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STRANGE ACTIONS OF GROUPS ON SPHERES

MICHAEL H. FREEDMAN & RICHARD SKORA

A theme in topology is that certain group actions may be made geometric by
a change of coordinates. In this paper geometric means conformal. In the mid
1970's F. Gehring and B. Palka expressed hope that a uniformly quasiconfor-
mal action GxS" I ->S" I i s conjugate by a quasiconformal homeomorphism to
a conformal action [11]. This was proved to be true by D. Sullivan [20] and P.
Tukia [21] when n = 2.

Let Fr denote a free group of rank r and Fr X Z 2 r a certain semidirect
product (defined precisely later). One of our two main results is (see §3): For r
sufficiently large1 there is a discrete, smooth, uniformly quasiconformal action
ψ: (Fr X Z2r) X S2 -* S3 which is not conjugate (by any homeomorphism) to
a conformal action.

There has been interesting earlier work in this direction. Tukia [22] for n > 2
constructed a uniformly quasiconformal action G X Sn -+ Sn of a connected
solvable Lie group G, where G does not embed in the Mόbius group of Sn.
Our example differs from Tukia's in that our action is discrete and smooth
(= C00). Recently, G. Martin [15] has constructed a discrete (but not smooth),
uniformly quasiconformal action on Sn, n > 3, which is not quasiconformally
conjugate to a conformal action but is topologically conjugate to a conformal
action.

The failure of the higher dimensional Smith conjecture is relevant. It was
long known to topologists that for each n > 4 there are smooth, finite cyclic
actions on Sn whose fixed point sets are nontrivially knotted (n - 2)-spheres
[12]. These, of course, could not be topologically conjugate to elliptic (confor-
mal) groups which after a further conjugation are linear. In fact, the action ψ
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1 The minimal r suitable in our constructions seems to be more than ten and less than 100.
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can be thought of as a counterexample to a natural three-dimensional generali-

zation of the Smith conjecture where the compactness of the group is replaced

by the compactness condition: uniform quasiconformality.

At the other extreme, we produce, for any r > 2, an action φ of Fr on S3

which is continuous but is not topologically conjugate to any group of

uniformly quasiconformal transformations. What is novel here is that each

element of Fr is individually conjugate to a conformal (actually hyperbolic)

transformation; so that the wildness arises from interplay of the generators,

not the dynamics of any one singly.

Our examples are drawn from a class we call admissible actions (defined

below). Within this class are Schottky groups, φ, and ψ which respect the

conformal structure to varying degrees. Like Schottky actions, admissible

actions have limit sets homeomorphic to Cantor sets. The embedding of this

Cantor set in Sn is key to our investigation.

Cantor sets imbedded in Sn are of two types. A Cantor set # c S" is tame

if there is a homeomorphism h: S" -» S" such that h(^) lies on a smoothly

embedded arc; otherwise, ^ is wild. It is well known that a Cantor set # c Sn

is tame if and only if for all ε > 0 there are disjoint w-balls Bι, ,Bkc:Sn

such that each is of diameter less than ε and tfc[JBk. Hence, the Schottky

actions have tame Cantor set limit sets.

Both φ and ψ have wild Cantor set limit sets. It is an attractive idea that

purely topological properties of a Cantor limit set would be obstructions to the

action being compatible with various structures (e.g., conformal, uniformly

quasiconformal, C", Lipshitz, and Holder). However, contrary to an earlier

conjecture of ours, Bestvina and Cooper ([1] and [2]) have devised conformal

actions o n 5 3 whose limit set is a wild Cantor set. Thus any constraint that the

topology of Λ imposes on the compatible structures is subtle.

In §1 we review the Schottky group, define admissible action, and recall the

definition of a uniformly quasiconformal action. The action φ is constructed in

§2, and it is proved that φ is not conjugate to a uniformly quasiconformal

action. The action ψ is constructed in §3, and it is shown that ψ is smooth and

uniformly quasiconformal but not conjugate to a conformal action. In an

earlier paper [10] the first author showed that extension from S3 to S4 of

admissible actions by free groups is equivalent to the topological surgery

conjecture. With this background in mind we consider the extension question

for φ and ψ. In §4 it is shown that both φ and ψ extend to admissible actions

on S4. We also give an example of an admissible action (by a nonfree group)

which does not have an extension. In §5 we describe two techniques which

yield admissible actions in higher dimensions. We also show that these actions

extend to admissible actions on the next higher dimensional sphere.
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1. Background

In this paper we will be comparing group actions which may be topological

or smooth with a standard conformal model. The reader should not presume

unstated structure to maps or actions beyond continuity. Given an action a:

G X S" -> Sn, the collection of points of S", which have neighborhoods J/*

such that all but finitely many translates of Jί under the action are disjoint

with JV, is called the domain of discontinuity of a, denoted Ωα. The limit set of

a is Sn — Ωα, denoted Λα. An action is properly discontinuous if every

compactum meets only finitely many of its translates.

Our examples are modelled on the Schottky groups, familiar from geometric

function theory. Choose a collection {Aλ, Bλ, - , Ar, Br) of disjoint, round

π-balls in Sn. Then there are (nonunique) conformal maps j l 9 , jr\ Sn -> Sn

such that jj(Sn — At) = Bt. The group generated by the y/s under composition

is by definition a Schottky group.2

Let @ = Sn — Aλ — Bλ - —λr — Br. Then the group graph of the free

group of rank r, denoted Fr, is dual to the collection of translates of 3) under

the Schottky group. Thus the Schottky group is isomorphic to Fr. Denote the

action by ω: Fr X S" -> Sn. It is well known that ω is properly discontinuous

on Ωω, and Λ ω is a tame Cantor set.

1.1. Definition. Let G be a finite generated group and G X Sn -> Sn an

action. Then a is admissible if: (1) a is properly discontinuous on Ωα, (2) Ωα/α

is compact, and (3) Λα is a Cantor set.

Admissible actions where G is a free group arise naturally in the study of the

topological surgery problem. The exact connection is described by Freedman

[10].

Up to (topological) conjugation two Schottky actions of the same rank are

equivalent. Below we prove a much stronger result which is needed in §§4 and

5. The main tool is the Stable Homeomorphism Theorem which was proved in

dimension 2 by T. Radό [18], dimension 3 by E. Moise [16], dimension 4 by

F. Quinn [17], and dimension ^ 5 by R. Kirby [13]. Two well-known

implications are the Annulus Theorem and that any orientation preserving

homeomorphism of the w-sphere to itself is isotopic to the identity.

Let al9 bl9- -,ar, br be disjoint topologically flat w-balls in S"\ n > 2, and

gι,"',gr' Sn -> Sn orientation preserving homeomorphisms, such that

gi(Sn — άi) = b{, i = 1, , r, and the corresponding action μ is admissible.

Similarly let cl9 dv , cr, dr be disjoint topologically flat H-balls and Al5 , hr

2There are slightly more general definitions of Schottky group; for example see [14].
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orientation preserving homeomorphisms, such that h^S" — ct) = di9 i =
1, , r, and the corresponding action v is admissible.

1.2. Theorem. The actions μ, and v are conjugate.

Proof. It suffices to find a homeomorphism k: Sn -> Sn, such that
k © g. o k~ι = hi9 i = 1, , r. Repeated applications of the Annulus Theorem
gives an orientation preserving homeomorphism

k: S" - ax - bι - ar - br -> Sn - cx - dλ - -cr - dr,

such that fc(3fl/) = 3c, and k(db() = ddh i = 1, , r. Since k° gt° k 1\dci is
isotopic to λjθc,-, we may assume that (after isotopy) k ° gt ; ° k~ι\dcι-, = hfich

i = l, ,r. Now k extends equivariantly to all of Sn and the proof is
completed, q.e.d.

The following account of modulus may be read in more detail in [23]. A
path in a topological space X is a map γ: [0,1] -> X and a path family in X is
a nonempty collection of paths in X. If Γ is a path family in S3, then F(T)
denotes the set of all Borel measurable functions p: S 3 -> [0, 4- oo] such that

ί p ds > 1
Ύ

for all rectifiable γ e Γ. The modulus of Γ, denoted M(Γ), is

inf / ρ3 dm.

peF(Γ) -V

Given open sets ί/, F c S3 and a homeomorphism f:U-*V, the dilatation
of /, denoted A^/), is the maximum of

and

where Γ ranges over all path families in U such that M(T) and M(/(Γ)) are
not simultaneously 0 nor simultaneously + oo. Given any x G U the dilatation
of f near x, denoted K{f,x\ is infNK(f\N), where N ranges over all open
neighborhoods of x in ίΛ It is well known that K(f) = supx &υK(f,x). Also /
is conformal if and only if K(f) = 1.

The homeomorphism / is K-quasiconformal if K(f) < AT < +oo. An action
G X S 3 -> S 3 is K-quasiconformal if # ( / ) < ϋ: < 4- oo for all / e G. A
^-quasiconformal action is also called uniformly quasiconformal.
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2. The example φ

In this section we begin to show the diversity of admissible actions by

constructing an admissible action φ: F2 X S3 -> S3 which is not conjugate to a

uniformly quasiconformal action. In particular, φ is not conjugate to a

conformal action.

Let av a2, bv b2 be disjoint, locally flat, solid tons in S3 as pictured in

Figure 2.1. Since each torus is unknotted, there are orientation-

preserving homeomorphisms j v j 2 : S3 -> S3 such that j\(S3 - άλ) = bλ and

j2(S3 — ά2) = b2. The image of j \ is pictured in Figure 2.2. The group

generated by j \ , j 2 under composition is the free group of rank 2, denoted F2.

Let 3) = S3 - aλ - a2 - b1 - b2 and U = \JF2(2) (we do not claim that U

is the set of discontinuity nor that S3 - U is a Cantor set). The topology of

S3 - U depends on the choices of j \ and j 2 . We next show how to choose j \

and j 2 to ensure S3 - U is a Cantor set.

First, it is necessary to review a result of Decomposition Space Theory. Let

Γo, 7\ be locally flat solid tori embedded in a third solid torus T c S3 as

shown in Figure 2.3. For any solid torus L c S3 define Bing(L) to be

{ A(Γ0), Λ(7\)}, where h: T -> L is any homeomorphism taking a longitude of

FIGURE 2.1
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FIGURE 2.2

FIGURE 2.3
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T to a longitude of L (so Bing(L) is unique up to isotopy relative 3Γ). More

generally, for any union L = 7\ U U Tn of disjoint solid tori in S 3 define

Bing(L) = UBing(7;), and Bing^L) to be the &th iterate. Then it is an

amazing result of R. H. Bing that there is a sequence L = Lo, Ll9 L 2, such

that Lk = Bing(LA:_1) and the diameters of the elements of Lk go to zero as k

goes to + oo (this is far from trivial—try it, then consult [3], [4]). Since a

Cantor set is characterized as a compact, zero dimensional metric space

without isolated points, one also has Πk U Lk is a Cantor set.

Bing's result applies to our problem in the following way. The set U is

determined by j v j 2 . But conversely, certain reembeddings of U into S3

determine allowable choices for j \ , j 2 . Bing's result implies that U may be

isotoped in S3 such that S3 — U is a Cantor set. Such an embedding does

indeed permit allowable choices for j \ , j 2 . Therefore suppose j \ , j 2 were

chosen such that S3 - U is a Cantor set. Let the action be denoted φ:

F2 X S3 -> S3. Clearly Ωφ = U and the action is admissible.

2.1. Theorem. The action φ: F2X D3 -> D3 is admissible and not conjugate

to a uniformly quasiconformalaction.

Before proceeding with the proof, notice that Theorem 2.1 implies that φ is

quite strange. Each element of F 2, however, is conjugate to a hyperbolic

element of the Mόbius group. Furthermore, F2 contains subgroups of arbi-

trarily large rank which are conjugate to Schottky groups. For example, j \ and

(j2)
2 generate a subgroup conjugate to a Schottky group.

Similar actions of larger groups Fr, r > 2, may easily be constructed. One

such construction is to take the restriction of φ to any subgroup of F2 of finite

index.

Let T be a (topological) solid torus such that T is equipped with a fixed

Riemannian metric. Let Tτ denote the set of all closed paths γ: [0,1] -> T

which represent generators for ^ ( Γ ) . Then the length of T is

inf ( ds.
Y<ΞΓr

 Jy

The following is a pleasing counterpoint to Bing's shrinking argument: The

diameters of the components of Bing^Γ) may be arranged to approach zero,

but the lengths are more recalcitrant and some stay bounded from below.

2.2. Lemma. Let T c S3 be a locally flat, solid torus (with the inherited

Riemannian metric on f). There exists c > 0, such that

c<yk Σ length(F)

for allk. In particular•, c < length(K) for some V e Bing*(Γ).
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We need the following.

2.3. Lemma. Let Sι be the unit circle, D2 the unit disk, and Sι X D2 the

smooth solid torus with the product Riemannian metric. Then

2π<yk Σ length(F)
* V€ΞBingk(S1xD2)

for all k.

2.4. Lemma. Fix k, and for each V e Bing^S 1 X D2) choose yv e TV. If

Δ is any smooth, properly embedded, nonseparating disk in Sι X D2, then

Δ Π (Jv yv[0,1] contains at least 2k points.

2.5. Lemma. Let (P,d) c (Sι X D2; 3) be an embedded connected planar

surface representing the generator of H2(Sι X D2,3; Z). Let Tγ and T2 be solid

tori embedded in Sι X D2 as a Bing double. Suppose P and 7\ U T2 meet in

transverse general positions. Then for i = 1 or 2, P Π 7] must contain at least

two surfaces which represent generators ofH2(Ti, 3;Z).

Proof. For homological reasons [P Π 7],3] = 0 e H2(Ti9d; Z). If every

component of P Π 7] is homologically trivial in Ti9 then an elementary

argument replaces P with a new compact planar surface Q c Sι X D2,

dQ = dP, and with Q Π (7\ U Γ2) = 0 . [Construction of Q: Make P trans-

verse to 7\ U Γ2. Beginning with innermost circle, do embedded surgery along

those circles of intersection which are trivial in 7\ U T2. Discard 2-sphere

components. The intersections with 7\ U T2 now consist of embedded annuli.

Again, beginning with innermost annuli replace these embedding with copies

of annuli lying in the boundary 3(7\ U Γ^.] This is certainly impossible, and

to obtain the contradiction lift β to a surface Q in the universal cover

Rι X D2 -^ Sι X D2. The inverse image, TT^CoreT; U CoreΓ2) is an infinite

chain in which consecutive links have linking number one. Since Q generates

H2(RX X D2), Q separates, so some consecutive pair of links γ and γ ' must lie

on opposite sides of Q. Now slide these circles along d(Rλ X D2) toward 4- oo

and cap them off far away from γ'. This constructs new null homology for γ

which is disjoint from γ r contradicting the fact that γ and γ ' have linking

number one. q.e.d.

Proof of 2.4. By general position suppose the boundaries of the V 's are

transverse to Δ and the γ / s still lie in their interiors. Applying Lemma 2.5 k

times, we see that Δ Π UBing^S 1 X D2) contains at least 2* disjoint planar

surfaces which each represent a generator of / ^ ( U B i n g ^ S 1 X Z>2),3; Z). By

duality, Δ Π U γκ[0,1] contains at least 2k points, q.e.d.

Given a smooth path: / [0,1] -> S\ let #f: S1 -> (0,1,2, , 4- oo} be the

function which assigns to each J G S 1 the number of points in f~ι(y). Then

the following is easy and the proof is left to the reader.
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2.6. Lemma. The function #f is measurable and fsι #fdm = length(/).
Proof of 2.3. Fix k. For each V <E Bing^S1 X D2) choose a smooth loop

yy e Tv. Let p: Sι X D2 -+ Sι be the projection. By Lemma 2.4,

By Lemma 2.6

J #poyydm =
p o y y

and because Sι X D2 has the product metric length(/? ° γ^) ^ length(γ^).
Combining inequalities we have

Since length(F) is the infimum of length(γ^) over all smooth γ/s, the proof is
complete.

Proof of 2.2. Since T is locally flat, the 3-dimensional Hauptvermutung
implies T is approximated by a smooth embedding /: Sι X D2 -> S3> such
that f(Sι X D2) D Γ. Since ί x D 2 is compact there is a constant s > 0
such that 5||ϋ|| < ||/>/(ϋ)|| for all v in the tangent space of S1 X D 2. Take
c = 2πs and the result follows from Lemma 2.3. q.e.d.

Let Γ c S3 be a solid torus. The volume of T is jτdm.
2.7. Lemma. If T a S3 is a locally flat, solid torus {with the inherited

Riemannian metric on Γ), then

Proof. For the left inequality consider a smooth embedding f\SιXD2-+
t such that inclusion is a homotopy equivalence. It is well known that
0 < M(Γ / ( 5i x D2 )), and by definition M(Γ/ ( Six D2 )) < M(TT).

We now prove the right inequality. It is easy to see that 0 < length(Γ).
Define the Borel measurable function p: S 3 -* [0, 4- oo] as

ίl/length(Γ),/ g ( )

tθ, x ί T.

Cleafly, p e F(ΓΓ). Hence

M(IY) < /χ 3 p^m - v o l u m e ( Γ ) ( ] - i ^ y ) . q.e.d.
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Proof of 2.1. Since φ is well defined only up to conjugation, it suffices to

show φ is not uniformly quasiformal. We would like to use Lemma 2.2 to claim

something about the lengths of translates of av a2, bl9 b2 under F2. Due to

the lopsidedness of Figure 2.2, however, we need to introduce auxiliary tori.

Let M C X 3 be the solid torus pictured in Figure 2.1. Its image under j \ is

shown in Figure 2.2. Notice that B i n g ^ ) = {jλ{bλ\ j\(u)}. Let v = S3 - u\

then v has properties similar to u.

Let F2{av a2, bv b2, w, υ] be the collection of images of the six tori under

all elements of F2. Then the collection has a sequence of subsets Lo, L l 5

such that bλ = Lo and Lk = Bing(LA:_1). By Lemma 2.2 there is a constant c

and a sequence {τ1? τ2, } of solid tori such that τk belongs to Lk and

l e n g t h ^ ) > c for all k. Since vo lume^) -> 0, Lemma 2.7 implies that

M(Γ T J -> Oas k -> +oo.

Lemma 2.7 also implies that M(ΓT) > 0 for all r G {av a2, bv b2, w, v}.

Since by construction each τk is the image of some T G ( α ^ α 2 , Al9 fe2, w, υ)

under F 2 , the action is not uniformly quasiconformal. q.e.d.

The above proof uses that volume ( F A : ) ^ 0 a s A : - ^ o o which follows from

S3 — U being a Cantor set. But even if j \ and j 2 are chosen so that S3 — U is

not a Cantor set, the action still cannot be uniformly quasiconformal. For,

suppose the action were uniformly quasiconformal then a positive lower bound

on M(ΓT) for all r G [av a2, bl9 b2, u,υ] gives a positive lower bound b on

M ( i γ ) for all K G U ^ ^ . By Lemma 2.7, length3(F) < volume(F)/7>. The

Holder inequality gives

/ \l/3/ \2/3

length(K)<ί Σ length?(K)I Σ l)

J volumes3) \1/3,^2/3

But this contradicts Lemma 2.2 which says that ΣV(ΞL length(F) grows like

2k.

It should also be remarked that any explicit shrinking argument for the Bing

decomposition gives new coordinates to S3 by which φ can be measured. In

principle, one can estimate the quality of the continuity of φ, i.e., how large

can δ be and still ε-control the value of / G F2. Bing's original shrinking

argument (1952) [3] is surpassed in efficiency by a recent argument [4]. A

careful look at Bing's new shrinking argument shows that for every / e F2

there is a c > 0 (in fact, c may be taken proportional to the word length of / )

such that for all ε > 0 there is δ > e~c/ε > 0 such that dist^(SQ, SX) < 8
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implies distS3(/(S0), /(S^) < ε. This condition is somewhat weaker, for exam-
ple, than Holder continuity. A still weaker condition results from the 1952-
shrink.

3. The example ψ

In this section we construct an admissible action ψ: (Fr>4 Z2r) X S3 -> S 3,

3 < r. We show that for r sufficiently large, each ψ is smooth and uniformly

quasiconformal but not conjugate to a conformal action. The construction of ψ

will be given in stages; hypotheses will be added as needed.

Let al9a2," -, ar, bv b2, , bn 3 < r, be pairwise disjoint, locally flat solid

tori in S3\ their image after stereographic projection s: S 3 - { o o } - > R 3 i s

shown in Figure 3.1. Since the solid tori are individually unknotted, there are

homeomorphisms h{. S3 -> S3 such that h^S3 - άt) = bi9 i = 1,2, , r.

When r = 3; the image of a typical ht is shown in Figure 3.2. The image of

h~ι is similar. The A/s generate the free group of rank r, denoted Fr.

Take 3 = S3 - ax - -ar - bx - -br and U= \JFr(9). The
embedding of U in S 3 depends on the choices of the /z/s. As in §2, we will

show that the Λz's may be chosen such that S3 — U is a Cantor set. This time,

however, we need not appeal to Decomposition Space Theory. The reason is

contained in Figure 3.2. The tori in bλ may easily be isotoped to each have

diameter smaller than the diameter of bλ (in the worst case, r = 3, each torus

in bλ has length about 4/5 that of bλ). Thus U may be isotoped such that the

diameter of f(@) goes to zero as the word length of Fr goes to + oo. This new

embedding of U guarantees that S3 — U is a Cantor set and determines Λz's

with the desired property. Let the action be denoted ψ0: Fr X S3 -» S3.

Next we show that for r large, ψ 0 acts smoothly and uniformly quasiconfor-

mally. The solid tori al9"'9bV'" should be thought of as rigid—not

changing shape nor size. Imagine that they make up the links of a necklace

which grows more flexible as the number of links increases. Figure 3.3 gives a

new picture of hλ after stereographic projections. It is clear from the figure

that we may add the hypothesis that for r sufficiently large, soh^s'1

restricted to a neighborhood of each of sOO,- ,^(Λ,-),- ,s(b r) is a similar-

ity transformation. Similarly hypothesize that soh~λ°s~ι restricted to a

neighborhood of each of sia^ ,s(fc/), , s(br) is a similarity transforma-

tion. In particular A, restricted to a neighborhood of al9- , άi9- , bn

^/ r l(βi)> * 'iKl(bi),' - ,hjι{br) is conformal. Finally we also hypothesize

that ht is smooth. It should be mentioned that the new hypotheses do not

conflict with the assumption that S3 - U is a Cantor set. In fact, the
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FIGURE 3.1

FIGURE 3.2
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FIGURE 3.3

construction now guarantees that S3 — U is a Cantor set: the diameter of
f(@) decreases geometrically as the word length of / goes to oo.

Since the Λ/s are smooth, ψ0 acts smoothly, and for some K < + oo each ht

is Λ'-quasiconformal. To show Fr acts uniformly quasiconformally we use
crucially that each ht is conformal in a neighborhood of Λψo, hence, dilatation
does not build up under composition.

We claim that / is A^-quasiconformal for all / e Fr. It suffices to show that
the dilatation of / near each x e S 3 is no greater than K2. Let / =
fm ° * ' ' °/i> fi^ [h\1,'' •> Λ Γ 1 }, be a reduced word, and let xt be defined
inductively by xι = x, xi+ι = f^x,). Then the dilatation of / near x is no
greater than the product of dilatations of each j i near xt. If xι,£ @ \j f~ι(&),
then the dilatation of ft near xt is 1, otherwise the dilation is less than or equal
to K. The structure of the free group implies that x^QίKJ frιφ) for at most
two i 's. Therefore the dilatation of / near x is no greater than K2.

Thus for r sufficiently large the action ψ0 is smooth and uniformly quasi-
conformal. For small values of r we doubt that ψ0 can be smooth or uniformly
quasiconformal. It is also unknown whether any ψ0 is conjugate to a confor-
mal action. We now make a final enhancement.
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Recall Figure 3.1; there is a rotational symmetry. Let g: S3 -> S3 be the

conformal transformation of period 2r induced by isometric rotation of R3

about a line through an angle of m/r radians. So g(aλ) = a2,- ,g(ar) =

&!,•••> g(br) = av We also want that g° hλ° g~ι = A2, , gr~ι ° hx ° g
ι~r =

hr and that gr°h1°g~r = hϊι. Before adding hypotheses to hl9 it is ap-

propriate to examine hλ more closely.

In Figure 3.1 the oriented meridional and longitudinal curves of aγ (and bλ)

are respectively labeled m and / (and respectively m' and /'). Suppose

gr(m) = mf and gr(l) = /'. Then hλ\daλ: daλ -> 3 ^ is a homeomorphism

such that up to homotopy hλ(m) = /', hλ(l) = m' (or hλ(m) = - / ' , hλ(l) =

— m\ but for specificity, assume the former case). Therefore gro Λ1|3fl1:

3ax -> 3αx is isotopic to an involution. So further suppose hλ is chosen such

that gr © Λ1 |3^1 is an involution. Let h = hv then redefine hλ by

Clearly hx is continuous and g r ° f t 1 °g~ r = /ίf1. Furthermore, if care is

taken in defining hλ in a neighborhood of 3a1? then hλ is also smooth. We

omit the details.

Finally, just define h2 = g° hι<> g"1,- , hr = g r - 1 ^ V g1"7". Then the ac-

tion of g by conjugation on the set {Al5 , Ar, hx~
 1, , Λ71} is cyclic permu-

tation, and the group generated by Al5 g is a semidirect product, denoted

Fλ XI Z 2 r . Since g is conformal, the action by Fr X Z 2 r is smooth and

uniformly quasiconformal.

Let ψ: (Fr X Z 2 r ) X S 3 -> 5 3 be the action. Then ψ is clearly admissible.

We have:

3.1. Theorem. The action ψ is admissible, and for r sufficiently large ψ is

smooth and uniformly quasiconformal, but is not conjugate to a conformal action.

Proof. It only remains to prove the last statement.

The group element gr ° hv is an involution. It leaves invariant daλ and is

orientation reversing on dav Further checking reveals that the fixed point set

of g r ° hx is a simple loop lx c daλ (representing the diagonal homology class

/ 4- m e H^dcii, Z)). Similarly the fixed point set of each gr+k o / i ^ g M s a

simple loop lk + ι, k = 1, ,2r - 1. The link L = {/1? , /2r} is isotopic to

the link of longitudes of the solid tori in Figure 3.1. Standard techniques of

knot theory show this to be a nontrivial link.

If ψ is conjugated by any homeomorphism f: S3 -* S3, the image link f(L)

will be a union of fixed sets for the new action \pf. If ψf were conformal, then

f(L) would be a link of round circles. Since topologically L and f(L) are
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equivalent and nontrivial, the following lemma shows that ψ^ can never be

conformal.

3.2. Lemma. Let L = (/l5 , lk) c S3 be a link whose components are

round circles. Then L is the trivial link if and only if the pairwise linking numbers

(lέ, / 7 ) , / Φ j , are all zero.

Proof. Let S3 = dB4. Since each component of L is round, each compo-

nent /, bounds a unique round hemisphere dt in B4 which meets S3 per-

pendicularly. By synthetic geometry, the disjointness of /, and lj9 i Φj, implies

that di Π dj is empty or consists of exactly one point. The linking number

hypothesis implies the former. The J/s constitute convex slices for the link L.

Shrinking the radius of B4 evolves L to the empty link with deaths of

components being the only catastrophies; this proves that L was trivial,

q.e.d.

The proof of the lemma implicitly exploits the Poincare model for H 4 .

We note that the extension of ψ 0 to ψ goes through for any r ^ 3. Thus ψ is

not conjugate to a conformal action for any r > 3. Also our argument only

concerns the subgroup Fr X Z 2 = ( A1? gr) so the theorem applies to ψ\Fr X Z 2 .

As was already pointed out ψ |Z 2 r X S3 is conformal. Also each element of

Fr is conjugate to a hyperbolic element of the Mόbius group. Thus each

element of Fr X Z 2 r is conjugate to an element of the Mόbius group. In fact

for all i, hl9- , Λ,-,- , hr generate a group which is conjugate to a Schottky

group.

We point out some topological distinctions between φ, ψ, and Schottky

actions. Recall that the limit set of a Schottky action is a tame Cantor set. The

complement of a tame Cantor set is simply connected. But the limit sets of

both φ, ψ are wild Cantor sets and in fact have the stronger property that their

complements are not simply connected. Curiously, the limit set of ψ has the

property that every proper sub-Cantor set of Λψ has simply connected

complement (see e.g. [19]). The limit set of φ does not share this property.

Our experience suggests that for admissible actions the conditions " topologi-

cally conjugate to a smooth action" and " topologically conjuguate to a

uniformly quasiconformal action" will be quite difficult to distinguish by

examples and may in fact be identical.

4. Extensions of φ and ψ

In this section we show that both φ and ψ extend to actions on S4.

4.1. Theorem. There is an invariant, topologically flat embedding S3 *-> S4

and Schottky action ω: F2X S4 -> S4 such that φ = ω\F2 X S3: F2X S3 -» S3.
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Proof. We first extend φ to B4. Identify S3 = dB4. Let a[,a'2 c B4 be

disjoint unknotted standard 2-handles with attaching regions av a2 respec-

tively. Let b[, b'2 c B4, such that (ftj, S3 Π ty) * (/>, X [0,1], bt X {0}), / =

1,2. Then by construction (B4, B4 - άt) « ( £ 4 , 6,-), / = 1,2.

Choose homeomorphisms y'ί, y2': B4 -* B4 such that j-(B4 - a•) = fef and

y/IS3 =y7, / = 1,2. Let the group generated by y/, y2' be denoted F2. Define

3' = B4 - ά[ - ά'2 - b[ - bf

2 and U = \JF2{3'\

We claim that j v j 2 may be chosen so that B4 — U = Λφ. Again it suffices

to see that C/ may be isotoped relative S3 such that B4 — U = Ωφ. In this case

it is easy and follows from the observation that a[, a2, b'v b2 and their

translates under F2 may be isotoped relative S3 to lie as closely as desired to

S3. Thus we choose the appropriate j[, j 2 .

Identify S4 with the double of B4 along S3 and let φ": F2 X S4 -> 5 4 be

the obvious extension of the above action. Clearly S3 -* S4 is topologically

flat. We will show that φ" is conjugate to a Schottky action.

Let a", b[\ a2, b2 be the doubles of a[, b'v a2, b2 respectively resulting

from doubling B4. Both b[\ b2 have 1-dimensional cores; therefore, the link

a", b[\ a2, b2 is splittable. In particular, there are (topological) locally flat

4-balls Ax, A2 containing a", a2 respectively and each disjoint with both b[\

b2. Let Bj = j)(S4 - AJ, / = 1,2. Clearly S4 - λx - λ2 - Bλ - B2 is a

fundamental domain for φ". By Theorem 1.2, φ" is conjugate to a Schottky

action ω. q.e.d.

In the above theorem one may change the conclusion to have S 3 -> S4 the

standard inclusion, but then ω will only be conjugate to a Schottky action.

We now prove the analogous theorem for ψ. The argument needs to be more

clever because the extension must include the cyclic symmetry.

4.2. Theorem. There is an invariant, topologically flat embedding S3 *-* S4

and admissible action ψ": (Fr XI Z 2 r ) X 5 4 - ^ S 4 such that ψ = ψ'Ίί^V * Z 2 r )

X S 3 . 3

Proof. Again we first extend ψ to B4, Identity S3 = dB4. Choose an

unknotted topologically flat solid torus τ c S 3 and define u = cone(τ) =

{x e B4\x = λx\ for some x' G T and 0 < λ < 1}. Let υ = B4 - c. The pair

M, v have the nice property that (B4

y u) « (B4, v).

Let notation be as in §3. The homeomorphism g extends in an obvious way

to a rotation g'\ B4 -* B4 with fixed point set a 2-disk. Let p: B4 -+ B4/gf

be projection. The core of p(ax) is a square knot. Hence, it bounds a 2-disk D

properly embedded in G4/g''. Furthermore, D may be chosen disjoint with the

3 In another paper the authors show that S3 ^> S4 is standard and ψ" is smooth and uniformly

quasiconformal, but not conjugate to a conformal action.
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image of the fixed point set of g' such that each component of p~1(D) is an

unknotted disk.

Then D guides us to choose disjoint a'v- -,a'r, b[, , bf

r c B4, such that

their union is invariant under g' and (B4, a'i9 at) ~ (B4, u, τ) « (2?4, b\, bt). As

in the proof of Theorem 3.1, there is an h[ extending hx and satisfying

gr ° h[<> gr = {h[)~ι. So h[, gr generate a group isomorphic to Fr X Z 2 r .

Argue as in the proof of Theorem 4.1 that h[ may be chosen such that

Thus we have the desired extension ψ': (Fr X Z 2 r ) X B4 -> £ 4 . Doubling £ 4

and extending the action in the natural way gives the admissible action ψ".

q.e.d.

Notice that ψ' has an extension (Fr X Z 2 r ) X Z 2 X S4 -• S 4, where Z 2 acts

by reflection in S3. A similar statement is true of φ".

In the earlier paper [10] only admissible actions of free groups were

considered, and an identification of the extension problem with the full

topological surgery conjecture was obtained. We point out here that when the

group acting is even slightly more complicated, an extension from S3 to S4

does not always exist, even topologically.

To illustrate, let G = F3 X Z 3 , where Z 3 acts by cyclic permutation of a

basis of F3. We will obtain an action G X S3 -> S 3 by adding a 3-fold

symmetry to the example described in [10]. Briefly, form a six component link

by replacing each component of the Borromean rings by two parallel solid tori.

Construct the action of F3 « (hι,h2,h3) by letting hi map the interior of the

ίth Borromean ring component to the exterior of its parallel copy. Now the

3-fold symmetry of the link allows the action to extend to all of G. A

calculation which may be made using the methods of the Kirby calculus gives

the smooth orbifold description of Ω/G = N of Figure 4.1. Note that, as a

manifold, N « S1 X S2.

Suppose ω had an extension ω: G X B4 ^> B4 which is admissible. We will

obtain a contradiction. Using Smith theory, one may determine that the

underlying smooth manifold of ω: /G ~ M has the Z2-homology of S 1 X B3

and that the only nontrivial stratum is a Z 3 stratum homeomorphic to a 2-disk

(with boundary equal to the Z 3 stratum of N).

The link of Figure 4.1 is symmetric, so regard the longer component as the

boundary of the Z3-stratum of ω and the shorter component as indicating a

1-handle. It is clear that the longer component also bounds in immersed disk

D with one transverse double point. Taking D near the boundary of M we

may suppose D intersects the Z3-stratum only in 3D. Thus we have con-

structed a 2-sphere S2 with one transverse double point representing the
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0 (zero framed
surgery on
this component)

Z3-stratum

N

FIGURE 4.1

generator of Hλ(M\ Z 2 ) . Let M be a 2-fold covering determined by the

generator of Hλ(M\ Z 2 ) . By the Gysin sequence M, like M, is a Z2-homology

S1 X B3. Taking a 2-fold covering M of M gives another Z2-homology

Sι X B3. But two adjacent lifts of S2 in M will have intersection number

equal to one—contradicting that H2(M; Z 2 ) ~ 0. q.e.d.

This argument, when combined with [10], shows that ± Whitehead double

of the Borromean rings is not topologically slice in a way that respects the Z 3

symmetry of that link.

5. Higher dimensional examples

In this section we give two constructions of admissible actions on Sn. Our

first construction involves spinning an admissible action on S3. This gives

examples for n > 4. The second construction is a homological copy of the

Schottky action. This gives examples for n > 5. We also show concretely that

in both cases these actions have extensions to Schottky actions on the next

higher dimensional sphere (this also follows from [10]). We do not investigate

the geometry of these actions but these explicit descriptions would serve as a

starting point.
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To describe the first construction we need another example in S3. Let al9

a2, &i, b2 be pairwise disjoint, unknotted solid tori in S3. They are pictured in

Figure 5.1. Let j λ , j 2 . S3 -> S3 be orientation preserving homeomorphisms,

such that Ji(S3 — άγ) = bt, i = 1,2. The images of j \ and yf1 are shown in

Figure 5.2 (the images of j 2 and j 2

ι are similar). The group generated by j \

and j 2 is the free group of rank 2, denoted F2. Let 3) = S3 - aλ - a2 - bx - b2

and U = UF2(.@). The same argument of §2 shows that we may also choose j λ

and j 2 such that S3 - U is a Cantor set. Therefore, the action F2 X S3 -> S3

is admissible.

We now use the above example and spinning to get higher dimensional

examples. Let B3 be a 3-ball in S3 as pictured in Figure 5.1. Identify

S" = d(B3 X Bn~2). Then (to avoid the proliferation of notation) let (atx

B"~2)ΠSn be denoted by ai9 and let a regular neighborhood of bt X p be

denoted by bi9 i = 1,2, where p is any point in dBn~2.

X 5 2 and 6X « Z?2 « 5 1 X B n l . The linking is like« S"2"2
Clearly αx « α 2 « S

that of the 3-dimensional analogue, so Figures 5.1 and 5.2 now serve as

schematics.

FIGURE 5.1
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J\Φ2)

FIGURE 5.2

The reader may now anticipate the action. Let j v j 2 : S" -> S" be orienta-
tion preserving homeomorphisms such that j\(Sn - άx) = bx and j2(Sn - ά2)

b2. The group generated by j \ , j 2 is the free group of rank 2, denoted F2.
b b

2 p g y j \ j 2

Let 3> = S" - aλ - bx - ά2 - b2 and U To show y^ j 2 may be
chosen such that Sn — U is a Cantor set requires understanding of both the
Bing Decomposition and the Spun Bing Decomposition. The Bing Decomposi-
tion is shrinkable [3], [4]. [Recall that in §2 the position of certain subsets
(there solid tori) were not defined except upto isotopy. In our paper one may
translate "shrinkable" to mean that the appropriate nested collection may be
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arranged (by isotopy) to have diameters approach zero.] The Spun Bing

Decomposition was first shrunk by Edwards [7]. The implication is that U may

be isotoped in Sn so that Sn - U is a Cantor set. Thus assume j \ and j 2 are

chosen such that S" - U is a Cantor set.

Let ζ: F2 X Sn -* Sn denote the action.

5.1. Theorem. The action ζ: F2X Sn -> Sn, 4 < «, is admissible and dis-

tinct from the Schottky action. Furthermore, there is an invariant, topologically

flat embedding Sn -> Sn + 1 and Schottky action ω: F2 X Sn+ι -» Sn+\ such

that ξ = ω\F2 X Sn.

Proof. The action is clearly admissible and it is distinguished from the

Schottky action by the wildness of Λ^ : the complement of Aξ is not simply

connected.

The rest of the proof is as in 4.1, except for one modification. In extending

the action to Bn + ι one attaches 2-handle along bx and b2. The rest of the

argument is forced.

Note. If in attempting to prove the above one attaches an (n — l)-handle

along ax and a2, then the argument is impossible to complete.

We now give our second higher dimensional construction. It gives examples

of admissible actions on Sn, n > 5, distinct from Schottky actions. The

example is, however, a homological copy of the Schottky action. No compara-

ble examples has been found for n = 4. Like the other examples we show that

it is the cross section of a Schottky action on the next higher dimensional

sphere.

Let X be the piecewise-linear, 2-dimensional spine of a nonsimply con-

nected, homology 3-ball. For n > 5, let X *-> R n + 1 be a PL embedding with

regular neighborhood N(X). Notice that πλ(dN(X)) « πx(X). Take three

isomorphic copies Xv X2, X2 of X and let Xl9 X29 X3, -> dN(X) be disjoint,

PL embeddings with disjoint regular neighborhoods Λ/X^), N(X2), N(X3) c

dN(X) respectively.

Define Q = dN(X) - U N(Xt), and label its boundary components Al9 A2,

A3. Choose a disjoint copy (R,BVB2,B3) « (Q, Al9 A2, A3). Finally define

Of = QUR/A3 = By Orient 9 and take the induced orientation on d£&. Then

2f has the following nice properties:

(1) dS) « ^41LIv42U - AYU - A2, where -Ai denotes Ai with opposite

orientation, and

(2) πλ(9) « ττι{X) « 1, and the inclusion of each boundary component of

3) into 3) induces an isomorphism on irv

It is well known that Aλ bounds a contractible w-manifold; let av bλ be two

copies of such a contractible manifold. Similarly choose a2, b2 for A2. Let Y
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be the quotient
^ U ^ U ^ U a2 U b2

da^A^db^ -Bi(i = 1,2)'

It is easy to see that πx(Y) = 1; using the high dimension Poincare Theorem

fix a homeomorphism Y » Sn. Also identify S"2 « dBn + ι.

The (Λ + l)-ball provides an Λ-cobordism (Bn+\ai9S
n - άt). By the Λ-

cobordism theorem ( £ " + 1, έi,.) « (>, X [0,1], ai X {0}). Hence (S"1, α,.) «

(S Λ , Sn - Λ,.). By construction (S Λ , β . ) « (S π , ft,-). Hence (Sn

9 5" - όf.) «

(Sn

9bi) by orientation preserving homeomorphism. Let y,: S"1 -> Sn be an

orientation-preserving homeomorphism such that j)(Sn — άt) = bi9 i = 1,2.

Then y l5 y2 generate the free group of rank 2, denoted F2. Let S = Sn - άλ -

ϊ>ι - ά2-b2ίindU = lJF2(3).
Let ^ be the decomposition whose elements are points of U and compo-

nents of Sn - U. Since al9 bx, a2, b2 are contractible, the projection Sn ->

S"/@ is cell-like. It is routine to check that Sn/^ is a generalized w-manifold

and satisfies the Disjoint Disks Property (a similar decomposition was con-

structed by R. Daverman; see [6] for details of the verification of the above

properties). By theorems of J. Cannon [5] or R. Edwards [8], Sn/&~ Sn.

Actually the implication is stronger. It says that U may be isotoped such that

the complement of Sn - U is a Cantor set. Thus suppose the y/s were chosen

to determine such a U.

Let θ: F2 X Sn -> Sn be the action. It is clearly admissible.

5.2. Theorem. The action θ: F2X Sn -» Sn, n > 5 , is admissible and dis-

tinct from the Schottky action. Furthermore, there is an invariant, topologically

flat embedding Sn ~> Sn+ι and Schottky action ω: F2X Sn + 1 ^ Sn+ι such that

ω\F2 X Sn = θ.

Proof. Property (2) of 2 implies that 7r 1 (Ω^)«7r 1 (A r )*l . Thus Λ# is a

wild Cantor set and θ is not conjugate to a Schottky action.

To prove the second part we first extend the action to Bn+ι. Recall that

Bn+1is an A-cobordism between at and Sn - άi9 i = 1,2. There are disjoint

sets a[, a2, b[9 b2 c Bn+\ such that

( 2 T + 1 , a,',*,-) - K X[O,2], Λf. X[O,1], ax? x [ 0 , l ] Π d(at x [

Let 7'ί, 72

r: jβ
M + 1 - » j β

π + 1 be orientation preserving homeomoφhisms, such

that Ji'(Bn + 1 - ά[) = b\ and j?\Sn =ji9 i = 1,2. Then yί and j{ generate the

free group of rank 2, denoted F2. Let 2' = Bn+ι - ά[ - a'2 - b[ - b2 and
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U' = \JF2(£&'). Then we may also assume that j[, j 2 were chosen such that

βn + ι - u' = \ θ (because a[, a2, b'l9 b2 are products we may choose j{, j 2

such that the images of a[, a2, b[, b2 under the action converge to A0).

Finally, let Sn+ι be the double of Bn+1 along Sn, and let 0": F2 X Sn+1 ->

Sn + 1 be the obvious extension of the action of j[ and j 2 . Since a\ « at X [0,1]

and at is contractible, a\ « 2?π + 1, / = 1,2. Also the double of α along α, is

homeomorphic to Bn+ι. Hence θ" is defined by balls which by construction

are topologically flat. By Theorem 1.2, θ" is conjugate to a Schottky action ω.

q.e.d.

Notice that 0 " has an extension (F2X Z2) X Sn+ι -> Sn+ι, where the Z 2

acts by reflection in Sn. A corresponding comment is true for the extension in

Theorem 5.1.
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