
J. DIFFERENTIAL GEOMETRY
25 (1987) 249-273

ON SURFACES WITH NO CONJUGATE POINTS

W. BALLMANN, M. BRIN & K. BURNS

A complete Riemannian manifold M has no conjugate points if any two

points in its universal cover are joined by a unique geodesic. If the sectional

curvature of M is nonpositive, then M has no conjugate points; the converse

is not true even for compact surfaces. A natural question is to what extent

properties of manifolds of nonpositive sectional curvature are valid for mani-

folds with no conjugate points. For example, by the Gauss-Bonnet theorem,

any metric of nonpositive curvature on the torus T2 is flat. In 1943, E. Hopf

[4] proved

Theorem. Any metric onT2 with no conjugate points is flat.

The best way to explain the purpose of our paper and to introduce the

necessary notations is to give an outline of Hopf s argument. He considers the

Riccati equation

(0.1) u' + u2 + K(yυ(t)) = 0,

where y0 is the geodesic with initial velocity v and K is the Gaussian

curvature. Denote by Uχ(υ,.-) (resp. UR(V, •)) the solution of (0.1) which

satisfies UR(V, -R)= + OO (resp. UR(V, R) = - oo). Note that u~k(υ91) is the

geodesic curvature at yv(t) of the geodesic circle of radius / 4- R centered at

yυ( — R). As we explain in the next section (see Proposition 1.3), if a surface S

has no conjugate points, then u^(υ, t) (resp. u^(v, t)) is defined for / > —R

(resp. t < +R) and there are well-defined limit solutions

κ + (ι;, •) = lim ιι j(ϋ, •)» κ~(u, •) = l i m UR(V'')
/?—»• oo R->oo

Recall that the geodesic flow gΐ acts on the unit tangent bundle TXS by

g'υ = yυ(t) and preserves the Liouville measure dμ = dA X dλ, where A is

area in S and λ is Lebesgue measure on the unit circle. The solutions u+ and

u~ are invariant under g* in the following sense:

(0.2) u ± ( g t υ , s ) = u ± ( v , s + t ) .
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Since they can be constructed by a limit procedure, u+ and u~ are measurable

functions of (u, /). We integrate (0.1) to obtain

/ f ±u+(v,t)dtdμ + j f(u + (v,t))2dtdμ
JTS Jo at JTS J0

(0.3)

+ / / K(yv(t))dtdμ = 0.

Since μ is g '-invariant, (0.2) implies that
ί u + (υ,\)dμ= ί u + {v,0)dμ,

Jτxs
 Jτιs

and hence the first integral in (0.3) vanishes. Also for every t

f K(yv(t))dμ = 2πf K(p)dA=4π2χ(S),

where χ(S) is the Euler characteristic of S. Therefore, if S is T2, then the

second integral in (0.3) is equal to 0 and hence u+ vanishes almost everywhere.

We see from (0.1) that K vanishes, which finishes the proof.

In [4], besides proving the measurability of w+ and w~, Hopf remarks that

they are continuous in υ. A counterexample is constructed in the present paper.

This contrasts with the situation in nonpositive curvature where w+ and u~ are

easily shown to be continuous.

In the case of a surface S with nonpositive curvature, the limit solutions u +

and u~ are the geodesic curvatures of the limit circles (horocycles), whose

construction we now describe. Denote by S the universal cover of S. For

υ e TλS let C+(υ, R) be the geodesic circle with center yv(-R) and radius R.

As R -> oo, these curves converge uniformly in υ in the C2-topology to a curve

C+(v)y called the unstable horocycle of υ [2]. The stable horocycle is con-

structed in a similar way. The limit solutions w+ and u~ and the horocycles

have been extensively used in the study of dynamical properties of the geodesic

flow, in particular in proving that the geodesic flow is ergodic. In 1939, Hopf

[3] showed that the geodesic flow of a compact surface with (variable) negative

curvature is ergodic. For a compact surface of nonpositive curvature, Pesin [6]

in 1977 proved that either the geodesic flow is ergodic or the surface is flat.

In the case of a surface with no conjugate points, the circles C+(υ, R)

converge uniformly in υ in the C^-topology to the horocycles C+(v). We do

not know whether C+(t>, R) always converges to C+(v) in the C2-topology for

each υ. But in the counterexample constructed in this paper, u+ and u~ are not

continuous in υ, and hence C+(v, R) cannot converge uniformly in the

C2-topology. Our interest in the continuity properties of u+ and u~ stems
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from a recent theorem of Knieper [5]. Using a result of Pesin [6], he proved the

ergodicity of the geodesic flow for a compact nonflat surface with no conjugate

points under the assumption that w+ and u~ are continuous in v.

In this paper we construct a compact surface with no conjugate points (see

Theorem 4.2) for which the limit solutions u+ and u~ are not continuous in v

(see Theorem 4.6). Nevertheless, the geodesic flow is ergodic (see Remark 4.7).

We believe that the geodesic flow is ergodic for any compact nonflat surface

with no conjugate points.

We now give a brief description of our example. Consider the hyperbolic

plane. Remove two geodesic sectors and identify their boundary rays as

indicated in Figure 1 to obtain a noncompact hyperbolic surface with two

conic singularities. Replace circular neighborhoods of the singularities by

almost spherical caps to get a smooth noncompact surface. We compactify a

large geodesic polygon containing the caps in such a way that the resulting

surface Sd R has curvature - 1 except in the caps. Moreover, we arrange that

the geodesic γ 0 passing through the centers of the caps is positively and

negatively asymptotic to closed geodesies σ+ and σ_ which do not meet the

caps (see Figure 2). The caps and the distance between them are chosen so that

the limit solutions u+ and u~ coincide along γ0. Since σ + and σ_ lie in the

region of curvature - 1 , u+= 1 and u~= -1 along these geodesies. This leads

to the discontinuity of u+ and u~.

The difficult part of the construction is to ensure that the compactified

surface has no conjugate points. This is done by controlling solutions of the

Riccati equation (0.1) along every geodesic in the surface.

FIGURE 1
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FIGURE 2

It is remarkable that even though w+= u~ along γ0, the average curvature

lim ±=Γ K(yo{t))dt
Γ—oo ±1 J-T

is — 1. Using a single almost spherical cap one can easily construct a compact

surface with no conjugate points containing a closed geodesic along which

w + = u~ and the average curvature is negative.

In §1 we discuss the Riccati equation and its relation with conjugate points.

The construction of our example and the verification of its properties is carried

out in §§2, 3, and 4. In §5 we obtain an estimate on the differential of the

geodesic flow and discuss the geometry of the unit tangent bundle of a

Riemannian manifold. In particular, we derive the geodesic equation and

calculate certain distances in the unit tangent bundle.

1. Conjugate points and the Riccati equation

Let υ be a unit vector tangent to a complete smooth surface S. We consider

the Jacobi equation along the geodesic yv with initial velocity υ:

(1.1) y"(t) + K{yo(t))y(t) = 0.

If y(t) is a solution of (1.1) and N(t) is a continuous field of unit vectors

normal to γ^, then y(t)N(t) is a Jacobi field along γ^, i.e., a vector field

obtained from a variation of yv through geodesies.

1.1. Definition. Two points γ(/x) and γ(/2) are conjugate along γ if there is

a solution y of (1.1) with y(tx) = 0 = y(t2). We say that S has no conjugate

points if no two points are conjugate along any geodesic.

This is equivalent to the characterization of surfaces with no conjugate

points given at the beginning of the introduction. In particular, any geodesic in

a simply connected surface with no conjugate points is minimizing.
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The Riccati equation (0.1) is obtained from the Jacobi equation (1.1) by the

change of variable u = y'/y. The times tι < t2 are adjacent zeros of a solution

y of (1.1) if and only if the corresponding solution u of (0.1) is defined on

(i x , t2) and u(t) -» + oo as 11 tλ and u(t) -> - oo as t T t2. This gives us the

following test for the absence of conjugate points, which we apply to the

s u r f a c e ^ R in §4.

1.2. Proposition. // there is a solution of the Riccati equation (0.1) defined

for all t > 0, then there are no conjugate points along the geodesic ray γJ[O, oo).

If for every υ e TXS the Riccati equation (0.1) has this property, then S has no

conjugate points.

1.3. Proposition. Let S be a surface with no conjugate points. Then for any

υ e TXS

(1) the solutions u^(v, t) and u^(v, t) of (0.1) with uR(v, -R) = + oo and

Uχ(v, R) = —oo are defined for all t > —R and all t < R respectively,

(2) the limit solutions u ±(v, t) = limΛ __ ^ u£(v, t) are defined for all t;

(3) u + (v, t) (resp. u~(v, t)) is upper (resp. lower) semicontinuous in v\

(4) u ±(gtv, s) = u ±(υ9 s + /) for any s and t (g ' is the geodesic flow).

Proof. (1) The solution u^(v,t) can fail to be defined for all / > —R only

if it becomes — oo after a finite time. As we saw above, this would imply the

existence of conjugate points.

(2) Fix t and consider R > \t\. Then u^(v,t) and u^(v, t) are both defined

and are decreasing and increasing functions of R respectively. By (1) we have

u^(v,t) > u^(v,t) for all R.

(3) Suppose vn -> v. For each fixed t we have

limsup w + (ί;M,/) < lim u$(υn, t) = u+

R(v, t).

But UR(V, t) -> M+(t;, t) as R -> oo. A similar argument works for u~.

(4) Note that u^(v, t + s) = uξ±t{gtv,s). q.e.d.

We will often need the solutions of the Riccati equation (0.1) in the cases of

constant curvature - 1 and κ2.
1.4. Propositon. (1) IfK(yυ(t)) = - 1 , then the general solution of (0.1) is

ί \ _ M(0) coshί + sinhί
"^ ' u(0) sinh/ + cosh/'

// |w(0)| < 1, then u is increasing and w(arctanh(- w(0))) = 0.

(2) IfK(v(t)) = κ2, then the general solution of (0.1) is

u(0) cos(κί) - K - sin(κθ
' 7—fu(t) =

w(0) sm(κt) + K - cos(κt)
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Our estimates on the solutions of the Riccati equation will use the following
lemma.

1.5. Comparison Lemma. Let uf(t), i = 0,1, be the solutions of the initial
value problems

u'έ + uj + K^t) = 0, ul(0) = wl, i = 0,1.

Suppose wλ > w0, Kλ{t) < K0(t) for t e [0, t0], and uo(to) is defined. Then

uι(t)>u0(t) forte[0,t0].

Proof. The difference Δw(/) = uγ(t) — uo(t) satisfies the linear equation

Δκ'= -(ι/ 0 + M l)ΔW + ^ 0 ( 0 - ^ i ( 0

2. Construction of the noncompact surface

In this section we construct the smooth noncompact surface with two almost
spherical caps described in the introduction. To do this we first construct a
radially symmetric surface S which contains one such cap and has curvature
- 1 elsewhere. Then we cut S along a geodesic which does not meet the cap.
Gluing together two copies of the part containing the cap gives the desired
surface. To construct 5, let

^ "20(2.1) κ = 1000, β=.9, r = - a r c t a n ^ , δ = 10
K K

The values of the constants are not important as long as K is big enough and 8
is small enough. Choose a monotone C°°-function g(s) such that

( 2 ' 2 ) • > - > - i * » , < , .
Let S be the radially symmetric surface whose Gaussian curvature at distance
s from the center P is g(s). The surface S is well defined because the solution
y(s) of the Jacobi equation

is positive for all s > 0. In fact,

(2.3) y'(s)>0 fors^O.

The latter follows from the fact that r < π/2κ. In what follows we will refer to
the r-ball centered at P as the cap #.

2.1. Proposition. The surface S has the following properties:
(1) For any geodesic σ, the distance d(σ(-), P) is a convex function and is

strictly convex unless σ passes through P.
(2) Any geodesic σ visits the cap *$ at most once and then goes away to infinity

in both directions, i.e., d(σ(t), P) -> oo as t -» ±oo. The time that σ spends in
y> is at most 2r, with equality if and only if σ passes through P.
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(3) S has no conjugate points. In particular, any two points in S are connected

by a unique geodesic.

Proof. To prove (1) denote by V the unit vector field that points radially

outwards from P. Then

Let σ(t) = υ + w, where v is parallel to V and w is tangent to the circle c

centered at P and passing through σ(ί). Note that VυV = 0 and (v,vwV) = 0.

Hence

which is the second fundamental form of c evaluated at w. By (2.3) the second

fundamental form of any circle centered at P is positive definite. Hence

d"(σ(t), P) > 0 with equality if and only if w = 0, in which case σ passes

through P.

The first assertion of (2) follows from (1). To prove that σ spends time at

most 2 r in ^ , we first note that by (1) any geodesic segment joining two points

of ^ lies in <€. Also if qv q2 e # , then d i s t ^ , q2) < 2r with equality if and
only if qx and q2 are diametrically opposite. Thus (2) will follow if we show
that any two points of ^ are joined by a unique geodesic in S. Suppose the
contrary. Then there is a pair of points in ^ which are cut points of one
another. Since the set of cut points is closed, we can find such a pair qvq2^ #
with minimal distance. As in the proofs of Lemma 5.6 and Corollary 5.7 in [1],
we see that either qx and q2 lie on a closed geodesic or they are conjugate
along a minimal geodesic joining them. The former contradicts (1). The latter
is impossible since the curvature in S is bounded above by κ2 and dist(g1? q2)

< 2r < π/κ.

To prove (3), consider a geodesic σ in S. If σ does not meet # , the curvature

along σ is — 1, and hence there are no conjugate points on σ. Suppose now

that σ enters ^ at / = 0 and exists at t = te. We will show that the solution

w(/)of

W ' + W

2 + * ( σ ( 0 ) = 0, i/(0) = 1,

is defined for all real t. Note that K(σ(t)) < κ2 for all /. Hence by Proposition

1.4(2), Comparison Lemma 1.5, and (2.1),

, v cos(2πc) - /csin(2πc)

"" sin(2πc) + /c cos(2 πc)
(2-4) , _ , „,
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By (2), te < 2r, and so K(σ(ί)) = - 1 for / > 2r. Since u(2r) > - 1 , we see

that u(t) is defined for all / and in fact tends to 1 as t -» oo. It follows from

Proposition 1.2 that σ does not have conjugate points, q.e.d.

We now compare the effect of the cap on solutions of the Riccati equation

along a diameter γ of ^ and along an arbitrary geodesic σ through # .

Parameterize γ and σ so that γ(0) and σ(0) are the points where the geodesies

enter the cap # . The geodesic γ leaves the cap at / = 2r; let te be the time

when σ leaves # . Denote by wγ(λ, t) and wσ(λ, /) the solutions of the Riccati

equation (0.1) with initial value λ at t = 0 along γ and σ respectively.

2.2. Lemma. Suppose ι/γ(λ,2r) is defined. Then wσ(λ, te) > w γ(λ,2r), w/Yλ

equality if and only if σ is a diameter.

Proof. Recall that the cap # is radially symmetric. Since the cap is convex,

cf. Proposition 2.1, te < 2r. If te < 2δ, then σ spends time less than 2δ in # ,

and the lemma follows easily. Therefore we may assume that te^ 28. Fix any /

between 0 and te/2. By the triangle inequality

dist(σ(ί), P)>r- t = dist(γ(O, P),

where P is the center of the cap. The curvature K being a decreasing function

of the distance to P, we obtain

(2.5) K(σ(t))^K(y(t))9 0 < t < te/2.

A similar argument yields

(2.6) K(a(te - 0 ) < K(y(2r - t))9 0 < t < r,/2.

By the Comparison Lemma 1.5 and (2.5)

ua(λ,te/2)>uy(λ,te/2).

Since the curvature is positive inside the δ-interior of # , any solution of the

Riccati equation decreases there, and hence

(2.7) uy(λ,te/2)>uy(λ,2r-te/2),

with equality only if te = 2r. Finally, by the Comparison Lemma 2.5, (2.5),

(2.6), and (2.7),

uσ(λ,te)> i / γ (λ,2r) . q.e.d.

Later we will need the following two estimates.

2.3. Lemma. For any diameter γ as above

- . 8 - 1 ( T 6 < κ γ ( l , 2 r ) < - . 8 .

Proof. The lower estimate was already obtained in (2.4). To get the upper

estimate, we set «(•) = wγ(l, •) and denote by υ the solution of

υ' + v

2 + κ

2 = o, v(0) = 1.
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Note that K(y(t)) = κ2 for 8 ^ t < 2r - 8 and u(8) < 1 = v(Q). Hence

u(2r — δ ) < v(2r - 28). Since υ is monotonically decreasing and υ{2r)> — 1,

Therefore

ϋ ( 2 r - 2 δ ) < ι ? ( 2 r ) + ( l + κ 2 )2δ.

For 2r - 8 < t < 2r we have K(y(t)) > -1. Thus

u' < 1 - u2 < 1

and hence

ι/(2r) < ϋ(2r) + ( 1 + κ2)28 + δ < ϋ(2r) + 10"

As in (2.4) we obtain

κ2 - 2βκ2 - β2 .8 106 + .81

κ2 + 2β- β2 1 0 6 + .99 '

and the lemma follows from the previous inequality.

2.4. Lemma. The geodesic curvature of the boundary circle dtf is at least

κ2 = 106.

Proof. Let u be the solution of the Riccati equation (0.1) along a radius of

# with initial value -I- oo at P. The geodesic curvature of dtf is u(r). By the

Comparison Lemma 1.5 and Proposition 1.4(2)

z x KcosKr κ2 10 6

u(r) > —: = -jr = —τ-. q.e.d.v J sm Kr β .9 n

We now construct the simply connected surface with two caps. Let O be a

point which lies at distance r + d from P, where d > 0. Denote by γ 0 the

geodesic passing through O and P and by v the geodesic through 0 perpendic-

ular to γ 0 . Let S' be the part of S which is bounded by v and contains c€.

Take two copies Sx and S2of S' and glue them together along their boundaries
so that the points corresponding to O are identified (see Figure 3). Denote the
resulting surface by Sd.

2.5. Proposition. Any geodesic σ of Sd enters each of the caps <€x and ^ 2 at

most once, spends time at most 2r in each cap, and goes away to infinity in both

directions, i.e. d(σ(t),0) —> oo as t -» + oo.

Proof. By Proposition 2.1(3), σ can cross v at most once. The proposition

now follows easily from (1) and (2) of Proposition 2.1.

2.6. Remark. Since K > — 1 in # , the boundary circle of # is shorter than a

geodesic circle in the hyperbolic plane of the same geodesic curvature. Hence

S\*& can be obtained by identifying the boundary rays of a geodesic sector in

the hyperbolic plane and replacing a circular neighborhood of the vertex by an
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almost spherical cap. Therefore Sd can be constructed as indicated in the

introduction (see Figure 1).

We now choose d so that the limit solutions u+ and u~ of the Riccati

equation (0.1) coincide along the central geodesic γ0. Parameterize γ0 by

arclength so that γo(0) = 0, the point halfway between the caps. Let u be the

solution of the Riccati equation

u' + u2 + K{yo(t)) = 0

with initial value u( — 2r - d) = 1. We need to choose d so that

(2.8) w(2r-h d)= - 1 .

By symmetry, this is equivalent to u(0) = 0. It follows from Proposition 1.4

that

d = a rctanh(-w(-d)) .

Note that for any smaller value of d there would be conjugate points along γ0.

By Lemma 2.3,

- .8 - 1 ( Γ 6 < « ( - < / ) < - . 8 .

Hence

(2.9) 1 <</< l. l

3. Effect of the caps on the Riccati equation

The purpose of this section is to prove the Main Lemma 3.5 which gives

lower estimates on the solutions of the Riccati equation (0.1) along geodesies as

they cross the caps. As explained at the end of §1, this will be used to show

that the compactification Sd R of Sd constructed in the next section has no

conjugate points.

As before denote by γ0 the central geodesic. Set vQ = γo(O) e T0Sd. For any

v let uv(λ, tQ, •) be the solution of (0.1) with value λ at ί = t0. If yυ meets at

least one cap, let a = a(υ) be the time when γ̂  first enters a cap and

co = ω(υ) the time when yυ last exits a cap. If γ^ crosses both caps, let

h = h(υ) b e t n e t m i e when γ̂  exits the first cap it enters and t2 = t2(v) the

time γ^ enters the other cap. These notations are illustrated in Figure 3.

Observe that

a(v0) = -2r - d, tι(υ0)=-d, t2(υ0) = d, ω(vo) = 2r + d,

and, by our choice of d, see (2.8),

u(l,-2r-dar + d)= - 1 .
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FIGURE 3

The following propositions show that γ0 = yυ and its reparameterizations

are affected by the caps more than any other geodesic.

3.1. Proposition. Suppose λ < 1, wt,o(λ, -2r - d, -d) > - 1 , and

uv (λ, — 2r — d,2r + d) is defined. Then

uv(λ,a(υ),ω(v)) > uθQ(λ, -2r - d,2r + d),

with equality if and only if yυ and γ0 are geometrically the same geodesic.

Proof. If yυ crosses only one cap, Lemma 2.2 shows that

uo(λ9a(υ),ω(υ)) > UVQ(X, -2r - d, -d) > - 1 .

On the other hand

uυo(λ9 -2r - d,2r + d) < i i j l , -2r - d,2r + d) = - 1 ,

by the choice of d. Therefore

uo(λ,a(υ),ω(υ)) > uVo(λ, -2r - d,2r + d).

Suppose now that yυ crosses both caps. By Lemma 2.2,

uυ(\,a{υ),φ)) > uVo(λ, -2r - d, -d) > - 1 .

Since the caps are convex, t2{υ) — tx(v) > 2d with equality if and only if yυ

and γ 0 are geometrically the same geodesic. Therefore yυ(t) is in the area of

constant curvature - 1 when tλ(v) < t < t}(υ) + 2d. Hence

uυ(λ,a(ϋ)9 φ ) + Id) > uO0(\, -2r - d, d) > - 1 .

Since λ < 1 and K > - 1 , uv(λ,a(υ\ t) < 1 for all t > a(u). Hence - 1 <

uv(λ,a(v), tλ(υ) + 2d) < 1 and thus uυ(λ,a{υ\ •) is nondecreasing on the

interval [tr(u) + 2J, t2(v)]. Therefore

uo(λ,a(υ),t2(υ)) > UVQ(X, -2r - d,d),
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with equality if and only if yv and γ0 are geometrically the same geodesic. The

statement of the proposition now follows from Lemma 2.2 applied to the

second cap. q.e.d.

We will now give a quantitative comparison of the solutions of (0.1) along γ 0

and along geodesies close to γ0. Any geodesic sufficiently close to γ0 must

cross both caps and the geodesic v perpendicular to γ 0 at 0 = γo(O). By

symmetry, it suffices to consider only geodesies which cross v in the same

direction as γ 0.

3.2. Proposition. There are constants ε0 > 0 and λ 0, 0 < λ 0 < 1, such that,

for any unit tangent vector v with footpoint on v and dist(i>, v0) < ε0,

uv(λ9a(υ)9ω(υ))> - 1 + 99(λ - 1) + 5 10 5dist 2(ϋ, υ0)

if λ 0 < λ < 1.

Proof. We will show that

(3.1) uv(l9a(υ)9ω(υ)) > - 1 + 5 105 d i s t 2 ( ^ ^ 0 )

and

(3.2) uo(λ9a(υ)9ω(v)) > uv(l9a(υ)9ω(υ)) + 99(λ - 1)

for any υ close enough to υ0 and λ close enough to 1. The proposition follows

immediately from these claims.

To prove (3.1) we keep track of the solution uυ(l,a(υ), •) of the Riccati

equation along yv as yv crosses the first cap, then the region between the caps

and finally the second cap. By Lemma 2.2,

(3.3) uv{l,a(v)> Φ)) > uO0(h ~2r - d9 -d).

Lemma 3.3 below implies that

(3.4) t2(v) - tx(v) >2d+l.&> 10 6 dis t 2 ( i ; , v0)

if υ is close enough to υ0 and the footpoint of υ lies on v. By Lemma 2.3 and

symmetry,

. 8 < κ 0 o ( l , - 2 r - d9d)< .81.

Hence

< o ( l , - 2 r - r f , d ) = - ^ - W

2 > 1 - ( . 8 1 ) 2 > .3.

By continuity, if v is close enough to v0, then u'υ(l,a(υ)9t)> .3 for all

/ e [tx(υ) + 2d9 t2(υ)]. Therefore, by (3.3) and (3.4)

uo(l9a(υ)9t2(υ)) > UVQ(19 -lr -d9d) + .54 106 dist 2 (ϋ,ι; 0 ).
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We have

uυ(l,a(v),ω(v))>uυo{uVo(h-2r-d,d)

+ .54- 106 dist2(ι;,i70),ί/,2r 4- d)

> w j l , -2r - d,2r + d) + .54 e~4r 106 dist2(t;, ι;0)

= - 1 4 5 1O5 dist2(ί;,t;0),

where the first inequality follows from Lemma 2.2. The second inequality
follows from Lemma 3.4 below, since 1*̂ (1, ~2r - d, t) < 1 for all t. The
third inequality follows from (2.8) and the fact that r < 10 ~6 by (2.1). This
proves claim (3.1).

Since uυ (1, — 2r - d, t) ̂  — 1 for all /, Lemma 3.4 below implies that

-^•(I9a(v)9ω(v)) < exp(-2(4r 4 2d) -(-1))

< exp(2(4 10~6 + 2 1.1)) < 99.

Claim (3.2) follows by continuity.

3.3. Lemma. Let v(s) be a curve of unit tangent vectors with footpoints on v
and such that v(0) = υ0 and \\(d/ds)v(s)\s=0\\ = 1. Then

d

— (t2{v(s)) - t^vis))) > 2 - 10 .

Proof. The first assertion is true because γ0 is the shortest connection
between the caps. Also

(3.5)
, _ o β Λ ' * < * < ' »

= 0

since γ0 is the shortest connection between v and each of the caps. Next we
compute (d2/ds2)t2(υ(s))\s=0.

Let

v(s).

Then, by (3.5),

(3.6)
d -

5=o ds

def

= X.

Let σs be the geodesic with initial velocity v(s). Then the point σs(d) lies on
the boundary of the second cap. Set Js(t) = (d/ds)σs(t). By (3.6), since υ(s) is
a curve of unit vectors with footpoints on v,

JQO) = (cicosht 4- bsinht)n(t), 0 < / < d,
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where n(t) is the normal field to σ0 = γ 0 and a and b are the horizontal and

vertical components of X respectively. Then, by assumption, a2 4- b2 = \\X\\2

= 1. Since t2(υ(s)) is the length of σJ0,d], the formula for the second

variation of arclength [1] gives

= (VjJs,σ0)\ + / \Jό,Jά/dt- / (R(J0,σ0)όQ,J0) dt
5 = 0 J0 J0

= k(acoshd + bsinhd)2 +(a2 + b2) sinhdcoshd

+ ab (sinh2ί/ + cosh2^ - 1),

where k is the geodesic curvature of the boundary circle 9#. Similarly,

= k{acoύίd — bcoshd) +(a2 4- Z)2) sinhί/cosh J

- s inh 2 ί/- cosh2ί/).

By Lemma 2.4 and (2.9), k > 106, J > 1.

3.4. Lemma. Lei /z: R -> R Λe β continuous function, and let w(λ, /0, •) &e

//ze solution of

u' + u2 + h ( t ) = 0 , w ( λ , ί o , r o ) = λ .

Suppose tγ > t0 and w(λ, ί0, rx) w defined. Denote by M and m the maximum

and minimum respectively ofu(λ, t0, t) on [tQ, tx]. Then

Proof. Let w(t) = (3w/3λ)(λ, t0, t). Then w(t0) = 1 and

H/(0 + 2w(0 w(λ,/ 0,0 = 0.

Hence

The following lemma gives the final estimates on the solutions of the Riccati

equation along geodesies which cross at least one of the caps.

3.5. Main Lemma. There exists εv 0 < εx < 10 ~4, such that

(1) ifυ is a unit tangent vector with footpoint on v, dist(t;, ±v0) < εv and

1 - 5 103dist2(t;, ±u0) < λ < 1,

then

uυ(λ,a{υ)yω(υ)) > - 1 + 5 103dist2(ι;, ±υ0);
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(2) // v is a unit tangent vector with footpoint on *>, dist(t>, ±υ0) > εl9 yυ

intersects both caps, and

then uυ(λ,a(υ),ω(v))^ — λx;

(3) // yv intersects only one cap and λx < λ < 1, then uv(λ,a(v),ω(v)) >

Proof. Proposition 3.2 implies that statement (1) is true for any εx < ε0.

We will now show that there i s λ 2 , 0 < λ 2 < l , such that if the footpoint

of v lies on v, dist(t>, +vQ) > ε0, and yυ intersects both caps, then

uυ(λ, a(υ), ω(v)) > —λ2. If such a λ 2 does not exist, then there is a sequence

{ vn } of such vectors with

-
n '

Since the caps are compact, {vn} has a limit vector υ for which

uυ(l,a(υ),ω(υ)) < - 1 . By Proposition 3.1, υ = ±υ0, which is a contradic-

tion.

By Lemmas 2.2 and 2.3, there exists λ3, 0 < λ3 < 1, such that

uv(λ3, a(υ), ω(υ)) ^ — λ3 for every vector v as in (3). Now choose ελ so that

0 < εx < min(εo,10~4) and λx = 1 - 5 10\ 2 > max(λ 2,λ 3). q.e.d.

Although we will not use it, we point out an immediate consequence of the

Main Lemma 3.5, Proposition 2.5, and Proposition 1.2.

3.6. Corollary. The noncompact surface Sd has no conjugate points.

4. Construction of the compact surface Sd R

Set R = a r c t a n h ^ ) 4- 5, where λx is defined in Main Lemma 3.5. Recall

that, by Proposition 1.4(1), the solution u of the equation w/ + w 2 - l = 0

with initial value -λλ reaches 0 at t = a r c t a n h ^ ) . Therefore

(4.1) κ ( 0 > 0 for t>R- 5.

Let BR be the ball in Sd of radius R centered at γo(0) = 0 = γ0 Π v (see

Figure 4).

Figure 4 is in the hyperbolic plane. The surface Sd with the caps removed is

obtained from the unshaded area by identifying the indicated pairs of geodesic

rays. Easy geometric arguments in the hyperbolic plane show that there exist
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arcs of hyperbolic geodesies

with the following properties indicated in Figure 4:

(1) none of the arcs intersects BR;

(2) adjacent geodesies are orthogonal;

(3) v'+, v'l, v'_, and v'L are orthogonal to γ 0 and each has length arccosh 2;

(4) l e n g t h ^ ) = length(c,").

FIGURE 4

Consider the region in Sd bounded by these geodesic arcs. By identifying c\

with c" we obtain the surface bounded by the closed geodesies v+, dx, , dn_ x,

v _ shown in Figure 5. Along each of the boundary geodesies we attach a

handle with curvature - 1 . The handle attached to v+ is constructed in the

following way. Take two regular hexagons in the hyperbolic plane with all

interior angles π/2. Note that the side of such a hexagon has length arccosh 2 =

\ length(ϊ>.f). Identify the corresponding sides of the hexagons to get a pair of

pants as shown in Figure 6. Now identify the closed geodesies marked σ + to
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FIGURE 5

FIGURE 6

obtain a handle. We attach this handle to our surface along v+ in such a way
that γ0 is asymptotic to σ+ as shown in Figure 6.

It is clear from our construction that
(1) γ0 enters the handle and never leaves it;
(2) the injectivity radius at every point in the handle, in particular at every

point on γ0, is greater than 1/2;
(3) for any ball B of radius 1/2 in the handle there is an isometry φ of B

into the hyperbolic plane, and dφ maps vectors asymptotic to γ with foot-
points in B to asymptotic vectors.
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In the same way we attach a handle along v _ so that γ0 is negatively

asymptotic to the corresponding closed geodesic σ_ and the analogs of (1), (2),

and (3) hold. We call the resulting surface SdR.

4.1. Lemma. For any s,t > 3 or s,t < — 3, dist(γo(s), - γ o ( O ) > 1/2.

Proof. Let s, t > 3 and let B be the closed ball in Sd R of radius 1/2 about

yo(s). It is clearly enough to consider the case when the shortest curve

connecting yo(s) and - γ o ( O has footpoints in B. Since the injectivity radius

at yo(s) is greater than 1/2, there is an isometric embedding φ of B into the

hyperbolic plane. By property (3) above, the vectors dφyo(s) and dφyo(t) are

asymptotic. The lemma now follows from Lemma 5.5.

4.2. Theorem. The surface Sd R has no conjugate points.

Proof. For a unit vector v denote by yυ the geodesic determined by

γy(0) = v and by uυ the solution of the initial value problem

If γυ(0) is not in the caps, we will show that uυ{t) is defined and 1^(01 < 1

for all positive /. By Proposition 1.2, this implies that there are no conjugate

points along γJ[O, oo). The theorem now follows easily.

Since K > - 1 and uv(0) = 1, we see that uυ(t) < 1 for all t > 0 for which

uυ(t) is defined.

We follow yυ as it moves along Sd R. If γJ[O, oo) never crosses the caps, then

uυ{t) = 1 for / > 0, and the claim is clear. Otherwise there is a first time

aλ > 0 when γ^ enters a cap. By Proposition 2.5, there is a first time zx > aλ

when γ^ leaves the ball BR (see Figure 4). Denote by ωι e (α l 5 zλ) the last time

yυ is in a cap before leaving BR. If yυ crosses the caps again, denote by α 2

 > zι

the first time it enters a cap after zx and by a2 e ( z 1 ? α 2 ) the last time it

reenters BR_λ before α 2 . Let z 2 be the first time yυ leaves BR after a2 and let

ω2 be the last time before z2 at which γ^ is in a cap. By proceeding inductively

we obtain a (possibly finite) sequence of times
αx < ωx < zλ < a2 < a2 < < an < an < ωn < zn <

Thus yυ crosses the caps for the nth time during the interval [an,ωn]. Denote

by vR the diameter of BR orthogonal to γ0. If yv crosses vR at a time
τn G (α n ,ω n ) , then set

dn = dist(yo(rn)9±v0)9

and let dn = oo if yo([an9 ωj) Π vR = 0 .

We prove by induction in n that uυ is defined on [0, an] and satisfies either

(4.2) «„(«„)> 1 - 5 10X 2 if rfw < ex

or

(4.3) « 0 ( α J > 1 - 5 103 • t\ = λr ύdn>zx.
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This implies that uv{t) is defined for all positive t even if the sequence {an}

terminates. In the latter case, let ak be the last term of the sequence. Then

^(Yι (O) — — 1 for ί > ωk. By Main Lemma 3.5 and the inductive hypothesis,

uυ(ωk) > — 1, and so uυ(ί) is defined for all t > 0.

Since the curvature is identically equal to - 1 on ?„([(), αj), we see that

uυ(t) = 1 for t e [0, α j , and the inductive hypothesis holds for n = 1. We now

prove that the inductive hypothesis holds for n + 1 if it holds for n, provided

an + ι is defined. By Main Lemma 3.5, uv(ωn) > -1. Since the curvature is

identically equal to - 1 on yυ([ωn, «w + 1]), we see that uυ is defined on [0, an+ι].

Consider the following four cases.

Case 1: dn > εv dn+1 > εv Since γ^ω,,) lies within distance 2 from the

center 0 of BR, we have zn- ωn> R - 2. By the inductive hypothesis and

Main Lemma 3.5, uv(ωn) > —Xx and therefore uυ(zn) > 0 by (4.1). Hence

u(an + 1) > 0. Similarly an+ι - an+ι > R - 3 and thus uυ(an+ι) ^ λx. This

proves the inductive hypothesis in Case 1.

We will need the following lemmas to treat the remaining cases. If dk < εv

set

(4.4) Tk= - I n 4 - 1 -\ndk.

Note that Tk > 6 since εx < 10 ~4 (see Main Lemma 3.5).

4.3. Lemma. Ifdk < ελ and τk - Tk < / < τk + Tk, then

(1) d i s t ( γ ι ; ( O , γ ι , o ( ί - τ Λ ) ) < l / 4 // γ,(τ^) is close to + u 0 , i.e., rfΛ =

(2) d i s t ( γ l ; ( O , γ - £ , o ( ί - τ Λ ) ) < l / 4 // %(τk) is close to -υ0, i.e., dk =

, -v0).

Proof. By symmetry it suffices to prove (1) for t > τk. Let v(θ), 0 < θ < J^.,

be the shortest connection between υ0 = v(0) and ^ ( T ^ ) in the unit tangent

bundle. We claim that for any s, 0 < s < Tk9 and all θ

dist(yv(θ)(s),yVQ(s))<l/4.

If not, there is a smallest s 0 > 0 where this fails for some θ0. Since

<tist(γl;(0)(.y),γι;o(.y)) < 1/4 for 0 < s < so and any 0, the geodesies γ^^IO, J 0 ]

cross at most one cap. Hence by (2.1),

Γ° | l - K(yv(θ)(s)) I ds < 2*o + 2r κ2 < 2s 0 + 1.8.

dθ

Hence, by Lemma 5.1 and (4.4),

dv(θ)
- = dist(yv(θo)(so),yVo(so)) < jj

1_

4*

This contradiction proves our claim and the lemma follows.
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4.4. Lemma. If dk < εx andak+ι is defined, then τk + Tk < ak + ι.

Proof. If Tk < R - 1/4, then by the previous lemma and the triangle

inequality, yυ(t) G BR for t G [T*,T* + Tk], and so T* + Tk ̂  zk < ak+ι. If

Tk> R- 1/4, then dist(γo(O,0) > R - 1/4 for # - 1/4 < r < Tk since γ0

leaves BR and never returns. Therefore, by the previous lemma and the triangle

inequality, distίγ^T* + t),ϋ)> R- 1/2 for R - 1/4 < t < Γ .̂ The state-

ment of the lemma follows since ak + ι is the time when yv reenters BR_V

4.5. Lemma. Let w(-λ, •) be the solution of u' + u2 - 1 = 0, w(-λ,0) =

- λ . Then

w( —1 + 5 1 0 V , Γ ) > 0

//Γ> - l n ε - In50.

Proof. By Proposition 1.4(1), w(-λ, /) > 0 if t > arctanh(λ).

Case 2: dn < εv dn + ι < εv We will show now that the numbers Tn, Tn + 1

defined in (4.4) satisfy

(4.5) τw+ Tn<τn+ι- Tn+ι.

If not, then, by Lemma 4.3, t = τn + Tn satisfies

(4-6) dis t(γ,(0,γ + 1 > 0 ( ί-τ j)<l/4 )

and either

(4-7) dist(γ t ,(0,γ + , o (ί-τ n + 1 ))<l/4

or

where (4.7) corresponds to the case dn+ι = dist(yυ(τn+1\ -v0) and (4.8)

corresponds to the case dn+1 = dist^(τ M + 1 ), +v0). We now show that (4.6)

and (4.7) are contradictory. Note that together with the triangle inequality they

imply

dist(yVo(t-τn),yVQ(t-τn+1))<l/2.

But t — τn > 6 and t - τn+ι < 0 by (4.4) and Lemma 4.4. Hence the above

inequality cannot hold since yvJ[-R,R] minimizes distances and the closed

geodesies σ+ and σ_ to which yυ is asymptotic lie far apart from each other.

On the other hand, (4.6), (4.8) are also contradictory. For together with the

triangle inequality they imply that the distance between γ (ί - τn) and

Ύ-Oo(t - τn + ι) = -yVo(rn + ι - t) is less than 1/2. This contradicts Lemma 4.1

since t - τn > 6 and, by Lemma 4.4, τn+ι - t ^ τ n + 1 - an+ι > R - 2 > 3.
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By Main Lemma 3.5 and the inductive hypothesis (4.2),

(4.9) *»(<*„)> - l + 5 10 3^ 2 .

By Lemma 4.4, K(yυ(t)) = - 1 for tϊΞ[ωn,τn+ Tn], and hence uυ(t) is

increasing on this interval because \uυ(ωn)\ < 1. Since the caps are very small

(cf. (2.1)), (2.9) implies that ωn < τn + 1.2. Therefore

uυ(τn+Tn)>uv(ωn+Tn-l2)

(4-10) ' = uv(ωn)cosh(Tn - 1.2) + sinh(7; - 1.2)

uv(ωn)sinh(Tn - 1.2) + cosh(Γn - 1.2)

by Proposition 1.4(1). It follows easily from (4.9) and (4.4) that tanh(Γ,7 - 1.2)

> — uv(ωn). Hence the numerator in (4.10) is positive. The denominator is also

positive since uυ(ωn) > - 1 . Hence

uD(rn+Tn)>0.

Recall (4.5) that τn + 1 - Tn+ι > τn + Tn and note that K(yv(t)) Ξ - 1 (or

τn 4- Tn < t < τn + ι - Tn + ι. Hence uυ(τn+1 - Tn+ι) > 0. A similar calculation

now shows that

w,,(«Λ + i) > 1 - 5 103 d*,.

This completes the inductive step in Case 2.

Case 3: dn < εl9 dn+ι > εv Inequality (4.10) shows that uv(τn H- Tn) > 0.

On the other hand, τn 4- Tn < an+ι, by Lemma 4.4, and therefore

Now an argument similar to Case 1 shows that uv(an+ι) ^ λx.

Case 4: dn > εv dn+ι < εv This case follows from Case 3 by reversing time.

This finishes the proof of Theorem 4.2.

Orient σ + and σ_ so that γ 0 is positively asymptotic to σ + and negatively

asymptotic to σ_.

4.6. Theorem. The function v -> u^(0) is discontinuous at each tangent

vector σ+(s) of σ+. The function v -> «~(0) is discontinuous at each tangent

vector of σ _.

Proof. We prove only the first statement. Since γ 0 is asymptotic to σ+,

there exists a sequence {wn} of vectors tangent to γ0 converging to w = ό+(s).

By construction, w^(0)= - 1 for all large enough n. On the other hand,

ut(0) = 1.
4.7. Remark. The geodesic flow of Sd R is ergodic.

To see this, note that u'(v) = -u+(-v) and that the Liouville measure μ is

invariant under the involution v -> - v. Hence

ί (v)-u-(υ))dμ(υ)>0
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since it can be seen from the proof of Theorem 4.2 that w + ( ί ; )-w~(ί ; )>0for

all υ e TγSd R not tangent to γ0. Hence the geodesic flow has positive entropy

(see Theorem 7.8 in [7]) and is therefore ergodic by Theorem 9.4 in [6].

5. Appendix

First we give an estimate on the differential of the geodesic flow g*.

5.1. Lemma. Let M be a complete Riemannian manifold. For a unit tangent

vector u set Ruw = R(w, u)u. Then for each unit vector v the differential at v of

the geodesic flow g* satisfies

Proof. Let Y be a Jacobi field along yυ. Then

)' = 2(y,y+ Y")

= 2 ( y , (Id - Rg,υ)γ) < 2 | |y | | | |7' | l -IIId - RϊΛ

« y > ( y ' » | | d | | d

We now study the geometry of the unit tangent bundle TλM of a complete

Riemannian manifold M with the metric

where H and V denote the horizontal and vertical components, respectively.

5.2. Proposition (Sasaki [8]). Let v(-) be a curve of vectors in TλM. Denote

by c(t) the footpoint ofv(t). Then v(-) is a geodesic in TXM if and only if

(5.1) v"= -(υ',υ')υ,

(5.2) c' = R(υ',υ)c,

where prime denotes covariant differentiation along c, c(t) is the tangent vector of

c( ) at t, andR is the Riemann curvature tensor on M.

Proof. The energy of the curve v: [a, b] -> TXM is given by

The second integral is the energy of the curve v in the unit sphere at c(0)

obtained by parallel translating the vectors v(t) along c to v(0).

Assume v is a critical point of E. By considering variations of v which leave

fixed the curve c of footpoints and v(a) and v(b), we see that v is a geodesic

segment in the unit sphere. Hence v satisfies (5.1).
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Now consider an arbitrary variation v(ε, •) of v( ) with footpoint c(ε, •)

which keeps v( , a) and v(-,b) fixed. Then

b l / D d c \ I D Df b l / D d c \ I D D Λ / D / 3 c d c \ ,

./fl [\ αί θε / \ at aε j \ \ θε 3/ /

Note that

d I 3c \ , Λ rb d I D
— ( — 9c) dt = 0 = I — ( — v i
dt \ oε I Ja dt \ dε

since c(ε, a), c(ε, b), v(ε, a), and v(ε, b) are kept fixed. Also ((D/dε)v, v")

= 0 since υ" and v are collinear by (5.1) and ((D/dε)v, v) = 0 because v is

a curve of unit vectors. Hence (5.2) is satisfied.

Conversely, our computations show that v is a critical point of E if it

satisfies (5.1) and (5.2). q.e.d.

Note that (5.1) and (5.2) imply ( υ', v')' = 0 = (c, c)' and therefore

(5.3) || vf || = const, || c || = const.

We now describe geodesies in the unit tangent bundle TXS of a surface S. We

use the notation of Proposition 5.2.

5.3. Corollary. Let v( ) be a geodesic in TλS. Then exactly one of the

following three possibilities holds:

(1) The geodesic v is vertical, i.e., c(t) = 0, and v is an arc of the unit circle at

c(0).
(2) The geodesic v is horizontal, i.e., v\t) = 0, and c is a geodesic in S.

(3) // ||ί/|| Φ 0 and \\c\\ Φ 0, then

(5.4) .«>"(0= - I H ϋ ( 0 >

(5.5) * ( / ) = ^K{c(t)),

where k(t) is the geodesic curvature of c with respect to the normal N(t) such

that (c(t), N(t)) and (v(t),v'(t)) have the same orientation.
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Proof. Assertions (1), (2), and (5.4) follow directly from Proposition 5.2.
To prove (5.5) note that by (5.2)

We use the previous corollary to calculate the distance between v and -υ,
where υ is a unit tangent vector of the hyperbolic plane H.

5.4. Lemma. Let υ e TXH. Then dist(ι;, -v) = π.
Proof. Clearly dist(y, —υ)^π since the semicircles from υ to —v in the

unit circle at the footpoint of v have length π. Now let w(t), 0 < t < 1, be a
nonvertical geodesic in 7\//joining υ to —u. We will show now that the length
of w is at least π. We can assume that the curve c of the footpoints of w has
length at most π. By (5.5), c is a geodesic circle of finite radius r traversed n
times, n = 1,2, , and

length(c) = 27rnsinhr < π.

Denote by Pc the parallel translation along c. Then clearly

<(pcv,υ)= (l k(t)'\\c{t)\\dt

where k{t) = cothr is the geodesic curvature of c. Hence

<(Pcυ,υ) = Iπncoshr - 2πj e [θ,2ττ),

where

0 <y = [ncoshr] < [«(sinhr + 1)] < [1/2 + /?] = /?.

Therefore

<(Pc.ϋ, —υ) = 2τrAίCθshr - 7r(2y + 1) e [ —τr,τr).

By the Pythagoras theorem,

(length(i )) 2 ̂  (2τr«sinhr)2 +(2πncoshr - π(2j 4- I)) 2 = Q(coshr).

The above estimate on j implies that the quadratic function Q(x) is greater
than iΐ2 for x = coshr > 1.

5.5. Lemma. Let υ and w be asymptotic unit vectors in the hyperbolic plane.

Then

(1) dist(v, H>) < }/2 dist(τr£;, πw),

(2)dist(t;,-w)^τr/(l + ft).
Proof. Let disl(πυ,πw) = I and let c be the geodesic with c(0) = πυ,

c(l) = 77w. Denote by υ(s) the unit vector at c(s) asymptotic to v and by
β(s, •) the geodesic with initial tangent vector υ(s). Then σ(s,0) = c(s\
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v(s) = (dσ/dt)(s,0), and Ys( ) = (dσ/ds)(s, •) is a Jacobi field along a(s, •).

The horizontal component of {dυ/ds)(s) is (dc/ds)(s) = 7/0) and the vertical

component is

VdiVdsv{s) = Vaβ/a, 1^(5,0) = Vdσ/8,|j (ί,0) = jjM = W ) .

Since Ys( ) is a stable Jacobi field and the curvature is - 1 ,

f ωfιι>;(o)iι2+il>7(o)iι2 2
ΪW| -HWI +|W| __ _

which proves (1).

To prove (2) we may assume that dist(iτv, πw) < ττ/(l + Jϊ). By Lemma

5.4, dist( w, — w) = IT. Therefore, by the triangle inequality and (1),

dist(u, — w) ^ dist(w, - w ) — dist(ϋ,w) > 77 -
77

References

[1] J. Cheeger & D. Ebin, Comparison theorems in Riemannian geometry, North-Holland,
Amsterdam, 1975.

[2] E. Heintze & H. C. Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977)

481-491.

[3] E. Hopf, Statistik der geodάtischen Linien in Mannigfaltigkeiten negativer Kr'ύmmung, Leip-
ziger Berichte 91 (1939) 261-304.

[4] , Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U.S.A. 34 (1948)

47-51.

[5] G. Knieper, Mannigfaltigkeiten ohne konjugierte Punkte, Inaugural dissertation, Bonn, 1985.

[6] Ya. B. Pesin, Geodesic flows on closed Riemannian manifolds without focal points, Math. USSR
Izv. 11 (1977) 1195-1228.

[7] , Geodesic flows with hyperbolic behaviour of the trajectories and objects connected with
them, Russian Math. Surveys 36 (1981) 1-59.

[8] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku J.

Math. 10 (1958) 338-354.

UNIVERSITY OF MARYLAND






