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SINGULARITIES OF A SIMPLE ELLIPTIC
OPERATOR
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1. Introduction

Consider the operator A: /-> - Δ / + Λ ( / ) acting upon real functions of
x e D with f(x) = 0 for x e 9Z). D <z Rd is a J-dimensional domain. Λ:
R -> # is a convex function in the strict sense: Λ"(/) > 0. Let 0 < \λ(D) <
λ2(Z>) < λ3(Z>) < etc. Too be the spectrum of -Δ|Z>. Ambrosetti-Prodi [1]
and Berger-Church [2] proved that if

-oo <Λ'(-oo) <λ 1 (Z))<Λ / ( + oo) <\2(D),

then A is a global fold, i.e., up to diffeomoφhisms front and back, it has the
form1

This attractive result prompted McKean-Scovel [4] to study the simplest
example in which A'(R) crosses the whole spectrum of — Δ | D: to wit, d = 1
and D = (0,1) with Λ(/) = f2/2, in which case A is the simple operator

B: f -> -f" + f 2/2 subject to /(0) = /(I) = 0.

The present paper completes the description of the singularities of B.
Singular locus. This is the locus where the differential dB = —d2/dx2 + /

= F is not 1:1; it consists of a countable number of sheets Mn (n > 1)
indicated in Figure 1, marked off in function space by the vanishing of one of
the (necessarily simple) eigenvalues

-oo < λj(/) < λ 2 ( / ) < etc. -> oo

of F; in other words, / e Mn if and only if .Fe = 0 has a solution e = en with

e(0) = e(l) = 0 and Λ - 1 more interior roots e(r) = 0 (0 < r < 1). Mrt is a
smooth connected surface of codimension 1 with normal vector vλ w = e2, the
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eigenfunction being standardized by βel = 1 and e'n(0) > 0. Mx is convex,

while for n > 2, Mn has n — 1 principal directions of negative curvature; in

fact, the spectrum of the second fundamental form at a point of Mn comprises

the reciprocals of the distances to the other sheets in the direction e%, these

being reckoned negative for the higher sheets and positive for the lower.

MΛ

FIGURE 1

Local folds and cusps. F is of corank 1 at singular points / e Mn (n > 1), en

being the null direction. For n = 1, eλ is transverse to the sheet as it is of one

signature which prevents the vanishing of

= ί *i = the i n n e r product of ex with the normal e

It follows that the map B is a local fold. More complicated singularities appear

on M2 already; in fact, M2 and the higher sheets exhibit one and the same

pattern of singularities, so we will deal with M2 only. M 2 is most easily
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FIGURE 2

described as the class of functions / = e2/e2 formed out of any realistic

second eigenfunction, as in Figure 2. In particular, e2, e2, and e2

f but not e2

vanish at the ends, e2(r) = 0 at one more place 0 < r < 1, e'2(r) < 0, and

e2(r) = 0. From this description, it is plain that I2 = j^e\ is mostly different

from 0 along M2 so that e2 is transverse to the sheet and the map B is a local

fold, as for n = 1. I2 does vanish on a sublocus L2 c M2 which is (1) nonυoid

since e2 may be taken antisymmetrical about 1/2; (2) smooth and of ^dimen-

sion 1 in M2 since,2 with e = e2, the gradient v / 2 = - 3e(F - λ2)~ι(e2 — el2)

is independent of the normal e1 along L 2 ; 3 and (3) connected, by inspection.

The type of singularity of B along L2 differs according as e = e2, which is

tangent to M2 along that locus, is or is not tangent to L2 as well, i.e., according

as

e\F~γe\ = the inner product of e2 with v / 2

vanishes or not: if 73 Φ 0, the map is a local cusp, i.e., up to diffeomorphisms

front and back, it takes the form

while if 73 = 0, which takes place along a sublocus L 3 of codimension 1 in L 2,

then the singularity is more complicated. McKean-Scovel [4] left the matter

there. The full description of these higher singularities comes next.

2(F — λ2)I"1 acts upon the annihilator of e = e2. The computation of v / 2 rests upon the

variational formula (F - X2)e- = —fe + \'2e in which λ'2 = JQ e2f.
3V/2 = -3eF~ιe2 along L2 so that v / 2 = ce2 implies -3e2 = Fee = 0.
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Higher singularities. Let X be the vector field determined by Xf = e2. Then,

with Iλ = λ 2 and e2 = e, you have

/ = f1

 e

3 = f1 vlxe = XIX on M 2 ,

L = -3 f ^ F - 1 * 2 = ί1 VV = X% on L2,

and, more generally,

7 + 1 Ξ= A ^ = A7n = f1 Vlne by definition, for n > 3;

see the table at the end of the paper for 74 and 75. Define Lλ = M 2,

L2 = Lι (Ί (7 2 = 0), L 3 = L2 Π (73 = 0), etc., so that, for any n > 1, Lw + 1 is

the sublocus of Lw where e = e 2 is tangent to Lw.

Theorem. £<3cΛ of the loci LλΏ L2^> etc. is a nonυoid, smooth, connected

submanifold of codimension 1 in the preceding locus. L^ = Γ\Ln is void so each

point of M2 belongs to Ln — Ln+ι for just one value of n > 1, the map B having

at such points a local singularity of the type described by Morin [5], with normal

form

( Λ , h > h , ) - ( Λ Λ + flh +••• +fΓιL + fΓ\Λ.Λ. ).

i.e., for n = 1 a fold, for n = 2 a cusp, etc.

The important features of the singularities along Ln/Ln+ι are as follows.

dB = F is of corank 1 so B may be brought into the local form

(i) (Λ.Λ.Λ. ) - (M/1,/2,/3. ). Λ.Λ. )
by application of diffeomorphisms front and back, in which the first coordi-

nate represents the singular direction e = e2; in particular, 9/9/χ represents the

field X: f -» e2 and dh/dfx is a smooth nonvanishing multiple of λ 2 ( / ) , as a

routine comparison of differentials will confirm. Now / e Ln - Ln + ι if and

only if

( S / Θ / Ί ) " 1 h vanishes for m = 1, ,n but not for m = n +• 1,

(2) /Λe successive vanishings taking place on smooth nested loci

each of codimension 1 in the preceding.

The final point is that

, v //ze gradients V[3Λ/9/i], ,V[3wΛ/9//2] are independent on

the locus indicated in (2).

(1), (2), and (3) are precisely the conditions for B to have a singularity of the

type displayed above (see Golubitsky-Guillemin [3, pp. 174-179]).



SINGULARITIES OF A SIMPLE ELLIPTIC OPERATOR 161

Summary. B exhibits folds, cusps, and, more generally, Morin-type singulari-

ties of any degree n + 1 ^ 2 along nested subloci of codimension n on any

singular sheet M2, M3, M4, etc.

Higher dimensions. (3) is equivalent to 2(1) below: V/1? , Vln are indepen-

dent on Ln. This, and its generalization 2(2), is all you need to extend the result

to higher dimensions d > 2. A proof was not found, but see the end of §2 for

comment.

2. The proof

The chief items to be checked are the following:

(1) V/χ, , V/rt are independent on Ln.

(2) Vln +1 is independent of V/x, , Vln on Ln.

X: f -» e2 can be integrated without obstruction and

λ 2 [exp(tX)f] is analytic in t > 0.

(2) implies (1) but it is convenient to prove them in the stated order. This is

postponed to the end.

The loci are nonvoid, connected, and smooth. (1) implies that each of

Lλ c L2 c L3 etc. is a smooth submanifold of codimension 1 in the last,

provided it is nonvoid. We assume that Ln is nonvoid and connected as is

known already for n — 1, and prove that Ln+1 is the same. (2) permits us to

form the vector field

the coprojection of V/w + 1 upon V/1? , Vln

its length in L 2 [0 , l ]

and it is easy to see that you can integrate freely in Ln, i.e., df/dt = Zf can be

solved backwards and forwards if / 0 G L Λ , the solution / = exp(/Z)/0 being

confined to Ln in view of ZIλ = = ZIn = 0. Now ZIn+1 = 1, so In + ι

vanishes just once along each stream line of the flow; in particular, Ln + 1 is not

void. Besides, any two points of L M + 1 can be joined by a path in Ln, the latter

being connected, and each point of this path can be swept along by the Z-flow

until it hits Ln + ι, producing a new path with the old end points but lying

wholly in Ln + ι: in brief, Ln + ι is connected. A bit more detail about the flow

may be welcome: |Z/2 - Zfx\ is majorized by a multiple of |/ 2 - fx\^ in the

small. This ensures local solvability. The global solvability follows easily from

| Z / | 2 = l a n d ( 2 ) .

L^ is void by reason of analyticity. The same reasoning shows that X:

f -> e2 can be integrated without obstruction. This is part of (3) and the rest of

(3) is easy, too. Let e0 be the solution of Fe0 = λe0 with e(0) = 0, ^'(0) = 1,
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and adjustable λ. Then

eo(x) = x + Σ the integral operator / da I [f(b) — λ] db

applied «-fold to x,

and this is analytic in λ and /, by inspection. The number λ2 is the second,
necessarily real and simple, root of eo(l) = 0 for fixed /; as such, it is analytic
in /, and this feature is inherited by

e0 computed for λ = λ2

e2 = , = X].

Now it is routine to check that λ2[exp(/AΓ)/0] is analytic in t > 0, finishing the
proof of (3). The application to L^ is this: f0 e L^ means Xnλ2 = 0 for
n > 0. Then X2[exp(tX)f0] = 0 for t > 0 by analyticity, and this is impossible:
with / = exp(/X)/0, you find (Bf)'= dB f= Fe2 = λ2e2 = 0, violating the
fact that Bf = Bf0 has only a finite number of distinct solutions [4]: in short
L^ is void. The discussion is finished except for the proofs of (1) and (2).

Proof of (1). In+ι = XIn = /o1 Vlne2 for n > 1, whence

V/n + i = (e2 V )v/n - e2(F - \2)'\vln ~ e2ln

in view of the variational formula

/;+!=£ [v/>2 + Vlne2]

N o w e 2 ( x ) > 0 f o r 0 < j c < r , r < l being its only interior root, and with

e = e2 for brevity, a brief computation confirms that

(F — λ 2 ) 'g-*-el e~2 I eg for x < r, modulo e.

Besides,

( e . v ) e = -(F- λ2y
ι(e2 - eίl e3) = -F~ιe2 for/e M2 and 72 = 0,
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so you can evaluate v/χ, V/2, etc. as follows:

= e2;

V/2 = (e V - eF-ι)vIλ if Iλ = / 2 = 0

= - S e F " 1 ^ 2 = 3e2 I e~2 I e3 for x < r modulo vΛ;

V/3 = (e V - eF~l)vI2 if 7X = 72 = 73 = 0

= - 6 e ( r t 2 ) Γ έ"2 f e3 + 6e2 Γ *" 3 (/ -V2) ί e3

~9e2 Γ e~2 f e2F~ιe2

— 3eF~ιe2 f e~2 f e3 for x < r modulo V/x and V/2

= Ue2 Γ e~2 f e3 ί e~2 ί e3

+ 3e2 I e~21 e3 / e~21 e3 with the same proviso.

Jo Jo Jo Jo

The pattern has been set: if / e Ln and if c < r, then, modulo lower gradients,

Vln is a sum of iterated and/or multiplied double integrals of the form

e2 f e~2 ί e3 f e~2 ί e3 ί e~2 ί e3 (n - 1) fold;

see the table for In. The proof is by induction, starting from n = 1. v/w is

taken in the stated form on Ln:

Vln = Σ e 2 f e~2( e3 ••• f e'2 ί e3 (n - 1) fold + £ c.V/. .
J0 J0 J0 J0 j<n

e - V — eF~ι is now applied at L n + 1 c I w to produce the desired expression

V/Λ + i = Σe2 ί e~2 ί e3 ί e~2 f e3 «-fold + £ c'vL
J Jo Jo Jo J<n

by virtue of the following remarks:

(a) Modulo lower gradients, e V produces from the sum of (n — 1) fold

integrals a new sum of n fold integrals plus a fixed multiple of the old sum,

which is nothing but Vln.

(b) -eF~ι does the same except the added term is simply a multiple of

e2 =

(c) (e V - eF~ι)VIj = V/y+i for y < n.
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(d) The numbers Cj (j < n) are smooth functions of /, as you will check

inductively, and these contribute, under the action of e V, the quantity

(Jo Vcje)vlj to the expression for V/w+1.

The proof of (1) can now be finished: if V/ r t+1 is dependent upon

V/χ, , V/w at a point of Ln+ι, then with new coefficients c- (j^n),

Σ e 2 ί e-2f e3 ••• f e ' 2 f e3 n fold

= Σ CjΣe2fe-2[e3 ••• [ e'2 [ e3 (j - 1) fold

for x < r. But the product of e2 and a (j — 1) fold integral is of the form

[e'(0)]J+lxd[l + o(l)] at x = 0 with J = 2 + 3(y - 1) = 3/ - 1, and as no

cancellation can occur between such quantities, soc 1 ,c 2 ,c 3 , ,c n are seen, in

that order, to vanish, and a contradiction is obtained.

Proof of (2). V/n + 1 is now computed, not as before on Ln+ι, but at any

point of Ln. The resulting expression

V/n+1 = (e V)V/Π ~ eF~\vIn - eln+ι)

contains just one novel term / π + 1 X e2fQe~2f0e
2 not seen in the former

computation; luckily, it is of degree 4 at x = 0 and 4 is not of the form

3j — 1 = 2,5, so that the former conclusion (to wit, the independence of

V/π + 1 ) is unchanged.

Higher dimensions. The present proof of (1) is hopeless in higher dimen-

sions: it depends upon expressing the operator F'ιe2, modulo e, in the form

— eJoe~2foe3 n e a r x = 0 in case /o

x e3 = 0, and this has no counterpart.

Example. D = (0,1) X (0,1/2) c R2. The operator F = - V - 8τr2 has

ground state λ n = -3ττ 2, simple 2nd eigenvalue λ 2 1 = 0 with eigenfunction

e = e 2 1 = 2\/ϊ sin(2ττx1) sin(2πΛ;2) subject to J 2 = / e3 = 0, and

with e m n = 2\/2̂  si^Trmx!) sin(2τ7WΛ:2) for general m,« > 1, from which it is

easy to see that F~ιe2 = ce + o(e) is not possible near any of the sides of D:

for example, if this happens along xλ = 0, then dF~ιe2/dxι = lire sin(2ττjc2)

for x 1 = 0 and 0 < x2 < 1/2, and explicit computation reveals that this is not

so.
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3. Table

The functionals Ix = λ 2, I2 = Joe
3, etc. and their gradients are recorded up

to I5.

n

1

2

3

4

5

/„ on L,,_ι

λ2

Λ3

-3ίl e2F~ιe2

\s( e(eF~ι)2e2

-15

Xβj e{eF~ιγe2

Vίn on Ln

e2

-leF'V-

3 X MeF~ι)2e2

-15 x4(eF~ιγe2

45 X 8(eF - 1 ) 4 ^ 2

+ 4eF'ι(F~{e2)(F~ιeF-{e2)

V/,, on £„ for .x < r.
modulo lower gradients

e2

3e2 \ e~2] e3

3 e 2 x 4 ί X e - 2 ( e3f e ~ 2 ( e3

+ ( Γ e~2[ e3)2
Jo Jo

, rx _ 2 r 3 i _ 2 /" 3 / _ 2 / * 3

•'o Ό Ό •'o "Ό Λ)

+ 2 ( / V e - 2 / e 3 ) ( / % - 2 / e 3 / e - 2 / ^ )
•Ό 'o "Ό -Ό yo 'o
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