg( p,, p) of length p for a unique p € D and vice versa by
6.13,5.12.

6.344. Claim. N(Fj,&,/2,d, E’) N Normal cutlocus(Fy) = @. Suppose
de;, 0 <e¢; <&y/2, v, € K, w; € UN(F)),, i = 1,2, with v; = exp, ew; =
exp,, &;w,. Let v,(7) = exp, (exp, tw;), i = 1,2. Both y; and y, are geodesics of
lengths & and e, starting at p, ending at p; = exp, v;. i(M, gy) > &), SO
Y1 =7, and & =&, = dy(p,, p1)- Both exp, mw;,, i=1,2, are normal to
o’ (py) since & = do(6"(p1), Fy) = do(po, 1), Wy = w,, and v = v, by
¢,, being 1-1 and v, = v,, (E’, d) is a smooth Riemannian manifold and F; is
a smooth submanifold. Hence the claim follows from the structure of the
normal cutlocus in the C* category. In fact the focal points of F; correspond
to the cutlocus of p, in 4.

6.34.5. d(-, F)): N(Fj),e/2,d)— F) — (0,¢,/2) is smooth, {v €
E’|d(v, FJ) = r} is a smooth submanifold of E’, 0 < r < g;/2, and it is the
union of all fibers ¢’~*( p) which has d(6’*( p),0" ™ (py)) = do( po> P) = -

6.34.6. One repeats the proofs of Lemma 6.2 and Proposition 6.1 of [13,
pp. 12-15], to prove that the fibration of E’ by ¢’”'(p), p € 4, is a smooth
fibration with compact fibers = S, §3; that is 3 a smooth map ¢, and a
smooth manifold 4§ such that Fy < E’ %, 4, is a smooth fiber bundle and o,
is a C*® submersion. By Proposition 2 of [13, p. 6] and since the fibers are
equidistant (parallel in the terminology of [13]), there exists a C*-Riemannian
metric g’ on A, such that oy (E’,d)— (A4, g’) is a C®-Riemannian
submersion.

If A =2, then by [16, Corollary 2.2], the smooth metric fibration of
(E’,d)= S""%"1(1) by S! is congruent to the Hopf fibration S"~?~}(1) -
CP<, and hence the simply connected (A4, g’) is isometric to CP*.
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If A = 4, then in [18, Corollary 5.4] all Riemannian submersions S"~?~1(1)
— A% by the smooth fibers = S3 are classified to be the Hopf fibration
S§77bt=1(1) > HP?, and (A%, g’) is isometric to HP?'

Clearly A = 2, 4 are the only possibilities by 6.20.2 and 6.33.

6.34.7. Define I: (A4y, g') = (4, 80| 4) by I(x) = o’(o5'(x)). I is well
defined, 1-1, and onto. By [7, pp. 65, 66, 68], for any C*-Riemannian
submersion the distance between two fibers is equal to the distance between
their images under the projection map. By 6.34.1, I is an isometry.

6.35. Theorem. Let A and B be dual convex sets in (M, g,) as in 6.1-6.3,
such that both have positive dimension and no boundary. If n > 4 and = (M, p)
=0, then (M", g,) is isometric to CP"/* or HP"/*. In fact k > 3, where
kA=n and AN=2 or 4 for C or H, respectively. Hence, (M, g,) is a
C*-Riemannian manifold.

Proof. k > 3 follows from 6.29. In this proof we only use g, on M.

6.35.1. By 6.26-6.34 we have the following. 4 and B are totally geodesic
simply connected submanifolds of (M, g,) at a distance 7 /2 from each other.
A is the normal cutlocus of B and vice versa. Vp € 4, q € B, UN(4, g,), 5B

is a fiber bundle with fibers 67(¢q) = L(p,q) = S*~1, a great sphere in
UNA,=S""“"'1),and A=2o0r4 a+b+X=n, Aa,b,n. 4 and B are
isometric to CP%/? and CP%/? respectively if A = 2; or to HP%/* and HP%/*
respectively if A = 4.

6.35.2. HMM,Z)+ 0 and hence M is not homeomorphic to a sphere.
This follows from the long exact sequence for cohomology for the pair
(M, M — A), H\(M — A) = H*(B) by A being the normal cutlocus of B and
B being a strong deformation retract of M — 4, and H(M,M — A) =
H'(N(A,¢), N(A4,e) —A)=0 for i =X, A + 1 by N,(A) being homeomor-
phic to the n — a dimensional normal disc bundle of 4 in M, Thom Isomor-
phism Theorem [30],and A+ 1 <n—a—-1,b> 2.

6.35.3. Claim. Vp,,p, € M, we can choose 4 and B as above and p,,p, € 4.

Proof. Let A,, B, satisfy 6.35.1. Let p; & 4, and y be mg( p,, p,) with
p3 € Ay, I(y) = do(pr, A)- Y'(p3) € UNA,. y(7/2) = q, € By. Let g, € B,
and p, € A, with dy(q,,9,) = dy(p3, ps) = 7/2. Find dual convex sets A4,,
B, with p;,q, € 4, and p,,q, € B,. p, € A, by convexity. 04, = 0B, = &
by 6.35.3.1. Obviously 4,, B, satisfy 6.35.1, as above. Let p, & A4,, since
otherwise the claim holds. Let 8 be mg( p,, p,). First, assume 6’( p;) € UNA,.
6(m/2) = g5 € B,. Pick g, € B, and ps € A, with dy(py, ps) = do(45,94) =
« /2. Find convex dual sets A5, B; with p,,q; € 4; and ps, p, € B;. 94, =
0B, = @ (6.35.3.1) and p,, p, € A;. A; and B, satisfy 6.35.1. Second, 8’( p;)
& UTA, since A, is totally geodesic and p, & A,. Third, assume that
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0'(p1)= i1+ o0y, where 0 <p,;<1, v; € UN(4,),,, v, € UT(4,), . Define
¥(t) = exp, v, i=12 Let p=7v,(n/2) € 4, g5 = v:(7/2) € B,
do(py, ps) = m/2 by A, being isometric to CP’ for some /. By the proof of
6.13 6(7/2) = r, lies on a mg( pg,gs) v5- Let g5 € B, with dy(qs,4¢) = 7/2,
and construct dual convex sets 4, and B, with p,,q, € 4, and p, g5 € B,.
Clearly 04, = 9B, = @ and 6.35.1 holds for 4,, B,. r, € B, by convexity.
do(py, 1) = m/2, and hence 6'( p;) € UNA,; this reduces to the previous case.

6.35.3.1. Suppose 34, # @ and p, € A, is at maximal distance from d4,.
Po cannot lie on a closed geodesic by 6.8, 6.8.1, 6.9. 4, N 4, and B, N 4,
form a dual convex pair in 4, (= CP¥ or HP¢), so each is a submanifold of
A, without boundary or is a point. Let p; be the closest point of 4, N 4, to
Po- Do # Py by d(p§, Ay N By)=m/2, 46.2, 641, and 69.2. Let vy be a
mg( p§, po)- Y'(0) € UN(A, N A4,). ¥'(0) is normal to UN(A4, N 4;) N UTA,
by 4.5, d( py, A, N By) = w/2 and 6.35.1. y'(0) € UNA,, v(7/2) = py € B,
Y'(n/2) € UNB,. By 4.5, d(p{,B, N B;)=u/2 and so py € B, N 4,. By
6.34.6, L(pg,py) and L(pg, py) are great spheres in UM,, and UM,,
respectively. Hence y(kw) = p; and y(7/2 + kw) = pj Vk € Z. y(R) C 4,.
One obtains a contradiction by 6.8, and hence 94, = &.

6.354. Any two points of (M, g,) are contained in a totally geodesic
convex set 4 which is isometric to either CP%/2 or HP“/*. Hence i(M, g,) =
d(M,gy)=n/2 and Vpy, p, € M with do(py, p;) =7/2, L(py,p,) is a
great sphere S*~! in UM, .

6.35.5. Claim. Vp,, p,, p; € M, 3 a totally geodesic convex submanifold
C* of M which is isometric to CP</? or HP</* and p, € C, i = 1,2,3.

By 6.35.3 we may assume that p,, p, € 4, p; & 4, and p, are distinct. Let
Pa» Ps € B with dy(p,, ps) = m/2 = dy(ps, P3) + do( p3, A). Construct dual
convex sets A, and B; with {p;,p,} UA C A4,, and ps € B,. Similar to
6.353.1: 04, = @. If 9B, = &, then the claim holds. If 9B, # @, then
B, = { ps}, by 6.21, 6.35.1. The fiber bundle of 6.23.1, U(M, g,),, = 4,, has
totally geodesic equidistant fibers S*~! by 6.35.4. By the proof of 6.34,
A, = C° is isometric to CP%/? or HP*/* (also see [12], [13]), C is totally
geodesic and convex.

6.35.6. Given p € M, consider o,: (M, g,) = (M, g,) defined by
o,(exp,tv) = exp, — tv Vt € [0,7/2]. Vq,r € M, we choose C of 6.35.5 con-
taining p, ¢, and r. Since C is isometric to a symmetric space, o, is well
defined and d,(q,r) = do(0,(q),0,(r)) in C and hence in M. (M, g;) is a
symmetric space. As in [2], each g, is C 1 [28, Theorem 1V.3.10], the group of
isometries G of (M, g,) is a Lie group [28, Theorem I. 4.6], G is transitive, and
(M, g,) is a homogenous space which has to be a C*-Riemannian manifold. By
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6.35.5 (M, g,) is a C*, simply connected, symmetric space of rank 1. CaP?
does not admit dual convex sets 4 and B with 34 = 0B = &. Hence (M, g,)
is isometric to CP"/* or HP"/%,

6.36. [17, §5]. Let (M, g,), 4, B be as in 6.1-6.3 and 6.24, and let
m (M, p)+ 0 in the rest of this section. Let (M, g,) be the Riemannian
universal cover of (M, g,). K(M,g,)> 1 implies that d(M, g, ) < =, and
hence 7/2 < d(M, 8o < m. Let n: (M, 8o) ™ (M 8o) be the Riemannian
covering map, i.e. & =1%g, A =17 1(A) and B=n"Y%B). A and B are
totally geodesw Given p € M with dy(p,B)=m/2, let y be mg(p,B)
Y (77/2) € UNB, n,y'(7/2) € UNB, (ny)(O) €A,and y0)=p € A.Vp € 4,

O(p, y=m/2. Let p,r€ A, g€ B with dy(p, q) =m/2 and Img(p,r)
v, C A. Any mg( p, q) is normal to 4, hence by 4.5 and above d,(q,7) = /2.
If A, and B, are the connected components of 4 and B containing p and ¢
respectively, then Vp’ € 4,, Vq’ € By, dy(p’,q’) = n/2. By 6.31, n > 3; and
if n > 4, then m(M, q) = (B, q), B is connected and so is A4 since codim(B)
> 1 and A4 is the normal cutlocus of B. The following also takes care of n = 3
and d(M, g,) > 7/2.

6.36.1. Let p € M with dy(p, A,) =1 and let y be a mg(Ag, p)- Then
v'(0) € UNA, ¥(7/2) € B, y'(n/2) € UNB, y(7) € A, and hence d( p, 4) <
min(/,7 — I). M = N(4,7/2) and if p € B then d(p, 0) = 77/2 Vp' €A,
VYq € B, do(p q’)=7/2.Asin 6.2.2 and [17], Vp’, ¢’ € A with do(p q) <
w, any mg(p,q) C 4 (see 4.5, 4.6.1). If Ap,, p,, p, € M with d(p,, p) ==
for i =2,3 then p,=p, by 45. Since dim4 > 1, 4 is connected and
r-convex [15], [17] and so is B.

6.37. Lemma. Assume that 6.36 holds. Ifn = 3, thena=b=X=1, and A
and B are closed geodesics of shortest period 27 and d(M, §,) = .

6.37.1. Proof. a=b=\=1 follows 6.28 and 6.29. Let p’ € 4 be fixed
and p = n(p ). Since B is connected, the maps o: UNA, = S! - B =S'and
g;: UNA =8'>B=S"are [ and !’ fold covermg maps respectlvely,
- |7rl(M p)| =1, where o(v) = exppvru/2 0,(v") = exp, 7’ /2. A and B
are normal cutloci of each other since A and B are. UNA and UNB are
oriented in M. M is the union of the two solid tori N(A4, 7 /4) and N(B, 7/4),
attached along their boundaries by a diffeomorphism of T2. Let C =
{exp,w|v € UNA,,0 <t <m/2}. M~ C is homeomorphic to a 3-disc and
hence 0 = m,(M, po) m(C, py). C is obtained by attaching a 2-disc to
B = S! along its boundary by a /’-fold covering map. By Van Kampen’s
Theorem 7(C, p;) = Z/1’Z, and hence I’ = 1. (UNA,,,d) - (B, g,|B) is a
Riemannian covering map (see 6.13 and 6.16). B is a closed geodesic of
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smallest period 27 and any part of length # is minimal by 7-convexity of B;
hence d(M, o) =m.

6.38. Theorem. Let A and B be dual convex sets in (M, g,) as in 6.1-6.3
such that both have positive dimension, no boundary, and m (M, p) # 0.

() If d(M, g,) = m/2, then (M, §,) is isometric to CP"/%, @ (M, p) = Z,,
n/2 is odd, and n > 6. g, and hence g, is a C*-Riemannian metric. In fact
(M, g,) is unique up to isometry, 17, Theorem 5.3] and 37, p. 304].

(i) If d(M, g,) > w/2, then d(M, §,) = m, (M, 3,) is isometric to S"(1),
and g, and hence g, is a C*-Riemannian metric. See [17, Theorem 5.2] and
[37] for the classification of such (M, g,).

6.38.1. Proof. (i) It is the same as [17, Theorem 5.3], by using 6.31,
6.35-6.37. Smoothness of g, follows 6.35.6, and it is a local property.

6.38.2. (i) d(M,g,)> m/2 for some m € N*, and hence M is homeo-
morphic to S” by [21]. A = 1, since 4 and B are normal cutloci of each other
(6.36), one repeats the proofs of 6.33 and 6.352. Let p€ 4, g€ B. o”:
UNA,,,= E’ - B is a covering map (6.26, 6.29). 0": (E’,d) = (B, | B) is
a distance decreasing map (4.5, 6.16), and it is a local isometry by 6.13.
(E'd)= (UNAp, $4) = (B, &,| B) is a local isometry by 6.13, where ¢'(v) =
exp,mv/2. If n > 4, then m (B, q’) = m(M, q ") by 6.31, m(B,q) =0, and 6"
(E’,d) > (B, g,| B) is an isometry since B is m-convex. If n = 3, then see
6.37.1. Hence L( p, q) contains only one vector, so does L(g, p). So, UNBq - A
is an isometry. Consequently d(M, g,) = .

6.38.3. g, is C! a priori, so Toponogov’s maximal diameter theorem is not
applicable. M = JV(A~ 7/2) = N(B, 7/2) (6. 36). Pick py, p, € A with

do(p1, ) =m. A< N{p,p,},m/2). Vg € M, 3g, € 4 with dy(q,9,) =

do(g, A) < m/2. Amg(q,,9) v, M4y, { P1, P2}) Y2, both with length <
m/2. Yi(q) € UNA, v, S 4; so, by 45, d(q,{py, p,}) < 7/2, and
N{pu,p,},m/2)=M.Let C={gqe€ M|dy(p;,q)=n/2fori=1,2}. BC
Cand C, = C N A isagreat (a — 1) sphere in 4 = $%(1). C is w-convex and
the union of all minimal geodesics of length 7/2 between C; and B. It is a
connected totally geodesic, b + (¢ — 1) + 1 = n — 1 dimensional submanifold
of M. 3C = @, by proof similar to 6.35.3.1 and C being the union of closed
geodesics by using 6.38.2. { p;, p,} = {qg € M|d,(q,C) = m/2} since BU C,
€ C and 6.36. Define p: L(p;,C) - C by p(v) = exp, 7v/2. One can apply
6.13,5.12, 6.34.3 to C and p, to obtain the following:

(i) pis1-1on pY(C; U B) by 6.38.2, soitis 1-1 on L(p,,C).

(i1) p is a local isometry and L( p,, C) is complete in UM, .

(iii) L( p,, C) is totally geodesic n — 1 dimensional submanifold of UM, .

Hence p is an isometry from (UM, ,d) = $"~'(1) onto (C, &,|C).
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6.384. For any g,,4, € M, pick mg(py. p,)'s v, and v, with g, = v,(r),
i=1,2.

do(n1(7/2),7,(n/2)) = % o(¥(0),%:(0)) = £ o(¥{(7),¥(7)):= «,
by C and { p,, p,} being 7-convex dual pair. r;:= dy(q;, ¢,) < p(a, ry, r; 1).

6.38.5. Claim. r; = p(a,ry, 1y 1).

Case (i). ry, 1y, a < m/2. This follows by applying 6.12 twice, starting with
the triangle p,, v,(7/2), v,(7/2).

Case (ii). r,r, <7/2<a<m Choose 8 any mg(q;,q,) in B(py,7/2)
by the convexity of C. Vg € M, there exists a unique mg( p;, p,) ¥, which
contains ¢q. Pick 0 =1, <t;, < -+ <t,=d(q,9,), s;,=0(1;), a =
£0(¥,(0), 7/, ,(0)) such that &, < 7/2.

T = Z dO(Sjssi+1) = Z P(a,-, dO(Pl’si)’ dO(anS,-H); 1)
> p(z ai’rl’rz;l) 2 p(asrlarZ;l),

by (i), r; = do(p1,$0)s 1 = do(Pr,5), 7> Lo >

Case (iii). r,rp,>7/2, 0<a<7 Using (i) and (i) for p,: ry3=
pla,7m —r,m—r;1)=p(a,r,r;l).

Hence both B(p,,7/2) and B(p,,7/2) are isometric to hemispheres in
$”(1). C separates M into two open connected sets.

Case (iv). ry > w/2, r, < w/2. Choose any mg(q;,q,) 0 and let {g;} =0
N C. Using (i) and (ii) for each piece of 6 in B(p, 7/2), and using the
inequalities of (ii) for / = 2 one obtains the claim.

6.38.6. Hence (M, 3,) is locally isometric to S"(1) and homeomorphic to
S”. One constructs an isometry from S”(1) onto (M, go), using exp, and
6.38.5. So g, is C* and so is g.

7. Proofs of Theorems IIA and IIB

They will be proved together.

7.1. Let K>4, n>2, §> 0 be given. If a smooth n-dimensional mani-
fold M admits a C*-Riemannian metric g which satisfies (i)—(v) below then
we say that M satisfies condition (K, n, §).

1< KM, g)<K.

(i) m (M, p)=0. HX(M,Z) = Z|x]/x**!, x € H\(M,Z), n = kA, A\ = 2,
4,0r8, k=k[M]> 2, neven;if A =8 then k =2 and n = 16.

(iii) 7/ VK < i(M,g) < d(M,g) < m/2.
(v) If k[M]> 2, then 3p,, p,,p; € M with d(p,, p;8)>7/2 -8 for
1<i<j<3.
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W) If k[M] =2, then Vp,, p, Ap; € M with d(p,, p,;8)>7/2 — § im-
plies that d( p;, p;) > n/2 — 8 fori = 1 and 2.

7.2. Let K and n be fixed. There are finitely many diffeomorphism types
of manifolds satisfying condition (K, n,7/2) by [6], [7], [31]. Clearly there
exists such diffeomorphism classes. Let M,, M,,---, M, represent all such
distinct classes. Define ¢, = §[M,] = inf{§| M, satisfies condition (K, n,8)}
for 1 <i</l Also define 8,(K,n)=min({{|§ #0, 1 <i</}V
{80(K, n)}. Then 8,(K, n) > 0.

73. Let (M, g) be a C*-Riemannian manifold satisfying the hypothesis.
HMNM,Z) + 0, so d(M, g) < m/2 by [21]. M satisfies condition (K, n,8) for
8 < §8,, hence §[M]= 0. Let g, be a sequence of C* metrics with (M, g,,)
satisfying condition (K, n,1/m). One extracts a convergent subsequence of g,,
converging to a limit metric in the sense of 4.1. g, satisfies all properties
obtained in §§4-5. Let d be distance function for g.

7.4. Claim. (M, g,) is isometric to CP*, HP*, or CaP? with their standard
metrics, and g, is a C*-Riemannian metric.

74.1. By compactness and g,, = g,, for k> 2. Ip,, p,, p; € M with
d(p;, p)=m/2 for 1<i<j<3, and for k=2 Vp,, p,, Ip; € M with
d(p,, p,) = m/2 implies that d(p,, p;) = d(p,, p;) = w/2. Obviously the
hypothesis of Theorem I is satisfied. Let D = { p;, p,}’ and C = D’, be dual
convex sets as in 6.1.5. If 9C = 3D = @. then 7.4 holds by 6.35. So we may
assume that one has boundary. Apply 6.9.4 to C, D to obtain C,, D,. By 6.10,
6.9.4, only one has boundary. Recall 6.21. If 9C, = @ and D, = { p,}, then
let C;, = A, D, = B and replace p; with p,. If 3D, = @ and C, = { p, }, then
() po& (P, Py} and { p1, 0} N {py) = B (462, 6.4.1, 6.9.2), (ii) let y be
umg( py, p1), and p, = y(w/2) € Dy, (iii) d(py, py) < 7/2, d(py, p3) = 7/2,
Ps € Dy, Y'(w/2) € UND,, so d(p,, p;) = 7/2 by 45, (iv)let A =D,, B=
C,, and replace p,, p,, p; with p;, p,, p, respectively. Hence, one may assume
that 3p,, p,, p; € M with p,, p, € 4,94 = &, { p;} = B, d(p;, p;) = 71/2,
1 < i <j < 3. One constructs dual convex sets 4, and 4, in 4 with p; € 4,,
Py € A, satisfying 6.9.4. Let B, = {qg € M|d(q,A))=7n/2} and B, = {q €
M|d(q, B,) = m/2}. B, and B, are dual convex sets in M, A, = B,, and
{P;}U4,C B,

7.4.2. Case for d4, = @. Suppose 3B, # . Let g be at maximal distance
from 0B,. g € A, U { p;} by 4.6.2, 6.4.1, 6.9.2. Let vy be a normal geodesic
with y(0) = y(7) = p3, v(¢) = ¢, Y(7/2 + ¢) = q",and y(n/2) = q¢" € 4, C
A N B,, by 6.22. Apply 6.9.4 to 4,, B, to obtain the dual convex pair D, D,
in M, with D, 2 4,, D, C B,, 4D, # &. Then D, = @ by 6.10, D, = {q},
and ¢” € D, by 622. So d(q,q9")==/2, and y’(0) = y'(w). Hence B,
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contains the closed geodesic y, which is not possible by 6.8, 6.8.1, 6.9 (similarly
in 6.35.3.1). So 9B, = @, by a proof by contradiction. Claim 7.4 holds and
k > 3 by 6.35. Similarly if 04, = &.

7.4.3. Case for 34, # @ and 04, # &. By 6.10, 4 is homeomorphic to a
sphere, so to S* by 6.22. k = 2. Apply 6.9.4 to 4;, B, to obtain the dual
convex pair C;, C, in M with C, € 4,,3C, # @, B, C C,. Then 3C, = & by
6.10, C, = {q,), and C, is a homotopy A-sphere and C' submanifold by
6.20.2, 6.21, and 6.22. C; = exp, [0, 7/2] - L(p,, p3) € B, and C; is homeo-
morphic to S*. Hence C; = B, = C, and 4, = { p,}. Similarly, 4, = { p,},
Vg € A, L(q, p;)= UNA, by 6.21. 3¢’ € A with d(q,q") =m/2 by 7.4.1.
Construct dual convex sets {g} and A; 2 {p;,q’}. Hence L(p;,q)=
UN(A4,),, = S*!(1). The fiber bundle E’ = UM, = L(p;, A) =
S§22=1(1) > A* constructed as in 6.26 with dim B = 0 has fibers of great
spheres. Equidistancy follows 6.34.1. By a similar proof of 6.34.3-6.34.6, and
using [12] or [13], this equidistant fibration of S?*~1(1) by great spheres
S$*~1(1) is congruent to a Hopf fibration: S*~1(1) = S2*~(1) - S*(4), where
A = 2,4, or 8. A4 is isometric to S*(4) as in 6.34.

A is the cutlocus of p; by 6.21. Given any ¢, € M, 3q,,q; € M with
d(q;,q;) = m/2for1 <i<j<3.1f g, = p,, then there is nothing to prove. If
D3 # ¢y, then let g € 4 be with d(p;,q,) +d(q;,9) = 7/2. 3q, € A with
d(qy,9) = m/2. d(q, p3) = 7/2, d(q,,q;) = 7/2 by 45, and g, exists by
7.4.1. Repeat 7.4.1 for ¢,:D = {q,,49,}, C = D’.3C = 0D = @ cannot occur
by k = 2. If 3C, = &, then {q,,q,)} is an antipodal pair in C; = S*(4) and
4o = g, since otherwise one would obtain g5 € C; with d(gs,q;) = d(q;,C;)
<w/2, and d(q5,{q,9,}) < 7/2 by 4.5 and d(qs,{q;.4,}) < 7/4. The case
of 0D, = @ cannot occur; since otherwise: gq,, g; would be an antipodal pair
in D, = SN4), similarly d(q,,q,) = d(4,, D;), 4o> 94> 91> 9> lie on a closed
geodesic by d(q,,9,) = 7/2, 44,9, € C, D = {q,} which is contradictory
with itself: D, = D. Hence given gq;, q,, q; with d(g;,q,) = 7(1 — §;;)/2, we
can choose 4 with g,, 9, € 4, and {g,}, 4 form a dual convex pair. Using this
one can prove that:

@) i(M, go) = /2 = d(M, g).

(i1) Vg, € M, C(q,) = cutlocus of g, with respect to g, is a totally geodesic
submanifold of M, isometric to S*(4).

(iii) Vg, € M, Vq, € C(q,), the union of all mg(q;, q,) forms a convex set
with no boundary isometric to S*(4) in which ¢, and g, are antipodal.
(iv) Any geodesic of M is a closed geodesic of least period 7.

(V) Vg, € M, Yg, € C(q;) Ymg(qy, 4,) 1. V7, a geodesic in C(g,) passing

through ¢,, 3 a unique totally geodesic 2-surface L containing ¢,, ¢,, v;, and
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¥,, locally isometric to S%(1). L is isometric to RP?(1) by using (iv) and 6.13.
One follows [2, pp. 148-150] to show that (M, g,) is a compact symmetric
space of rank 1 with smooth metric g,. The rest follows from the classification
of such spaces ([1], [2], [7]).
7.5. Theorems IIA and IIB follow 7.4.
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