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AN INFINITE SET OF EXOTIC R4 'S

ROBERT E. GOMPF

Introduction

In 1982, Michael Freedman startled the topological community by pointing
out the existence of an "exotic R4", a smooth manifold homeomorphic to R4,
but not diffeomorphic to it. This result follows easily from Donaldson's
Theorem [2] on the nonexistence of certain smooth 4-manifolds, together with
Freedman's powerful techniques [3] for analyzing 4-manifolds in the topologi-
cal category. This exotic R4 was shocking to topologists, because in dimensions
n Φ 4, it is a fundamental result of smoothing theory that there are no exotic
R"'s. (Since R" is contractible, there is no place for any bundle-theoretic
obstruction to live.) Thus, this exotic R4 implies a catastrophic failure in
dimension 4 of the basic philosophy of smoothing theory, as well as other
high-dimensional techniques.

Freedman's discovery naturally raised questions about the set & of all
oriented diffeomorphism types homeomorphic to R4. The most basic problem
has been to determine the cardinality of @t. Soon after Freedman's result, the
author showed [5] that 9t has at least four elements. More recently, Freedman
and Taylor [4] have found a fifth element, a " universal" R4 in which all others
must embed. In the present paper, we exploit a technique of Freedman and
Taylor to prove that &t is (at least countably) infinite.

Our main result, Theorem 2.3, asserts the existence of a doubly indexed
family {Rm Jm, n = 0,1,2, , oo} in 3% such that Rm n has an orientation-
preserving embedding in Rm, n, if and only if m < m' and n < ri. In particu-
lar no two members of this family are related by an orientation-preserving
diffeomorphism. We actually show that when m > m' or n > ri there is a
compact subset of Rmn which cannot embed in Rm, n>.

We use these compact subsets to prove the required nonembedding property
which distinguishes the Rmn's. Our key Lemma 1.2 gives a method for finding
such compact sets which do not embed in a preassigned R^St. This is where
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we apply the method of Freedman and Taylor. Ultimately, the lemma is a
consequence of Donaldson's Theorem (hence, gauge theory), specifically, this is
needed to prove the existence of one compact set X with a certain nonembed-
ding property. The existence of X follows from results in [5] which depend on
Donaldson's Theorem.

In §1, we give our basic construction of a singly indexed family {RJn =
0,1,2, , oo}. This is defined in Theorem 1.3. Its embedding properties are
analogous to those of the doubly-indexed family. In §2, we sharpen the two
main lemmas of the first section, so that each Rn (n finite) has an embedding
in a sum of CP2 's. This allows us to construct the doubly indexed family of
Theorem 2.3, with Rn0 = Rn. We conclude with an appendix. It shows that
our basic method of gluing together R4's defines a commutative monoid
structure on ^ , and gives some basic properties of 0t with this structure.

Added in proof. Clifford Taubes [10] has now proven a generalization of
Donaldson's Theorem for open 4-manifolds with "periodic" ends. By a previ-
ous observation of Freedman, this implies the existence of an uncountable
family of distinct R4 's, parametrized by R. §3 describes this construction and
enlarges the parameter space to R2. This section is independent of §§1 and 2,
except for the introductory material preceding the lemmas of §1.

Notation and conventions. R4 will denote euclidean 4-space with the stan-
dard smooth structure. The letter R will be used for oriented smooth manifolds
homeomorphic to R4, or for the corresponding diffeomorphisms types in ^ .
(We will be careless with this distinction.) We may also refer to elements of 01
as "R4 's" (e.g. "exotic R4's") when the meaning is clear from the context.

We will work in the oriented smooth category except when otherwise stated.
Thus, maps will implicitly be smooth, and codimension zero embeddings
(smooth or not) will preserve orientations. When a map or submanifold is not
necessarily smooth, we will refer to it as a " topological" map or submanifold.
(Homeomorphisms and flat embeddings are implicitly topological.) The nota-
tion M will denote the manifold M with reversed orientation.

Disks and balls (D2, 2?4, etc.) will always be compact, unless otherwise
stated.

Given a link L in S3 = 32?4, ML will denote the compact 4-manifold (with
boundary) obtained by attaching 2-handles to a 4-ball along the link L, with
framing zero. A smooth link L with k components is called topologically (or
smoothly) slice if there is a topological (or smooth) embedding of k disjoint
copies of (D2 X R2, 3D2 X R2) into (B4

9dB4) such that the k circles 3D2 X 0
are mapped onto L. (We define L to be slice in the connected sum B4#M if
the above definition holds with B4 replaced by B4$M.) Notice that L is slice



AN INFINITE SET OF EXOTIC R4 'S 285

in B4 if and only if ML embeds in S4 (or R4). (This holds in either the
topological or smooth category.) To see this, assume L is slice, then glue a
4-ball onto B4 to obtain S4. The new 4-ball union the slice disks will give ML

embedded in S4 (with reversed orientation).
We will make free use of Casson handles when necessary. These are smooth

manifolds homeomorphic to D 2 X R2, which are nested unions of certain
compact subsets, called towers. Some references for this theory are [1], [3] and
[7].

1. An infinite set of exotic R4 's

We would like to be able to glue together exotic R4's in a manner analogous
to that of boundary-sum of compact manifolds with boundary.

Definition. For R, R' e 3% the end-sum R\\R' is defined as follows: Let γ:
[0, oo) -> R and γ': [0, oo) -> R' be smooth properly embedded rays with
tubular neighborhoods v and v', respectively. Let RtyR' = i ^ U φ / X R 3 U ^R\
where φ: [0, ̂ ) X R3 -» v and φ': ( i, l] X R3 -> v' are orientation-preserving
diffeomorphisms which respect the R3-bundle structures.

It is shown in the appendix that end-sum is well defined, and that it induces
a commutative monoid structure on 3%. We may avoid using these facts,
however, by being careful when we construct end-sums.

In [5], an exotic R4 is constructed. It is denoted by R4

Γ or Rτ. This Rτ is
constructed as a subset of CP 2, and it has the property that it cannot be
embedded in any smooth, closed, simply connected 4-manifold with a negative
definite intersection form. The nonembedding property is proven by studying a
certain topological collar U (homeomorphic to S3 X R) of the end of Rτ. If R
is a neighborhood of Rτ — U with R homeomorphic to R4, then R Π U will
be a neighborhood of the end of R. Using this neighborhood, we may apply
the same reasoning as for Rτ to show that R has the same nonembedding
property as RΓ. We may take R to have compact closure, so it is embedded in
a smooth compact 4-manifold X <z Rτ with dX connected. This X does not
embed smoothly in any negative definite, closed, simply connected 4-manifold.
We fix X for the duration of the paper.

Remark. X may be taken to be a fairly simple manifold. In particular, if L
is the fourth Whitehead double (with (-) clasps) of the left-hand trefoil knot,
we may set X = ML. This embeds in Rτ (as may be seen from the construc-
tion of Rτ), and it has the required nonembedding property (by the methods
of [6]).

We would like to improve our control over the end of Rτ. To do this, we will
shave a small collar off of the end of Rτ, as described below.
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Definition. R e 0t is a shaved R4 if for some (possibly noncompact)
smooth 4-manifold M there is an embedding i: R ^ M with i(R) = int 5, 5
a flat topological 4-ball such that some neighborhood U c 32? is a smooth
submanifold of M. The embedding / will be called a shaved embedding.

In particular, we shave # Γ as follows: Fix a homeomorphism h: R4 -* Rτ.
Let 5 c R4 be a smooth ball of sufficiently large radius that X (zinth(B).
Choose a point x e 32?. By the Stable Homeomorphism Theorem (Annulus
Conjecture) of Quinn [8] we may perturb h slightly near x to obtain W which
is smooth on some neighborhood of x. Define Rλ to be int/ι'(2?). Clearly, Rx

is a shaved R4, and the inclusion Rλ c Rτ is a shaved embedding. Further-
more, we have X a Rλ a CP2 with the last inclusion a shaved embedding.
This Rx will be the first element of our infinite sequence of exotic R4 's.

Notice that the end-sum of two shaved R4 's is shaved. In particular, suppose
R *-» 2? c M and R' <-+ B' c M' are shaved embeddings. We may assume
dM = 0 = 3M'. Form the connected sum M%M' away from B and 2?'. Now
find a smooth arc γ in M%Mr which runs from the smooth part of 32? to the
smooth part of 32?' and hits 2? U 2?' only at the endpoints. The set BUB'
union a closed tubular neighborhood of γ is a flat 4-ball with interior
diffeomorphic to R\\R\ so we have constructed a shave embedding R\\R' °->

We now introduce two lemmas, from which we construct an infinite family
of distinct exotic R4 's.

Lemma 1.1. For any topologically slice link L there is a shaved R4, denoted

RL, such that ML embeds smoothly in RL.

Proof. Since L is topologically slice, there is a topological (flat) embedding
i: ML <-> R4. We will define a new smoth structure on R4 so that / becomes
smooth. First we define our atlas near i(ML) by declaring / to be a diffeomor-
phic embedding. The complement, R4 — int i(ML\ is a noncompact connected
4-manifold. Quinn [8] has shown that any such manifold may be smoothed.
(The groups π/(TOP4/O4) vanish for / = 0,1,2, so there are no obstructions.)
Since smoothings on 3-manifolds are essentially unique, we may fit the two
pieces together to obtain a smoothing on all of R4. We realize RL by shaving
this exotic R4, just as we did to obtain Rλ from Rτ.

Lemma 1.2. Let R be a shaved R4. Then there is a topologically slice link L
for which the disjoint union XUML cannot be smoothly embedded in R.

Theorem 1.3. There is a family {Rn\n = 0,1,2, , oo} of R4's, shaved
(except for R^), such that Rm embeds in Rn if and only ifm^n.

Proof of Theorem 1.3. We will define the family recursively, assuming
Lemma 1.2. Let Ro = R4. Rλ has already been defined as a shaved R4

containing X. (Thus, it cannot embed in Ro.) Now for n > 1, assume
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Ro,- ",Rn_ι have been defined and satisfy the conditions of the theorem.
Since Rn_ι is shaved, we may apply Lemma 1.2 to obtain a link L for which
XUML does not embed in Rn_v Let Rn = Rn^^RL, RL as in Lemma 1.1.
Then Rn is a shaved R4. By construction, XUML embeds in Rn (since
I c Λ j C Rn-ι) Thus, Rn cannot embed in Rn_L (or in Rm, m < π, since
these embed in Rn^x).

Now let R^ = U™=0Rn. Note that i?^ cannot embed in Rn, n < oo, since
it contains ϋ n + 1.

Remarks. By construction, each embedding Rm<z Rn is as an end-
summand. In the cases where no embedding Rm^> Rn exists, there is a
compact 4-manifold in Rm which does not embed in Rn.

We may arrange R^ to be the universal R4 of Freedman and Taylor [4] by
choosing the links of Lemma 1.2 to be sufficiently complicated. In §2, we will
prevent this by keeping the links within a certain subclass.

Proof of Lemma 1.2. Our method is essentially due to Freedman and
Taylor [4], who used it to prove that their universal R4 does not embed in a flat
ball in any 4-manifold.

We are given R c B c M; B is a flat topological 4-ball in some smooth
4-manifold M. (This is as much as we need of the hypothesis that R is shaved.)
We show that M may be taken to be closed and simply connected, with
hyperbolic intersection form. (We may even assume that M is diffeomorphic
to a connected sum of S2 X S2's.) To see this, first note that since B is flat, it
is surrounded by a topological collar homeomorphic to S3 X R in M — B.
This collar contains a smooth 3-manifold surrounding B. (For example,
perturb the projection S3 X R -> R to get a smooth proper map, then pull
back a regular value.) Throw away everything outside of this 3-manifold to
obtain M', a compact smooth 4-manifold with boundary, such that B is flat in
int M\ Note that M' is spin, since it is embedded in the contractible manifold
B U (collar). Now take the double 2ΛΓ = 3 ( M ' X / ) . This is closed, smooth
(after rounding the edges) and spin. Furthermore, the signature of 2M'
vanishes (since it bounds). By Van Kampen's Theorem, π^lM' — B) =
π^lM') by inclusion (since B is still collared by S3 X R). Hence, we may
surger away πλ{2M') by working in the complement of B. The resulting closed,
simply connected manifold (which we again call M) has a hyperbolic intersec-
tion form since it is spin with signature zero. (By a result of Wall, we may
actually assume M is diffeomorphic to a connected sum of S2 X S2's, simply
by summing with enough copies of S2 X S2.)

Now consider the open manifold M — B. By Casson's Embedding Theorem
[1], we may represent a hyperbolic basis for H2(M — B) by Casson handles.
Specifically, choose a smooth 4-ball B' in M — B. We may then construct a
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family of disjoint Casson handles {CH^i = 1, , k} (k = rank# 2 (M - B))
which are glued onto B' so that CHi U B' represents the /th basis element of
H2(M — B). The attaching circles in dB' will form \k separate Hopf links
(lying in disjoint 3-balls).

Freedman [3] has shown that any Casson handle is homeomorphic to an
open 2-handle D 2 X R2. In particular, each CHi must contain a flat topological
2-disk (corresponding to D2 X 0 c D2 X R2). Since CHi attaches to an un-
knot in dB\ we may attach this disk to a disk in B' to obtain a flat 2-sphere S,
in CHi U Bf with S f n i ' a smooth disk. We then have Uf=1Si equal to a
disjoint union of \k copies of S2 V S2, representing a hyperbolic basis of
H2(M). Notice that if these were smooth, we could surger out H2(M) to
obtain a smooth homotopy 4-sphere.

Our next objective is to associate to each CHi a topologically slice link Li

such that if Li were smoothly slice we could make St smoothly embedded. Let
Tt

5 denote the first 5 stages of C#,. Freedman's Reimbedding Theorems [3], [7]
show that any 5-stage tower contains a Casson handle, so we may assume that
St lies in Tt

5 u B'. Consider the core disks {c,} of the 6th stage of CH^ These
are immersed disks with interiors disjoint from Tt

5. They can be turned into
embedded disks {c\} at the expense of hitting St in B'. (Eliminate each
self-intersection of ct by a finger move, pushing it off through 3 c, and
introducing two intersections with the 5 th stage core. Now push these off of
the 5th stage into the 4th and continue, eventually pushing 25 intersections off
of the first stage into B\ so that we are left with c\ intersecting St in B\ but
int c\ disjoint from 7jΛ) The tower T* union with a closed tubular neighbor-
hood hι of each c\ is a smooth 4-ball which we denote Bt. (T* is diffeomor-
phic to a boundary-sum of Sι X D3 's, and each Λ, is a 2-handle which cancels
one S1 X D3.)

We have now constructed a family {B;} of disjoint smooth 4-balls associ-
ated to the Casson handles CHt. Note that Bt n Sj = 0, j Φ i. Consider
Bi Π Sj. Si intersects 7]5 in a flat 2-disk. B{ is made from 7]5 by attaching
2-handles ht. The core c\ of each ht hits St transversely (in B'\ so we may
assume Sι, Γ\ ht is a disjoint union of smooth disks, which are normal fibers to
c'f. Let L, be the link St Π dBi in 35, = S3. Then S. n Bt is a disjoint union of
flat disks in Bt which topologically slice Ly. If Li were smoothly slice, we could
replace these disks by a family of smooth disks, turning St into a smoothly
embedded sphere.

For §2, we need to identify the link Li specifically. Recall [3] that any
5-stage tower is represented by a certain ramified 5-fold Whitehead link. To
get this, consider the tower to be a boundary-sum of Sι X Z>3's. Attaching
2-handles to a suitable family of framed circles turns the tower into B4 in such
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a way that the attaching circle becomes unknotted. The attaching circle,
together with the belt circles of the 2-handles, will form the desired Whitehead
link. We now see that L may be taken to be the 5-fold Whitehead link
representing 7]Λ We need to check that the handles h{ have been attached to
7)5 with the correct framing. This will be the case as long as each 6th stage core
disk c7 had equal numbers of positive and negative self-intersections (which is
easily arranged by adding small kinks). Note that L;, as defined in the
previous paragraph, consists of the attaching circle of 7] 5 together with many
parallel copies of the belt circle of each hι (since hι intersects St many times).
This ramification of each belt circle will not be important, however, since Li

will be slice whenever the corresponding Whitehead link is.

We now define the link L required by Lemma 1.2. Consider k disjoint
3-balls in S3. For each i = 1, , k, embed the link L, in the z'th 3-ball with
reversed ambient orientation. Let L denote the union of all of these links. We
will show that XUML cannot be smoothly embedded in B (which contains
R), completing the proof.

Suppose that XUML is embedded in B c M. Let Bo c M denote the
0-handle of ML; let {Dr} denote the cores of the 2-handles. Recall that our
previously constructed spheres St and balls Bι (i; = 1, , k) lie in M - B. Let
{γf |/ = 1, , k) be a family of smooth disjoint arcs in M, disjoint from X
and each SJ9 such that each γ runs from Bt to Bo and hits ML and UBj only at
the endpoints. A smooth 4-ball B is formed from Bo and Uf=1 Bt by taking the
union with a closed tubular neighborhood of each γ,. Each St hits dB in the
link L, in 92?z, so Uf^S, hits dB in a link L' equivalent to L with reversed
ambient orientation. On the other hand, the core disks Dr of ML are glued
onto the link L in 32? (in a 3-ball in 32?O disjoint from V). But L and Lf can
be connected by a family {Ar} of disjoint annuli in B (essentially the trivial
concordance L X / in 5 3 X /). Thus, we may replace the flat disks (US,-) Π B
by the smooth disks Ar U Dr to obtain US, in M, a smoothly embedded
disjoint union of copies of S2 V S2, representing a hyperbolic basis of H2(M).
We perform surgery on these to obtain a smooth homotopy 4-sphere Σ. By
construction, X is disjoint from US, in M, so X is embedded in Σ. But X
cannot embed in any homotopy 4-spheres. This contradiction completes the
proof of Lemma 1.2.

2. More exotic R4's

In this section we extend our family { Rn } to obtain a doubly indexed family
of distinct R4's. We do this by exploiting orientations in the manner of [5]. In
particular, we arrange for each Rn (n finite) to be embedded in a connected
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sum of CP 2 ' s . We then show that the R4's Rmn = RJ\Rn (m,n =
0,1,2, , oo) are all distinct.

To accomplish this, we must sharpen our main lemmas. The handlebodies
ML (and therefore RL) are sometimes impossible to embed in any positive
definite manifold such as $kCP2. Hence, we must restrict the class of allowable
links L. In the proof of Lemma 1.2 we observed that the links L may always
be taken to be unions of ramified 5-fold Whitehead links. (For any fixed / ̂  5,
/-fold Whitehead links will suffice, by using /-stage towers in the proof.) We
restrict our class of links by only allowing Whitehead links whose clasps have a
particular handedness. (In other words, the corresponding towers must have
kinks with only one sign.) We then show by direct construction that the
manifold RLoi Lemma 1.1 may be assumed to embed in #kCP2 for some k.
The appropriate analogues of Lemmas 1.1 and 1.2 are Lemmas 2.1 and 2.2,
respectively, given below.

Lemma 2.1. Let L be a disjoint union of ramified 1-fold Whitehead links

(with the various pieces lying in disjoint 3-balls). Suppose each of these Whitehead

links corresponds to a 1-stage tower with only negative self-intersections at the top

stage. Then ML embeds in RL, a shaved R4 with a shaved embedding in #kCP2

for some k.

Proof. We assume L to be single ramified 7-fold Whitehead link, for the
general case then follows by taking end-sums. Let L denote L with reversed
ambient orientation. The lemma follows from:

Proposition 2.1.1. For some k, L is sliced by smooth disks in BA% (#kCP2) in

such a way that H2($kCP2) is carried by a compactum K disjoint from the slice

disks•, with K homeomorphic to fyjjCP2 minus the interior of a flat 4-ball.

We obtain the lemma from this, as follows: Let {!>,} be the given slice disks
in B4$($kCP2). Glue a 4-ball B onto this manifold to obtain the closed
manifold §kCP2. Tubular neighborhoods of the disks Z), form 2-handles
attached to B in $kCP2. These will be attached with framing 0, since B U (UD,)
is disjoint from K and therefore nullhomologous. The attaching circles form
the link L, so we have an embedding ML <-> #kCP2. (Note that the orientation
of L has been reversed, since S3 inherits opposite orientations as dB and
d(BΛ$($kCP2)).) Now let K' = K minus an open topological collar of dK.
tkCP2 - K' is contractible, with end collared (topologically) by S3 X R, so it
is homeomorphic to R4 by Freedman's proper /z-cobordism theorem [3].
Letting RL = $kCP2 — K\ we have ML *-* RL c J^CP2, and we may assume
the inclusion is shaved.

Proof of Proposition 2.1.1. The link Z c 5 3 = dB4 is a 7-fold Whitehead
link coresponding to some 7-stage tower T1 with only positive kinks at the top
stage. Let /0, , lp denote the components of L, with /0 corresponding to the
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attaching circle of TΊ. Then /l9 , lp form an unlink. Let Dl9—-9Dp be the
obvious smooth slice disks in B4 bounded by ll9-—,lp. Removing tubular
neighborhoods of Dv-,Dp from B4 leaves the tower T\ with /0 the
attaching circle. Thus, it suffices to find a smooth disk in TΊ $(§kQP2) which
is bounded by /0 and disjoint from a suitable compactum K.

Each core disk at the top stage of Γ 7 has only positive kinks (self-intersec-
tions), by hypothesis. We eliminate these by "blowing up CP 2 's", a procedure
described carefully in [5] (Proof of Fact 3.4). Basically, at each kink of a core
disk Cj we connected sum the ambient space with CP 2, so that the two sheets
of Cj are diverted through copies of ± CP1 and no longer intersect. We now
have TΊ$(#kCP2) with embedded disks {cj} replacing the original 7th stage
core disks {Cj}. Note that this "blowing up" procedure has not changed the
homology class of Cj (in homology rel the first 6 stages). This is because we
have killed ( + ) kinks with + CP2 's, so that the two sheets of Cj running over
eachCP 2 represent opposite generators ±[CPι] e H2(CP2).

Now let Tβ denote the tower consisting of the first 6 stages of Γ7, shrunken
away from dTΊ everywhere except near the attaching circle /0. Let hj be a
closed tubular neighborhood of c'p for each j . Then B = Tβ U (\Jhj) is a
smooth 4-ball in Γ 7 # (fl^CP2). Each hj is a 2-handle attached to Γ6, represent-
ing the same homology class as Cj in H2(TΊ $(%kCP2\ Γ6). Thus, the h/s are
attached to T6 with the "standard" framings, so /0 is unknotted in dB.

Note that H2(TΊ#(#kCP2)) is carried by a compact submanifold K diffeo-
morphic to #^CP2 minus the interior of a smooth 4-ball. In particular, let K
equal the punctured CP 2 's we have just added, together with thickened arcs
joining them together. We easily arrange K Π T6 = 0, although K will
necessarily hit the handles hj. K is our prototype for the compactum K.

We will construct a particular topological disk in Γ6, bounded by /0. This
disk will be a band-sum of "doubled" disks. First, we consider a model case.
Let A: be a kinky handle with one kink; let / denote its attaching circle. Glue a
2-handle h to k to obtain a 4-ball with / unknotted in its boundary. Since k is
diffeomorphic to S1 X D3, we may view it as a small collar attached to the
attaching circle /' of h. Thus, / is essentially the double of /'. The obvious slice
disk D for / is the double of the core disk D' of h. That is, D consists of two
parallel copies of D', connected by a small band with a 360° twist. (This
mirrors the construction of / as the double of /', by a twisted band-sum of two
copies of /'.) For further details of this construction, see Casson [1].

We now return to the tower T6. Consider this to be a 1-stage tower (kinky
handle) T1 with 5-stage towers {Tr

5} glued on top. From Freedman [3] we
know that each Tr

5 contains a flat topological 2-disk D'r bounded by the
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attaching circle of Tr

5. If we thicken each D'r to obtain a topological 2-handle,

we may apply the reasoning of the previous paragraph. We obtain a flat

topological slice disk D for /0 in Γ 6, with D the band-sum of the doubles of

each of the disks D'r.

Now consider D inside the ball B = T6 U (UΛy ). By a result of Gordon, the

double of any slice disk in BΛ for the unknot is an unknotted disk. (See Casson

[1, Lecture 2, Lemma 5.1].) Since /0 is the band-sum of the doubles of the

unknots 3D/ (pushed into dB\ the slice disk D is unknotted. Thus, there is a

topological isotopy of B sending D onto a smooth disk Do with the same

boundary circle /0. By Casson [1, Lecture 2, Lemma 0], we may assume the

isotopy fixes dB pointwise. Extend the isotopy trivially to all of TΊ #($kCP2).

Recall that D lies in T6 which is disjoint from the compactum K. Hence, the

image K of K under the isotopy will be disjoint from Do. K is the required

compactum of Proposition 2.1.1, and the slicing of L is given by Z>0, together

with the disks Dv- ,Dp constructed at the beginning of the proof.

Lemma 2.2. Let R be a shaved R4. Then there is a link L as in Lemma 2.1

{i.e. a union of ramified 1-fold Whitehead links) such that the corresponding

towers have no positive self-intersections, and such that the disjoint union X\1ML

cannot be smoothly embedded in R.

Addendum 2.2.1. Suppose that R' is another shaved R4, with a shaved

embedding into a closed, simply connected, negative definite manifold M'.

Then the manifold XU ML constructed in the proof of Lemma 2.2 cannot be

embedded in R\*R'.

Proof of Lemma 2.2. We merely need to sharpen the proof of Lemma 1.2.

As before, we put R c B c M with M a homotopy %S2 X S2, and represent

H2(M) by Casson handles disjoint from B. At this point, we eliminate all of

the negative kinks in the first seven stages of the Casson handles, by blowing

up CP2 's as in the proof of Lemma 2.1 (and throwing away obsolete kinky

handles). This does not affect the homology classes of the Casson handles, so

they now represent a basis for H2(M) inside the manifold M#(# r CP 2 ) . We

continue the proof as before, using 7-stage towers Tt

7 in place of the T?. The

resulting links Li will be 7-fold Whitehead links corresponding to the towers

7)7, which have no negative kinks. Since the final link L is the union of the

L/s with reversed orientation, it will have the form required by Lemma 2.2.

To complete the proof, we suppose XUML embeds in R. As before, this

allows us to smoothly surger out H2(M). Because of the extra CP 2 ' s , the

resulting manifold will not be a homotopy sphere, but it will have a negative

definite intersection form (equal to that of # r CP 2 ). Since X does not embed in

such a manifold, we still have the desired contradiction.
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The addendum follows similarly. Before proving that XUML does not
embed in Λ, we form the connected sum of MJ(# rCP2) with M' (without
disturbing any of our embedded objects B, Tt

7, etc.). Now the end-sum RtyR'
is embedded in M#(# rCP2)#M', disjoint from the other objects. (This is the
only place in Lemma 2.2 where we need the full strength of the hypothesis that
R c B c M is a shaved embedding.) If XUML embedded in Rb\R\ we could
surger out H2(M) as before, leaving X embedded in a manifold with the same
(negative definite) intersection form as (#rCP2) #Λf'.

Theorem 2.3. There is a family { Rm n\m, n = 0,1,2, , oo} of R4 's, with

Rm n shaved for m, n finite, such that Rm n embeds in Rm> n> if and only if

m < m' and n < n'. Whenever m < m' and n < ri, Rm n is an end-summand of

Rm, w. Otherwise, there is a compact submanifold of Rm n which cannot be

embedded in Rm> „>.

Proof. First we define the family {Rn\n = 0,1,2, , oo} as in Theorem
1.3, using Lemmas 2.1 and 2.2 in place of 1.1 and 1.2. Because of this
improvement, each Rn (n finite) has a shaved embedding in ft^CP2 for some
(finite) k. (Recall that Rλ was defined by a shaved embedding in CP 2. Also,
whenever R and R' have shaved embeddings in sums of CP 2 ' s R^R' does
also.)

Now define Rmn to be RJ{Rn. (Note that Rm0 = Rm, since Ro = R4.) To
prove the nonembedding property, suppose that m > m'. The construction of
{Rn} gives us a compact manifold of the form XUML which embeds in Rm,
but not in Rm>. If ri is finite, then Rn> has a shaved embedding in J^CP2, so
Addendum 2.2.1 implies that XUML does not embed in Rm>y. Since XUML

is compact, any embedding of it in Rm>)00 would give an embedding in Rm, n,
for some finite n\ Thus, XUML embeds in Rm n but not Rm, w for arbitrary
«, ri = 0,1,2, , oo. (To prove the case m < m\ n > ri, simply reverse
orientation.)

Remarks. Rmn = Rn m. Rmn has an orientation-reversing self-diffeomor-
phism if and only if m = n. It embeds in §JCP2 if and only if n = 0. For m
finite, Rm0 embeds (shaved) in a finite sum of CP 2 's.

We may arrange the construction so that Rm n is never shaved for m or n
infinite. More generally, R^ n will not embed in any smooth 4-manifold so
that the image is contained in a flat topological 4-ball. We arrange this as
follows: Let JS?_ denote the set of all ramified 7-fold Whitehead links whose
corresponding towers have no positive kinks. At each step of the construction
of { Rn } we obtain a link L which is a union of elements of ££_. We may add
more elements of «£?_ disjointly onto L at each step without affecting the
argument. Since Jδf_ is countable, this allows us to force R^ to contain the
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disjoint union of X with an infinite family of handlebodies ML, where each
L e ££_ is represented infinitely many times. (Actually, a much smaller
"cofinal" family will suffice. It seems a good conjecture that such a cofinal
family will be forced on us by the construction of { Rn }.) Now if R^ (or R^ n)
embedded in a flat ball in any 4-manifold, Lemma 2.2 would give an
immediate contradiction. (The full strength of the hypothesis that R be shaved
is not needed except in the addendum.)

Freedman and Taylor [4] first used this argument to show that their
universal R4, Rfj, does not embed in a flat 4-ball. They used the class ££ of all
topologically slice links in place of JSP..

A natural question is the following: Can (or must) R^ ^ equal RυΊ This
would follow, for example, if ML (L an arbitrary 7-fold Whitehead link) could
always be embedded in any R in which all families UfLi MLj embed, each L,
or its mirror image in ££_.

3. Uncountably many R4 's

Clifford Taubes [10] has recently proven a generalization of Donaldson's
Theorem which applies to open 4-manifolds with "periodic" ends. This theo-
rem was inspired by an observation of Freedman, that such a result would
yield a family of distinct R4 's parametrized by R. We expand this construction
to obtain a family parametrized by R2. More precisely, we prove:

Theorem 3.1. There is a family {RsJ0 < s, t < oo} of {shaved) exotic
R4 's such that Rs t embeds {preserving orientation) in Rs, t> if and only if s < s'
andt < t'.

We also obtain: If s > s' or t > t' there is a compact submanifold of Rst

which does not embed in Rs> t>. No two elements of {i£M} have the same end.
(We say that R and Rr have the same end if some neighborhood of the end of
R maps to a neighborhood of the end of Rr by an orientation- and end-
preserving diffeomorphism.)

We will state Taubes' Theorem in a form convenient for our purposes. Let
M be a smooth, oriented, open 4-manifold with one end.

Definition. M will be called end-periodic if there exists (1) a smooth
unoriented manifold Y homeomorphic (but not necessarily diffeomorphic) to
S3 X S1 #(#MCP2) for some finite n, and (2) a neighborhood of the end of M
which is diffeomorphic to a neighborhood of one end of 7, where Ϋ denotes
the universal cover of Y.

Note that H3{Y) = Z is carried by an open subset U, homeomorphic to
S 3 X R , disjoint from the C/>2's. We may find a smooth, closed 3-manifold
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N in U which separates the ends of U. Let W denote the manifold Y cut
open along N, with dW = d + WUd_W~ NUN. Then the end of M has
a neighborhood with closure diffeomorphic to an infinite stack of copies
of W (formed from W X {0,1,2, } by identifying d+(WX {n}) with
d_(WX{n + 1}) for each n). An M which is end-periodic by our defini-
tion is easily seen to be "admissible" in the sense of Taubes.

Theorem {Taubes). Let M be a smooth, simply connected, end-periodic

A-manifold. Suppose the intersection pairing on H2(M) is definite. Then this

pairing is standard, i.e., diagonalizable over Z.

In particular, let Es be the even, negative definite form of rank 8, and let Qn

be the standard, negative definite form of rank n (possibly infinite). Then
Es Θ Qn is not realized by an end-periodic M as above. (This pairing is not
diagonalizable, since no nontrivial element of E% can be written as a linear
combination of elements of square -1 in Es Θ Qn.)

Proof of Theorem 3.1. First, we construct a 1-parameter family {Rs\0 < s
< oo } of distinct R4 's. This argument is essentially due to Freedman.

In [5], a certain open 4-manifold is constructed; we shall denote it by Mo.
This manifold is smooth and simply connected, with end collared topologically
by S3 X R. The intersection pairing of Mo is Es Θ Qv The exotic R4 Rτ c CP2

is constructed so that a neighborhood U of its end is (orientation- and
end-preserving) diffeomorphic to a neighborhood of the end of Mo. (This is
how Rτ is shown to be exotic.)

Let h: R4 -> Rτ be a homeomorphism. By Quinn [8], we may assume that h
is smooth near the positive Λ -̂axis. Let Br denote the open ball of radius r
about 0 in R4. Choose r0 large enough that h(Br)U U = Rτ. (Alternatively,
we may choose r0 so that X c h(Bro), X as in §1.) Let Rs = h(Bro+s) (with
the smooth structure induced by Rτ). Then {Rβ < s < oo} is the desired
family of exotic R4's. Note that Rs c Rs, if s < s'. We will prove the
converse.

Suppose Rs embeds (preserving orientation) in Rs, with s > s'. Since Rs>
embeds in Rs with compact closure, we have an embedding /: Rs <-* Rs with
compact closure. There is a neighborhood Fof the end of Rs which is disjoint
from i(Rs). We may assume that V is homeomorphic t o 5 3 XR. Let Wdenote
Rs minus i(Rs — V), i.e., the region between V and i{V) (inclusive). Then V
and i(V) are neighborhoods of the two ends of W, and we may identify these
neighborhoods via i to obtain a closed, smooth manifold Ύ. (Note that the
outward-pointing end of V is mapped to the end of i(V) pointing into W, as
required for this.) This manifold Y is homeomorphic to S3 X S1. (Proof: Let S
be the topological 3-sphere in V corresponding to S3 X 0 in S3 X R « V. The
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compact region A between S and i(S) is homeomorphic to S3 X / by the

Annulus Conjecture (Quinn [8]), and W is formed by identifying the two

boundary components of A.)

We may assume V lies in U, so there is an embedding j : V °-> Mo, sending V

"near" the end of Mo. Let Mλ denote Mo minus the noncompact component

of M o — j(V). Form the manifold M by gluing half of the universal cover of

Y onto the end of Mv That is, form M from Mλ U (W X (0,1,2, }) by

identifying j(V) with i(K) X {0}, and VX {n} with i(V) X {> + 1} for

w = 0,1,2, . Since V and W are homeomoφhic to S3 X R, M has the same

homotopy type as Λf0. In particular, M is simply connected and has intersec-

tion form Es Θ Qv But M is clearly end-periodic, contradicting Taubes'

Theorem.

Remark. We have actually shown the following: If V is any open subset of

Rs homeomoφhic to 5 3 X R , and V surrounds Rs, (i.e., Rs, lies in the

compact component of Rs — V) then V has no orientation-preserving embed-

ding in Rs>. (There is no embedding of V into any R4 which turns V inside

out; otherwise we could construct a closed manifold with intersection form

^8 φ Qv) I n particular, any compact submanifold of Rs which contains V

cannot embed in Rs,. This also implies that no two elements of {Rs} can have

the same end.

Now let Rst denote the end-sum RJΰ(Rr Then {RsJ0 < s, t < oo} is the

desired two-parameter family of Theorem 3.1. If s < s' and t < t' then

Rs<z Rs, and Rtc Rt,. These embeddings are shaved for s < s' and t < t'

(see §1), since the homeomoφhism h: R4 -> Rτ defining Rs and Rt was taken

to be smooth near the positive q-axis. In particular, the end-sum Rs t embeds

in Rs,t,
Conversely, suppose that Rs t embeds in Rs*j with s > s'. Since Rt, c Rτ c

C P 2 we have shaved embeddings Rs, c Rs and Rt, c CP2. Thus, Λ5, ^

embeds with compact closure in RS#CP2. We now have Rs c Λ5 j ί *-» Λ5, ^ ^

RS$CP2, so there is an embedding /: Λ5 ^ RS$CP2 such that /(ΛJ has

compact closure. We now repeat the argument for the one-parameter case: Let

V be a neighborhood of the end of RS$CP2, homeomoφhic to S3 X R, and

disjoint from i(Rs) and CP2. Let W be the region between V and ι(F),

inclusive, and let Y be the manifold formed from W by gluing the ends

together via /. This time Y is homeomoφhic to S3 X S^ftCP2. (Topologically,

it is formed by gluing together the boundary components of B4#CP2 minus

the interior of a flat 4-ball.) As before, we may assume an orientation-

preserving embedding j : V -> Λf0. Thus, we may again construct M by

replacing the end of Mo with half of the universal cover of Y. This time, the
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intersection form of M is £ 8 θ QM . But M is still simply connected and

end-periodic, contradicting the theorem of Taubes.

Remarks. Given s,t,s\t' with s > s\ the above argument actually gives a

neighborhood U (homeomorphic to S3 X R) of the end of Rs t with the

following property: If V (homeomorphic to S3 X R) is an open subset of U

carrying H3(U) then V has no orientation-preserving embedding in Rs,,,.

(Construct W in Rs ,#CP 2 ; modify M o to get Mλ with the same end as Rs,.)

In particular, no compact submanifold of Rs t which contains such a V embeds

(preserving orientation) in Rs> t>. The same discussion applies whenever t>tf

(s, sf arbitrary) by reversing orientations. Thus, no two elements of { # 5 , } can

have the same end.

We may obtain uncountably many diffeomorphism types of smooth struc-

tures on S3 X R by considering neighborhoods homeomorphic to S3 X R near

the ends of the Rst

9s. Each has the following peculiar property: If U is such

an exotic 5 3 X R and Vι and V2 are disjoint open sets in £/, each homeomor-

phic to S3 X R and carrying H3(U\ then Vλ and V2 are not diffeomorphic.

(Even orientation-reversing diffeomorphisms are ruled out by letting Y be

nonorientable (S3 X Sι) and taking its double cover.) In particular, if S is any

flat topological 3-sphere carrying H3(U) and φ: U -> U is any diffeomor-

phism (not necessarily orientation-preserving) then φ(S) Π S Φ 0 . Thus, the

topological S 3 X R structure on U must be extremely complicated with respect

to the smooth structure.

We may ask how the 2-parameter family {^5/} relates to the countable

family of §2. In order to compare these, we must make a minor modification of

the countable family so that each Λn has a shaved embedding in Rn+ι

(instead of embedding as an end-summand). We may then obtain a 2-parame-

ter family {i^, |0 < s, t < 00} with {Rm,n} appearing as the integer (Uoo)

lattice inside, and the family of Theorem 3.1 essentially given by 1 - ε < s, t

< 1. (R's, = R'JθίR'n RQ = R4 and R'^ = R^ as given in §2.) The methods of

§3 show that the members of the subfamily {R'sJl — ε < s, t < 00} are all

distinct, for sufficiently small ε > 0. The corresponding result may not be true,

however, for the entire family. In some sense, {R's JO < 5, ί < 00} is a "maxi-

mal" 2-parameter family, since the members indexed by 00 cannot be em-

bedded with compact closure in any R4 (see remarks following Theorem 2.3).

Appendix: End-sums and the monoid of R4's

We generalize the notion of end-sum given in §1. Let Z + denote the positive

integers in the discrete topology. Let {Rt} be any family of n elements of ^ ,
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0 < n < oo, indexed by the first n positive integers (in particular, by Z + if

n = oo).

Definition. The end-sum b{"=1Ri is defined as follows: For each /, let γ,:

[0, oo) -» Rt be a smooth properly embedded ray. Let γ: [0, oo) X Z + -> R4 be

a smooth proper embedding of an infinite collection of rays. For each /, we

may attach Ri to R4 as in §1, by gluing a copy of / X R3 along the rays γ, in

Ri and γ|[0, oo) X {/} in R4. Perform this gluing simultaneously for all Ri9 and

call the resulting smooth manifold t)"= 1 Rj.

Lemma A.I. Let γ, γ ' : [0, oo) X Z + -> R be two smooth proper embeddings

into R, a smooth manifold homeomorphic to R4. Then γ and γ ' are smoothly

ambiently isotopic.

This lemma, proven at the end of the section, is a consequence of the fact

that circles cannot be knotted in 4 dimensions.

It follows immediately that end-sum is well defined on oriented diffeomor-

phism types. Furthermore, it is independent of the order of the terms. (Use

Lemma A.I and note that any permutation of Z+ is a homeomorphism.) R4 is

an identity in the following sense: Suppose m < n and each Rj in {Rt} with

j > m is diffeomorphic to R4. Then ty"=ιRι = K=\Ri- ( W e m a v construct an

explicit diffeomorphism which shrinks away the standard R4's.) Since each Ri

is homeomoφhic to R4 by a map which is smooth near yi (by Quinn [8]), it

follows that ty"=ιR; is homeomoφhic to t |"= 1 R
4 = R4.

The binary operation Rλ^R2 defined in §1 is merely ]0[

2

i=ιRi. (Simply note

that §)==ιRι = Rv) More generally, §"sslRi (n finite) is equivalent to an

iterated binary sum. The independence of order now implies:

Corollary A.2. The set ^t under end-sum forms a commutative monoid with

involution (orientation reversal), such that countable sums are always defined and

independent of order.

Corollary A.3. (@Λ) has no inverses.

Proof. Suppose # ^ # 2 = R 4 τ h e n

This trick was used by Mazur to prove the Schoenflies Theorem. It also has

a long history in algebra. Corollary A.3 is equivalent to a result of Stallings [9],

that any smooth proper embedding R3 *-> R4 is standard.

We might hope to turn & into a group by modding out by a suitable

equivalence relation. The next corollary dashes this hope.

Corollary A.4. Let G be any group. Then any homomorphism φ: & -> G is

trivial.

Proof. Let R €Ξ <#. Then R^^R) = biT-iR> s o Φ(R)' Φ(^T=ιR) =
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Remark. We can put one other kind of algebraic structure on 0t. Define
Rx < R2 if every compact, codimension zero, smooth submanifold of Rλ

embeds in R2. This may not induce a partial ordering on & since there could
conceivably be pairs Rl9 R2oί distinct R4's with Rx ^ R2 and R2 < Rv If we
call such pairs equivalent, however, there is an induced partial ordering on the
quotient space 31/~ . It is not difficult to check that Rλ < R2 and R3 ^ R4

imply Rλ^R3 < ^ 2 ^ 4 (anc^ similarly for infinite sums), so 9t/ ~ inherits the
monoid structure from Corollary A.2, and this structure is compatible with the
partial ordering. Notice that the infinite families constructed in this paper
inject into $%/ ~ , where they inherit the natural order type of their index sets.

Proof of Lemma A.I. First we push γ and γ' together at the integer points.
Let {!?,} be a nested sequence of flat topological balls which exhaust R. For
each (m, n) with integer coordinates in [0, oo) X Z+, let Amn be an arc from
γ'(ra,«) to y(m,n) in R. Let Nmrι be a compact regular neighborhood of
Am n with Amn c int Nm n. Arrange for the neighborhoods Nmn to be disjoint,
and assume that each Nmn intersects any given Bt only if one of the endpoints
of Am n does. Since γ and γ' are proper, each Bi will intersect only finitely
many Nm n. For each (m,n) there is an ambient isotopy with support in Nmn

which sends γ' to a map agreeing with γ on a neighborhood of (m,n) in
[0, oo) X Z + . Since each Bt hits only a finite number of Nmn we may combine
these isotopies to form an ambient isotopy sending γ' to γ", a proper
embedding agreeing with γ near each integer point.

Now we use a similar procedure to isotope γ " to γ. For each (m,n) consider
the 1-comρlex γ"([m, m + 1] X {n}) U γ([m, m + 1] X {«}). This contains
an embedded circle which is spanned by a self-transverse immersed disk Dmn

(smooth except at two boundary points). We may assume Dm n is disjoint from
Bt whenever dDm n is (since R - Bt is simply connected). Thus, each Dmn hits
only a finite number of others, and we may assume the intersections are
transverse. Use finger moves to turn {Dm n) into a family {D'm n) of disjointly
embedded disks with disjoint regular neighborhoods Kmn. Each Bt will
intersect only finitely many of the Kmn. For each (m,n) there is an isotopy
with support in Kmn sending γ " to a map agreeing with γ on [m, m + 1] X
{n }. As before, we may combine these isotopies, obtaining an ambient isotopy
sending γ " to γ.
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