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1. Introduction

The Toponogov Splitting Theorem [6] states that a complete Riemannian
manifold (H,h) of nonnegative sectional curvatures which contains a line γ:
R -> H (i.e., a complete absolutely minimizing geodesic) must be isometric to a
product R X H\ the first factor being represented by γ. In [6] Cheeger and
Gromoll gave a proof of this theorem stemming from their soul construction.
Subsequently, Cheeger and Gromoll [5] were able to generalize this Rieman-
nian splitting theorem to the case of nonnegative Ricci curvatures. In [17, p.
696], S. T. Yau raised the question of showing that a geodesically complete
Lorentzian 4-manifold of nonnegative timelike Ricci curvature which contains
a timelike line (i.e., a complete absolutely maximizing timelike geodesic) is
isometrically the Cartesian product of that geodesic and a spacelike hyper-
surface.

Galloway [9] has recently considered this question for space-times which are
spatially closed, i.e., which admit a smooth time function whose level sets are
compact (smooth) Cauchy surfaces. Let (M, g) be such a globally hyperbolic
space-time which satisfies the strong energy condition Ric(ι;, v) > 0 for all
timelike vectors υ in TM. Suppose further that (M,g) contains a timelike
curve which is both future and past complete and that for each p e M, every
null geodesic emanating from p contains a past and future null cut point to p.
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Then Galloway shows (M,g) splits isometrically as a Lorentzian product

(R X H,-dt2 <8> h), where (H, h) is a compact Riemannian manifold. The

proof employs and extends some results of [1] and [10].

In the present paper, we consider a different class of space-times than those

studied in [9] and we use quite different techniques to obtain the following

splitting theorem.

Theorem 5.2. Let (M, g) be a globally hyperbolic space-time of dimension > 2

with everywhere nonpositiυe timelike sectional curvatures K < 0 which contains a

complete timelike line γ: (-oo, oo)-> (M, g). Then (M, g) is isometric to a

product (R X H, -dt2 Θ h), where (H,h) is a complete Riemannian manifold.

The factor (R, -dt2) is represented by γ and (H,h) is represented by a level set

of a Busemann function associated to γ.

This theorem provides an affirmative answer to the question raised by Yau

for globally hyperbolic space-times with nonpositive timelike sectional curva-

tures without imposing the assumption of geodesic completeness.

We work directly with the Busemann function in obtaining Theorem 5.2 as

in [5] rather than dealing with direct geometric constructions as in the

Riemannian proof in [6]. We have also been influenced by a series of papers by

R. Greene and H. Wu (cf. [16] for a survey) and by a paper of Eschenburg and

Heintze [7].

We would like to thank J.-H. Eschenburg and E. Heintze for providing us

with a preprint of [7].

2. Preliminaries

In this paper (M, g) will always be a connected, time oriented Lorentzian

manifold which is globally hyperbolic with metric g of signature (-, +,•••, + )•

If A is a subset of Λf, then I+(A) = { g e M | α « : # f o r some a e A} and

I~(A) is defined dually. The sets I+(p), I~(p\ I+(A), and I~(A) are always

open. Furthermore, we set I(A) = I*(A) Π I (A).

Given p.q^M, set d(p,q) = 0 if q£J+(p) and let d(p,q) be the

supremum of lengths of future directed causal curves from p to q if q e J+(p).

The Lorentzian distance function d satisfies the reverse triangle inequality

d(P> <l) > d(p, r) + d(r, q) whenever p < r < q. Since (M, g) is globally hy-

perbolic, the Lorentzian distance function is both finite valued and continuous,

(cf. [13]).

A causal geodesic is maximal if the length between any pair of its points is

equal to the Lorentzian distance between these points. For a unit speed future
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directed timelike geodesic γ: (a, b) -> M, this means that J(γ(/ 1 ), γ(/2)) = t2

— tλ for all a < ίx < ί2 < b. A maximal timelike geodesic γ is a line if it is

complete (i.e., a = -oo and b = oo). A maximal causal geodesic of the form γ:

[a, oo) -» M is called a αzwsα/ ray.

Most of our notational conventions are standard and may be found in [2],

[13], and [14].

3. Busemann functions

If γ: (-oo, oo) -> M is a future directed timelike line, then for each fixed

r > 0 we define ftr

+: M -> R by &+(*) = ' ~ d(jc,γ(r)). (cf. [3, p. 131], [5, p.

119]). These functions are continuous functions of both x and r because

(M, g) is globally hyperbolic.

If γ( r ) £ / + ( J C ) , then rf(jc,γ(r)) = 0 and br

+(x) = r. Thus br

+(x) is an

increasing function of r for fixed x as long as γ(r) € / + ( x ) . On the other
hand, if x « : γ ( r ) for some r > 0, then there is a smallest r0 > 0 such that

JC <§c γ( r ) for all r0 < r < oo. Assuming such an r0 exists, the reverse triangle

inequality implies that b*(x) is a monotone decreasing function of r for all

r > r0. If we then allow the possible values of -oo and +oo, the Busemann

function

b + (x)= \imb;(x)

exists for all x e M. In the case JC £ / (γ) we have b+(x) = H-oo.In general,

b+ need not be a continuous function of x for globally hyperbolic space-times.

In fact, examples conformal to a subset of the Minkowski plane L2 may be

constructed with b+ discontinuous.

If x «: γ ( r ) for all r0 < r < oo, given a sequence of points {xn] converging

to x and a sequence of numbers {rn} diverging to + oo we will have

xn <g: y(rn) for all sufficiently large n by the openness of chronological sets.

We will implicitly use the properties of limit curves (cf. [2]) to define the notion

of co-ray to γ as follows. A (future) co-ray to γ from x will be a causal curve

starting at x which is future inextendible and is the limit curve of a sequence

of maximal length timelike geodesic segments from xn to y(rn) for two

sequences {xn}, {>„} with xn -> x and rn -> oo (cf. [2, pp. 33-45]). Past

co-rays are defined dually. This definition of co-ray corresponds to that used

by Busemann [3, p. 130]. A (future) co-ray is always a maximal length causal
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geodesic starting at a point x. However, there may be more than one co-ray to

γ from x. Furthermore, a co-ray to γ from x may be a null geodesic. To rule

out this possibility, we impose the following condition on (M, g).

Definition 3.1. The globally hyperbolic space-time (M,g) satisfies the

timelike co-ray condition for the timelike line γ: (-00, 00) -> M if for each

; c e / + ( γ ) u / ~ ( γ ) a l l future and past co-rays to γ from x are timelike.

The timelike co-ray condition has the following technical consequences

which may be obtained using standard arguments.

Lemma 3.2. Let (Af, g) be a globally hyperbolic space-time which satisfies

the timelike co-ray condition for the timelike line γ: (-00, 00) -> (M,g). Let

x e /"(γ) be arbitrary and ε > 0 be given. Then there exists an integer N > 0,

a neighborhood U(x) of x with U(x) c /"(γ) and an open set V with compact

closure K = V c I~(x) satisfying the following properties:

(a) K c I+(y) for ally e U(x).

(b) Given any y e U(x) and q e K, we have d(y, q) < ε.

(c) If y G U(x) and t > N, then any maximal timelike geodesic segment from

y to y(t) intersects K.

We now show b+ is continuous on the set /"(γ).

Lemma 3.3. Let (M,g) be globally hyperbolic. If (M,g) satisfies the

timelike co-ray condition for the timelike line γ: (-00,00) -> M, then the

Busemann function b* is continuous and finite on /~(γ).

Proof. Let ε > 0 be given and fix x e /"(γ). Let U(x), N and K be as in

Lemma 3.2. Choose any two points yl9 y2 e U(x) and any r with N < r < 00.

Let G, be a maximal length timelike geodesic from yt to γ(r) and let

q^G ΠK for 1 = 1,2. Then d(Λ,γ(r)) = </(*,?!) + ^ ( ^ ϊ ( O ) and

d(yvqι) < e yield d(qvy(r)) > d(yvy(r)) - ε. Since y2<^qx<^ γ(r) by

Lemma 3.2(a), the reverse triangle inequality yields

Thus

which implies ε > bf(y2) — b^(yx). Since also q2 G I+(yλ), we may reverse

the roles of yλ and y2 to obtain

This establishes the equicontinuity of the functions fcr

+ on ί/(x) for all TV < r

< 00. Since b*(x) is monotone decreasing for large /*, the limit b+(x) is an

element of R U {-00}. If b+(x) = -00, then b+(x) -> -00 as r -> 00 and the

last inequality yields fe+(.y) = -00 for all y e ί/(;c). It follows that 6 + equals



DECOMPOSITION THEOREMS FOR LORENTZIAN MANIFOLDS 33

-oo on an open subset Vλ of /~(γ). On the other hand, if b+(x) is finite, then

the last inequality yields \b+(x) - b+(y)\ < ε for all j / E U(X). In this case

the equicontinuous family {b*} for N < r < oo is bounded on U(x) and

hence converges to a finite valued continuous function b+ on U(x). Thus b+ is

a continuous finite valued function on an open subset V2 of / " ( γ ) and is equal

to -oo on the open subset Fx of / " (γ) , where / " ( γ ) = Fx U F2. Using

Z>+(γ(r1)) = rx on γ and the connectedness of / " (γ) it follows that F2 = / " ( γ )

which establishes the lemma, q.e.d.

Since γ: (-00, 00) -> M is a timelike line rather than just a ray, one may also

define a Busemann function b~ on / + ( γ ) by

b~(x) = lim b~(x).
r—* + oo

Arguments similar to Lemma 3.3 imply that b is continuous on / + ( γ ) . Thus

both b+ and b~ are continuous on /(γ) = / + ( γ ) Π / " ( γ ) . Given any JC e /(γ),

choose positive numbers s and ί such that y(-s) « x « γ(ί). The reverse

triangle inequality and d(y(-s),y(t)) = s + t yield bf(x) + b~(x) > 0. Let-

ting s, t -> oo we obtain the following inequality on /(γ) :

4. The significance of nonpositive timelike sectional curvature

The two-plane E= (M, U} is timelike if the metric induced on E is

Lorentzian. Thus (M, g) has nonpositive timelike sectional curvatures if for

each timelike plane E we have (R(u, υ)υ, u) > 0.

Proposition 4.1. Le/ (M, g) be a globally hyperbolic space-time of dimension

> 2 wzϊλ everywhere nonpositive timelike sectional curvatures K < 0 wΛ/cΛ

contains a complete timelike line γ. 77ze/? //*e timelike co-ray condition holds on

/(γ) . 7%M5 b+ and b~ are both continuous on /(γ).

Proof. Assume that x G /(γ) has a future co-ray σ to γ such that σ is null.

Then there exist sequences {*„}, {rn} and {σ^} with xn -> x, rn -> 00 such

that each σn is a maximal timeiike geodesic segment from xn to γ(A"n) and σ is

a limit curve of the sequence {σn}. Choose q ^ y Π I~(x) and let μn be a

maximal timelike geodesic segment from q to xn. The segments μΛ are defined

for all large n and we may assume that {μn} converges to a timelike geodesic

from q to x. Let yn be the segment of γ from q to y(rn) and set <?„ = L(μn\

bn = ^(σ w ) and cπ = L(γ n ), where L denotes arc length. Assuming μn, σn and
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yn are parametrized by arclength, define βn = g(μ'n(0), γ^O)) and Θn =

g(-μ'n(an)9σW)). Then an->a = d(q,x) and βn-> β = g(μ'(0)9y'(0)). We

now apply Harris' triangle comparison theorem (cf. [2, p. 430], [11, p. 303]) to

the timelike geodesic triangle (μn, σn, γΛ) using the two-dimensional Minkowski

plane as model space. Thus for each n there is a timelike geodesic triangle (μn9

σ π , γ j i n L2 with

, \βn\ <\βH\, θn>θn,

where βn and θn are defined analogously to βn and θn. Using \βn\ < \βn\ and

βn -> β, we find there is some positive C with \βn\ < C for all n. The law of

cosines for L2 yields

(4.1) c\ = a\ + b2

n + 2anbnθn,

(4.2) ί,n
2 = a\ + cn

2 + 2 ^ ^ ^ .

Adding (4.2) to (4.1) and solving for θn we obtain

Since an -> Λ, CW -> oo and |j8Λ| < C, equation (4.2) implies Z?n/cw -> 1 and

bn -> oo. Consequently, there is some constant C\ such that ^w < Cx for all «.

Using θn < βΛ we find

which implies that the Lorentzian angles between the segments //,„ and on are

all bounded by some constant. On the other hand, since σ is assumed to be

null, then μn -> μ and on -> σ imply these angles must approach oo. This

contradiction establishes the result, q.e.d.

We now show that co-rays to γ are complete given K < 0.

Lemma 4.2. Let (M, g) be a globally hyperbolic space-time with everywhere

nonpositiυe timelike sectional curvatures K < 0 which contains a complete time-

like line γ. // η is a future (resp. past) directed timelike co-ray from x e /(γ),

/Λeπ η is future (resp. past) complete.

Proof. Assume vvlogη is future directed. Suppose η has finite length L.

Let γ: (-oo, oo) -> M and η: [0,L) -> M be parametrized with respect to

arclength.

By Lemma 3.2 there exists a constant K > 0 and "time" T such that if

t > T and μ is a maximal segment from x to γ(ί), then
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Also, by the reverse triangle inequality,

d(x,y(t)) -> +00 as t -> +00.

Thus, we can choose to> T such that

d(x,y(t)) > 3LK ϊoτt> t0.

Pick a point j E η such that γ(/ 0) ί ^ + ( j ) (If no such point existed, then η

would be imprisoned in /"(γ(/ 0 )) n J+(x) ) Choose yx on η with _yx e / + ( j ) .

Since η is a co-ray to γ there exist points pn -> j ^ such that each /?w lies on

some maximal timelike geodesic from x to a point qn of γ. It follows that for

sufficiently large n we have pn e / + ( J > ) which implies #n e /+(.y). Conse-

quently, there exists a time tx > t0 such that yit^ e 3/~h(jμ). By the global

hyperbolicity of M, dl+(y) = J+(y) - I+(y), and hence rf(j>,γ(ίi)) = 0.

Thus one can choose a time t2 > t1 such that

0<d{y,y(t2))<3LK/2

since the Lorentzian distance function is continuous for globally hyperbolic

space-times. Let μ be a maximal segment from x to y(t2) and let σ be a

maximal segment from y to y(t2). Let Ϊ> be the portion of η from c to y.

Consider the timelike triangle (*>, μ,σ). Let 0, & and c be the lengths of *>, σ

and μ, respectively. We have

(1) c > 3Li^, Z> < c/2 and 0 < L.

Also, /? = </x'(0), η'(0)> satisfies

(2) |iS| < ^

By Harris' triangle comparison theorem there exists a corresponding timelike

triangle (μ, μ, σ) in Minkowski space such that L(v) = α, L(/Z) = 6, L(σ) = c

and |j8| < |)8|. By the law of cosines,

b2 = a2 + c2 - 2ac\β\.

Using (1), (2) and |J8| < |j8|, we obtain

which contradicts the second inequality in (1). Thus η must be infinite in

length, q.e.d.

At this juncture, we do not know that the functions B, b= and b~ defined in

§3 are differentiable functions. Thus as in [7], we now need to define smooth

local support functions at each p e /(γ) for b+ and b~. Fix p e /(γ) and a
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sequence of real numbers {rn} with rn -> 4- oo. Set an = d(p,y(rn)). Then an

is positive for all sufficiently large n, an -> oo by the reverse triangle inequal-

ity, and

(4.3) b+(p)= lim (/•„-«„).
n —> oo

Furthermore, for each sufficiently large n there is some unit future directed

timelike vector υ+ e TpM such that exp / 7 (α^ + ) = y(rn). Using the timelike

co-ray condition, we may assume that v* -* v+, where t>+ is a unit future

directed timelike vector at p. The future inextendible timelike geodesic with

initial velocity vector v+ is a co-ray to γ from p and is future complete by

Lemma 4.2. Choose a sufficiently small neighborhood U(p) of /?, such that

x <̂c γ(rw) for all n larger than some N and all x e U(p). Fixing U(p) and TV

there is some 0 < a0 < an such that

aovf) <r expP(au*)

for all n > iV, each α with ύr0 < β < an, and all x e t/(/?). Applying the

reverse triangle inequality yields

an- a.

We obtain r/f — an + a — d(x,expp(av*)) > rn - d(x,y(rn)). In view of equa-

tion (4.3), we thus have

(4.4) b+{p) + a - d{x,expp(av + )) > b + {x)

for all x <E U(p) and a0 < a < oo. This inequality motivates the following

definition of a family of functions bpa (cf. [7]):

(4.5) bp

+jx) = b + (p) + a - d(x,cxppav + ) .

Equation (4.4) shows that for sufficiently large a these functions are continu-

ous local super support functions for the Busemann function b+] we have

bpa(p) = b + (p) and bpa(x) ^ b + (x) for all x sufficiently close to p.

Now given p e /(γ), construct a unit past directed timelike vector υ~e. TpM

using the same technique as for v+. Then

provides a family of local super support functions for b~. That is, b~a(p) =

b~{p) and b~ a(x) > b~(x) for all x near p and large α for any p e /(γ). For

any fixed parameter value α, the nonspacelike cut locus of expp(aυ + ) is closed

(cf. [2, p. 242]) and since 5 -> exp^sv*), s e [0, Λ] is maximal, we get that

there is a neighborhood of p in which ft^ (resp., b~ a) is a smooth super
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support function for the continuous Busemann function b + (resp., b~). Hence

Bp,a
 = bp,a + ^p,a ι s ^ s o a smooth super support function for B = b + + b~

near p.

In view of the definition of b + {x) and b~(x), we now consider functions of

the form f(x) = d(q,x) (resp., d(x,q)), where q is a given point of M. In

general, these functions will fail to be differentiable across null cones as well as

on the timelike cut locus of q (cf. [2, p. 105]). Since the null cut locus and

nonspacelike cut locus of each q e M are closed, if q <£ p and p is not in the

(future) cut locus of q, then the function f(x) = d(q, x) is smooth on some

neighborhood U(p) of p which contains no cut points of q. Furthermore,

(grad/, grad/> = -1 on U(p). Conversely, let /: M -> R be a smooth

function on an arbitrary Lorentzian manifold (M,g) with (grad/, grad/) =

- 1 . Using the definition of Lorentzian arc length and the reverse Schwartz

inequality it is easy to show that any integral curve c of grad / is a maximal

timelike geodesic.

Lemma 4.3. Let N be an open subset of the Lorentzian manifold (M, g) and

assume /: N -> R is a smooth function with (grad/, grad/) = -1 on N. Let c:

(a, b) —> N be an integral curve of -grad / and V be any unit parallel vector field

which is orthogonal to c. Then

-(R(V9 C')C\ V) > -(Hess(/)(F, V) ° c)r + (Hess(/)(F, V) - cf.

Let W be an arbitrary parallel field along c. Set

9 c') = yj{W, W) + ((W, c')f .

If W is not proportional to c\ set

(4.7) Vλ = W + {W,c')cf and V= J V

Then aV = W 4- (W,c')cf and V is a spacelike unit parallel field which is

orthogonal to c. Since (grad/,grad/) = - 1 , one also obtains Hess(/)(^,c r)

= 0 for any vector field X along c. Thus with a and V as above

(4.8) Hess( f)(W,W) = α2Hess(/)(K, V)

and we obtain the following estimate on the Hessian of d(q, x).

Proposition 4.4. Let (M,g) be a globally hyperbolic space-time of every-

where nonpositive timelike sectional curvature. Fix p e M and let q e I+(p)U

I~(p) be any point which is not a cut point of p. Let c. [0, L] -> M denote a unit

speed maximal timelike geodesic from q to p. If q e I+(p), set f(x) = d(x,q)
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and if q e /"(/?), setf(x) = d{q,x). Then

(4.9) ^±

for any w e TpM, where a2(w) = (w, w) 4- ((w, c\L)))2.

Proof. As the proofs for d(x,q) and d(q,x) are dual, we only give the

proof for f(x) = d(g, x) and g e I~(p). Let JV be an open subset of I+(q)

such that c(s) e TV for all 0 < s < d(#, /?) and such that TV contains no cut

points of q. Then c is an integral curve of -grad/ for all 0 < s < d(q, p) and

/ is C°° on iV. Given a fixed w <E TpM let K be the unit parallel field

along c which satisfies aV = w + (w, cf)cf as in equation (4.7). Define

θ(s) = H e s s ( / ) ( F , F ) ° φ ) for all 0 < s < rf(?,/?). At JC = c(s) we have

Hess(/)(F,F)| λ. = -(Vvc\V)\x = SC,(V,V)\X, where Sc, is the second

fundamental form of the distance sphere {_y£M| d(q, y) = J(^r, x)} through

x. Thus Hess(/)(F, V)\φ) -> -oo as 5 -> 0+.

Lemma 4.3 and the curvature assumption yield ί 2 - θ' < 0 which implies

that 0 is nondecreasing and for all θ(s) Φ 0 that

(4.10) θ~ι(s) < -s

using d/ds(θ~ι) = -0y0 2 and β(^) -> -oo as 5 -> 0+. Thus for all s > 0, we

have 0(5) > 5"1. Setting s = d(q, p) = f(q) yields

(4.11) ^

The result now follows using equations (4.8) and (4.11).

Corollary 4.5. Let (M,g) be a globally hyperbolic space-time with K ^ 0

and suppose that (M, g) contains a timelike line γ: (-00, 00) -> (Af, g). Then

for any p e /(γ) α«Jfl > 0, we have

(4.12) ^ ^

(4.13) ; ^

/or β«^ v̂  G 7^M, where OL\{W) — (w, w) 4- ((w, f + ) ) 2 β«<i «2(w) = (w, w)

Proof. Since the arguments for (4.12) and (4.13) are similar, it suffices to

establish (4.12). Consider the function f{x) = d(x,q) with q\= expp(av+).

Since γ satisfies the timelike co-ray condition, c+(t) = expp(tυ + ), t > 0, is a

maximal, future directed, future complete timelike geodesic ray. Hence for any

a > 0, q = Qxpp(av+) e I+(p) is not a cut point to p and d(p, q) = a. Thus

inequality (4.9) may be applied to f(x) = d(x, q) at x = p to yield inequality

(4.12)asc /(L)= -υ+. q.e.d.
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Using the timelike co-ray condition, Corollary 4.5 and a one-dimensional

Calabi-type maximum principle argument, we now show that the function B

defined by equation (3.1) vanishes on /(γ).

Lemma 4.6. If y e /(γ) and B(y) = 0, then B vanishes on a neighborhood

of y. Hence B = 0 on /(γ).

Proof. If the conclusion fails, there is some geodesic segment σ: [-1,1] ->

/(γ) of g with σ(0) = y and ^ ( σ ^ ) ) > 0, where 0 < sx < 1. Let h: [-sλ, sλ]

-> R be defined by h(s) = -ε(s + s2). If ε > 0 is chosen sufficiently small,

the continuous function B ° σ + /z is positive at both endpoints of [sl9 sλ] and

zero at s = 0. Thus 2? ° σ + A attains a minimum at some s0 e (- j l 5 ̂ 1 ) . Let

/? = σ(s 0) and choose a future (resp. past) timelike vector v+ (resp. t r ) at p

tangent to a co-ray to γ from p. Using equations (4.5) and (4.6) define the

local support functions bpa (resp., b~ a) using v+ (resp., v~). Then the function
B

PΛ
X) = bΪΛx) + bpΛχ) ί s s m o o t h and satisfies Bpa(p) = B(p) and

Bp a(x) > i?(.x) in some neighborhood (7(^) of p. Applying Corollary 4.5 with

w = σ '( ί 0 ) we obtain

Thus

( 5 ^ o σ + A)"^ < (α 2

+(w) + a2_(w))a-1 - 2ε < 0

for sufficiently large β. This contradicts

Bpaoo{s) + A ( J ) > 2 ? o σ ( j ) + A ( J ) > ^ ^ ( / 7 ) + h(s0)

for all -5X < j < sx with σ(^) G ί/(/?). q.e.d.

We have been unable to extend Lemma 4.6 with our proof method to the

case of the strong energy condition Ric(f, v) > 0 for all timelike vectors v

because the d'Alembertian operator (which corresponds to the Laplacian in the

Riemannian case) is hyperbolic rather than elliptic.

Lemma 4.6 implies b + (x) = -b'(x) on /(γ).

Lemma 4.7. The Busemann functions b+ and b~ are once differentiable on

J(γ) and the vector field V = grad b + = -grad B~ is a unit past directed timelike

vector field defined on /(γ). The vector field V is continuous and at each point

p G /(γ) there is a unique future directed co-ray c+(t) = expp(-tV) and a

unique past directed co-ray c~(t) = expp(tV) to γ. These co-rays to γ at p fit

together to form a (distance realizing and complete) timelike line.

Proof. Choose p e J(γ) and let v+ and tΓ be unit timelike vectors at p

which determine future and past directed co-rays at /?, respectively. Let bpa

and b~a be defined using v+ and *Γ, respectively according to equations (4.5)
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and (4.6). Now BpJx) = b^x) + bpa(x) > B(x) = 0 and Bpa(p) = B(p)

= 0 imply the smooth function Bp a(x) satisfies gradi?^ J ^ = 0. Thus v + =

-gradbpa\p = gradflrj = -υ~ so that v + = -v~ and the future and past

timelike co-rays at p fit together to form a smooth geodesic c.

Also, we have bpa ^ b+^ -b~^ -bpa near p with equality at p. Since

grad bpa(p) = -grad b~a(p\ it follows that B+ and b~ are differentiate at p

and gradZ>+(/?) = -gradb~(p) = gradZ^O) = -gradbp a(p). Now as v + =

-gmdbp

+

a(p) = -gradZ>+(/?) and v~= -gmdbpa(p) = -gradZr(/?) the fu-

ture and past co-rays to γ at p are unique for any p e /(γ). This last fact then

implies the continuity of V = grad£+= -gradZr since the initial tangent to

future co-rays to γ varies continuously with p. Finally, since the restriction to

a co-ray is a co-ray, it follows that the geodesic c formed from the union of the

co-rays c+ and c~ to γ at p is distance realizing. Since any timelike co-ray to γ

has infinite length, c is also complete.

5. Splitting /(γ) and M

We are now ready to show that /(γ) is a metric product.

Lemma 5.1. The set /(γ) is isometric to a Lorentzian product R X H, where

(//, h) is a spacelike hyper surf ace of /(γ). Furthermore, each spacelike slice

{t0} X H corresponds to the intersection of /(γ) with a level set ofb+ (resp., b~).

Proof. Fix /) G /(y) and let c be a geodesic with c(0) = p. Since bpa(x)^

b + (x) = -b~{x) > -b~a{x) for all x near /?, l ) + °c has both super support

functions bpa ° c and subsupport functions - i r a o c. Corollary 4.5 shows that

these support functions have arbitrarily small second derivatives for all / near

0. If L: R -> R is any affine function, then the same is true of b+ ° c - L. It

follows that b+ ° c is an affine function near t = 0 and this implies b+ ° c is an

affine function for any geodesic c with image in /(γ). Hence if i/(/0)
 = {q G

^ ( Y ) I ^ + ( # ) = 'o} i s t n e *o l e v e ^ s e t °̂  ^ + i n ^ ( ϊ λ a n <3 c i s a nY geodesic

segment c: [0, β] -> /(γ) with endpoints in H(t0), then 6 + ° c(0) = b+ <> c(a)

implies Z?+ ° c(/) = Z?+ o c(0) for all 0 < / < α. Thus c([0, a]) c i/(/ 0), which

shows //(/0) is totally geodesic.

Fixing p e /(γ) we let ex = -gradZ?+(^), β2, -,en be an orthonormal

basis of TpM and use this basis to obtain normal coordinates xvx2, —,xn

near p. Any geodesic c with c(0) = p has a representation as c(t) =

(/«!,- , tan) near /?, where α^ ^ ^ are constants. The affine function

b+ o c is given by b+ ° c(t) = At + Bo, where Bo = b+(p). Using gradZ?+ =

- 9 / 9 ^ ! at /? we obtain A = otλ and thus 6 + O ) = xλ 4- /? + (^) in these local

coordinates. This shows b+ is smooth.
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The vector field gradfc+ is everywhere orthogonal to the totally geodesic

level surfaces H(t0) and X = gradZ?+ is a unit normal field to H(t0). The

second fundamental form Sx must vanish on H(ϊ0) because this surface is

totally geodesic. Thus if υ, w are tangent to H(t0), Sx(v, w) = (-vυX, w) = 0.

On the other hand, (X, X) Ξ -1 yields that VυX is orthogonal to X and

hence tangential to H(t0). Furthermore, X is the unit tangent to the (geodesic)

co-ray to γ through each p e /(γ) and hence VXX = 0. Thus X = grad b+ is

a parallel timelike vector field on /(γ). Hence /(γ) splits locally isometrically

by Wu's proof of the local Lorentzian de Rham Theorem (cf. [15, p. 299]).

The vector field grad£ + is complete since all co-rays to γ are complete

geodesies which are contained in /(γ). Consequently, the map /(γ) -> /(γ)

given by p -> expp(tgrad b+(p)) is an isometry of /(γ) onto /(γ) for each

fixed t e R. This isometry takes level sets of b+ to level sets of Z?+. Using the

induced metric H on H(0) and the product metric -dt2 ® /z on R X Zf(O), we

find that F : R X i/(0) -» /(γ) given by F(t,pQ) = Qxppo(tgmdb+(po)) is an

isometry onto /(γ). This establishes the result, q.e.d.

We are finally ready to prove the main theorem.

Theorem 5.2. Let (M, g) be α globally hyperbolic space-time of dimension

> 2 with everywhere nonpositiυe timelike sectional curvatures K < 0 which

contains a complete timelike line γ: (-oo, oo) -» (M, g). Then (M, g) /51 isomet-

ric to a product (R X i/, -Λ 2 Φ/i), wΛ r̂̂  (H, h) is a complete Riemannian

manifold. The factor (R, -dt2) is represented by y and (H,h) is represented by a

level set of a Busemann function associated to γ.

Proof. The set /(γ) must be strongly causal because it is an open subset of

the globally hyperbolic space-time (M, g). Furthermore, p,q e /(γ) implies

the compact set J+(p) Γ)J~(q) also lies in /(γ). Thus /(γ) is globally

hyperbolic. By Lemma 5.1, /(γ) is isometric to R X H. But R X H is globally

hyperbolic implies H and R X i/ are geodesically complete (cf. [2, p. 65]).

Thus /(γ) is geodesically complete and consequently, inextendible (cf. [2, p.

160]). Hence /(γ) = M.

Corollary 5.3. (M, g) is geodesically complete and the level surfaces of the

Busemann functions b+ and b~ are complete (spacelike) Cauchy hypersurfaces of

By somewhat similar techniques, the following related results may be ob-

tained.

Proposition 5.4. Let (M, g) be a globally hyperbolic space-time with

Ric(i;, v) ^ 0 on all timelike vectors v. Assume that (M, g) contains a complete

timelike line γ such that every co-ray to γ is timelike and without focal points.

Then (Λf, g) is isometric to a product (R X H, -dt2 ® h).
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Theorem 5.5. Let (M,g) be a space-time with a compact Cauchy surface

and everywhere nonpositiυe timelike sectional curvatures K < 0. Then either M is

time like geodesically incomplete or else M splits as in Theorem 5.2 with H

compact.

The proof of Theorem 5.5 uses a result of Harris [12] to show under the

given hypotheses that there exists a null cut point along each future or past

inextendible null geodesic. This ensures the existence of a timelike line.
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