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THE HEAT EQUATION
SHRINKING CONVEX PLANE CURVES
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1.

Let M and M' be Riemannian manifolds and F: M -» M' a smooth map.
The Laplacian of F is defined intrinsically as a section of the pull-back of the
tangent bundle of M,

and is given by the trace of the vector-valued matrix of second derivatives in
any two systems of normal coordinates on M and M'. When F is an isometric
immersion, the Laplacian of F is given by ΔF = kN, where k is the mean
curvature (the trace of the second fundamental form) and N is the unit normal
vector. We can deform the immersion F by the heat equation

ΔF or ΈkN

always computing ΔF in the varying metric on M induced by the immersion
F. It is a theorem (see [5]) that the solution always exists for a short time, and
is unique and smooth. Moreover, the immersed submanifolds Mt = Ft(M) are
independent of the parametrization. If two immersions F and F * differ by a
diffeomorphism h at time t = 0, then the solutions continue to satisfy F* =
F o h as long as they exist for the same fixed h independent of t.

The equation is clearly of significant geometrical interest. It has the follow-
ing variational interpretation. The space J( of all immersed submanifolds M
of M' has the structure of an infinite-dimensional manifold modeled on a
Frechet space (see [4]). the tangent space TMJt to Jί at M is naturally
identified with the space C™(M) of functions / on ΛΓ, where the variation in
M is given by moving infinitesimally a distance / in the normal direction. The
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volume V{M) of M gives a function on J( whose derivative in the direction of

a normal variation is

DV{M)f= - f fk.

It follows that the heat equation dF/dί = kN describes the gradient flow for
the Morse function V.

We consider here the special case of a curve M in a surface Mf. For a
compact curve M in a surface M' which is either compact or else convex at oo
(the union of compact subsets with convex boundaries) it is conjectured that if
the initial curve is embedded, then it remains embedded, and shrinks either to
a point or a geodesic. This would have important consequences for the
existence of geodesies on surfaces, by Morse theory. It is not known for
arbitrary curves even in the simple case where M' = R2, the euclidean plane,
although several computer studies tend to confirm the conjecture.* In this
paper we prove the following special case:

1.1. Main Theorem. If M is a convex curve embedded in the plane R2, the

heat equation shrinks M to a point. The curve remains convex and becomes

circular as it shrinks, in the sense that

(a) the ratio of the inscribed radius to the circumscribed radius approaches 1,

and

(b) the ratio of the maximum curvature to the minimum curvature approaches

1;

(c) the higher order derivatives of the curvature converge to 0 uniformly.

We remark that some curves in the plane which are immersed but not
imbedded will surely develop singularities. Consider, for example, the Limaςon
of Pascal, given in polar coordinates by r = 1 + 2 cos θ. The little loop will
shrink faster than the big loop, and eventually turn into a cusp. This example
is geometrically significant in view of the result we prove that when the
curvature k goes to oo, it must do so on an interval of the curve where the
angle θ of the tangent line changes by m or more (such as in the little loop).

In the higher dimensional case, Gerhard Huisken (see [6]) has shown that a
convex hypersurface Mn in Rw+1 for n > 2 will shrink to a point. The two
proofs are strikingly different in that our proof uses integral estimates, while
his uses the maximum principle. Essential to the higher-dimensional proof is
the use of the Codazzi-Mainardi equations, which are vacuous for curves in a
surface. This is analogous to the case for the heat equation for deforming
metrics by their Ricci curvature (see [5]), where in dimension 3 essential use

*( Added in proof). This conjecture has now been proved by Matt Grayson.
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was made of the second Bianachi identity, which is likewise vacuous for

surfaces.

We note that in the higher dimensional case even embedded surfaces in

space can develop singularities if they are not convex. It is pretty clear that for

an hour-glass surface with a long thin neck the neck will pinch off and pop,

changing the topological type of the surface.

This paper is organized as follows: §2 has the proof for short-time existence

and uniqueness for the heat equation for any compact manifold M immersed

in M'\ §3 contains theorems which apply to any closed simple curve in the

plane; §4 has the a priori estimates which prove long term existence for the

heat equation for convex plane curves; and §5 uses geometric estimates to

prove that the ratio of the maximum curvature to the minimum curvature

approaches one and that the higher derivatives converge to zero.

M. Gage wishes to thank E. Calabi, D. DeTurck and H. Gluck for valuable

advice and encouragement during the investigation of this problem.

2.

In this section we prove short-time existence and uniqueness for the heat

equation dF/dt = Δ F for a compact submanifold M immersed in M'. We

appeal to the result in [5] for evolution equations with an integrability

condition, which is proved using the Nash-Moser inverse function theorem.

The maps F lie in the Frechet manifold of all immersions of M to M'. Given

a vector field H on M tangent to M', let πMH denote the orthogonal

projection of H on the tangent space to M. Since Δ F = kN, where k is the

mean curvature and N the unit normal vector, we always have πMΔF = 0.

This is our integrability condition.

An evolution equation dF/dt = E(F) is parabolic if E(F) is a second order

strongly elliptic nonlinear operator. This means that, at the F we consider, the

derivative DE(F)F in the direction F is a strongly elliptic linear operator,

which means that all of the eigenvalues of its symbol σDE(F)(ξ) have stricly

positive imaginary part (where we form the symbol in the direction of a

cotangent vector £ by replacing d/dxι by £, and throwing away the lower

order terms). It is a standard result for parabolic equations that solutions exist

for a short time and are unique. Our equation is only weakly parabolic, in that

the eigenvalues of its symbol are nonnegative, but some are zero. This may be

seen from the fact that TΓ^ΔF = 0, so if E(F) = ΔF, then πMσDE(F)(ξ) = 0.

We shall compute the symbol explicitly. Choose local coordinates {x1} on M

and {ya} on M, and let ya = Fa(x') be the immersion. Then

d'dJ lJ dxk
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where g,7 is the induced metric on M and ΓA are the Christoffel symbols. Here

dFa dFβ

9.x' 3.x7

where Λα/8 is the metric on M', and,

A variation F in F produces a variation DE(F)F in ΔF. To compute the
symbol of DE(F) we only need to keep track of the highest order terms. These
arise in two ways. First there is ΔF. Then there are the terms which come from
the variation of Γ,*. Note that gtJ depends on the first derivatives of F, and T/j
depends on the first derivatives of gij9 so Tfi involves the second derivatives of
F. Computing on the symbols

and combining we get

It follows that at the symbol level

Now it is easy to recognize that ΔFα = \ξ\2(πNF)a, where πN is the projection
of the tangent space to M' on the normal direction to M. This clearly shows
the zeros in the symbol.

In the theorem in ([5], Theorem 5.1) we assume that there is an integrability
condition B(F)H which is linear in H of degree 0 (or 1) in H such that
B(F)E(F) is also of degree 0 (or 1) in F, due to a cancellation of derivatives.
We assume also that all the eigenvectors of σE(F)(ζ) in the null space of
σB(F) have strictly positive real part, the others being identically zero of
necessity. Then it follows that the evolution equation dF/dt = E(F) always
has a solution for a short time with given initial data (satisfying this condition)
and the solution is unique. In this application we take B(F)H = πMH, which
has degree zero. Then B(F)E(F) = 0, since B(F) = <nM and E(F) = Δi7 and
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πMΔF = 0. The null space of the symbol of B(F) is the normal vectors, and
on this eigenspace the symbol of DE(F) acts by multiplication by |£|2, which
is positive for ξ Φ 0. Hence the condition is satisfied.

3. Curves in the plane

We turn now to the special case of a curve (not necessarily convex) in the
plane. We take M = S1 with parameter u (modulo 2 77) and write the curve as
(x, y) = F(u). We will derive evolution equations for the length of the curve,
its curvature and for the area it encloses. We will also show that as long as the
curvature remains bounded an embedded initial curve remains embedded
during the evolution.

3.1. The arclength s along the curve is unique only up to a constant, but the
derivative with respect to arclength 3/95- is uniquely defined. We can write the
heat equation for the curve as the system

3x = 3̂ x θ j ^ θ ^ y

Here the derivative 3/3/ is taken along fixed values of the parameter u. The
operator 9/35 is given in terms of u by

ds υ du'

where v = ^(dx/du)2 + {dy/du)2 = \dF/du\.
The arclength parameter is ds = vdu. We let T and N be the unit tangent

vector and the (inward pointing) unit normal vectors to the curve. The Frenet
equations are

9 Γ 7 Λ Γ d N IT
-z- = υkN, -5— = -vkT.
du du

3.1.1. Lemma. The derivative ofv with respect to t is dv/dt = -k2v.
Proof. Using the Frenet equations and the evolution equation, we calculate

_3_ 2 , d_/d£ dF\ I d F
d t [ V > " dt \ du ' du I \ d u >
__ _/ \ \ = \
dt[V > " dt \ du ' du I \ d u > dtdu I Z \ du ' dudt I

,T£N - vk2τ\ =-2v2k2

(d/du and 3/3/ commute since u and / are independent coordinates.)
The lemma follows immediately.
The evolution of the length of the curve is easily calculated:
3.1.2. Lemma. dL/dt = -jk2ds.



74 M. GAGE & R. S. HAMILTON

Proof.

dL fiπ 3όL [2v 3 , [2* 2 (L 2-Γ- = / τ-υdu = -l k2υdu = - k2ds.
Ot JQ Ot J0 JQ

We also have this useful relation for the operators 3/3s and 3/3/.

3.1.3. Lemma.

_3__3_ = _3__3_ k2%_

dt ds ds dt ds '

Proof.

dt ds dt υ du v du υ du dt ds ds dt

The derivatives of T and N are given by

3.1.4. Lemma.

dT 3fc , dN 8ifc_
-Γ- = -z-N and -r— = - - Γ - Γ .
όt όs όt os

Proof.

= F = + k

dt dtds dsdt ds

= ^-(kN) + k2T = ^N - k2T + k2T.
dsv ' ds

The second equation follows from

- έ ^ - ( £ * • " ) •(*£)
since dN/dt must be perpendicular to JV.

Let θ be the angle between the tangent vector and the x axis. Then

3.1.5. Lemma.

30 dk . dθ

dί 35

Proof. Since Γ = (cos0, sinβ) we use the formula in Lemma 3.1.4 to

calculate

dT dk.τ dk

Comparing components proves the first equation of this lemma. Writing out

the Frenet equation in this way proves the second relation.
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The curvature evolves according to

3.1.6. Lemma.

3/ Λc2

Proof.

dk d2θ d2θ j2dθ d2k | 3

+ & 2 — = — - + k3.3/ 3/3^ 3*3/ 3*

Remark. From the equation above and the strong maximum principle one can

show that if the initial curve is convex, but contains straight line segments, then

the straight line segments disappear immediately as the curve evolves and the

succeeding curves are all strictly convex.

Finally we compute the evolution equation for the area A enclosed by a

simple closed curve.

3.1.7. Lemma. 3,4/3/ = -2ττ.

Proof.

Integrating the last term by parts yields

If - τ
- / vkdu = -2ττ

since dF/du = vT and the total curvature of a simple closed curve is 2ττ.

3.1.8. Remark. For a nonsimple closed curve the line integral in (3.1.7)

defines the weighted area

= ί {x,y)dxdy,

where w(x, y) is the winding number of the curve with respect to the point (x, y).

The rate of decrease of A will be -2m times the rotation index of the curve in this

case.

3.2. We devote the remainder of this section to proving that an embedded

curve remains embedded during its evolution provided the curvature remains

bounded.
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3.2.1. Theorem. Let F: Sι X [0, T) -* R2 represent a one parameter family

of closed curves satisfying the evolution equation dF/dt = Δ F = kN. If \k(u, t)\

< C and if the initial curve F( ,0) is embedded, then F(',t)\ S1 -* R2 is an

embedded curve for each t.

The maximum principle will be the chief ingredient in the proof. We first

prove several lemmas.

We introduce the function /: Sι X Sι X [0, T) -> R defined by f(uv u2, 0

= \F(uvt)-F(u2,t)\2.

3.2.2. Lemma. The function f satisfies the heat equation

where Δfis computed using the product of the induced metric on S1 with itself.

Proof. From the evolution equation we find

U = 2(F(uut) - F(u2,t),kN(Uϊ,t) - kN(u2,ή)

while

= +2{T{uι,t),T{ui,t))+2(F{u1,t)-F{u2,t),kN{u1,t)),

ψ-2 = 2 - 2{F{ux,t) -F(u2,t),kN(u2,t)).
os2

Adding these last two equations and comparing with df/dt proves the result.

Let s(uv w2, 0 = \fu2 v(u> 0du\ be the distance along the curve from uλ to

« 2 traversing the curve in the positive sense. Suppose now that we have an

upper bound on the curvature \k\ < c; we show that for s(ul9 w2, 0 < 2/c we

have f(uv w2, r) = 0 if and only if uλ = u2. This means geometrically that the

curves have no self intersections resulting from short kinks:

3.2.3. Lemma (A. Schur and E. Schmidt) [3]. (See Figure 1.) Let g:

[0, L] -> R2 be a curve parametrized by arclength from A to B such that g

together with the chord connecting A to B forms a convex curve. Let f be a second

curve of the same length L with endpoints C and D. We assume the curves have

continuous tangents and piecewise continuous curvature and that the curve g is

transversed in the counterclockwise sense so that its curvature is positive. If the

curvature at each point of g is greater than the absolute value of the curvature at

the corresponding point on f (i.e. kg(s) ^ 1^(^)1), then dist(Λ, B) < dist(C, D).
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Proof. Orient the curves so that AB and CD lie on the x axis. We will use
the arclength parameter s for both curves since in this lemma we are not
dealing with families of curves. Let θg(s) be the angle of the tangent vector of
the curve g at s. There is exactly one point s0 where the tangent to g(s0) is
parallel to the x axis (θg(s0) = 0). Since

dθ dθf
ds s ^ \ f\ ds

we have by integration that

\θf(s)-θf(s0)\φg(s)\.

\θg(s)\ < π for 0 < s < L because g is convex. Therefore,

fL cos(θf(s) - θf(s0)) ds= fL cos\θf(s) - θf(s0)\ds

(L cos\θAs)\ = dist(^,2?).

The left-hand integral is the projection of the line segment CD onto the
tangent to f(s0). Since the line segment is longer than the projection this
proves the result.

B D

FIGURE 1

3.2.4. Corollary. // |Jfc(iι, /)l < c, then

f(ul9u29t) > | - s m
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Proof. Let g be the arc of length s(uv u2, t) of the circle of radius 1/c
and apply the previous lemma.

Proof of Theorem 3.2.1. On the set E = {(ul9u2,t)\s(uvu29t) < τr/c),
f(ul9 w2, t) = 0 if and only if uλ = u2. This follows immediately from 3.2.4.
Now restrict / to the complementary domain D = (S1 X S1 X [0, T)) - E.
We will use a version of the maximum principle to show that on D, f has a
positive minimum. This will complete the proof of the theorem.

The boundary of D is given by

{(ul9u29t)\s(ul9u29t) = π/c,0 ^ / < T)

V{(ul9u29O)\s(ul9.u29t)> v/c}.

On the first set f(sl9 s29 t) > (1/c)2 by Corollary 3.2.4 while the second set has
a positive minimum because the initial curve is embedded. Let m be the
smaller of these two quantities.

We consider the function g(uvu2,t)=f(uvu2,t) + εt. It satisfies the
equation

(3.2.5a) ^ = Δ g - 4 + ε.

Let 0 < 8 < m and suppose that g achieves the value m - ί on (S 1 X S 1 X
[0, T)) - E. Let t0 = inί{t\g(uv u2, t) = m- 8}. The continuity of g and the
compactness of D together with the boundary estimate insures that the value
m - 8 is achieved for the first time at some interior point (ΰl9 w2, /)• At this
point 3g/3/ < 0 and

(9/θsj, d/ds2 are operators rather than partial derivatives but an easy calcula-
tion verifies this last inequality.) We calculate that

because at a minimum point the tangent lines to the curve at sx and s2 must be
parallel.
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This contradicts the assumption that g satisfies (3.2.5a). Since 8 is arbitrary,
we have that g(uv w2, t) ^ m on D, which implies that f(ul9 w2, t)> m - εT.
Letting ε go to zero we see that /(w 1 ,w 2 , ί )> m > 0 on D which completes
the proof.

4. Convex curves in the plane

We now turn our attention to convex curves in the plane. In this case we
find that the curve shortening problem is equivalent to the initial value
problem for a certain nonlinear parabolic differential equation. We obtain the
a priori estimates needed to show long term existence of this equation, proving
that convex curves shrink to points.

4.1. For convex curves we can use the angle θ of the tangent line as a
parameter. We write the curvature k = k(θ) in terms of this parameter and
determine which positive, 2ττ periodic functions arise as the curvature function
of convex curves.

4.1.1. Lemma. A positive 2π periodic function represents the curvature
function of a simple closed strictly convex C2 plane curve if and only if

Proof. If k is the curvature function of some curve, then this relation
follows directly from the fact that the curve is closed, i.e. that /0

L Tds = 0. In
the other direction, given an arbitrary k, the associated curve, up to transla-
tion, is defined by

sinr

It is easy to check that this curve is closed, has the proper curvature, and has a
one-to-one Gauss map (which insures that it is simple).

4.1.2. To determine the evolution equation for curvature when using θ as a
parameter we take τ = / as the time parameter when using θ as the other
coordinate; thus we change variables from (w, t) to (0, T). The point is that
3/9ί Φ 3/3T, because 3/3/ is the partial derivative with u fixed, and 3/3τ is
the partial derivative with θ fixed. We obtain the following equation for k in
terms of θ and T.

4.1.3. Lemma.

dθ2
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Proof. By the chain rule:

3ί " 3τ + 30 dt ~ 3τ + 30 3* 3τ I 30 j

and

3̂ /c = 30 j)_/30 3£\ = , / 9 M 2 , ,
fo2 ~ ds d θ [ d s dθj 1 3 0 /

where A:3/30 = d/ds and 30/3/ = dk/ds (Lemma 3.1.5) have been used to
simplify expressions. Substituting these expressions in formula (3.1.6) proves
the lemma.

In the rest of the paper we will deal with this equation only and for
simplicity we replace τ by t.

4.1.4. Theorem. The curve shortening process for convex curves is equivalent
to this initial value PDEproblem:

Findk: Sι X [0, T) -> R satisfying
(i) k e C2+aΛ+a(Sι X [0, T - ε]) for all ε > 0.

(ii)dk/dt = k2d2k/dθ2 + k3.
(iii) λ:(0,O) = ψ(0) where ψ satisfies:

(aJψGC1^1);
(b) ψ(0) > 0 and
(c) /o

2*(cos0/ψ(0)) dθ = fo

2«(smθ/UΘ))dθ = 0.
Proof. Lemma 4.1.3 shows that given a solution to the evolution equation

for curves, the curvature function, expressed in 0 coordinates, will satisfy
4.1.4(ii). Given a solution to 4.1.4 it is easy to check that the hypotheses of
Lemma 4.1.1 are satisfied for each t and that the corresponding curves defined
by the formulas in the proof of Lemma 4.1.1 satisfy the evolution equation
dX/dt = kN - (dk/dθ)T. The partial with respect to t is taken while keeping
0 fixed. By changing the space variable one can transform away the tangential
component, without changing the shape of the curves. Briefly, we require that
the partial of X with respect to /, holding u fixed, solves dX/dt = kN and
writing 0 as a function of t and u we find that dθ/dt = k(θ(u,t),t) -
(dk/dθ)(θ(u,t),t) must be satisfied. Solving this with the initial conditions
0(w, 0) = 2πu yields a function satisfying θ(u + 1, t) = 0(w, /) and 30/3w > 0,
hence it can be inverted to write u as a function of t and 0.

4.1.5. Remark. Notice that equation 4.1.4(ii) is a straightforward parabolic
equation for k in terms of 0 and t. It is possible to prove short term existence
and uniqueness for this equation from the standard results on parabolic
equations and work backwards using Lemma 4.1.1 to find the motion of the
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curve. This would avoid the use of the Nash-Moser machinery in the special

case of a convex curve.

4.2. It is important to show that curves which are strictly convex remain so.

This follows from the evolution equation 4.1.4(ii) via the following

Lemma. // k satisfies 4.1.4, then kMlN(t) = inϊ{k(θ, t)\0 < θ < 2π) is a

nondecreasing function.

Proof. The proof is by contradiction: Let ε satisfy &MIN(0) > ε > 0 and

suppose that fcMIN(t) = kMm{ϋ) ~ ε f o r s ° m e t. Let t0 = inf{r|/cMIN(O =

/cMIN(0) — ε}. Continuity of k assures that this minimum is achieved at some

point (0O, t0). At this point, however,

| y ( < W o ) < 0 , 0 ( 0 o , Ό ) > 0 and k(θo,(o)>O.

This contradicts the hypothesis that k satisfies 4.1.4(ii).

4.3. We turn now to the estimates for convex curves. We introduce the

median curvature k* for a curve, defined as

A:* = sup{ b\k(θ) > b on some interval of length π }.

We will obtain the following estimates for families of curves satisfying the

evolution equation.

Geometric estimate (4.3.2). If k(θ91) is the curvature of a convex closed

plane curve which encloses an area A and has length L, then k*(t) < L/A.

Integral estimate (4.3.4). If k*(t) is bounded on [0, Γ), then

/0

27Γ log k(θ, t) dθ is bounded on [0, T).

Pointwise estimate (4.3.6). If /0

2 π log k(θ, t) dθ is bounded on [0, Γ), then

k(θ, t) is uniformly bounded on S1 X [0, T).

Combining these estimates we prove the main theorem of this section.

4.3.1. Theorem. If k: Sι X [0, T) -> R satisfies 4.1.4 and the area enclosed

by the associated curves is bounded away from 0, then the curvature k is

uniformly bounded on Sι X [0, T).

Proof. The length of the curves decreases during the evolution so a uniform

lower bound on area yields a uniform upper bound on k*(t) and, as a

consequence of the integral and pointwise estimates, a uniform upper bound

on k(θ,t).

4.3.2. Proof of geometric estimate. If M < k*(t\ then k(θ,t) > M on

some interval {a, a + TΓ). This implies that the convex curve lies between

parallel lines whose distance is given by

f°+« sin(g - a) .Λ 2

/ ;
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(see Figure 2). The diameter is bounded by L/2 and the area is bounded by the
width times the diameter. Since M can be chosen arbitrarily close to k*(t) we
have k*(t) < L/A as desired.

T(θ)

2M

T(θ + 7Γ)

FIGURE 2.

4.3.3. (Wirtinger's inequality [7]). If f(a) = 0 and f(b) = 0 with b - a
π, then

By translation we may take 0 = 0. We may also take b = π by
extending / to be zero for b < θ < π. Then the result follows by expanding /
in a Fourier series f=Σan sin Λ?0. Equality holds only for f(θ) = sin0.

4.3.4. Proof of integral estimate. Using the evolution equation 4.1.4(ii) and
integration by parts we calculate

Fix t and estimate the right-hand integral over the open set U = {θ\k(θ, t)
> k*(t)} and its complement V = Sι - U. The definition of A:* implies that
the open set U is the countable union of disjoint intervals /; each of length less
than or equal to π. At the endpoints of the closures of these intervals, k(θ, t)
equals k*(t) so that Wirtinger's inequality can be applied to the function
k(θ,t) - k*(t). Simplifying this inequality yields:

Summing this over the intervals comprising U we obtain

-(IIfdθ < 2k*(t)j k(θ,t)dβ < 2k*(t)f2πk(θ,t)dθ.
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On the set V the estimate is simpler:

Adding these equations and recalling (Lemma 3.1.2) that dL/dt = -jk2ds =

-fkdθ yields

l 2 ) d θ < 2* ( / ) ^ + 2π(k*(t))2.

Finally assume that fc*(ί) < SM and integrate to obtain the desired estimate:

ί2π
ί2π \ogk(θ, t) dθ ^ f2" \ogk(θ,0) dθ + 2Af (L(0) - L(t))

Lemma. // / logk(θ, t) dθ is bounded on [0, Γ), /Ae« /or α«j δ > 0 we can

find a constant C such that k(θ, t) < C except on intervals of length less than or

equal to δ.

Proof. lik^C on a^θ^b and b - a > δ, then

logk{θ,t)dθ > δlogC +(2τr - δ)logfcM I N(0),

where &M I N(0) is a lower bound for /:. (Recall that kMm(t) does not decrease

with time.) This gives a contradiction when C is large.

4.3.5. Lemma. We can find a constant D such that

holds for 0 < / < T.

Proof. We have

ί
dθ

dθ2

Integrating this inequality completes the proof.

4.3.6. Proof of the pointwise estimate. Since /o

2iΓlogλ:(0, t)dθ is bounded

we have k < C except on intervals [α, ό] of length less than 8. On such an

interval

\ 1 / 2

k2dθ1/
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This shows that if kMAX is the maximum value of k, then

*MAX < C + ^{iπk2^ + D)l/1 < C + Iπjδk^ + yfδD.

Choosing δ small we have kMAX < 2C.
4.4. Using the assumption that k is bounded, we find bounds for the

higher derivatives of k.
4.4.1. Lemma. Ifk is bounded, then dk/dθ is bounded.
Proof. We calculate

This implies that dk/dθ grows at most exponentially as can be seen by
considering the PDE satisfied by eatdk/dθ and choosing a so that the
maximum principle can be used. On a finite time interval dk/dθ remains
bounded.

To simplify notation we use kf to denote the partial derivative with respect
to θ in what follows.

4.4.2. Lemma. Ifk and k' are bounded, then /0

27r (k")4 is bounded.
Proof. We calculate using the evolution equation:

f2"= -12 f2" (k")\k '")(k2k '" + Ikk'k" + 3k2k')
Jo

= -12 ί2n k2(k")\k'")2 + 2kk'(k")\k'") + 3k2k'(k")2k'".

We use the inequality ab < 4ύ(2/ε + ε°2 t 0 bound the second and third
terms by the first term and some additional penalty terms to obtain

I Γ (*")* < Γ Cχk'\k")Λ + C2k
2k'\k"f.

Using the uniform bounds on k and k' and the fact that

\1/2

we see that ^{k'Ύ grows at most exponentially and therefore remains finite
on a finite time interval.
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4.4.3. Lemma. Ifk, kf and J(k")4 are bounded, so is f(k '" )2.
Proof. We compute

γtf {k'"f = if (k'"\k2k" + k3)'" = if k'"\k2k" + k3)"

= -if k2(k"")2 + Akk'k'"k"" + lk(k"fk""

+ l(k')2k"k"" + 3k2k"k"" = 6(k')2k"".

We use the same trick as in the previous lemma to bound the last five terms
by the first term and some additional penalty terms. This yields

A:'")2 < Cγj k'\k'"f + C2f (k")4 + C3/ ^f(k")2

where each term except the first is bounded by a constant. (Recall again that

k > *MIN(O > ^MIN(O) )

The first term is bounded by a constant times f(k " ' ) 2 which proves that the
growth rate is at worst exponential and that the quantity is finite on finite
intervals.

4.4.4. Corollary. Under the same hypothesis k" is bounded.
Proof. In one dimension

max|/|2<c/|/'|2+/2

and we apply this to k".
4.4.5. Lemma. Ifk, k' andk" are uniformly bounded, then so are k '" and

all the higher derivatives.
Proof. This follows from the maximum principle. We compute

όt

= k2k(υ) + 6kk'k(iD)+($kk" + 6k'2 + 3k2)k'"

+ (6Jt'(λ:")2 + 18**'*" + 6(*')3)

If k, k' and * " are bounded then the maximum principle can be applied to
it '" e°" for suitable a. On a finite interval, this implies that \k'" \ is bounded.
In general if k, k', • ,k("~l) are bounded, then

| " * < n ) < k2k{n+2) + 2nkk'k{n+l) + Ck(n) + C
όt

shows that k(n) is bounded on finite intervals.
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4.5. Theorem. The solution to 4.1.4 continues until the area goes to zero.

Proof. As long as the area is bounded away from zero, we get bounds on k

and all of its derivatives. Using the evolution equation we can bound the time

derivatives also. Suppose the solution exists on the interval [0, T) and the area

does not go to zero (lim A(t) > 0). Then k has a limit as t goes to T which is

C°° and we can extend the solution past T. The solution k to 4.1.4 can be

converted to a solution of the heat equation for curves using Lemma 4.1.1.

5.

Once we know that the area goes to zero, the fact that the curve becomes
circular follows from two articles by M. Gage. The first [1] shows that the
isoperimetric ratio L2/A decreases, so that if A -> 0, then L -> 0 and the
curve shrinks to a point. The second [2] shows that the isoperimetric ratio
approaches its optimum value of 4π and as a consequence the ratio rout/rin of
the circumscribed radius to the inscribed radius goes to 1.

In the remainder of this paper we use similar geometric techniques to show
that the ratio of the maximum curvature to the minimum curvature of the
curve goes to 1. This can be considered " C 2 " convergence to the circle as
opposed to the "C°" convergence obtained in [2]. Finally, we use a priori
estimates similar to 4.4.2 and 4.4.3 to show that the higher derivatives of k
converge to 0 and therefore the curves converge to circles in the " C 0 0 " sense as
well.

5.1. The first lemma refines the geometric estimate. Let

k* = sup{ b\k(θ) > b on some interval of length w}.

Lemma.

where rin and rout are respectively the radii of the largest inscribed circle and the

smallest circumscribed circle of the curve defined by k(-,t). K is a positive

decreasing function ofw with K(0) = oo and K(π) = 0.

Proof of Lemma. Let M < k*(t). The set of {θ\k(θ, t)> M) contains an

interval of length at least w, which by changing the parametrization we can
assume to contain the interval (-w/2, w/2). If we construct the circular arc
with the curvature M, and angle w tangent to the curve at θ = 0 we see that
the convex curve must lie in the region bounded by the arc and the rays
tangent to the ends of the arc (see Figure 3).
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FIGURE 3

The convexity assumption insures that γ lies within the dotted lines, while
the estimate k(θ) > M on (- f, f) insures that the dotted lines lie within the
'cone' formed by the circular arc and solid straight lines.

Since the inscribed circle lies within the cone and the circumscribed circle
must encircle every point on the curve we see that for a given rin the smallest
rout is obtained for the configuration shown in Figure 4.

FIGURE 4
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From Figure 4 and trigonometry, we determine that \b\ = \/M and that

(5.1.1) c o s ( _ ) = _ _ _ = _ _ _ ,

(5.1.2) 2ro u t > rin + \a\.

From (5.1.2) we have

(5,,) ( * _ , ) > _ • +J!L
\ ' in / u *"' in

and solving (5.1.1) for \a\ yields:

( 5 L 4 ) | |y" "' ' ' cos(w/2) i

Substituting (5.1.4) in (5.1.3) and rearranging yields

1

" T

" ^ l - A Γ ( W ) ( r o u t / r i n - l ) >

where

2cos(w/2)

2 cos( w/2) 2 / 1 - cos( w/2) '

Since M can be chosen arbitrarily close to k*(t) this proves the lemma.

5.2. Corollary.

(ε)(rout/rin - 1) '

where ε is any small positive number.

Proof. From the proof of the pointwise estimate we see that for any ε, if

w/2 < S then k{θ, t) > (1 - ε)kMAX(t) for all ί E ( ί 0 - w/2, θ0 + w/2)

(where A:M A X(0 = k(βθ91)). Hence * ( 0 > *MAX(0(1 " <0 for all t. The

choice of δ depends only on the initial curve.

5.3. Proposition. For any positive ε

1 \2

for all t sufficiently close to T.

Proof. From the Bonnesen inequality [8] one has the estimate

[2] contains the proof that L2/A converges to 4ττ during the curve shortening

process. Hence rout/rin converges to 1. Combining this fact with the previous

estimate proves the result.
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5.4. Theorem. k(θ,t)rin(/) converges uniformly to\.
Proof. Using the techniques used to prove the pointwise estimate it is easily

shown that the family k(θ,t)rin(t) is equicontinuous. That a subsequence
converges uniformly to a function f(θ) and f(θ)^ 1 follows from the
estimate above. Now (k(θ, ί,)^*/))" 1 converges pointwise to f(θ)'1 in the
extended reals and from Fatou's lemma we have

ί3 dθ < liminf ( -η-—r—7—r = liminf \ '"; = 2ττ.

On the other hand, 2ττ < / dθ/f(θ)\ hence f(θ) = 1.
Since every convergent subsequence converges uniformly to 1, k(θ, t)rin(t)

converges uniformly to 1.
5.5. Corollary. kMΪN(t)/kMAX(t) converges to 1.
5.6. Corollary. k(θ, t)j2T- It converges uniformly to 1. (At T the enclosed

area is 0.)
Proof. From the Bonnesen inequality and 3.1.7 we have

From L/ {A -> 2\/τΓ it follows that r in/ jT — t converges to ]/2, which,
together with Theorem 5.4, proves the corollary.

5.7. To determine the rate of convergence of the derivatives of k it turns
out to be most productive to consider the evolution of the "normalized"
curvature K where the normalization is chosen so that the related convex curve
encloses an area π. K is defined by

It is also convenient to change the time parameter to τ = |log((Γ - t)/T).
The evolution equation for K is

B+k'

If = N 2 ^ + κ > - κ } . (5.7.0)

We also have that K converges to 1 uniformly as T goes to infinity.
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The aim of this section is to prove the
5.7.1. Theorem. | |3 V ^ ' l l o o < C(l)e-2aτ forl>l,0<a<l.
5.7.2. Corollary. ||3 V^'lloo < C(l)(T - t)a~ι/2 for all I > 1 and 0 < a

< 1. This implies that the derivatives of the original, nonnormalized curvature
converge to 0 uniformly.

Proof. One makes the appropriate substitutions in 5.7.1.
5.7.3. Corollary. kMAX(t) - kuw(t) -> 0 as t -> T.
To simplify notation we use / ' , / " , to indicate partial differentiation by

θ. We also use \\fin\\p = [I(dif/dθl)p]ι/p. The following facts are used
repeatedly.

Peter-Paul Inequality. (Pay Peter for the privilege of robbing Paul [9].) For
all positive ε, ab < εa2 + b2/4ε.

Wirtinger inequality. If ̂  f = 0, then /0

2»f2 < β\f')2.
Sobolev inequality. // | |/ | | 2 < C and | | / ' | | 2 < C, then \\f\\^

+ y/2τ7Γ)C, wΛ r̂e || | |2 w the L2 norm and \\ \\^ is the sup norm for functions on
S\

These last two inequalities imply that an exponential bound on the L2 norm
of the /th derivative guarantees an exponential bound, with the same exponen-
tial constant, for the L^ norms of all the lower derivatives.

We also make use of the following inequalities.
5.7.4. Lemma. Letf: R + ^ R+ satisfy df/dr < cfι~ι/p - 2pf.
Then f(τ)ι/p < (c/2p + De~2τ) < c(p).
Proof. We calculate

dτy J > c J pJ
 ΘT

Hence e2rfι/p < D + ce2τ/2p and the result follows.
Similarly we have
5.7.5. Lemma. Ifdf/dτ < -α/ + C e ^

^ ifaΦβ,or/ ( τ ) < D e + ^
a - μ

/ ( T ) < Z)e"ατ + Cτί>-ατ ifa = β.

5.7.6. Lemma. | | κ Ί | 2 tfwd II^IU ^ ^ bounded by constants independent of τ.
Proof. We calculate using equation (5.7.0) and integration by parts:

4(κ')4 " 12κ2(κ')2(κ")2 "
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The last term is bounded using the Peter-Paul inequality by 12λ:2(/c')2(κ")2 +
3(κ')2/c4. Observing that K converges to 1 we use the Holder inequality to
obtain

where / ( T ) = /(κ')4. The conclusion for ||/c'||4 follows from Lemma 5.7.4 with
p = 2. The boundedness of ||fc'||2 follows immediately from the Holder in-
equality.

5.7.7. Lemma. ||κ"|l2 is bounded by a constant which does not depend on r.

Proof. We calculate as before using integration by parts once.

A J ( κ " ) 2 = j -2(κ")2 - 2κ(κ "')2 - 4κκ'κ"κ'" - 6κV/c '".

We use the Peter-Paul inequality to bound the last two terms and obtain

(5.7.7a) £ / { κ " γ < Cif {K')\κ"γ + c2f K

2(κ')2 - if (κ"f.

We rearrange terms in equation (5.7.6) to obtain a bound for (V)2(/c")2

(5.7.7b) / 12κ2(κ')V')2 < - A / (κ')4 + f -4(K')4 - 12κ3(K ')V)
Let M be a lower bound for K, and use the Peter-Paul inequality to bound the
last term:

(5.7.7c) 12M2/ ( K ' )V') 2 < - £ : / (κ')4 + 12/ ε(κ")2 + ^(<c')4«6

We let / = j{κ")2 and using (5.7.7a) and (5.7.7c) with ε small enough we
obtain

where we have used the bounds in (5.7.6). Multiplying this by eJ and

integrating over τ yields

A

(5.7.7f)

Using the bounds in (5.7.6) again we obtain

(5.7.7g) eAf(A) < c5e
A + c6 + cΛe

A

from which the conclusion follows immediately.

+
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5.7.8. Lemma. WK'W^ converges to zero as τ -> oo.
Proof. From the Sobolev inequality and Lemmas 5.7.6 and 5.7.7 we

conclude that HK'H^ < oo. The bound on | |κ" | | 2 implies that K' is equicontinu-
ous, hence a subsequence converges uniformly to g(θ). The anti-derivative of K
must converge to the anti-derivative of g. But K converges uniformly to 1,
hence g = 0. Since every subsequence converges to zero, κ'(θ, τ) converges
uniformly to zero.

5.7.9. Now we wish to obtain good exponential decay bounds on the low
order derivatives.

Lemma. For any 0 < a < 1 we can choose A so that for τ > A

f(κ"f>4af(κ')2.

Proof. We observe that since /cosθ/κ = jsinθ/κ = 0 we have

f 4<*>s0= f 4 * i n 0 = f —, = 0 .

Since κ'/κ2 is perpendicular to the first eigenvectors, the Wirtinger inequal-
ity becomes

the left-hand side of which expands to

t ί« ΐ _4ίiOV
κ2 κ3 J J κ4 κ5 κ6

since H/c'H^ -> 0. For 4̂ sufficiently large we can assume that ιc — 1; hence for
any α, 0 < α < 1, we have 4α/(κ ') 2 < / ( O 2 a s desired.

5.7.10. Lemma, /br έwiy α, 0 < a < 1, ίΛ r̂̂  w a constant C such that

Proof. We reconsider

— ί ( κ'Ϋ = 9 f κ'( tc2ιe" A- k 3 — k V = ί -lk 2( v"\2 4- 6v2( ir'λ2 — Ί( v'\2

r\ I \ / " I Λ I I* ft î  n *^7 I Z ί l V l l v l ι^ yjn, I Λ I Ll K I .
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For any α, 0 < a < 1, we can choose A such that for τ > A

£ (κ>)2 + 6af (κ')2 - if (κ'f

or

Hence \\κf\\l < Ce~4aT and the lemma follows immediately.

5.7.11. Lemma. For any α, 0 < a < 1, we can find a constant C such that

\\κ"\\2<Ce-2*\

Proof.

-2(K"Ϋ ~ 2κ2(κ'")2 - *κκ'κ"κ'" - 6κ2κ'κf"

-2(κ")2 ~(2)κ2(κ »'f + 4ε(κκ »')2 ± \

We choose ε small, and then choose A large enough so that for T > A, HK'H

is very small:

Using the standard Wirtinger inequality and that K converges uniformly to 1

we obtain

2-( (κ")2^-4af (κ")2 + Ce-4s\
uT J J

From Lemma 5.7.5 we have

for any a < a. This proves the lemma.

5.7.12. Corollary. For any α, 0 < a < 1, /Λere ejcwί5 a constant C such that

L
To bound the third derivatives we will need the following
5.7.13. Lemma. For any α, 0 < a < 1, we can find a constant C such that
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Proof. Using the standard tricks we calculate

= f -12(κ")V"(κV" + 2/cκ'κ" + 3κV) - 4(κ")4

= f -12κ2(κ")2(κ'")2 - 24KK'(κ")V" - 36κV(κ")V" - 4(κ")4.

The standard trick yields

+ 36ε<c2(κ"κ'")2 + j-εκ
2{κ'f(κ"γ - 4 ( κ " ) 4 .

We choose ε small and use the previous bounds on HK'H^ a n £ l | |κ ' | j 2 to

obtain, for large T,

The lemma follows from Lemma 5.7.5.

5.7.14. Lemma. For any a, 0 < a < 1, ίλere w some constant C such that

Proof.

A J ( κ ' " ) 2 = _ 2 | [)t""(κ2κ"" + 2κκ'κ'" + 2(κ')2κ" + 2κ(κ")2

+ 2κκ'κ'" + 6κ(κ')2 + 3κV +(κ '

-2κ 2(K"") 2 + CISK
2(K"")2 + ^(κ')\κ'")2

κ ' " ) 2 + C e - 4 a τ .

The last inequality holds for T sufficiently large so that the C2 term can be

absorbed. The Peter-Paul inequality and the Wirtinger inequality are used as

before, as are Lemmas 5.7.12 and 5.7.11. Applying Lemma 5.7.5 yields the

result.

The induction step is routine, but tedious.

5.7.15. Lemma. Assume that I > 4, 0 < a < 1, H K ^ ^ H J < Cxe-laτ and

II«O)II« < C2e-2«\ j = 1,2, ..,1-2. Then ||κ<'>||2 < C3e"2« τ and H K * ' " 1 ^
2
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Proof. As before we calculate

-^f (κ<'>)2dθ = 2 / ιc<"(KV' + κ3 - K ) ( / )

= / -2 K < m >( κ V + κ3 - κ)ι'~1} - 2(κ<'>)2

(a) = f {-2 K

2 ( K < / + 1 >) 2

(b)

(c)

(d)

(e)

(f)

(g)

The middle terms can all be bounded in terms of an arbitrarily small
fraction of term (a) and the following terms:

κ2

(c)

1 — Λ\2

(d)

κ2

(f)
κ2

Term (b) can be bounded by an arbitrarily small fraction of (g) if T is
chosen large enough. Let a e (a, 1). Terms (c) and (e) are bounded by Ce~4aτ

(or better) using L^ norms on the low derivatives and the L2 norm on the
/ — 1 derivative. The terms in line (d) can be bounded by Ce~4aτ using only
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the L^ norm. Finally we bound (a) by -/(κ ( / ) ) 2 using the Wirtinger inequal-
ity and the fact that K -> 1 uniformly. We obtain

and use Lemma 5.7.5 to complete the proof.
The proof of Theorem 5.7.1 follows by induction from the previous lemmas.
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