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SUB-RIEMANNIAN GEOMETRY

ROBERT S. STRICHARTZ

1. Introduction

By sub-Riemannian geometry we mean the study of a smooth manifold M
equipped with a smoothly varying positive definite quadratic form on a
subbundle S (distribution) of the tangent bundle TM, where S is assumed to
be bracket generating (sections of S together with all brackets generate TM as
a module over the functions on M), and the resulting geometric structures that
arise in analogy with Riemannian geometry. This is a subject which has been
studied by a number of different investigators, more or less independently,
from a number of different viewpoints under a number of different names
{singular Riemannian geometry and Carnot-Caratheorody metric are most com-
monly used).

In this paper we attempt to give a coherent introduction to the subject,
taking the point of view that the subject is a variant of Riemannian geometry.
The main topic is the study of geodesies. The quantitative structure of a
sub-Riemannian manifold is easily seen to be equivalent to giving a con-
travariant metric tensor field (gJk(x) in local coordinates) mapping T*M to
TM which is nonnegative definite and has a null-space N equal to the
annihilator of S in T*M. We call this a sub-Riemannian metric, and in terms
of it we can define the length of any piecewise smooth curve which is tangent
to S (we will call such curves lengthy). By a well-known theorem of Chow (see
also Caratheodory [5]) it is possible to connect any two points by such a curve
if the manifold is connected (which we will always assume, for simplicity), and
so we can endow M with a metric d defined to be the infimum of the lengths
of all lengthy curves joining two points. On the other hand, from the sub-
Riemannian metric we can write down a system of Hamilton-Jacobi equations
on T*M, and any solution is called a geodesic. The two most basic equations
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are: (1) Is every length minimizing curve a geodesic? (2) Is every geodesic
locally a length minimizing curve? The answer to the first question is always
yes, and it is a consequence of the fundamental theorem of Pontryagin in the
calculus of variations. This fact has been stated before without much justifica-
tion. For the sake of completeness we give a derivation of it in §6. (Unfor-
tunately, the otherwise excellent paper of Gaveau [14] erroneously claims to
give a counterexample. The analysis of the same example in Brockett [3]
correctly explains the situation, and in [4] he points out the error in Gaveau's
paper. Alas, Gaveau's erroneous claim has been repeated in too many of the
references! The author is grateful to A. Sanchez-Calle for bringing up this
issue.) The second question we are able to answer affirmatively only under an
additional hypothesis, which we call the strong bracket generating hypothesis
(for any nonzero section X of S, TM is generated by S and [XS]). This result
is proved in §5, and constitutes the main technical contribution of this paper.
It is based on a careful study of the exponential map. In contrast to the
Riemannian case, the exponential map is never a local diffeomorphism at the
origin. In fact exp :̂ Tp* -> M annihilates the whole subspace Np. Nevertheless,
away from Np and near the origin in Tp* the exponential map is a local
diffeomorphism under the strong bracket generating hypothesis. This fact is
not true in general, so any attempt to answer question (2) more generally will
require a new approach.

Once these basic questions are dealt with, it is relatively easy to deal with
other matters. In §7 we discuss completeness and prove the analogue of the
Hopf-Rinow theorem. In §8 we discuss isometries. There are naturally several
notions here, isometry with respect to the metric, infinitesimal isometry (the
derivative preserves the sub-Riemannian metric), and regular infinitesimal
isometry (the mapping factors through the exponential mapping); it is this last
notion which is most useful. We conjecture that every isometry is automatically
a regular infinitesimal isometry, but we have not been able to prove this, even
assuming the strong bracket generating hypothesis. Our main result is that
under this hypothesis the regular infinitesimal isometries form a Lie group and
the isotropy subgroup of a point is compact, isomorphic to a compact
subgroup of the orthogonal group O(m) (where m is the fiber dimension of S).

In §9 we introduce the notion of a sub-Riemannian symmetric space, SL space
with a transitive Lie group of isometries and a symmetry at each point
(however this is not geodesic reflection). On the infinitesimal level, a sub-
Riemannian symmetric space is characterized by the following data: a Lie
algebra g, an involutive automorphism which splits g = g + θ g " , a subalgebra
ί c g+, a subspace )3Cg", and a positive definite quadratic form Q on £,
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where g is generated by f + £ as a Lie algebra and ad ϊ preserves $ and Q.
The space is G/K for suitable Lie groups G and K (compact) with Lie
algebras g and ϊ. In §10 we classify locally all three-dimensional examples;
they fall into six classes which include Lie groups of semisimple, nilpotent, and
solvable type. This is somewhat surprising in that previous work has focused
entirely on nilpotent Lie groups.

In §11 we discuss some questions of local geometry. Here the contrasts with
Riemannian geometry become very apparent—for example small triangles are
not approximately Euclidean, and cut points are always near at hand. Al-
though the results obtained are quite superficial, it appears that there are many
interesting results here waiting to be discovered. Further results are given in
[39].

The last section is devoted to applications to sub-Laplacian operators
(Hormander type sums of squares). It can be said that sub-Riemannian
geometry is to the sub-Laplacian what Riemannian geometry is to the Lapla-
cian. Since sub-Laplacian operators are considered popular and respectable
mathematics, these applications (and the applications to control theory stressed
by Brockett) should indicate that the subject of sub-Riemannian geometry is of
more than purely formalistic interest. Nevertheless, these applications are not
the raison d'entre of this paper, and in fact only use a small part of the
material developed.

The early sections of the paper are devoted to preliminaries. In §2 the
important concept of raised Christoffel symbols is introduced (this idea also
appears in Gunther's unpublished thesis [17]). In §3 we discuss the length of
curves and in §4 geodesies. These sections contain material that is used
throughout the paper, as well as some miscellaneous observations and generali-
zations of standard Riemannian results (for example, the Gauss Lemma).

Notably absent in this work is any notion of covariant derivative and
curvature. It appears that it would be barking up the wrong tree to try to
distort the Riemannian definitions to make sense in this context. After all,
curvature is a measurement of the higher order deviation of the manifold from
the Euclidean model, and here there is no approximate Euclidean behavior. Is
there an alternative model? This is an extremely interesting question. Brockett
[3] has attempted to sketch an approach to it, and Mitchell [30] has computed a
" tangent cone" at a point, which might serve as a model space.

Aside from the above-mentioned conjecture for isometries, our results seem
to be fairly complete under the strong bracket generating hypothesis. Since this
is a rather restrictive assumption, it would be very desirable to extend the
results to the general case.
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An obvious generalization of sub-Riemannian metrics would be to suppose
that the quadratic form is only nondegenerate on Sx. One might call this
sub-Lorentzian geometry. A number of our results clearly extend to this set-up.

We have tried to keep this paper self-contained, so as not to send the reader
hopping from reference to reference (a general background in Riemannian
geometry is required, as for example in the first chapter of [24]). Consequently,
we present proofs for results which have appeared in other works, without
specific attribution. We have attempted to give as complete a bibliography as
possible (our apologies to any authors whose works we have overlooked), and
we urge the reader to explore the literature to learn about alternate approaches
to the subject. From the point of view of control theory, the subject has been
studied by Roger Brockett and some of his students ([3], [4], [17], [41], [42])
with earlier work by Caratheodory [6] and Hermann [19], [20], [21]. The special
case of the Heisenberg group has been analysed in detail by Koranyi [25], [26].
After this work was completed, the preprint of Hamenstadt [18] appeared
which gives a different approach to the theory of geodesies.

2. Preliminaries
Let M be a connected ^-dimensional manifold (« > 3) of class C°° (Ck for

large enough k would suffice). Fix an integer m, 0 < m < n, called the
subdimension. Let Tx and Tx* denote the tangent and cotangent spaces at a
point x e M, and (Y,ξ) the pairing between them, Y e Tx, ξ e T*. Let S
denote a fixed subbundle of the tangent bundle, Sx the fiber over x, of fiber
dimension m. S will be said to be bracket generating if vector fields which are
sections of S together with all brackets span Tx at each point. If Y e Sx and Ϋ
is any section of S passing through Y at x, let Sx + [Y,SX] denote the
subspace of Tx spanned by Sx and all vector fields [Y, X] restricted to x, where
X varies over sections of S. Since [Z, X](x) e Sx if Z is a section of S
vanishing at x, it follows that Sx + [ Y, Sx] does not depend on the choice of Ϋ.
Similarly we define bracket(A:, Y) inductively by bracket(2, Y) = SX + [Y, Sx]
and bracket^, Y) = Sx + [bracket(A: - 1, Y\ Sx] and the definiiton does not
depend on the choice of the extension Ϋ, and bracket(2, Sx) = Sx + [Sx, Sx],
bracket^, Sx) = Sx + [bracket(fc - 1, Sx), Sx]. We will say Y e Ss is SL k-step
bracket generator if bracket(&, Y) = Tx. Similarly, S will be said to be k-step
bracket generating if bracket(fc, Sx) = Tx for every x. It is easy to give
examples of λ>step bracket generating subbundles with no /:-step bracket
generators. If every nonzero tangent vector in Sx for every x e M is a 2-step
bracket generator we will say S satisfies the strong bracket generating hypothe-
sis. Most of the theorems in this paper will be proved under this hypothesis.
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A sub-Riemannian metric on S (always assumed bracket generating) is a
smoothly varying in x positive definite quadratic form Qx on Sx. Given Qχi

we may define a linear mapping g(x): Tx* -> Tx as follows: for ξ e Tx*, the
linear mapping Y -> ( Y, £) for Y e Ŝ  can be represented uniquely as Y ->
β x ( 7 , A") for some X e Ŝ ; this X is g(x)ξ. More concisely, g(x) and β x are
related by the identity

(2.1) Qx(Y,g(x)ξ)=(YΛ) foraliyeSx.

Notice that the image of g(x) is exactly Sx. From the properties of Qx it
follows easily that g(x) varies smoothly in x and is symmetric and nonnega-
tive definite, but it is not positive definite since it is not onto. Let Nx denote
the null-space of g(x% and N Q T* the bundle with fibers Nx. Clearly Nx is
the annihilator of Sx in Tx*.

Conversely, given a symmetric nonnegative definite linear operator g(x):
Tx* -> Tx with image Sχ9 there is a unique positive definite quadratic form Qx

satisfying (2.1). From now on we will assume that the sub-Riemannian metric
is given via g(x). In local coordinates we write gjk{x) for the symmetric
matrix defining g(x). Note that this is the exact analogue of the raised index
metric in Riemannian geometry. There is no analogue of the lowered index
metric since gJk(x) is never invertible. As a general rule, any formula of
Riemannian geometry that can be expressed in terms of raised indices alone
will remain valid in sub-Riemannian geometry. We will use the summation
convention of Riemannian geometry.

Lemma 2.1. (a) Ifv is a section of the null bundle N, then

k

(b) Ifx(t) is a curve in M andv(t) e Nx(l) is a section ofN over x(t), then

for all t (here the dot denotes the t derivative and we have surpressed the t
variable throughout).

(c) Ifv and w are sections ofN9 then

Proof. To prove (a) apply d/dxp to the identity gjk(x)vk(x) = 0 which
defines the null bundle. To prove (b) apply d/dt to the identity gjk(x(t))υk(t)
= 0. Finally to prove (c) first apply (a) to obtain

dvJ

(by the symmetry of gjk) and then gjkwk = 0. q.e.d.
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We will use these identities throughout without further explanation.
Next we translate the bracket generating property of S into properties of

g(x). If X, Y Ξ Sx and X, Ϋ are extensions to sections of S, then [X, Ϋ] at x
depends mod Sx only on X and Y, so we may consider [X, Y] as an element of
Tx/Sx. Since Nx is the annihilator of Sx in Tx*, all the pertinent information
concerning [X, Y] is contained in the values of ([X, Ϋ]9 υ) at x for υ varying
over Nx. This expression is independent of the extensions and so we will write
it as ([X, Y], v). Now X e Sx means there exists ξ e T* with X = g(x)ξ,
and similarly Y = g(x)η. Of course ξ and η are not unique and should be
regarded as elements of Tx*/Nx. Thus we are led to consider the trilinear form
([gξ, gi»], v) on (T*/Nx) X (Γ//W,) X Nx.

Lemma 2.2. /« foαz/ coordinates

Proof. Let £(x) a n d Ί?(X) denote any sections of T* extending ξ and η.
Then £ r = grp(x)ξp(x) and y r = gr^(x)η^(x) are sections of S extending gξ
and gη, and

r = ^—Ϋr - Ϋj—xr

However, on taking the inner product with υ, the last two terms are annihilated
(because of the factors gqr and grp) so we obtain the given expression. Note
also by the previous lemma this expression is unchanged if ξ or η are changed
by a null cotangent, q.e.d.

In order to interpret the lemma we introduce the raised Christoffel symbols
(also used in [17])

(1.1)

These are the exact analogues of raising indices in the Christoffel symbols Γ̂ -
of Riemannian geometry. For ξ e T* and v e Nx define Γ(ξ, υ) e Tx by
Γ*(£> v) = Γkpqξpvp. In contrast to the situation in Riemannian geometry
where the Christoffel symbols are never tensorial, we have

Lemma 2.3. Γ(ξ, υ) is a well-defined tangent vector (independent of the
choice of coordinates). In fact Γ(ξ,y)GS x and Γ(£ + w, υ) = Γ(£, v) for
w e Nχ9 so that Γ: (Tx*/Nx) XNX-+ Sx.
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Proof. Using Lemma 2.1 we obtain Γ(£, υ) e Ŝ  and Γ(£ + H>, *;) = T(ξ, v)
(for example

(ξ,υ) g ^

To prove that Tk(ξ9v) transforms as a tangent vector we consider a local
diffeomorphism ψ with ψ( c) = y determining a new coordinate system. Then
denoting by g, f, and ft the expressions for g, £, and t; in the new coordinates,
we have

* 3x* y ' * 3x* y 8 U ) 8 l ^ 3x" dx« •

To see how Tkpq transforms look at the first term g^dg^/dx-i. In the new

coordinates

hence

j ζP 4 Q v d ° dra %^b %yj ^V/ ?\ΎC Λ^d

Notice that the first term is exactly (9yk/dxdXgJP(dgqd/dxj)ξp'η<l), the tan-
gent bundle transformation of g^i^g^/^x^kp^q, and the last term vanishes
since

Finally the middle term is symmetric in p and k.
When we examine the transformation of the third term in Ykpq we find

exactly the same expression with p and k interchanged and a minus sign,
hence the unwanted terms cancel. Since the middle term in Tkpqξpvq is zero, we
have

p q dxd

the desired transformation law.

Theorem 2.4. A tangent vector X e Sx is a 2-step bracket generator if and

only if Γ(£, •): Nx -> Sx is injectiυe, where X = gξ. In particular, S satisfies the

strong bracket generating hypothesis if and only if Γ(ξ, •): Nx -> Sx is injectiυe

for every nonnull cotangent ξ and every x.
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Proof. By Lemma 2.2 we have

For X to be a 2-step bracket generator we must obtain all of Tx/Sx in the form
[X, Y] modS^ as Y varies over Sx. But Nx is canonically isomorphic to the
dual of Tx/Sx, so the surjectivity of η -> [g£, gη] is equivalent to the injectiv-
ityof Ό-+ Γ({,ϋ).

Remark. If there exists a 2-step generator in Sχ9 then the 2-step generators
in Sx form an open dense subset. To see this observe that the condition of the
theorem involves the injectivity of the mapping Γ(£, •) which depends linearly
on ξ. But the injectivity of a matrix can be expressed as the nonvanishing of
sums of squares of determinants of minors, hence the condition on ξ becomes
P(ξ) Φ 0 for a particular polynomial P, and the complement of an algebraic
variety P(ξ) = 0 is either empty or open and dense.

There does not appear to be any natural notion of covariant derivative on a
sub-Riemannian manifold. The closest we can come to it is an analogue of the
symmetrized covariant derivative.

Definition 2.5. The symmetrized covariant derivative Vsym of a tangent field
Y is defined by

(V γ y „ gj

Lemma 2.6. Vsym is a well-defined differential operator from tensors of rank
(1,0) to symmetric tensors of rank (2,0). Furthermore if Y is a section of S, say
Y = g£, then (VsymY)Jkvk = 2Tj(ξ, v) for any null cotangent field v.

Proof. To see that VsymY transforms as a tensor field of rank (2,0) is a
straightforward computation that is the same as in the Riemannian case, and it
is obviously symmetric in j and k . Also

since all the other terms are zero because v is null, and this is exactly 2TJ(ξ, v).
q.e.d.

The raised Christoffel symbol also allows us to define a canonical
nonnegative quadratic form on the fibers Nx. Namely, for v e Nχ9 we set
||t;| |Γ equal to the Hilbert-Schmidt norm of the operator ξ -> Γ(£, v) from
Tx*/Nx to Sx (where g(x): T*/Nx -* Sx establishes duality of these vector
spaces). If ul9-—9um is any orthonormal set in Tx*9 then ||ϋ||p =
ΣJ = iΣ^ = 1 | (Γ(w y , v), uk)\2. By Lemma 2.3 this is defined independent of the
choice of coordinates. If S is a 2-step bracket generator, then by Lemma 2.2
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this quadratic form is positive definite on Nx. In this case we can also define a
canonical measure on the manifold. We choose a complement Nj- to Nx in T*
to represent Tx*/Nx and define an inner product Gjk(x) on T* by restricting
gjk(x) to N^, taking \\v\\γ on Nχ9 and making them orthogonal. Of course
there is no canonical choice of Nx

x , but the point is that detGjk(x) is
independent of the choice. Thus the measure (detGJk(x))~1/2dx is canonical.
This measure is also described by Brockett [3]. It is not clear, however, whether
or not it is significant.

We conclude this section with a brief discussion of the relationship between
sub-Riemannian metrics and contact structures. By definition, a contact struc-
ture on an odd dimensional manifold is a one-form a such that a V da
A Λ da {{n — l)/2 factors of da) never vanishes. If we set Nx = spanα( c)
and Sx = NJ-, then S is a subbundle of TM of codimension one, and we claim
S is bracket generating, and in fact the strong bracket generating hypothesis is
satisfied. Indeed let X and Y be sections of S, so (X, a) = 0 and (Y9 a) = 0.
Then a simple computation shows ([AΎ],α) = (da,Y ® X). To prove the
strong bracket generating hypothesis we need to show that for every nonzero X
there exists Y such that ([ΛΎ],α) Φ 0 at each point. But if not then
(da,Y ® X) = 0 at a point for all 7 G S , and from this it follows that
a A da A Λ da = 0 at that point.

Further concepts related to such structures are C-R structures, Leυi metrics,
and chains. These are discussed in [8], [11], [23], [43].

3. Lengths of curves

Let x(t) be a piecewise C1 curve in M for / e /, where / is an interval in R.
We say x{t) is a lengthy curve if x e Sx for every t, where x is defined. If
ξ(t) e Tx*{t) is such that g(x)£ = x for every t (where defined) we say
(x(t)> ζ(0) is a cotangent lift of x(t). Clearly, piecewise continuous cotangent
lifts exist and are unique modulo sections of the null bundle Nx over the curve.
By abuse of notation we will frequently refer to ξ(t) alone as the cotangent lift,
suppressing mention of x(t). The length of the curve, L(x), is defined by

and the energy by

Clearly, these do not depend on the choice of cotangent lift, and agree with the

definitions in Riemannian geometry.
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It will be necessary, for technical reasons, to also work in the category of
locally Lipschitz curves; this is a convenient category because it has a funda-
mental theorem of calculus, and many curves of interest will automatically
belong to it. A continuous curve x: I -> M will be called locally Lipschitz if
for every compact / c / and every local coordinate system intersecting x(J)
there exists a constant K such that \x{tλ) - x(t2)\ < K\tλ - t2\ (where de-
fined) for all tv t2 in / and the distance \x{tλ) - x(t2)\ is measured in the
local coordinates. If this condition holds in a set of coordinate systems
covering x{J\ then it holds for any coordinate system (the constant K may
change). A locally Lipschitz curve has a derivative x existing almost every-
where and in the distribution sense as an element of Lf^I), and it can be
integrated to recover x(t). We say x is a lengthy locally Lipschitz curve
(abbreviated ZAcurve) if in addition x e Sx for almost every /. The definition
of cotangent lift, length, and energy also makes sense for ZAcurves.

We define the distance function d(P,Q) for points P, Q of M to be the
infimum of the lengths of all lengthy (piecewise C1) curves joining P and Q.
By Chow's Theorem ([9] or [22]) there always exist such curves, so the distance
is finite. It is convenient to compare this distance with the distance function
for a Riemannian metric. We will say that a Riemannian metric G on M is a
contraction of the sub-Riemannian metric Q (or Q is an expansion of G) if G
restricted to S X S equals Q. Clearly such contractions always exist—it
suffices to find a complementary bundle to S in T, put a positive definite
quadratic form on it, and make it orthogonal to S. It is also possible to obtain
the sub-Riemannian metric as a limit of a sequence of contractions G{n) (so
gjk = limrt _ ̂  Gfy)9 and this is a method of obtaining some information about
the sub-Riemannian metric ([25], [26]). However, a great deal of information is
lost in the limit, so we have favored other techniques.

It is clear from the definition that a lengthy curve has the same length in the
Riemannian geometry of a contraction as in the sub-Riemannian geometry,
hence

(3.1) dR(P,Q)^d(P,Q),

where dR denotes Riemannian distance, since the infimum is taken over a
larger set of curves. This explains why we use the term "contraction," and also
shows d(P,Q) > 0 if P Φ Q. This implies that d satisfies the axioms for a
metric—the other axioms being immediate consequences of the definition. The
topology defined by the metrics d and dR is the same—this follows from any
proof of Chow's theorem (e.g. [22, p. 249]), but they will not be equivalent
metrics. In §11 we will give a more precise description of the metric d in the
case that S is a two-step bracket generator.



SUB-RIEMANNIAN GEOMETRY 231

Given a metric space (M,d\ there is a natural notion of arc length. If x:
[a, b] -» M is continuous, then

I Λ * ) = sup £ d(x(tj)9 x(ί y_i)),
7 - 1

where the supremum is taken over all partitions a = x0 < xλ < < xN = b
of the interval. The next lemma shows the consistency of arc length and the
previously defined length of a lengthy curve.

Lemma 3.1. Let x(t) be apiecewise C1 lengthy curve on a compact interval.
Then L(x) = LA(x).

Proof. From (3.1) we obtain immediately LAR(x) < LA(x), where LAR

denotes arc length in the Riemannian metric. However, it is well known that
LAR(X)

 = LR(x) in Riemannian geometry, and we have already observed
LR(x) = L(x) for lengthy curves, so we have established L(x) < LA(x).
However, the reverse inequality is easy. If a = t0 < tλ < < tN = b is any
partition of the interval, then the piece of the curve restricted to [tj_l9 tj] is a
lengthy curve joining x(tJ_ι) and x(tj), hence

(3.2) d(x{tJ.1), x(tj))

by the definition of d. By summing we obtain Σ*j=ιd(x(tj_1\ x(tj)) < L(x),
hence LA(x) < L(x) when we take the supremum. q.e.d.

A continuous curve x joining P and Q will be called length minimizing if
LA(x) = d(P,Q). Clearly any piece of a length minimizing curve is again
length minimizing. As in Riemannian geometry, global existence of length
minimizing curves will depend on some completeness assumptions, but local
existence is guaranteed.

Lemma 3.2. For every point P there exists ε > 0 such that if d(P, Q) < ε,

then there exists a length minimizing curve x joining P and Q. We may take x to

be parametrized by arc length, and then x is a lengthy Lipschitz curve with

Proof. Choose ε so that the closed ball B of radius 2ε about P in the
Riemannian metric is compact. Now if Q is any point satisfying d(P, Q) < ε,
we can find a sequence of lengthy curves x{k) joining P and Q such that
Lk = L(x{k)) -> d(P, Q). Without loss of generality we may assume that each
x(k) is parametrized by arc length, so x(k)(0) = Λ x(k)(Lk) = Q, and
L(x(k)\[Ot]) = t. We may also assume Lx < 2ε and the lengths Lk are decreas-
ing. Since L(x(k)) = LR(x(k)) it follows that all the curves lie in the compact
ball B.
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We want to apply the Arzela-Ascoli theorem to the family x(k) regarded as
mappings of [0, d(P, Q)] into B with the Riemannian metric. We have to
establish uniform equicontinuity, but this is easy since

(3.3) d R ( x ( k ) ( s ) , x ( k ) ( ή ) < L R ( x ( k ) | [ M ] ) = L ( x { k ) \ [ S t t ] ) = t-s

f o r O < s < t < d ( P , Q ) .
Let x(t) be a uniform limit (in dR metric) of a subsequence of x(ky Clearly

x(t) is a curve joining P and Q. To see that it is length minimizing it suffices
to show LA(x) < d(P, Q), since the reverse inequality is automatic. But we can
pass to the limit in (3.3) to obtain d(x(s), x(t)) < t — s. Notice this shows
d(x(s), x(t)) = t - s so the length minimizing curve is already parametrized
by arc-length, and is Lipschitz (in both d and dR metrics).

Now x(t) exists almost everywhere, and it remains to show x(t) e Sx(t)
almost everywhere. To do this we examine a difference quotient h~ι(x(t + A)
- x(t)). This is the limit of the difference quotients for the functions x(ky

Now we may arrange to take the x^k) to be actually C1 lengthy curves. We
merely lift x^(t) to ξ(k)(t\ extend £ ( x ) to a piecewise continuous section of
Γ*, approximate by a continuous section η(ky and solve the initial value
problem y(k) = gη{ky y(k)(0) = P- I n the process we lose control of the
endpoint of y(ky but we still have y(k) -» x uniformly as k -> oo. Now, by the
mean value theorem,

and so h~\x(t + A) - x(t)) e Sx(s) for some point in s in [t, t + A]. For a
point t where JC exists it follows that x{t) e Sx(ty

We can also choose cotangent lifts ζw(t) for x^k)(t) which are uniformly
bounded since

(3.4) (g(x ( 0 ) i ( O J I (O) = 1

follows from (3.3). By passing to a subsequence we can then have ζ^(t)
converge to £(ί) in the weak topology of L00 dual to L1. Now g(x(k)(t))
converges uniformly to g(x(t)) so from

six ι.s))£ (s) ds
0

we can pass to the limit to obtain

x(t)= Γg(x(s))ξ(s)ds.

This shows x(t) = g(x(t))ζ(t) almost everywhere, so x(t) e Sx(t). We can
also pass to the limit in (3.4) to obtain (g(x(t))ξ(t), ξ(x)) = 1 almost
everywhere, hence L(x) = LA(x).
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Corollary 3.3. Any two points may be joined by a finite sequence of length

minimizing curves.

Proof. Fix a point P and consider the set of all points which can be joined
to P by a finite sequence of length minimizing curves. By the lemma it is open
(if you can reach Q9 apply the lemma to Q) and closed (if Q is a limit point of
the set, apply the lemma to connect Q to a point of the set). Since M is
connected, the result follows.

4. Geodesies

Given the sub-Riemannian metric g(x): Tx* -» Tx we can form the Hamilto-
nian function

on T* and consider the Hamilton-Jacobi equation x = V^iJ, £ = — VXH for
curves in T*. Explicitly these equations (abbreviated H-J) are

ik(t)-gkJ(χ(t))ξj(t),

(H"J) * ( o
A C 2 curve x(t) in M will be called a geodesic if there exists a cotangent lift
satisfying (H-J). By abuse of notation we will sometimes refer to the solution of
(H-J) as a geodesic. Notice that the first of the (H-J) equations simply says that
x is a lengthy curve. As is always the case, (H-J) implies that H is constant
along the curve; in this case it means that a geodesic is parametrized by a
multiple of arc-length.

Now it is true in Riemannian geometry that geodesies lift to solutions of
(H-J) on the cotangent bundle, so we have the correct generalization. Also, if
we formulate the variational problem of minimizing energy E(x) over all
lengthy curves joining points P and Q over the interval [0, d(P, Q)]9 then the
associated Euler equation is just (H-J). Notice also that if we differentiate the
first equation and substitute the second we obtain

(4.1) **(/) + Γ * ( € , ί ) = 0

which is the analogue of the geodesic equation in Riemannian geometry. Note,
however, that in this case we cannot solve for ξ in terms of x in any obvious
way, so (4.1) does not reduce to an equation in x alone; neither is (4.1)
together with x = gi equivalent to (H-J).

The existence and uniqueness theorem for ordinary differential equations
says that (H-J) has a unique solution on an interval about zero subject to the
initial conditions x(0) = P, £(0) = u (we will usually assume that coordinates
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are chosen so that P is the origin). Furthermore, the solution can be extended
until the curve (x(t),ξ(t)) either approaches a boundary point of T* or
infinity. However, we can show that the solution can actually be continued as
long as x(t) remains in M, so blow-up in the ξ-variable never occurs.

Lemma 4.1. Let x(t) be a geodesic for 0 < t < a and suppose x(t) remains
inside a compact subset of M. Then x(t) can be extended beyond t = a.

Proof. Over the compact set, choose a basis va\x), -,v(n~m)(x) of
sections of the null bundle Nx, and complete to a basis of T* by adjoining
M ( 1 )(X), , u{m)(x\ all sections bounded and smoothly varying on the com-
pact set. Then write

m n — m

(4.2) ξ(t) = Σ «,(0«ω(*(0) + Σ bk(t)v^(x(t))
y-i *-i

and consider (H-J) as a system of equations for x(t\ aj(t\ and bk(t). The
first key observation is that the functions cij(t) are uniformly bounded. This
follows from the fact that H is constant on the curve and the computation
H(x,ξ) = ^Σjik(gu^\ uw)ajak, since the matrix (gw(y), w(/c)) is positive
definite hence bounded below on a compact set. The second key observation is
that when we substitute (4.2) into the second (H-J) equation, all the quadratic
terms in bk vanish, on the left side because they are multiplied by gv(k\ and on
the right side because of Lemma 2.1(c). The resulting equations are thus

m n — m mm ΛjyO)

Σ &AJ) + Σ W Σ Σ aj-φ-gvaμγ

+ £ £ ^£f!*_gr,β/|<(/)
j-i ι=i J 9 * r

m m

uu)a uu) + y y a
jUp alUq ^ L L aj
jwp ~l~q ' L^ L^ ~jmp

y-1 /-I y-l /-I

Now we dot these equations with ^ 1 } , υ(

k\ "9υ^~m) and solve for bj. The
result is (« — m) linear first order equations in normal form in the (n — m)
functions bj, and the coefficients depend on xk

9 aj9 M(7), V(J\ hence are
bounded. But for linear differential equations with bounded coefficients we
have global existence, so the bj functions are also bounded. Thus all the
functions xk(t) and ξk(t) are uniformly bounded, and the local existence
theorem implies the solution extends, q.e.d.

With the aid of this lemma we can define a canonical exponential map (we
leave it as an exercise to verify that the (H-J) equations transform ap-
propriately under change of variable, so the geodesies do not depend on the
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choice of coordinates). Fix any point P in M. For any u e Γ/, set expP(w) =
JC(1), where x(t) is the geodesic with cotangent lift satisfying (H-J) with
x(0) = P, ξ(0) = w, provided of course the geodesies extends to / = 1. But if
(g(P)u,u) < ε2, then the length of the geodesic on the interval [0, t] will be
at most εt, hence the Riemannian distance from P to x(t) will be at most εt.
Thus we need only choose ε small enough that the closed Riemannian ball of
radius ε about P is compact, in order that expP(w) exist. Thus the exponential
map always exists on a cylindrical neighborhood of the origin in TP*.

Now the exponential map is always differentiable, since the solution of the
system (H-J) depends differentiably on the initial data. But in contrast to the
Riemannian case, the exponential map is not a diffeomorphism at the origin.
In fact all the geodesies emanating from P must have tangent vectors in Sp.
Also it is easy to see that expP(v) = P for any null cotangent v e Np. The only
hope for good behavior is thus at points u near the origin but not null.

We begin with the analogue of the Gauss lemma.
Lemma 4.2. Let u denote a nonnull cotangent in TP* lying inside the

cylindrical neighborhood (g(P)w, w) < ε2, where expP is defined. Let r denote
the radial tangent vector and Y any tangent vector orthogonal to r at the point u in
T* with respect to the (degenerate) g(P) quadratic form. In other words, r
= (g(P)u,u)-1/2u and (g(P)r,Y)=0. Then

(4.3) (dπpP(u)Y,ξ)*Ό,

where ξ is the cotangent lift of the geodesic t -> expP(tu) at t = 1.
Proof. Notice that the orthogonality of d expP(u)Y and d txpP(u)r with

respect to the sub-Riemannian metric g(expP(w)) is equivalent to (4.3) if we
assume rfexpP(w)Y e SQXVp{u), and then it does not depend on the choice of
cotangent lift ξ. This is the case we are interested in. However, in order to
prove the result, we do not want to assume dexpP(u)Y e Scxpp(u)9 and in this
generality we have to specify the cotangent lift given by the (H-J) equations.

The proof is now identical to the Riemannian proof (e.g. [24, p. 79]). Let
u(s) be a curve in Tp* with w(0) = u and

(4.4) (g(P)u(s),u(s)) = constant,

and set x(t, s) = expP(tu(s)). Then

if we set Y = (du/ds)(0). Note by (4.4) that Y is orthogonal to u hence r, and
conversely we can obtain all tangent vectors orthogonal to r in this fashion.
Thus (4.3) is equivalent to ((3x/fa)(l,0), €(1,0)> = 0, where ξ(t,s) is the
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cotangent lift of the geodesic t -> expP(tu(s)). We will actually prove f(t)
= ((dx/ds)(t,0), ξ(t,O)) = 0 for 0 < t < 1 by showing /(0) = 0 and /'(*)
= 0. But since x(0, s) = P we have (dx/ds)(0,0) = 0 hence /(0) = 0. Also

and we can use (H-J) to replace ζk and (3xV^0(^ *s) (f°Γ e a c h fi
is a geodesic) to obtain

2 9̂  (^(x)^^)low-
However (g(x)£, ξ) = (g(P)κ,t<) by the invariance of the Hamilton over

the (H-J) flow so f'(t) = O.
Lemma 4.3. Let x: [a, b]-* M be a lengthy Lipschitz curve, and suppose

there exists a Lipschitz curve w: [a, b] -» T* such that x(t) = exp/>w(ί), with
w(a) = λw(b). Then

(4.5) LA{x)>\(g{P)W{b)Mb)?/2 ~ (g{P)w{a)Ma)Y/2

with equality holding if and only if x is a reparametrization of the geodesic
exp(tw(b)).

Proof. Write the curve w(t) in polar coordinates vv(/) = r(t)u(t), where
(g(P)u(t), «(/)> = 1 and r(t) > 0. Then

((t)(0) dexpP(w(t))(t(t)u(t) + r(t)u(t))

where Y(t) = r(t)iι(t) satisfies the hypotheses of the previous lemma, and
ξ(t) is the cotangent lift of the geodesic s -> expP(su(ΐ)) at s = r(t). The
hypothesis that x is lengthy implies that dexp(w(t))Y(t) e Sx(t% say
dexpP(w(t))Y(t) = g(x(t))η(t) a.e. Then the length of x is obtained by
integrating

(r(t)ξ(t) + „(/), r(t)g(x(t))ξ(t) + g(x

which equals
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since (g(x(t))ξ(t),ξ(t)) = 1 and the cross terms are zero by the previous
lemma. Clearly (4.6) dominates \r(t)\ which gives (4.5), and equality holds if
and only if r(t) is monotone and dexpP(w(t))Y(t) = 0. But then x satisfies
the differential equation x(t) = r(t)g(x(t))ξ(x(t)) and so does
Qxpp(r(t)u(tQ)) for any fixed tQ. Thus u(t) is constant and x is a reparame-
trized geodesic, q.e.d.

We have observed that a general lengthy curve does not have a unique
cotangent lift. If the curve is a geodesic, however, there is a special cotangent
lift, the one that solves (H-J). It is natural to ask if there is in general a
canonical cotangent lift which makes the correct choice for geodesies. The
following result gives an answer under the strong bracket generating hypothe-
sis.

Lemma 4.4. Assume the strong bracket generating hypothesis. Let x(t) be
any Lipschitz lengthy curve. Then there is a unique cotangent lift (x(t), ξ(t)) with
the property that

1 OX3

is orthogonal to all Γ(ξ, v(x)) for every v e Nx at a.e. t. The lift is independent
of the choice of coordinates, and is called the canonical lift.

Proof. Start with any cotangent lift (x(f), η(0)> a n d let v(l\ , v(n~m) be
a basis for sections of N over a neighborhood of the curve. Then the most
general cotangent lift is of the form

n — m

ξ(t) = η(t) + Σ ak(t)v(k)(x(ή) = i,(0 + o(0

Now

But recall that (for w e Nx)

and ξ and η are interchangeable here. Thus the orthogonality condition

amounts to n - m linear equations in the n - m variables ak(t) at each point
/, and the equations are uniquely soluble since Γ(£, •)' N -> S is injective.
Finally we have already obesrved that Tk(ξ9 w) transforms as a tangent vector,
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and it is a straightforward exercise to verify that

1 3 g - ( x )
ξJ 2 dχJ

 ζPζ«

transforms as a cotangent vector under change of variable.

5. Derivative of exp

We want to compute dexpP in order to show that the exponential mapping

is a local diffeomorphism at some points. To do this we compute the Taylor

expansion of expP about the origin. Let us fix P at the origin of coordinates.

Then

(5.1) e x p » * = £ T f t f r p'upup2 ... upΛ 0{\u\N+l),

where the γ ^ 1 "Pr are symmetric in (pλ pr) and can be computed in terms

of g and its derivatives at the origin. Now expP(ίw) = x(t% where (x(t),

is the solution of (H-J) with x(0) = 0, £(0) = w, so y{

k

rγ "Prupι u

(d/dt)rx(0). Using (H-J) we obtain the recursion relation p

Hence we have

J!,- , pr+1)

I

where sym(/?1, ,/? r + 1) means we symmetrize in the indices Pι>-'',pr+v

From (H-J) we get

(5.3) yft = gkp

and we have already observed that

(5.4) γ(2f1/?2== -
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The general term is clearly quite complicated, but it will be sufficient for us to
understand some aspects of γ(3). By differentiating (5.1) we obtain the Taylor
expansion

(5.5) daPp{u)kJ-g»(o)+ Σ ( 7 T Ϊ J Γ ^ Λ - ' ' « Λ « Λ + O ( I « Γ )

Now let us assume the strong bracket generating hypothesis. We choose
coordinates near P so P is the origin and

where / is the m X m identity matrix. It is convenient to adopt the following
convention: lower case Latin letters a,b,--- from the beginning of the
alphabet denote indices ranging from 1, , m, while corresponding lower case
Greek letters α, /?, denote indices ranging from m + 1, , n. Thus a
typical n X n matrix will be written

' Aab B
( 5 6 ) M h
v ' \Cab Daβ

If we write JexpP(w) in this form and compute the leading terms of A, B9 C,
D we find

(5"7) c«h

as a consequence of (5.3)—(5.5) (recall that yaβp = 0 so there are no terms of
order two in D). Here \u\ denotes any Euclidean norm on Tp*. Now a simple
determinant computation shows

Lemma 5.1. If M{u) is any matrix given by (5.6) with (5.7), then detΛf(w)
= det M(u) + O(\u\2(n~m)+ι\ where M is obtained from M by discarding the
error terms in (5.7), and det M(u) is homogeneous of degree 2(n - m) in u.

Now to compute det M(u) we need to compute y$pq. By (5.2) and (5.4)

far

and setting x = 0 we obtain

(5.8) γ ( 3 ) - 3 ^l dχC + dχC dχh faa
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and y$jpq = 0 if p > m or q > m. Since

r-W -
we have at x = 0

r«^=-IM!! a n d ar°̂  _ l

since 3gα^/3j<:j' = 0 by Lemma 2.1, and also

Γ - - »
2

To simplify 32gαV3jcα3jc6 we use the method of Lemma 2.1. Differentiating
part (a) of that lemma we have

) Π / Λ
1- kK '

for any null-section v(x). Taking the inner product with another null-section

w(x) we obtain

9 ^ () ()(x)W (x) H (X)
k{x)WJ[x) dxr dx" W^X)

Now set x = 0 and take vk(x) = 8kβ, wy(0) = 8ja. Since

by Lemma 2.1(a) and the special form of g(0), we obtain

Z2gaβ

 = 3gα c 3g^c 3gα c *gβc

dxr dxr

where we take the summation convention with respect to c, c = 1, ,m,

despite the fact that it is twice raised. Substituting all these computations back

in (5.8) we obtain

dxc J

dgdg 3 g 9 g
3 * 3 C 3 α 3 c
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To simplify this we introduce the abbreviations

dχ» <" " dx°""

and compute

y$ab»aUb = i ( 2 £ c α ^ C ^ - 2EcaFβ + E*F« - Fc

β/*)

= \{Fβ - Ecβ)((Fc

a - Eca) - 3(Eca + Fc

a))

-\BcβBca + 2BcβCac.

Thus we have

M = ί 7 **
\ CαZ> \BcβBca + .δ^C^

and hence

βaβ

-Cab l)M \θ \BcβBca

from which we obtain

(5.9) detM = detiBc/*i?cα.

Lemma 5.2. Using the strong bracket generating hypothesis, there exists

ε > 0 such that

(5.10) detM(w) ^ ε(gu,u)(n-m).

Proof. By Theorem 2.4 the mapping Γ(w, •): N -> Γ is injective for every

w with (gu,u) Φ 0. On the other hand, by (5.7), Z?c/? is the matrix of

-Γ(w, •), hence BcβBca is the matrix of Γ(w, )tΓ Γ(w, •) which is invertible

since Γ(w, •) is injective. Thus det M(u) Φ 0 if (gu, u) Φ 0 and (5.10) follows

by a homogeneity argument.

Remark. The argument shows that detM(w) Φ 0 if and only if gu is a

two-step bracket generator.

Theorem 5.3. (a) If gu is a 2-step bracket generator, then there exists ε > 0

such that expp(tu) is a local diffeomorphism for all t such that 0 < t < ε.

(b) Under the strong bracket geometry hypothesis, there exists ε > 0 (depend-

ing continuously on P) such that expP(w) is a local diffeomorphism provided

guΦO and \u\ < ε((gu,u)/\u\2Yn~m\

Proof. By Lemma 5.1

detAf(iι) > detM(w) - C\u\2i"~m)+l

for u near zero, so part (b) is an immediate consequence of Lemma 5.2, and (a)

follows by the remark.
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Theorem 5.4. Let x(t) be any geodesic such that x(0) is a 2-step bracket
generator. Then it is the unique length minimizing curve joining x(0) and x(t0)
for all sufficiently small t0. In particular, under the strong bracket generating
hypothesis, every nonconstant geodesic is locally a unique length minimizing
curve.

Proof. Choose P = x{ — tγ), where tx is to be chosen, and write x(t) =
expp((t + t^Uγ). By taking tλ small enough we can arrange that guλ = x( — tλ)
is a 2-step bracket generator and expP is a local diffeomorphism at tγuλ. Let U
be a neighborhood of tλux in Γ/ on which exp^ is a diffeomorphism, let
V = expP(ί7), and let Log: V -> U denote the inverse of expP. Choose ε small
enough that V contains the Riemannian ball of radius ε about x(0). Then any
lengthy curve of length < ε must remain in V. If \tQ\ < ε(gu, u)~ι/1, then we
claim x(t) is the unique length minimizing curve joining x(0) and x(t0).
Indeed let y(ε) be any lengthy curve joining x(0) and x(t0) parametrized by
arc length < ε. Then y(t) is Lipschitz and w(t) = Log y(t) is well defined
and Lipschitz. Lemma 4.3 then implies that y(t) has length at least as much as
x(t), with equality holding if and only if the curves coincide.

Remark. Theorem 5.3(b) is not true in general. If we take the Cartesian
product Mλ X M2 of two sub-Riemannian manifolds, then we can make it into
a sub-Riemannian manifold in an obvious way. Of course it will never satisfy
the strong bracket generating hypothesis. If we choose uλ X υ2 in Γ/, where
gxuλ Φ 0 but g2v2 = 0, then g(uλ X v2) Φ 0 but is easy to see that expP will
not be a local diffeomorphism at uλ X υ2, because varying v2 in the null
directions will cause no change in the geodesic. Of course Theorem 5.4 might
still be true in general, but if so it will require a different proof.

6. Length minimizing curves

In this section we show in general that all length minimizing curves are
geodesies. This will be a simple consequence of the well-known theorem of
Pontryagin giving necessary conditions for the existence of minima to Lagrange
problems in the calculus of variations.

First we observe that the problem of minimizing length is essentially
equivalent to that of minimizing energy with the domain of the curve fixed (say
[0,1]). The reason is the same as in Riemannian geometry: among all the
parametrizations of a curve on [0,1], the one that minimizes energy E is the
one with parameter proportional to arc length, i.e. (#(*(/))£(/),£(/)) = L2

a.e., in which case E = \1? [24]. Thus if x(t) is a length minimizing curve on
[0,1] joining P and Q which is parametrized by a multiple of arc length, then
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x(t) also minimizes energy among all Lipschitz lengthy curves in [0,1] joining
P and Q

To state Pontryagin's theorem we need to define the function

H(x9ξ9λ) = \λog
J%ξk + λjgJk(x)ξk9

where λ = (λ 0, λ^ , λπ) e Rπ+1, and then M(x, λ) = wfξH(x9 ξ, λ). (Here
we have chosen a coordinate neighborhood containing the curve, which may
require taking only a piece of the curve at a time.) A simple computation
completing the square shows

' \-oo if λ0 = 0.

Theorem 6.1 (Pontrγagin). Let x(t) be an energy minimizing curve on [0,1]
joining P to Q and (x(t), ζ(t)) a cotangent lift. Then there exists a nonυanishing
absolutely continuous function λ(t) = (λ0, λ1(/), , λn(t)) with λ 0 constant
and λ 0 ^ 0, such that

(a) \j = -(dH/dχJ)(x(t)9 f (/), λ(0) a.e.
(b) H(x(t), {(ί), λ(ί)) = M(x(t\ λ(0) a.e.
(c) M(x(t), λ(0) is constant on [0,1].
This theorem is a special case of [7, Theorem 5.1.i].
Corollary 6.2. Every length minimizing curve is a geodesic.
Proof. From (b) we see that λ 0 Φ 0, and we may take λ 0 = 1 for simplic-

ity by homogeneity. Then (b) says gJk(x(t))ξk(t) = -gjk(x(t))λk(t), so
(x(t)9 — \(t)) is another cotangent lift. Now (a) says

and by Lemma 2.1 this is

so (x(t), —λ(t)) is a geodesic. Note that (c) says merely that x(t) is parame-
trized by a multiple of arc length.

Corollary 6.3. Let x(t) be a length minimizing curve on [0,1] joining P and
Q. Then for any t0 < 1, the restriction of x(t) to [0, t0] is the unique length
minimizing geodesic joining P and x(t0).

Proof. Suppose y(t) were a distinct length minimizing curve joining P and
x(tQ), say parametrized on [0, tQ], Then consider the curve on [0,1]

\x(t) if
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obtained by following y from P to x(/0), and then following x from x(t0) to
Q. Since z has the same length as x, it is length minimizing so by Corollary 6.2
it must be a geodesic. But the uniqueness of solutions of (H-J) implies y = x
after all. q.e.d.

We can now show that the exponential map must be a local diffeomorphism
at some points.

Theorem 6.4. Let P be any point. Then the set of cotangents u such that expP

is a local diffeomorphism in a neighborhood of u, and QxpP(tu) on [0,1] is a

length minimizing geodesic, is a nonempty set of positive measure.

Proof. Let U be the subset of u e TP* such that expP(tu) on [0,1] is a
length minimizing geodesic. Then expP maps U onto the ball of radius one
about P, so there must be a subset of U of positive measure on which the
determinant of dcxpP does not vanish.

7. Completeness

We say M is complete if it is complete as a metric space. We will prove the
analogue of the Hopf-Rinow theorem, relating completeness to extendibility of
geodesies. In one direction we need the strong bracket generating hypothesis.

Theorem 7.1. (a) If M is complete, then every geodesic can be extended

indefinitely, and any two points can be joined by a geodesic.

(b) Assume the strong bracket generating hypothesis. If there exists a point P

such that every geodesic from P can be indefinitely extended, then M is complete.

{Recall that we assumed M was connected.)

Proof, (a) Let γ(/) be a geodesic on the interval 0 < t < T, parametrized
by arc length. Then d{y(tλ), y(t2)) < \t2 — hi s o by completeness there exists
a point P such that lim,_Γγ(/)) = P. By so extending γ to [0, T] we obtain a
continuous mapping, so the image is compact in M. Then Lemma 4.1 shows
how to extend γ past T. Finally we can repeat the proof of Lemma 3.2 to
establish the existence of length minimizing curves joining any two points, and
these must be geodesies by Corollary 6.2.

(b) We begin by showing that every point of M can be joined to P by a
length minimizing geodesic. The proof is essentially the same as in the
Riemannian case, and is due to de Rahm [24, p. 126]. We start by using
Lemma 3.2 to find ε > 0 so that if d(P, Q) < 2ε, then the length minimizing
geodesic exists. Given any Q in M, we use the compactness of the ε-sphere
about P to find R on the sphere such that the distance add, d(P, Q) = ε +
d(R,Q), and we choose a length minimizing geodesic γ(/) from P to R
parametrized by arc length, and use the hypothesis to extend y(t) up to
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/ = d(P, Q). We claim this geodesic ends at β, γ(d(P, Q)) = Q. To prove this
we let T be the supremum of all t such that distances add, t + d(y(t), Q) =
d(P,Q). We already know T > ε, and if T=d(P,Q) this will show
d(y(d(P, Q)\ Q) = 0 as desired. But suppose T < d(P, Q). Let Q' = γ(f) so
that we have T + d(Q',Q) = d(P,Q). By repeating the original argument for
Qf in place of P we can find ε' > 0 and R' such that d(g', #') = ε' and
ε' + d(R',Q) = d(Q',Q) and there exists a length minimizing geodesic γ'
joining β ' to #' . But the curve from P to R' going first along γ to Q' and
then γ' is length minimizing, hence a geodesic. Thus γ' coincides with the
continuation of γ, and we have contradicted the maximal property of T.

Now we can prove completeness. Given a Cauchy sequence {Xj}, we
consider a sequence {γ,} of length minimizing geodesies parametrized by arc
length joining P to Xj. Now we can use an Arzela-Ascoli theorem argument,
just as in the proof of Lemma 3.2, to show that, by passing to a subsequence if
necessary, there exists a uniform limit y(ί) = limy^^γ^ί) on a small interval
0 < / < ε. Now y(t) is length minimizing, hence a geodesic, so γ(7) = expP(/w)
for some unit cotangent vector u. Similarly yj(t) = expP(tUj) for some unit
cotangent vector uy

We need to show that u is the limit of { wy}. This is not obvious because the
unit sphere in the cotangent space is not compact, and it is here that we need
to use the strong bracket generating hypothesis. Indeed by Theorem 5.3(b),
there exists t0 > 0 small enough that expP is a local diffeomorphism in a
neighborhood of tou. Then by using the uniqueness of the length minimizing
geodesies γy(/) on 0 < t < t0 (either by Corollary 6.3 or Theorem 5.4) we
obtain tou as the limit of t0Uj. Finally we use the continuity of expP to obtain
liπij^^QxppitjUj) = expP(Tu) if tj -> Γ, and choosing tj = d(P, Xj) we have
limy _^QOXj = expp(Γw) proving completeness, q.e.d.

As a corollary of the proof we have
Corollary 7.2. Assume the strong bracket generating hypothesis, and let

T > 0 be such that the closed ball of radius T about the point P is complete. Then
the subset of the unit sphere in the cotangent space at P of all u such that the
geodesic expP(tu) on [0, T] is length minimizing, is compact.

Because the topology of Λf is locally Euclidean, the completeness of M is
equivalent to the compactness of all closed balls. For applications to analysis,
the following existence of "approximate constants" is useful:

Theorem 7.3. The completeness of M is equivalent to the existence of a
sequence of functions φy. M -» R satisfying

(i) ψj has compact support,

(ii) liin/._»ooφ/ (.x) = 1 pointwisefor each x e M,
(ϋi) |φy(jc) - ψj(y)\ < εjd(x, y) for all x, y e Mfor a sequence εy -> 0.
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Proof. Assume M is complete. Take ψj(x) = hj(d(P, x)), where hj is the
real function taking value one on [0, j] and zero on [2y, oo] and linear in
between. Then (i) follows from completeness, (ii) is obvious, and (iii) follows
from

Conversely, suppose such functions exist, and let {xk} be a Cauchy se-
quence. Choose j large enough that q>j(xx) is close to one, say ψj(xι) > \, and
so that εjd(xv xk) < \ for all k (since {xk} is Cauchy, d(xv xk) is bounded).
Then by (iii) we have ψj(xk) > 4 for all k, so the sequence {JC^} lies in the
compact support of ψj. Then the compactness shows that {Xj} has a limit,
q.e.d.

The following result gives a useful criterion for completeness.
Theorem 7.4. Let M be a sub-Riemannian manifold. If there exists a

Riemannian contraction of the metric with respect to which M is complete, then
M is complete in the given sub-Riemannian metric.

Proof. Let {xj} be a Cauchy sequence with respect to d. Then it is a
Cauchy sequence with respect to dR (since dR^ d) and so there exists x e M
such that Xj -» x in the dR metric. But topologically the two metrics are
equivalent, so x}, -> x in the d metric, q.e.d.

For example, suppose M = Rn and \gjk(x)\ < c(l + |JC|) for all j , k, and all
x. Then it is easy to contract to a Riemannian metric satisfying the same
estimate, and it is easy to show that the Riemannian metric is complete. Thus
M is complete.

8. Isometries

Let M and M be sub-Riemannian manifolds of the same dimension and
subdimension, and let ψ: M -» M be a homeomorphism.

Definition 8.1. We say that ψ is an isometry if ψ preserves distance,
d(Ψ(x)> Ψ(jO) = d(x, y) for all x, y e M. We say that ψ is an infinitesimal
isometry if ψ is C1 and

(8.1) Z(t(x))-d4,{x)g(x)dt(x)

(we do not assume dψ is surjective). We say that an infinitesimal isometry is
regular if

(8.2) Ψ(exppκ) = expψ(P)(rfψ(P) n)

for every point P G M and cotangent u e Γ / .
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Theorem 8.2. (a) An infinitesimal isometry is an isometry.
(b) An infinitesimal isometry of class C2 is a diffeomorphism and is regular.
(c) An isometry of class C1 is an infinitesimal isometry.
Proof, (a) Note that (8.1) implies that dχp(x) maps a subspace of Sx,

namely the image of g(x)dψ(x)* onto S (̂JC), hence the assumption that
dimS^ = dimSHx) implies that dψ(x) maps Sx one-to-one onto SHx). Now a
routine calculation from (8.1) shows that ψ preserves lengthy curves and their
length, hence it preserves distance. Thus ψ is an isometry.

(b) Now it follows that ψ must preserve length minimizing geodesies. Fix a
point P and let x(t) be any length minimizing geodesic passing through P at
t = 0. Let y(t) = ψ(x(0) be the image length minimizing geodesic through
ψ(P). If (y(t)iη(t)) is a cotangent lift satisfying (H-J), then a straightforward
computation shows that (x(t), dψ(x(t))*η(t)) *s a cotangent lift satisfying
(H-J) (the computation involves second derivatives of ψ). Setting / = 0 we find
that dχp(P)* maps the cotangents corresponding to length minimizing geodes-
ies at ψ(P) onto the cotangents corresponding to length minimizing geodesies
at P. But we have observed in Theorem 6.4 that these are sets of positive
measure, so the linear map dψ(P)* must be surjective. This shows that ψ is a
diffeomorphism. Finally we repeat the above calculations for a general geo-
desic to establish (8.2).

(c) A C1 isometry preserves C1 lengthy curves and their lengths, and by
differentiating the length of such a curve with respect to the parameter, we
obtain that d\p(x) must map Sx isometrically onto Sφ(x). By dualizing this
statement we obtain (8.1).

Lemma 8.3. (a) A regular infinitesimal isometry is determined by the values
ofψ(P) anddχp(P) for a fixed P in M.

(b) Assume the strong bracket generating hypothesis. If ψy is a sequence of
regular infinitesimal isometries such that ψy(-P) -> Q and dψj(P) -> h for some
point Q in M and some linear transformation h: Tp -> TQ, then there exists a
regular infinitesimal isometry ψ such that ψy -> ψ uniformly on compact sets.

Proof, (a) By (8.2), ψ is determined by ψ(P) and dψ(P) on all geodesies
emanating from P, and by iteration and Corollary 3.3 it is determined
everywhere.

(b) By (8.2) we have ψy(expPw) = expψ(P)(Jψy(P)*w) and the right side
clearly has the limit expρ(A*w) as y -> oo. Thus if we define ψ on the image of
expp by ψ(exp^w) = expρ(Λ*w), then ψ is well defined (if expPw = expPt;,
then expg(A*w) = expQ(h*v)) and ψ is the pointwise limit of ψy. Furthermore
the limit is uniform if u is restricted to a bounded set, and by Corollary 7.2
this shows the convergence of ψy to ψ is uniform on a sufficiently small
neighborhood of P.
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Now the definition of ψ shows that it is C 2 (in fact C00) in the image of any
neighborhood in which expP is a diffeomorphism. Since ψ is the limit of
isometries it is an isometry, so by Theorem 8.2 applied locally it must be a
regular infinitesimal isometry on such open sets. If Q is a point in such a set,
then by applying (8.2) at Q we see that ψ is C2 in the image of any
neighborhood on which expe is a diffeomorphism. But by the results of §5 we
can reach any point of M in a finite number of steps, and so ψ is C 2

everywhere, hence a regular infinitesimal isometry. It is also clear from the
definition of ψ that the derivatives of ψ7 converge to derivatives of ψ on such
neighborhoods, and so by iteration we obtain the convergence of ψy to ψ
uniformly on compact sets.

Lemma 8.4. (a) The set of isometries of M to M with fixed point P forms a

compact group with the topology of uniform convergence of compact sets, called

the isotropy group of P.

(b) Assume the strong bracket generating hypothesis. Then the subgroup of the

isotropy group ofP of regular infinitesimal isometries is closed, hence compact.

Proof, (a) This is a straightforward application of the Arzela-Ascoli theo-
rem, since the isometric property gives the uniform equicontinuity estimate.

(b) Let \pj be a sequence of regular infinitesimal isometries with fixed point
P9 and consider the linear transformations dψj(P)* on TP*. Let Bε denote the
subset of P unit cotangents u e TP* such that expP(/w) is a length minimizing
geodesic on [0, ε]. By Corollary 7.2, Bε is compact for ε small enough. Clearly
each dψj(P)* must preserve Bε. It is clear that Bε contains a basis of TP*, SO
dψj(P)* must lie in a compact subset of the space of linear transformations on
Γ/, hence by passing to a subsequence we can make dψj(P)* converge, and
hence ψy converges to a regular infinitesimal isometry by the previous lemma.

Theorem 8.5. Assume the strong bracket generating hypothesis. Then the set

of regular infinitesimal isometries of M to M with the compact-open topology is a

Lie group G, and the subgroup GP of those isometries with fixed point P, is a

compact subgroup isomorphic to a subgroup of the isometries of SP. In particular,

a regular infinitesimal isometry is determined by ψ(P) and dχp(P) restricted to

SP.

Proof. Consider the set H of all regular infinitesimal isometries with fixed
point P such that dχp(P) is the identity on SP. By the previous lemmas H is a
compact Lie group and ψ -> dψ(P) is an isomorphism of H onto a group H'
of linear transformations of TP. Our goal is to show that H' consists of the
identity alone.

It is convenient to think in terms of a matrix representation of H'. We
choose a basis of Tp so that the first m elements span SP. Then the matrices of
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elements of //' have the form

<•<'>-(ί 5)-
In terms of a dual basis for Γ/, where the last n — m elements span NP, we
have

To show 2) = / we use the raised Christoffel symbol Γ: Γ//JV,, X NP-^ SP.
For £ e ΓP* and y E iV? we have the transformation law

dψ(P)Γ(dψ(P)*{,dψ(P)%) = Γ(ξ,υ)

by Lemma 2.3 and the fact that ψ is a regular infinitesimal isometry (this
argument uses the fact that ψ is C2, which was established in the course of the
proof of Lemma 8.3). Now Γ e SP so dψ(P)T = Γ and dψ(P)*v = D*υ, so
we have T(dψ(P)*ξ9D*υ) = T(ξ,v). But also Jψ(P)*ξ differs from ξ by a
null cotangent, hence by Lemma 2.3 we have T(ξ, D*v) = Γ(£, v). Then by
Theorem 2.4 Γ(£, •) is injective if ξ is nonnull, so we have D*v = v hence
Z) = /.

Thus we have shown that H' is a subgroup of the group of matrices of the
form (Q BJ\ which is isomorphic to a Euclidean space. But H' is compact, and
the only compact subgroup of Euclidean space is the identity.

Now if ψx and ψ2

 a r e i n Gp wiΛ ^Ψi(^) = dψ2{P) o n ^p? then ψx o ψ" 1 is
the identity by the above argument. This shows ψ -> d\f/(P)\s is an isomor-
phism of GP with a subgroup of the isometries of SP.

Finally, the fact that G forms a Lie group follows from a general theorem of
Montgomery and Zippin [31, pp. 208 and 212], to the effect that if G is any
locally compact effective transformation group on a C1 manifold with each
transformation G of class C1, then G is a Lie group and the action G X M -> M
is C1. To apply this theorem in our case we need to verify that G is locally
compact. The essential argument has already been given in Lemma 8.3(b). To
apply this we need to show that as ψ varies over all elements of G that map P
to a compact set K, the linear transformations dψ{P) are confined to a
compact set. But we have verified this if K is the set { P}, and it follows easily
if K is a singleton set {Q}. But the set of dχp(P) varies continuously with Q,
and so another compactness argument completes the verification.

Definition 8.6. A Killing vector field is a vector field Y satisfying v s y m Y = 0,
where Vsym is given by Definition 2.5.
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Theorem 8.7. The C2 Killing vector fields form a Lie algebra, and the
subalgebra of complete C2 Killing vector fields is naturally isomorphic to the Lie
algebra of G {under the strong bracket generating hypothesis). If the manifold is
complete, then all C2 Killing vector fields are complete.

Proof. Let ψ, be a one-parameter family of C 2 mappings of M to M (i.e.,
Ψί ° Ψj = Ψ/+j) depending differentially on t, and let Y be the derivative
vector field (Ύ(ψ,) = ψ,). Then a simple computation shows that ψ, is an
infinitesimal isometry for all / if and only if Y is a Killing vector field. If Y is
C2, then ψ, is C 2 hence regular by Lemma 8.2(b), while if ψ, is regular, then
ψ, is C°° under the strong bracket generating hypothesis. Clearly Y is
complete if and only if ψ, is globally defined. Now suppose the manifold is
complete; if Y is a C2 Killing field, then for small enough t0 there exists a
nonempty open set U such that if x e U, then Ψ,(JC) is defined for 0 < t < t0

by ypt(x) = Y(\pt(x)) and ψo(x) = x, and ψ, is a local isometry. But the
completeness then shows that U is also closed, and so ψ, is globally defined.

A direct computation shows that the bracket of two C 2 Killing vectors is
also a Killing vector field, and the above arguments applied locally show that a
C 2 Killing vector field is automatically C00, under the strong bracket generat-
ing hypothesis, q.e.d.

A sub-Riemannian manifold is called homogeneous if it has a transitive
group of regular infinitesimal isometries. It is easy to see that such a manifold
is automatically complete, since every point has a complete closed ball around
it, and the radius may be taken independent of the point.

9. Sub-Riemannian symmetric spaces

Definition 9.1. A sub-Riemannian symmetric space is a sub-Riemannian
manifold M which has a transitive Lie group G of regular infinitesimal
isometries acting differentiably on M with the following properties:

(i) The isotropy subgroup AT of a point P is compact.

(ϋ) K contains an element ψ such that dψ(P)\Sp= —I and ψ2 = /.
It is easy to see that if these properties hold at one point, then they hold at

every point. If we assume the strong bracket generating hypothesis we can
dispense with (i) and the condition ψ2 = /, since these are consequences of the
other hypotheses.

If G is a group for which (i) and (ii) hold, we will call G an admissible
isometry group for M. For a given M there may be more than one admissible
isometry group.



SUB-RIEMANNIAN GEOMETRY 251

Theorem 9.2. // M is a sub-Riemannian symmetric space and G is an

admissible isometry group, then there exists an involution σ of G such that

σ(K) c K with the following properties (we write g = g + + g~, where g 1 are

the subspaces of g on which da acts as + / ) :

(a) g is generated as a Lie algebra by a subspace p and the subalgebra I with

f c g", f c g+, where f is the Lie algebra of K.

(b) There exists a positive definite quadratic form Q on p and ad K maps p to

itself and preserves Q. Furthermore, p may be identified with SP under the

exponential map (of the Lie algebra g), and Q with the sub-Riemannian metric

on SP.

Conversely, given a Lie group G and an involution σ such that (a) and (b)

hold, then G/K forms a sub-Riemannian symmetric space, where SP = exp p for

the point P identified with the coset K, and the sub-Riemannian metric on SP is

given by Q. The bundle S and its metric is then uniquely determined by the

requirement that elements of G be infinitesimal isometries.

Proof. Given a sub-Riemannian symmetric space choose an admissible

isometry group G and a point P, let K be the isotropy subgroup of P, and ϊ

its Lie algebra. We identify M with G/K and TP with g/ϊ. We define

σ(h) = ψ o h o ψ so that do = Ad ψ, where ψ is the elements of K given in (ii).

Clearly σ is an involution of G because ψ2 = / and o(K)Q K.

Now we consider the adjoint action of K on g. For any k e K, Ad k factors

to a linear map on g/ϊ, and because K is compact we can find a complemen-

tary space pλ preserved by Ad K. We can identify pγ with the tangent space at

P under the exponential map, and define p c px to be the inverse image of

SP. Then AdK on pλ under the identification is equal to dk on TP. The

condition dψ(P)\Sp = -I implies that p c g~. It is easy to see that the

condition that S be bracket generating is equivalent to the condition that ϊ

and p generate g. We define the quadratic form Q on p by taking the metric

QP on SP under the identification SP = exp p, and then Ad K preserves p and

Q since the elements of K are infinitesimal isometries. Thus we have verified

all of (a) and (b) except the condition f c g+.

Now if k G K and Ad k is equal to the identity on p, it follows that Ad k is

equal to the identity on pι since p generates it, and hence dk = / at P hence

k is the identity. In particular, if X e ϊ and X commutes with p, then X = 0.

Now if X e f and Y e p, then [X - dσX, Y] e p so

- [X - dσX, Y] = dσ[X- dσX, Y] = [dσX - X, dσY] = [X - dσX, Y],

and so X - dσX commutes with p. Thus we have X - dσX = 0 hence ϊ c g+.

Conversely, given G and σ, we define a sub-Riemannian metric on G/K as

follows. For P the point identified with the coset K, we define SP = exp p and

g(P): ΓP* -> SP by Q(Y, g(P)ξ) = (Y, ξ> for all Y e SP as in (2.1). Given
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any x e G/K find h in G such that h(P) = x and set g(x) =
dh(P)g(P)dh(P)*. It follows from (b) that the definition does not depend on
the choice of A, and each element of G is an infinitesimal isometry. Since G/K
has a real analytical structure it follows from Theorem 8.2(b) that these are
regular infinitesimal isometries.

It remains to construct the isometry ψ called for in (ii). We define ψ(ΛP) =
o(h)P for any K G , which is unambiguous because σ(K) c K. Now a
simple computation involving the chain rule and the inverse function theorem
shows that ψ is an infinitesimal isometry, and ψ is real-analytic hence regular.
Clearly dψ(P) = -I on p because p e g " and ψ2 = / because σ2 = /. If
ψ e K, we are done. If ψ £ K, then we enlarge G by adjoining ψ. We obtain
the disjoint union of G and Gψ because ψ ° h ° ψ = σ(A), and so the new iΓ is
still compact, q.e.d.

As a corollary of the proof we note that any isometry in K is determined by
the restriction of its derivative at P to SP. Unfortunately, it is not clear in
general whether the full group of regular infinitesimal isometries is admissible,
since we do not have a proof of the compactness of the isotropy group of a
point without the strong bracket generating hypothesis. Any admissible group
has dimension at most n + m(m — l)/2.

We could also consider giving the data for a sub-Riemannian symmetric
space entirely in infinitesimal form. For this we would take a Lie algebra g, an
involution of σ of g with Q± its eigenspaces corresponding t o + 1 , ϊ c g + a
subalgebra and p e p subspace, and a positive definite quadratic form Q on
p, such that ad f preserves p and Q. The theorem shows how to associate this
data to a sub-Riemannian symmetric space. Conversely, if we take G to be the
simply-connected and connected Lie group with Lie algebra g, we can always
lift σ to an involution σ of G such that dσ = σ. Let K = exp ϊ. We need to
assume that K is compact. Then it is easy to see that G/K is a sub-
Riemannian symmetric space with the given data.

It is important to note that the involution ψ is not the geodesic symmetry at
the point P, since we will not have dχp(P) = —I on the whole tangent space.

If φ is any automorphism of G such that φ(K) c K and dψ preserves p
and β, then φ factors to a regular infinitesimal isometry of G/K preserving P
by the same reasoning as in the proof of the theorem. In general we cannot
expect to obtain the full isotropy group of P in this way.

We conclude this section with some examples:
(1) Let G be any connected noncompact semisimple Lie group, K the

identity subgroup (not a maximal compact subgroup), σ a Cartan involution
(with respect to a maximal compact subgroup Kλ\ and p = g". It is not hard
to show that p generates g (if g is simple this follows from the fact that
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p + [pp] is an ideal, and in general g splits into a direct sum of simple ideals).
We could take any positive definite quadratic form on p, but a natural choice
would be the restriction of the Killing form. In that case the group Kλ acts as
isometries preserving the identity. In particular, if we take the Lorentz group
SOe{n9\)9 then we obtain the maximal dimension for the isometry group.
Although p is always a two-step generator in these examples, the strong
bracket generating hypothesis is usually not satisfied.

(2) Let G be a compact semisimple Lie group, K the identity subgroup, σ
any nontrivial involution, p = g~, and Q the negative of the Killing form.
Then as before Q = p + [££], and the subgroup Kλ corresponding to g+ acts
as an isotropy group of the identity. The example of the rotation group
SO(n + 1) with σ equal to conjugation by the matrix (~J 7°) has an isometry
group of maximal dimension.

(3) Let G be the free 2-step nilpotent Lie group on m generators (2 < m).
Then Q has a basis Xj and Yjk for 1 < j < m and 1 < j < k < m with
[XjXk] = Yjk for j < k and Yjk in the center, and G is the simply-connected
Lie group with Lie algebra g. We take K as the identity, and σ defined by
dσ(Xj) = — Xj, dσ(YJk) = YJk so that p is spanned by the Xj. For Q we take
the form that makes {Xj} an orthonormal basis. Then again the entire
orthogonal group of (P,Q) extends to automorphisms of cj which lift to G,
hence the isometry group has maximal dimension. But again the strong bracket
generating hypothesis fails except for m = 2.

(4) Let G be the ^-dimensional Heisenberg group and K the identity group.
A basis for Q is Xp Yp Z with 1 ^j < n, and [Xj9 Yj] = 2Z with all other
brackets zero. We define σ by σ(Xj) = -XJ9 σ(Yj) = - Yj9 σ(Z) = Z so that
p is spanned by the Xj and YJ9 and we choose Q to make {Xj} U {Yj} an
orthonormal basis. The strong bracket generating hypothesis holds for this
example. Not every orthogonal transformation on p extends to an automor-
phism of g, but those that do can be identified with the unitary group U(n)
(essentially by considering Xj + iYj as a complex variable), so the isotropy
subgroup is at least transitive on the unit sphere of p. This example has been
studied extensively by a number of authors independently ([3], [25], [32]) and
the (H-J) equations for geodesies can be solved explicitly. There is also a group
of dilations Xj -> XXp Yj -> \Yp Z -> λ2Z for λ > 0.

10. Three-dimensional symmetric spaces

In this section we give a classification up to local isometry of all sub-

Riemannian symmetric spaces in three dimensions. Of course when n = 3 we

automatically have the strong bracket generating hypothesis.
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We begin by studying the infinitesimal data g, σ, f, p, Q. We must have
dim p = 2 and dim g = 3 or 4, with g = p + [pp] + ϊ and so g + = [££] + I,
g~= p. It is then easy to see from the Jacobi identity that p + [pp] is a
subalgebra. Thus we can initially assume dim g = 3 and ϊ = 0, and then
decide whether or not we can adjoin a one-dimensional ϊ.

Let Xl9 X2 be a basis for p, and let 7 = [Xv X2]. Then ad 7 must preserve
g~, and the Lie algebra structure is determined entirely by specifying a 2 X 2
real matrix A such that [YXX] = anXλ + al2X2 and [YX2] = a21Xλ + a22X2.
The Jacobi identity is equivalent to trace A = 0. If we take a different basis for
p given by X = MX for a nonsingular real 2 x 2 matrix M, then A is
transformed to (det M)MAM~ι. It is then a simple exercise in linear algebra
to show that up to isomorphism there are six distinct possibilities for g and p:

(1) A = 0, in which case g is the Heisenberg Lie algebra, [XιX2\= 7,
[YXX] = [YX2] = 0. Here g is nilpotent.

(2) A = (o o)> i11 which case g is the Lie algebgra of the motion group of
the Euclidean plane, [XλX2] = 7, [YXλ] = X2, [YX2] = 0. Here X2 and 7 span
an abelian subalgebra corresponding to translations of the plane, and Xλ

corresponds to rotations, and g is solvable.
(3) A = (Q ~Q ), in which case g is the Lie algebra of the motion group of the

Lorentzian plane, [XXX2] = 7, [YXX] = -X2, and [YX2] = 0. Here X2 and Y
span an abelian subalgebra corresponding to translations, and Xλ corresponds
to Lorentz transformations, and g is solvable.

(4) A = ( Π ) , in which case g = so(3), [XλX2] = 7, [YXλ] = X2, [X2Y] =
Xv Here g is compact semisimple.

(5) A = (? J), in which case g = j/(2,R), [ J f ^ ] = 7, [YXτ] = X2, [YX2] =
Xv Here g is noncompact semisimple.

(6) A = (J> J), in which case g = j/(2,R), [ ^ ^ l = 7, [7XJ = -X2,
[7X2] = Xv Here g is noncompact semisimple.

The difference between case (5) and case (6) is in the involution, which is
equal to the usual Cartan involution in case (6) but not in case (5).

Now we specify the positive definite quadratic form on p by a matrix
Q = (I cί) with a > 0, d > 0, ad > b2. If M is any nonsingular matrix such
that (det M)MAM~ι = A, then the basis X = MX is equivalent and the
corresponding matrix Q satisfies MtτQM = Q. Thus to complete the descrip-
tion of the infinitesimal data we need to specify one Q in each equivalence
class. We summarize the results:

(1): any nonsingular M is allowed, so there is only one equivalence class,
and we can take Q = (\ °x).

(2) and (3): any M = (±1 λ) with μ Φ 0 is allowed, so there is a one-
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parameter family of equivalence classes, and β = (o ?) with a > 0 gives a
representative of each class.

(4) and (6): any orthogonal M is allowed, so there is a two-parameter family
of equivalence classes, and β = (g °d) with a ^ d > 0 gives a representative of
each class.

(5) any Lorentzian M is allowed, so there is a two-parameter family of
equivalence classes, and β = (g °d) with a > 0, d > 0 gives a representation of
each class.

Next we construct sub-Riemannian symmetric spaces corresponding to the
six classes of data. We can always take M = G where G is the simply-
connected Lie group with Lie algebra g, but this is not always the most
transparent choice. Instead we prefer a unified treatment in which G is a
subgroup of SL(3, R) and the involution on G is conjugation with the matrix

1-1 0 0\
0 1 0 ,

\ 0 0 1/
and G is the image under the exponential map of SL(3,R) of a Lie algebra
isomorphic to g.

(1) G is the Heisenberg group of matrices

0

0

1

0

x2

y and Q =

0

0

0

0

0

x2

y
o

(2) G is the proper Euclidean motion group of matrices

COSXj

- sin xx

0 0

and g =
0

-χι
0

x1

0

0

y
o

(3) G is the proper orthochronous Poincare group of matrices

coshx1 sinhx1 x2

sinh^! cosh^ y

0 0 1
(4) G is the rotation group SO(3) and

0

-Xo

and g =

0

y

0

0
y
o

(5) G is the proper orthochronous Lorentz group SOe(291) and

0 x x ^

Q = \ -xx 0 -y

x2 -y 0 i
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(6)G= SΌe(l,2)and

/ 0

8 =

x2

y
x2 -y 0

Next we compute the full isometry group for each of these spaces. It suffices
to find all regular infinitesimal isometries that preserve the identity, for these
together with G generate all regular infinitesimal isometries. To do this we
need to find all orthogonal transformations of p (with respect to Q) which
extend to automorphisms of g. If we identify the transformation with the
2 x 2 matrix M we require MtτQM = Q for M to be orthogonal and
(detM)MAM~ι = A for M to extend to an automorphism (via Y ->
(detM)y)of Q.

Now the four element group of transformations

0

0

for εx and ε2 taking values ± 1 is easily seen to satisfy these conditions. On the
other hand, in order to have a larger group we must be in one of three cases:
(1), (4) with a = d, or (6) with a = d. In these cases the full orthogonal group
0(2) will satisfy both conditions. In cases (4) and (6) with a = d the associated
isometries of G are given simply by conjugation with (QΛ/) f°Γ M e 0(2). In
case (1) it is a little more complicated to describe the isometries in terms of the
coordinates (xv x2, y) of the point

1 0 x

I o o i )
Here the group law is

Corresponding to the improper matrix (Q JJ) the isometry is (JC1? x2, y)
(xλ, —x2, —y). Corresponding to the proper rotation matrix

= /cos0 -sin0\
θ \sin0 cos0 )

the isometry is

- jc2sin0, x^infl + x2cos0,

y — x1x2sin20 4- \{x\ — x\) sin0cos#).



SUB-RIEMANNIAN GEOMETRY 257

We note that in case (1) there is an additional group of dilations, namely
(xl9 x29 y) -* {λx\ ' λx2 λ2y) for λ > 0. Each dilation multiplies lengths by
the fixed value λ. None of the other examples possess nonisometric dilations.

All in all, there is good reason to think of case (1) as the analogue of flat
Euclidean space, case (4) with a = d as the analogue of the spheres of constant
positive curvature, and case (6) with a = d as the analogue of hyperbolic
spaces of constant negative curvature. It is tempting to interpret the expression
— [[ΛΎ]Z] for X, y, Z G p as an analogue of the curvature tensor in the
Riemannian case, as this would be consistent with the above analogies.
However, in general this expression will not have the expected symmetries of
the Riemannian curvature tensor.

11. Local geometry

Riemannian geometry is locally Euclidean, with curvature serving as a
measure of the higher order deviation from Euclidean. Sub-Riemannian geom-
etry, on the other hand, has a more complicated local behavior. As a simple
example consider the Heisenberg group geometry (Example 1 of §10). The
existence of dilations shows that small neighborhood are similar to large
neighborhoods, so nothing is gained by working locally; in particular there are
no approximately Euclidean triangles.

In this section, we will answer some simple questions about distances,
triangles, and cut points. We choose a point P and a local coordinate system
with P as the origin such that the tangents to the coordinate directions
x1,' ,xm form an orthonormal basis for Sp at the origin, hence gJk(0) =
(o o) W e w r i t e x = (x',x")for x in the coordinate patch with x' e Rw and
x" e R"~m, and we use the conventions of §5 to denote indices restricted to
1, , m by Roman letters a, b, etc., and indices restricted to m + 1, , n by
Greek letters a, β, etc.

Theorem 11.1. Assume S is a two-step bracket generator. There exists a
neighborhood of the origin on which the distance to the origin d(x, 0) is bounded
above and below by a constant multiple of \x'\ + | JC" | 1 / 2 . In particular, for any
Riemannian contraction with metric dR, the estimate d(x, y) < cdR(x, y)ι/1

holds on any compact set.
Proof. To show d(x,0) < c(\x'\ 4- |x" | 1 / 2) we need to construct a lengthy

curve from 0 to x of length at most c(|x'| + |x 'Ί 1 / 2 ) To do this we choose a
basis Xv , Xm for the bundle S in a neighborhood of the origin such that
X7(0) = 8J

a. By the hypothesis that S is a 2-step bracket generator we can find
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n - m pairs of indices a(a), b(a) such that if we set Ya = [Xa(a)Xb(a)]>
Xl9'"9 Xm, Ym+v' "Ύn f ° r m a basis for the tangent bundle in a neighbor-
hood of the origin.

Let <pa(t) denote the local flow generated by Xa. The orbits of φa will be
lengthy curves, as will be all curves that are piecewise orbits. We denote one of
these piecewise orbits by Φ(P9(al9tτ)9 (a2,t2\ -9(ak9tk))9 meaning the
curve starts at P, then follows <paι for the time tv then ψa2 for the time t29 and
so on. If any tj is negative we follow ψa (-1) for the time interval - tj. Now it
is well known that the curve

Φ ( P , (a29 -ft), (al9 -ft), (β2,i/ϊ"), (fli,)//)), / > 0,

φ{p(al9 -y/\Γ\), (a2,-]/\Γ\){aι,]/\Γ\), («2, vffi)), t < 0,

has derivative [Xaι, Xai\ Given variables tl9-—9tn in a neighborhood of the

origin, we consider the lengthy curve

(b(m + 1), -{t~fλ), (a(m + 1), -

(b(m + 1), /^77), (a(m + 1),

(b(n)9 -fn\ (a(n), -fn\ (b(a)9 fn\ (a(a), ,/£

when all ta > 0 (with the obvious modification if some ta < 0). This curve has
length bounded by a multiple of \t'\ + \t"\ι/2. If we consider the endpoint of
the curve, call it x, then the map t -> * is C1 and has an invertible derivative
at the origin of the form (I £), so by the inverse function theorem there is a
neighborhood of the origin on which the inverse map x -> t yields the lengthy
curve y(t) which joins 0 to x with length bounded by a multiple of |JC'| +
\x"\ι/1. This shows dφ, x) < cdR(0, x)1/2, and we obtain the bound d(x9 y) <
cdR(x, y)1/2 uniformly on compact sets by a routine argument.

For the bound from below we need to show |x" | 1 / 2 < cd(x,0), since we
always have dR(x,0) < d(x9θ). Let x(t) be any lengthy curve with x(0) = 0
parametrized by arc length. Then dR(x(t)9 0) < d(x(t), 0) < t so
\g(x(t)) - g(0)| < ct. Now we can write x(t) = g(x(t))ξ(t) for a cotangent
lift £(0 which can be chosen so that \ζ(t)\ < c. Thus

since gap(0) = 0 hence we obtain |JC"(/)| < ct1. By choosing a length minimiz-
ing geodesic from 0 to x we have |JC"| < α/(0, x) 2 as desired, q.e.d.

To generalize this result to higher brackets it is necessary to use the
Campbell-Baker-Hausdorff-Dynkin formula. A particularly clear exposition
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can be found in [33]. The result is also given in [30]. A further development of
these ideas is given in [39].

Next we consider triangles. From a fixed point P we follow two geodesies to
exppίw and εxpptu and then join the endpoints by a length minimizing
geodesic, where gu Φ 0 and gu Φ 0 and / is small enough that the two initial
geodesies are length minimizing. The behavior of the length of the third
geodesic, d(cxpptu, expP/w), as t -> 0, can be specified at least as to order of
magnitude.

Theorem 11.2. Assume S is a two-step bracket generator. If gu Φ gu, then
there exist constants cλ and c2 such that

cxt < d(expP(tu), QxpP(tύ)) < c2t.

If gu = gu then

d(expP(tu), expP(tύ)) < ct3/2.

Proof. The upper bound c2t is obvious, since we can always join expP(/w)
to expp(tύ) by a broken geodesic through P. Now in §5 we computed the
Taylor expansion

)* = tgkP{P)up - jTkp^(P)upup2 + O(t3).

Thus if gu Φ gu we have dR(expP(tu), expP(tύ)) > cxt which establishes the
lower bound.

Now suppose gu = gu, so that ύ = u + v with gv = 0. Then

)* = tgk>(P)up - jTk*»(P)upιuP2 - t2Tk^upvp2 + O(t3)

since TkpiP2vpvp2 = 0. Now by Lemma 2.3 we have TkpιP2upvp2 = gkJWj for
some w. We consider the point exp(exp/j(,M))(-ί2w), which is clearly at distance
O(t2) from expp(ίw). To complete the proof we need to show that the distance
to expP(/M) is O(t3/2). But the Taylor expansion (with coordinates centered at
P)is

* )* - t2gkp(txVp{tu))wp + O(t4)

and so we have

M))(-ί2>v) = expP(tu) + O(t3)

since gkp(expP(tu)) = gkp{P) + O(t). Thus the Riemannian distance between
the points is at most O(t3) and the result follows from the previous Theorem,
q.e.d.
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Remark. In the case of the Heisenberg group it is possible to compute the

distance exactly. If gu Φ gu, then

lim t~~1d(expP(tu), expP(/w))
ί->0

exists, while if gu Φ gu then

lim Γ3/2d(expP(tu), expP(tύ))
/-> o

exists and is nonzero. It would be interesting to know if these limits exist more
generally. Distinct geodesies with gu = gύ form what might be called "horn
angles" at P.

Next we consider the question of uniqueness of length minimizing geodesies.
The cut locus of P is defined to be the set of all points such that there exist
more than one length minimizing geodesic joining the point to P, and any
point of the cut locus is called a cut point. We have already observed that a
geodesic from P cannot be length minimizing beyond the first cut point. In
contrast to the case of Riemannian geometry, cut points occur arbitrarily close
to P.

Theorem 11.3. Assume the strong bracket generating hypothesis. Then for
every sufficiently small ε there exist at least one cut point of distance ε from P.

Proof. Choose ε small enough that the closed ball of radius ε about P is
complete (hence compact). Suppose that there were no cut points on the sphere
Se(P) of radius ε. Look at the corresponding set E in TP*\ i.e., E is the set of
u such that (gw,w) = ε2 and expP(tu) for 0 < t < 1 is length minimizing.
Then the map u -» expP(w) would be a one-to-one continuous map of E onto
Sε(P). Now we have seen that under the strong bracket generating hypothesis
the set E is compact, hence the map would be a homeomorphism. But it is
impossible for a compact subset of the cylinder (gw,w) = ε2 (topologically
Sm~λ X Rn~m) to be homeomorphic to SE(P) which is the boundary of an
open set in Rn.

Remark. If m = n — 1, then we can show that there are at least two cut
points on each sphere. By the results of §5 we know there must be a collar
gm-ι χ [_£()) go] contained in E, and we can argue separately that each of the
two components of the complement of the collar gives rise to at least one cut
point.

12. Analysis of sub-Laplacians

Let M be an ^-dimensional manifold and let Xl9— ,Xm be m linearly
independent real vector fields which are bracket generating. We call L =
Σ 7 = 1 Xf + Y a sub-Laplacian, where Y is any real vector field. These operators
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were first studied by Hormander (without the hypothesis of linear indepen-
dence) who showed they are hypoelliptic, and have since been the subject of
intense study (e.g. [36]).

Associated to L there is a sub-Riemannian metric. In terms of the tangent
bundle, we take S to be the span of Xv , Xm and we choose the quadratic
form at each point that makes Xλ(x\- , Xm(x) an orthogonal basis for S. In
terms of the metric gJk(x), we simply express L in local coordinates and set

L = gJk(χ)—: — - + first order terms.
dxJ dxk

If Xp = aJ

p(x)d/dxJ, then

gjk= t aj

p{x)ak

p{x).
p-l

Now suppose we are given a smooth density, dμ = G(x)dx in local
coordinates, for G a smooth positive function. We adjust the first order term in
L to make L formally symmetric with respect to L2(dμ). Let Xj* denote the
formal adjoint of X} with respect to the inner product (/ l 5/ 2) =
fMfι(x)h<<x)G{x)dx. Then X* = -Xp - diwap - G~ιXpG and so we will
h a v e L = - Σ ^ = 1 X*Xp p r o v i d e d w e t a k e Y = Σ"xcX w i t h

( 1 2 . 1 ) cp = άiwap + G

From now on we will make this choice of Y.
We could, conversely, start with Y and ask if there is a density which gives

rise to it. Clearly Y must be a linear combination of the Xp, but there will be
other compatibility requirements. However, if there is such a density, it is
unique up to a constant multiple since (12.1) determines Xp log G and we have

Lemma 12.1. // h is any function such that Xph = 0 for all p, then h is
constant.

Proof. If all Xph = 0, then clearly [Xp9 Xq]h = 0 and similarly for all
higher brackets. Thus vΛ = 0 so h is constant, q.e.d.

Now suppose the manifold M is complete in the sub-Riemannian metric
associated to L (note that this condition is independent of the density). Then
essentially all the results of [38] concerning the Laplacian are valid for L, with
essentially the same proofs. The key point is Theorem 7.3 which is the exact
analogue of Lemma 2.2 of [38]. We will not repeat the proofs of [38] here, but
we give a sampling of some of the results:

(1) L is essentially self-adjoint on the domain G£m(M);
(2) The heat semigroup e'Δ is contractive on all Lp(dμ\ 1 < p < oo, and

etLf gives the unique solution to the Cauchy problem ut = Lu, w(0) = / under
the hypothesis that ||w( , t)\\Lp{dμ) is uniformly bounded for 1 < p < oo.
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(3) The axioms of the Littlewood-Paley-Stein theory of [10] are satisfied, so
for example (-L)is and (/ - L)is are bounded operators on Lp for 1 < p <
oo;

(4) The heat operator etA is given by a positive C00 kernel.
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