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1. Introduction

A space-form is a complete pseudo-Riemannian manifold of dimension > 2
with constant curvature. A Lorentz space-form is a space-form with a Lorentz
metric of signature + — . In this paper we study 3-dimensional Lorentz
space-forms of constant curvature 1, and unless there is a possibility of
confusion, these will be often referred to simply as space-forms. The standard
linear model for this geometry (the "3-dimensional anti-de Sitter space") is

S1'2 = {(*, y)\x9 y e R2, |x|2 - \y\2 = l} * O(2,2)/O(l,2),

cf. [38, p. 334]. This set-up differs markedly from the usual Riemannian set-ups
in two respects: (1) the isotropy subgroup 0(1,2) is noncompact, so 0(2,2)
does not act properly on Sιa. This feature substantially restricts the discrete
subgroups of 0(2,2) which can act properly discontinuously on S1'2. (2) On

Received November 28, 1983 and, in revised form, January 10, 1985. The first author was
partially supported by an NSF grant and a Guggenheim fellowship, and the second author by an
NSF grant.



232 RAVI S. KULKARNI & FRANK RAYMOND

the other hand, Sh2 « Sι X R2 via the map (x, y) -» (x/\x\, y), has mλ ~ Z.
So these space-forms can be constructed from the groups of isometries of the
universal cover S1'2. This feature allows for certain geometric realizations of an
important class of 3-manifolds known as Seifert fiber spaces cf. [30], [20], [6,
Chapter 12] of [7, Chapter VI]. This class of spaces has arisen naturally in
widely different contexts cf. [27], [22], [23]. A reason for this, at least with
hindsight, is that if in a mathematical problem a 3-manifold arises naturally
and exhibits "interesting symmetries", it is likely to be a Seifert fiber space!

A more convenient model to study our problem is obtained by realizing that
- \ (the Killing form) makes PSL2(R) a Lorentz space-form. Write Pλ resp. Sx

for PSL2(R) when considered as a Lie group resp. a space-form. Let Pn resp.
Sn denote its «-fold connected covering space considered as a Lie group resp. a
space-form, 1 < n < oo. Note that S1'2 = S2 and S1'2 = S^. A space-form M
has level n if n is the least integer, possibly infinite, such that M is covered by
Sn. To decide the level of a space-form is an important consideration in this

problem. The full isometry group I(Sγ) is a certain extension of Pλ X Pλ by
Z 2 X Z 2 and /(S^) can be realized as a certain extension of Z by /(SΊ), cf. §2.
We construct a particular subgroup / of /(S^) which acts properly on S^. A
discrete, torsion-free subgroup of /(S^) conjugate to a subgroup of /, and the
corresponding space-form, for want of a better name, will be called standard.
In recent years it has been found helpful to allow all properly discontinuous
groups i.e. whose actions are not necessarily free, and the corresponding
quotients, a la Thurston, are called orbifolds. The orbifolds corresponding to
discrete subgroups of /(S^) which can be conjugated in / will also be called
standard. Analogously there is a purely topological notion of a Seifert orbifold
which roughly speaking, is obtained as a quotient of a Seifert fiber space by a
finite group of fiber-preserving homeomorphisms. Roughly speaking, a motiva-
tion of this paper was the realization that the discrete subgroups of / are
precisely a certain subclass of the "fundamental groups of Seifert orbifolds".
In [8], cf. also [11, §7], this was proved in special cases by a differential-
geometric method.

Now we describe more precisely the contents of this paper. First we make a
general investigation of subgroups of /(S^) and the ones among these which
are discrete and among these the ones which act properly discontinuously on
S^. Since the identity component ^(S^) is a certain quotient of P^ X P^, in
the process, we have also obtained some information about subgroups of
Pλ = PSL2(R) and its universal cover P^. For example, we prove that a
nonabelian free subgroup of P^ contains an element which is in the image of
the exponential map from the Lie algebra. We believe that these results should
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prove to be of interest in other contexts. One of our main results is

(5.2) Theorem. Let Γ be a finitely generated torsion-free subgroup of I0(Sλ)

(which we identify with Pλ X Pλ) such that Γ acts properly discontinuously on Sv

Then there exists a discrete subgroup Φ of Pλ and a representation p: Φ -> Pλ

such that, up to switching of factors, Γ = {(x, p(x)\x e Φ } .

Among other things we classify solvable subgroups of /(S^) acting properly

discontinuously on S^. We have obtained criteria for a space-form to be of

finite level e.g. this holds if the space-form is compact, cf. Theorem (7.2). This

implies that a compact Lorentz space-form is finitely covered by a circle bundle

over a closed orientable surface of genus > 2, and in a large number of cases

the structure in fact must be a standard one, cf. (7.5). (For a long time we

wondered whether every compact Lorentz space-form must be standard. But

W. Goldman has recently come up with an argument showing for example that

a standard structure on the tangent circle bundle over a closed surface of

genus > 2 may be deformed to a nonstandard one!) A lemma which is

crucially used for many of these results is that a subgroup ~ Z 2 of I0(Sλ)

cannot act properly discontinuously on Sλ, cf. (5.1). As for the standard

space-forms we prove

Theorem, (a) (Structure). A standard Lorentz orbifold is an orientable

Seifert orbifold with hyperbolic base, which, if closed, has nonzero Euler number.

(b) (Realization). Let M be an orientable Seifert orbifold with hyperbolic

base. Moreover if M is closed assume that its Euler number is nonzero. Then M

admits the structure of a standard Lorentz orbifold.

(c) (Topology). A closed standard Lorentz orbifold is homeomorphic to either

(i) a closed orientable Seifert fiber space with nonzero Euler number or (ii) a

connected sum of lens spaces including S3 and S2 X Sι. Conversely all manifolds

of types (i) or (ii) admit the structure of a standard Lorentz orbifold.

(d) (Volume). The volume of a closed standard Lorentz orbifold is an

invariant of the underlying Seifert orbifold structure and is a rational multiple of

4τr2.

The proofs of these statements are in §8 and §9 where the notions of a

Seifert orbifold and its Euler number are also made precise. Notice that the

3-manifolds of type (i) in the (Topology)-part are precisely the closed orienta-

ble Seifert fiber spaces not covered by (a closed surface) X S 1 .

We also classify homogeneous space-forms, i.e. ones with transitive isometry

group. This corrects and partially completes the work of J. Wolf [37], [38] cf.

also [10].

Added in proof. According to recent work of W. Goldman, a closed surface

X S 1 is never a Lorentz space-form, cf. (7.1.1). Consequently, using the
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theorem above, Proposition 7.5, §10.1, and [28], all closed Lorentz space-forms
must be standard forms except possibly those forms homeomorphic to homo-
geneous forms. All the homogeneous forms, which are automatically standard,
can be deformed, as W. Goldman shows, to nonstandard Lorentz space-forms.
Therefore, all the closed Lorentz space-forms have been identified.

Finally we should mention a curious phenomenon in this Lorentz geometry
which would never occur in any Riemannian case. There is a locally proper but
not proper action of Z3 on Sx. The corresponding quotient must be considered
as a "space-form" in the traditional sense of differential geometry. It is locally
Hausdorff but globally non-Hausdorff. Topologically it is a torus bundle over
a standard example of a non-Hausdorff manifold: the line with a double point!

We would like to point out to the reader, chiefly interested in the topology
of 3-manifolds and who may wish to see as quickly as possible the connections
between Seifert orbifolds and standard 3-dimensional Lorentz orbifolds, that it
is possible to read §8 and §9 without studying the complete details treated in
the earlier sections.

Our results concerning standard space-forms date back from 1977-1978.
The standard space-forms are closely related to what Thurston has called the
3-manifolds with SL2(R)-geometry cf. [34],1 geometry #6. For Thurston, this
geometry is any structure defined by a /-invariant Riemannian metric on
SL2(R) = S^. The details of Thurston's work are yet to appear. P. Scott's
recent work [31] gives an outline, and his theorem (4.15) has a close connection
with part (a) of our theorem (8.5). As for the part (b) (realization) of (8.5) it
appears from a description in a private communication to us by Thurston that
his method of putting the SL2(R) structure on a class of Seifert fiber spaces is
by explicitly constructing appropriate metrics. This method was used by one of
us cf. [8] in special cases. The details along these lines for the whole class
covered under part (b) of (8.5) would give a nice perspective on this problem.
On the other hand, the method used here is based on a detailed understanding
of the Lie groups involved, and has a different perspective. It may be remarked
that from the Lie—as well as differential geometric-viewpoint this space-form
problem is "dual" to the 3-dimensional spherical space-form problem, and the
Lorentz geometry is a "natural" one, cf. §2, §3, §9.

A final remark: In this paper we have completely left out the natural
question of deformations of Lorentz structures. We have discussed this theory
in a more general context of deformations of geometric structures, in a later
publication, cf. [14].

1 Actually the group described in [34, p. 369] is not quite correct. It should be the group / .
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Notations. For any topological group G, its identity component is denoted
by Go, the center by Z(G). If H is a subgroup of G, ZG(H) resp. NG{H)
denotes the centralizer resp. normalizer of H in G. If x e G, /x denotes the
conjugation by c. Also G ~ P X <2 stands for "G is isomoφhic to a semidirect
product oί P by Q where P is normalized by Q". An extension of a group P by
a group Q means a group G containing P as a normal subgroup with
G/P ~ Q. For an element

\a b]
P = [ c d\

in GL2(R),
]a b\

P ~ [c d

denotes its image in PGL2(R). Some more specialized notation is introduced in

§2 and §4 which is used throughout the paper.

Acknowledgement. We owe special thanks to Bill Goldman, for taking

interest in this work. He supplied (7.5), and showed the possibility of non-

standard deformations of certain standard compact Lorentz space-forms.

2. Special features of the 3-dimensional Lorentz geometry

of constant curvature 1

(2.1). Let Pλ denote PSL2(R). The center Z{Pλ) is trivial and the funda-
mental group of Pλ is isomorphic to Z. Let Pn, 1 < n < oo, denote the unique
rt-fold connected cover of Pl9 which, as a group, is a central extension of Zn by
Pv It is easily seen that - \ (the Killing form) induces a complete bi-invariant
Lorentz metric with constant curvature 1 on all Pw's. We shall write Sn for Pn

considered as a Lorentz manifold and I(Sn) for its group of isometries. The
action of Pn X Pn on Sn via (g, h)x = g X h~ι is by Lorentz isometries since
the metric is bi-invariant. The standard estimates for the dimensions of
isometry groups show that the identity component I0(Sn) is isomoφhic to
(Pn X Pn)/Zn where Zn * {(z, z)\z e Z(Pn)}. In particular IO(SX) * Pλ X Pv

The isotropy subgroup at the identity is given by

{(χ,χ)\χ e pn}/zn « p y z ( p j ~ p,.

The image of (x, y) e P^ X P^ in I^S^) will be denoted by [(JC, y)].
We now describe the full isometry group I(Sn). It has four components

which geometrically correspond to "time"- and/or "space"-reversals. Consider
a time-like resp. space-like vector as having positive resp. negative length.

(2.2) Proposition. Let σ: A -> A'1 be the geodesic symmetry at the identity,

and iu the lift of the conjugation of Pλ by

"1 0
LO - 1 .
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to Pn fixing the identity. Then σ preserves the space-orientation and reverses the

time-orientation, and iu reverses both the time- and space-orientations. More-

over (σ, iu ) » Z 2 X Z 2 , the group (I0(Sn), iu > is the full group of orientation-

preserving isometries, andI(Sn) = (I0(Sn%σ,iUQ) « I0(Sn) X <σ,/Mo>.

Proof. Both σ and iu fix the identity and preserve the Killing form, hence

are Lorentz isometries. On the Lie algebra level σ acts by A -> -A which

clearly commutes with the action of iu on the Lie algebra. So(σ, z M ) « Z 2 X

Z 2 . Time-like and space-like subspaces at the identity in Pλ are given respec-

tively by

The latter may be coordinated by ( c, y) G R > 0 X R ~ R2. The map /MJ (resp.

*UO\D) has the form θ -» -θ (resp. (JC, y) -> (x, ->>)) which shows that /MQ

reverses both the time- and space-orientations, and so preserves the total

orientation. Also the map σ | c (resp. σ |D) has the form θ -> -θ (resp. (JC, y) ->

(w, - j ) = ((1 4- y2)/x, -y)) which shows that σ reverses the time-orientation

and preserves the space-orientation. By lifting, the same assertions hold for all

Pn's. Finally I(Sn) has four components and I0(Sn) Π (σ,iUQ) = {e} so the

final assertion follows.

(2.3) Remark. There is another natural description of iu. Consider Px as

the group of orientation-preserving isometries of the hyperbolic plane H which

is taken as the upper half plane in C. The map z -> * — z is an orientation-

reversing isometry of H and I(H)= (Pv ψ). Also Pλ may be identified with

Tλ(H) = the unit tangent bundle of H. The action of ψ on Pλ by conjugation

is the same as the one induced by ψ on TX(H). From the Lorentz viewpoint a

unit tangent circle is a time-like subspace and a section of the hyperbolic plane

in Pγ is a space-like subspace, so ψ acting on Pλ clearly reverses time- and

space-orientations. One checks that indeed iu = ψ under identification of Pλ

with TX(H).

(2.4). Since the isotropy subgroup is noncompact the action of I(Sn) on Sn

is not proper. For the generalities on proper actions see [25] and [11, §1 and

the appendix]. So a discrete subgroup of I(Sn) does not necessarily act

properly discontinuously. Indeed this is the main source of difficulty in this

problem. For getting at least some examples of space-forms in such situations

the following construction principle was proposed in [11], namely, construct

connected Lie subgroups which act properly and then construct their discrete
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subgroups. In the present case we do this in the following proposition. For

simplicity identify IQ(Sλ) with Pλ X Pv Let φn: P^ -» Pn denote the canonical

covering projection and write φ for φv

Proposition. Up to conjugacy and "switching of factors" the maximal con-

nected Lie subgroups o//0(Sr

oo) acting properly on S^ are of the following types:

(i) Jo = the lift to S^ of the group

= c o s < 9 > s =

(ii) The lifts to S^ of the groups

1 ac\- \e" ι
0 1 J ' I 0 e

(iii) The lifts to Sx of the groups

h t

0
0

,-bι 0

0 e R, ί>, c real constants, b Φ c or -c

Proof. The Lie algebra of I^iS^) is sl2(R) X sl2(R) So the classification of

the conjugacy classes of Lie subalgebras and the corresponding connected

subgroups is straightforward. The compactness of the isotropy subgroups is a

necessary condition for the properness of the action, and it is sufficient, if the

action is transitive cf. [11]. In case (i), which with hindsight is the most

interesting one, the lift of {(JC, e)\x e Pχ) acts simply transitively on S^. So Jo

acts transitively also. The isotropy subgroup at the identity is

, x)] \φ(x) = [ _c

5

 s

c] ", c = cos0, s = sinfl} - S\

So / 0 acts properly. From the classification of Lie subalgebras referred to

above it is easy to see that actually Jo is a maximal connected subgroup of

/(/S^), not just maximal among the ones which acts properly on S^. In cases

(ii) and (iii), that no strictly larger connected subgroups of ^ ( S ^ ) can act

properly on S^, will follow from the main lemma of §5. The groups in (ii) and

(iii) act in fact freely. Unfortunately, this does not ensure properness of action

in general. That they indeed act properly will also follow from the method of

the proof of the main lemma. Since the details are a bit tedious we omit them

here.

(2.5). Now consider the group / = (JoJUo).

Proposition. / acts properly and preserving orientation on S^. Moreover

J = Nr(Sχ)(J0) and contains Jo as a subgroup of index 2.
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Proof. On the Sx-level the actions of σ and /„ (cf. (2.2)) are as follows. For
x e Sι we have σ(x) = x'1, iUo(x) = uoxuo, and so for (a, b) e Px X P l 5

σ ίβ.ij σ-1^) = σ°(a,b)(x~ι) = σίαx"1*-1)

iUo°(a,b)oi£(χ) = iUo°(a,b)(uoxuo) = /^(αi/oXKoir1) = uoauQxuob-ιuo

In other words,

Lifting to S^ it follows that / normalizes Jo. Since i2

UQ = e, and iUo preserves
orientation of S^ it follows that / contains Jo as a subgroup of index 2 and
preserves orientation of S^. Also / acts transitively on S^ and the isotropy
subgroup at e is isomorphic to 0(2), so / acts properly on S^. Finally let
a e Nf(S )(Jo). Then the image a of a in I(Sλ) normalizes

Θ = ( ( * , [ * ί l " ) | j c e P 1 , c = cosβ, J = sin/9

A computation using the above conjugation formulas shows that a e (Θ, /w ).
Since / is the inverse image of ( θ , iUQ) we must have a e /.

(2.6) Remark. A slightly better assertion is that if G is a group of
homeomorphisms of S^ which acts properly and contains JQ, then G = J0oτ J.
This is proved in [12].

(2.7). We should mention an interesting Lie-group-theoretic perspective on
this space-form problem which has partially guided our thinking. It is "dual"
to the 3-dimensional group of the 3-dimensional spherical geometry is 0(4)
whereas that of the linear model in the Lorentz case is O(2,2). Notice that
O(4) (resp. O(2,2)) is locally isomorphic to 0(3) X 0(3) (resp. 0(1,2) X
O(l,2)). The linear model S3 = 0(4)/0(3) corresponds to S2 = Sh2 =
O(2,2)/O(l, 2), whereas the projective model P3(R) = 0(4)/0(l) X 0(3) cor-
responds to Sx = O(2,2)/O(l) X 0(1,2). The novel feature in the Lorentz
case arises precisely from the fact that the linear model Sιa has fundamental
group ~ Z. The groups of the spherical space-forms up to conjugacy lie in ί/(2)
which is locally isomorphic to SO(3) X SO(2). The group Jo described above is
akin to U(2) in the spherical case; one analogy is that the "geometry" based on
Jo, like that on U(2), does not allow orientation-reversing isometries.

(2.8). In §8 and §9 we shall put the structures of Lorentz orbifolds on all
orientable Seifert orbifolds, coming from SL(2, R) geometry, by constructing
appropriate discrete subgroups of /. We shall say a Lorentz orbifold is
standard if its "fundamental group" is conjugate to a discrete subgroup of /.
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Moreover, we shall also call a discrete subgroup of /(S^) standard if it is

conjugate to a subgroup of /.

Proposition. Let Γ be a subgroup of (/0(SΌo), /Mo>. Suppose that Γ contains

a subgroup Γ\ of finite index such that f\ is standard then Γ is standard.

Proof. Let Γ, Γ\, be the images of Γ, Tl9 resp. in </o(Si),/Mo>. After
conjugation, we may assume that I\ is contained in the group

7 = {(*>[-* c]~)\xGpi c = c o s θ > s = ύ n ή * ( O
It is easy to see that if gn e / then g e /. So Γ c /. Hence Γ c /.

(2.9) Corollary. // a Lorentz orbifold M admits a finite orbifold covering

which is standard, then either M itself or its double (branched) covering is

standard.

3. Subgroups of Px = PSL 2(R), and P^ = PSL"2(R)

(3.1). In this section we collect together some facts about subgroups of Px

and PQQ, cf. §2 for the notation. Let φ: P^ -> Pλ be the canonical projection.

First, some terminology, not all standard. Consider the three special sub-

groups of Px:

K=

A =
0 1 a

LO 1.

Up to conjugacy these are all the 1-parameter subgroups of Pl9 and every

element of Pλ — {e} belongs to a unique 1-parameter subgroup. Also Pλ =

KAN is the Iwasawa decomposition. An element Φ e is called elliptic, resp.

hyperbolic, resp. parabolic if it is conjugate to an element of K, resp. A, resp.

N. Alternately, x e Pλ - {e} is elliptic, resp. hyperbolic, resp. parabolic iff

ZPι(x) is conjugate to K, resp. A, resp. N. Notice that Z(Pλ) = e. Now the

polar decomposition defines a deformation retraction of Pλ onto K, so

πλ(K, e) ~ πx(Pve) « Z(P00) « Z, and the standard orientation of K de-

termines a canonical generator, which we call /, of Z(PO0). A noncentral

element x e P^ is said to be elliptic, resp. hyperbolic, resp. parabolic if φ(x)

is such. By passing to the Lie algebra it is easy to see that K, A, N, AN, are

the only proper connected subgroups of Pλ up to conjugacy. They also happen

to be closed.

Proposition. (l)NPι(K) = K,

(2)



240 RAVI S. KULKARNI & FRANK RAYMOND

where Z 2 acts on R by x -» -x9

(3) NPι(N) = AN = NPι(AN).

(4) A solvable subgroup of Pλ is conjugate to a subgroup of K, or NPχ(A\ or

AN.

(5) A discrete solvable subgroup of Px is either (a) = Xn and is conjugate to a

subgroup of K, or (b) « Z and is conjugate to a subgroup of A or of N, or

(c) ~ D^ = the infinite dihedral group and is conjugate to a subgroup ofNPι{A).

(6) The normalizer of a proper solvable subgroup is solvable.

(7) The commutator of a nonabelian subgroup of AN is contained in N. It is

either not finitely generated or else it is finitely generated free abelian group of

rank at least 2.

The proofs of these statements are not difficult and are omitted.

(3.2) Proposition. (1) A nonsolvable subgroup of Px is either discrete or

dense,

(2) A finitely generated dense subgroup of Pλ contains elliptic elements of

infinite order as well as hyperbolic elements.

(3) The normalizer of a discrete nonsolvable subgroup of Pλ is discrete.

Proof. (1) Let Φ be a nonsolvable subgroup of Pl9 Φ its closure. If Φo = e

then Φ = Φ is discrete. If Φo = Px then Φ is dense. If Φo is conjugate to K, A,

N9 or AN then Φ is contained in NPι(Φ0) which is solvable. Hence Φ and Φ

would both be solvable.

(2) In Pλ the set of elliptic, resp. hyperbolic elements is characterized by an

open condition |trace| < 2, resp. |trace| > 2. So a dense subgroup Φ contains

elliptic as well as hyperbolic elements. Passing to a torsion-free subgroup of

finite index which must also be clearly dense one sees that Φ must contain

elliptic elements of infinite order as well.

(3) Let Φ be a discrete nonsolvable subgroup. Then Ψ = NP(Φ) is clearly

closed. If % = e, then Ψ is discrete. Otherwise, dimΨ > 0 and % centralizes

Φ. But from the knowledge of Zp (x) it would follow that Φ is conjugate to a

subgroup of K, AN or NP (A) which would imply that Φ is solvable.

(3.2.1) Remark. The statements analogous to (3.2) were proved by Nielsen

(with quite different proofs), cf. Siegel [33].

(3.3). Now we pass on to subgroups of P^. Let K = φ~ι(K), and A =

(Φ~\A))0, N = (φ~\N))0. An elliptic element of P^ is conjugate to an

element of K whereas a hyperbolic resp. parabolic element of P^ has the form

tnx with x conjugate to an element of A, resp. N.

Proposition. Let T be a discrete subgroup of P^ such that Φ = φ(Γ) is not

discrete. Then either (i) Γ ~ Z and is conjugate to a subgroup of K or (ii)

Γ « Z 2 and is conjugate to a subgroup of φ~ι(A) or φ~ι(N).
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Proof. If Φ is conjugate to a subgroup of K, A or N we are in the

situation of (i) or (ii) and are done. Now let η e Γ so that φ(η) = η G Φ is

close to e in Φ. There exists ηλ = ηhk close to e in Γ. Note φiη^ = φ(η).

Observe for γ £ Γ , with φ(γ) = γ, [η^γ] = [fj,γ] is close to e. Since Γ is

discrete, [η,γ] = e. Similarly, if we choose k generators γ l 5 -,yk e Φ with

φ(Ϋ, ) = Y,-» Y, e Γ, we can find an η e Γ with e =£ φ(ή) = η close to *? and

[η,γ j = e for each γ,. Therefore (γ,,- ,γΛ> c CΦ(η) c CP i(η). Since CP i(η)

is 1-dimensional, and Γ is discrete, we must again be in situations (i) and (ii).

(3.5). Before proceeding further it will be helpful to keep the following

pictures2 of Pλ and P^ in mind. First of all Pλ ~ Sι X R2 may be thought of

as an open solid torus. Its fundamental group is carried by K. The set D of

elements of order 2 forms a single conjugacy class of elliptic elements and so

D « Pγ/K ~ an open 2-disk. This disk is closed in Pλ and cuts K in exactly

one point. Hence cutting Px along Z>, taking infinitely many copies of the split

Px indexed by Z and glueing them side by side we obtain P^, cf. Figure 1. The

set K — {e} « R is a set of representatives of conjugacy classes of elliptic

elements, and each conjugacy class if « P\/K ~ AN ^ R2. So the set S of

elliptic elements in Pλ is « R3. The set

o .

is a set of representatives of conjugacy classes of hyperbolic elements, and each

conjugacy class is ~ P\/A « KN « S 1 X R. So the set JP of hyperbolic

elements in Px is « S 1 X R2. Finally there are two conjugacy classes of

parabolics with representatives

I ί] - [Ό ΐ
respectively, and each conjugacy class is ~ P\/N « KA » S 1 X R. So the set

& of parabolic elements in Pλ consists of two disjoint copies of S1 X R. Thus

Px is a disjoint union of {e}, $, JP\ and 9. The relative position of these sets

is pictured in the Figure 1. The set D of elements of order 2 may be thought of

as a "meridian disk". One component of the "boundary" of each of the

"cylinders" (which together make up @) is "pinched at e'\ whereas the other

component coincides with the boundary of D. The 2-disks which constitute the

conjugacy classes of elliptics parametrized by -ττ/2 < θ < π/2 go in a snake-

like fashion inside the cylinders of parabolics (which of the two cylinders is

2 This discussion is inspired by §2 of [18].
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decided by θ > 0 or θ < 0) and also have their boundaries coinciding with the

boundary of D. The reader may verify these statements computationally by

working out the behavior of polar decompositions of elements in a single

conjugacy class.

D

FIGURE 1

The Lorentz geometry is naturally "built in" for PSL2(R). The set 9 U {e}

is the light-cone at e. The time-like (resp. space-like) geodesies through e are

precisely the subgroups conjugate to K (resp. A). The geodesies and the

light-cones at other points are obtained by either left- or right-translation.

The polar decomposition induces p: Pλ -> SO(2)/± 1 given by

= θ if θ = arctan((Z> - c)/(a + </)),

cf. [Mn]v Lifting to

R. Then Δ o =

we have a "polar decomposition" inducing p^:

(-ττ/2, π/2 ]} is clearly a fundamental domain for

the action of Z{P^) = (/>.

The image of the exponential map from sl2(R) to Pγ is clearly surjective, and

is never surjective on Pn for n > 2. On P^ the image of the exponential map is

precisely Δ o U (the elliptic elements}. An element in the image of the exponen-

tial map in P^ is said to be of exponential type.

Proposition. A nonabelian free subgroup of P^ contains a hyperbolic element

of exponential type.
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Proof. Let Γ be a nonabelian free subgroup of P^ and Φ = Φ(Γ) its
image in Pv Clearly, φ: Γ -> Φ is an isomorphism. For x e Φ let x be the
unique element in Γ, and x0 the unique element in Δo such that φ(x) = φ(x0)
= x. Clearly x = t"x0 for a suitable « G Z .

Next it is elementary to see, using (3.1) and (3.2), that Φ contains a
nonabelian free subgroup generated by two hyperbolic elements. So passing to
a subgroup and by conjugation we may take Φ = (x, y) where

[λ 0
0 λ"1

Since Γ is nonabelian and free we see that be Φ 0. We claim that Γ must
contain an element

z = ^ with mn < 0.

Indeed, if be < 0 we may take z = y. Otherwise suppose be > 0. Then ad = 1
+ be > 0. A computation shows that, for z = y~ιxy the product of the
off-diagonal elements is -abcd(λ — λ"1)2 < 0. So changing notation we may
assume Φ = (x, y) as above with be < 0. Now consider

A computation shows that zr = xryx~ιy~ι has |trace| = 2 - bc(r - r~1)2 > 2
since be < 0. So r -> zr is a curve starting at e and consists of hyperbolic
elements of exponential type.

Now let x = tnx0, y = tmy0, be elements of Γ lying above x, y, resp. The
curve r -> tnxr0 = xΓ, say, lies over r -> x r and contains Jc. So the curve
r -> jcr^jc~17"1 = zr lies over r -> zr and starts at e. Conclusion: 5cyx~ιy~ι e Γ
is a hyperbolic element of exponential type.

4. Subgroups of 70 (S^) , the level of a subgroup

(4.1). Throughout this section Γ denotes a subgroup of 1^{S^\ φ: /0(•$«,)
-> /0(SΊ) the canonical projection, and φ(f) = Γ. We identify /0(SΊ) with
Px X Px and consider its projections pλ and JP2 in the first and second factor
resp. Write Γ,=/?,(Γ), % = ker/?2|Γ, and Ψ2 = ker/?^. Also write Z =
z( /o( 5Ό 0)) W e h a v e z * z F i x i t s generator h = [(ί,^)]. Define f to be of
level n if n is the least positive integer (possibly infinite) such that Γ is the
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complete inverse image of a subgroup of I0(Sn) i.e. iff Γ ιΊ Z = (hn). It is
clear that if Γ has finite level then it is discrete (resp. acts properly discontinu-
ously on S^) iff Γ is discrete (resp. acts properly discontinuously on Sλ). We
shall study propemess of actions in the next section. Here we investigate the
consequences of discreteness of Γ of infinite level. For characterizing these
groups notice that if f is of infinite level φ: f -> Γ is an isomorphism. Since
Γ, I\, Γ2 are all linear groups, under the hypothesis of finite generation, they
contain torsion-free subgroups of finite index. Therefore, we lose no generality
in assuming that f ~ Γ, Γ l5 Γ2 are all torsion free.

(4.2) Theorem. Let f be a finitely generated discrete subgroup of I^S^) of

infinite level such that f ~ Γ, I\, Γ2 are all torsion free. Then either (1) Γ is

discrete, or (2) Γ is abelian but not discrete with the following possibilities:

(i) Γ = ((JC, y)) ~ Z, x and y elliptic and one of them is of infinite order,

or;

(ii) Γ » Z 2 , contained in B X e or e X B where B is conjugate to A or N—or

else contained in B X C where one of B and C is conjugate to K and the other

conjugate to A or N:

(iii) Γ « Z 3 contained in B X C where both B and C are conjugate to A or N;

or (3) Γ is nonabelian but not discrete and is contained in Pλ X B (up to

switching the factors) where B is conjugate to K or A or N. In this case Γ has

central elements of the form (e, y), y e B arbitrarily close to e. Moreover, there

exists a discrete nonabelian free subgroup Φ of Pλ X e and a representation p:

Φ -> B such that Γ = (Φ p , %) « Φp X Ψ2 where

Φp= {(x9p(x))\χeΦ) and % = kerPι.

Proof. Suppose Γ is not discrete. If Γ is abelian then by looking at the
generators and their possible centralizers it is not difficult to see that we have
the only possibilities listed in (2). Now suppose Γ is nonabelian.

We first claim that it has a nontrivial center. Let γ, η e f, φ(γ) = γ,
φ(η) = η such that η is close to e. Then there exists ηλ close to e such that
ηλ = hkη for some K Z . But then [γ, η] = [y,ηλ] is close to e. Since f is
finitely generated and discrete we see that there exists η Φ e such that
[γ, η] = e for all γ E Γ .

Choose a nontrivial element η = (x, y) in Z(Γ). If x Φ e Φ y then Γ c
ZpιXPι(η) would be abelian. So up to switching factors suppose that x = e Φ y.
If B = ZPι(y) we see that Γ c Pλ x B with B conjugate to K, A, or N. The
above argument shows that % = ker/?1 is not discrete. Also Ψλ = ker/?2 must
be discrete for otherwise Ψλ X Ψ2 c Γ would contain elements of the form
(x, y), x Φ e Φ y arbitrarily close to e and as above Γ would be abelian. Now
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I\ normalizes %. If % = e, Γ ~/?2(Γ) c B would be abelian. If % « Z,

Γ c Np^^ X 2? would again be abelian—use (3.1), part (7). Hence Ψλ is a

nonsolvable discrete subgroup of Pl9 so is I\ by (3.2), part (3). Write Φ = I\.

We know that Φ « a finitely generated nonabelian free group or « τr1 (a

closed surface of genus > 2). In the first case let {xl9 —,xr} be a. set of free

generators whereas in the second case let [αi9 bt}9 / = 1,2, , g, be a set of

generators so that Πf=1(tf/? 6f ) = e. By construction, in the first case there exist

{y\>" '•> yr)
 s u c h t ' i a t (χ/» λ ) e Γ whereas in the second case there exist

(<z , Z?̂ } such that (αi9 β ), (fe,-, b\) are in Γ. Since B is abelian we see that in

either case p(x y) = j>, resp. p(α, ) = α ,p(fty) = fe, defines a representation p:

Φ -* β. Then writing Φp = {(.*, p(x))|x G ? ^ we see that ΦpΠ Ψ2 = e and

The final claim is that Φ cannot be isomorphic to irλ (closed surface of

genus > 2). For if so, let αi9 bt be as above and let αi9 bι ^ P^ X e -> / o ί ^ )

and α\9 b\ e ^ - ^ ^o(̂ Όo) ^ e s o m e lifts of fly, 6f and p(flf ), p(Z?y) resp. so that

[(3,., flί)], [(&,.,&;)] are i n f . Then

g ΓΓ g g

Π[[(a,,α:)],mU)]l- n(a,,M, n{α',X

by [28, Theorem 1]. So Γ Π Z # e which contradicts the hypothesis that f is

of infinite level.

5. Properly discontinuous subgroups of Io (S x)

(5.1). As in earlier sections we identify I0(Sλ) with Pλ X Px which acts on

Sx via (a, b): x -> αxft"1. The following lemma is crucial.

Main lemma. Let V be a subgroup of I0{Sλ) which acts properly discontinu-

ously on Sv Then Γ does not contain a subgroup « Z 2 .

Proof. Suppose that the lemma is false. Then we may take Γ « Z 2 .

Certainly Γ is a discrete subgroup so from (3.1) part (5) it is not entirely

contained in Pλ X e or e X Pv (Alternately, this is also well known from the

plane hyperbolic geometry.) So there exists (JC, y) e Γ, x Φ e Φ y, hence

Γ c ZPιXPι((x, y)) = ZPι(x) X ZPι(y).

Case 1. Assume that x or y, say x, is elliptic. So ZPιXPι((x, y)) is conjugate

to KX B where B = K, A, or Λf. In any case ϋ: X B « S 1 X 5 1 or S 1 X R

which cannot contain a discrete subgroup ~ Z 2 — a contradiction.
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Case 2. Assume that x and y are hyperbolic. Then G = ZPιXPι((x, y)) is
conjugate to A X A « R2 and contains Γ ~ Z 2 as a discrete, hence cocompact
subgroup. Since Γ acts properly discontinuously, G must act properly cf. [11,
§1]. In particular, then, Γ' = ((x, e% (ey y)) must act properly discontinu-
ously. Modulo conjugation, taking inverses, and switching of factors we may
take

a 0
0 a-ι

So

b 0

0 b'λ

o
0

But for infinitely many choices of m, n this element comes close to e—take
rational approximations m/n to—\nb/\na where m, « are not necessarily
cop rime. Then either the isotropy subgroup Y'e is infinite or the orbit T\e) is
not discrete which contradicts proper discontinuity of Γ'.

Case 3. Assume that x and j are parabolic. Then modulo conjugation in
I(Sλ) we may take

But then (x, y) has infinite order and fixes e which contradicts proper
discontinuity of ((x, >>)).

Case 4. Assume that, up to switching of factors, x is hyperbolic and y is
parabolic. Then ZPιXPι((x, y)) is conjugate to A X JV « R X R, and as in Case
2 the group Γ' = (( c, e), (e, j>)) acts properly discontinuously. Modulo conju-
gation in I(Sλ) we may take

C =

Let

[c d

which is a compact subset of
n = λm - ε, 0 < ε < 1. Then

and also

Fix a positive integer m and n = [λm], so
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Thus for infinitely many pairs (m, n)

{(xm,y-")C) ΠC Φ 0

contradicting the proper discontinuity of Γ" and finishing the proof.

(5.2) Theorem. Let Γ be torsion-free subgroup of / 0(SΊ) acting properly
discontinuously on Sv Then, up to switching of factors, Γ = Φp where Φ is a
discrete subgroup of Pλ, p: Φ -> Pλ a representation, and Φp = {(x, ρ(x))\x e
Φ}.

Proof. Let p \ Pλ X Pλ -> P 1 ? y = 1,2, be the projections onto the first
and second factors. If ker/?y(Γ # <? for both j = 1,2, there exist elements (JC, e),
(e,>>) xΦeΦy in Γ generating Z 2 which contradicts (5.1). So up to
switching factors, suppose p^v is injective. Set Φ = pλ(T) and p = p2

o Pϊι\φ

So Γ = Φp. We still need to show that Φ is discrete.
Case 1. Assume that Ψλ = ker/?2|Γ Φ e. Then Ψλ = Γ Π Φ is a discrete

normal subgroup of Φ. If Ψx is not solvable then Φ is discrete, cf. (3.2) part
(3). If Ψλ is solvable, it is « Z and Φ is solvable cf. (3.1) parts (5), (6). An easy
analysis shows that if Φ is not discrete then Φ contains a subgroup « Z2. But
then Γ « Φ would contain a subgroup ~ Z 2 contradicting (5.1).

Case 2. Assume that ker/?2)Γ = e. If Φ is nondiscrete but ρ(Φ) = /?2(Γ) is
discrete we can simply switch the factors. So assume, if possible, that both Φ
and p(Φ) are nondiscrete. If Γ « Z, let (x, y) be its generator. Since Φ and
p(Φ) are nondiscrete both x and y must be elliptic of infinite order. But then
Γ would not be discrete. So Γ * Z. Then Γ is nonsolvable, for otherwise Φ
would be a nondiscrete solvable subgroup of P1 and so Γ ~ Φ would contain a
subgroup « Z 2 contradicting (5.1). So Γ « Φ » p(Φ) are nonsolvable. Then Φ
and p(Φ) being nondiscrete would be dense in Pλ X e and e X P j resp., and
would contain elliptic elements of infinite order by (3.2) i.e. there exist (JC, υ),
(u, y) in Γ with u and v elliptic. Now x, y, must be nonelliptic, otherwise Γ
would not be discrete. Consider B = the closure of ((e, v), (w, e)). Since B is
compact TB is a proper family cf. [11, §1] and contains the subgroup
H = ((x,e), (e, y)). Moreover, since x, y are nonelliptic H is a closed subset
of TB and would act properly. But then H « Z 2 which again contradicts (5.1).

6. Solvable fundamental groups

(6.1). We shall use the notations introduced in (4.1).
Theorem. Let M be a Lorentz space-form with πλ(M) = Γ, which, realized

as a deck-transformation group is contained in /0(^oo) and solvable. Then Γ » Z,
Z 2 , or <nx {Klein bottle). Also, volume (M) is infinite, and, in particular, M is
not compact.
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Proof. Since f acts freely and properly discontinuously on S^ « R3 it is

torsion-free, discrete, and of cohomological dimension < 3. If Γ has finite

level then Γ = φ(Γ) acts properly discontinuously on Sv and so it is a discrete

solvable subgroup of /0(SΊ) = Pλ X Pv By (5.1), Γ does not contain a sub-

group « Z 2 . By using (3.1) part (5), then Γ « Z π , Z, Zn Θ Z, D^, or Zn Θ /)„

and Γ « Z, Z 2 , or πι (Klein bottle). So suppose that Γ has infinite level. Then

φ: Γ -> Γ is an isomorphism. If Γ is discrete (and torsion-free) one sees that

Γ « Γ « Z or Z 2 . So suppose Γ is not discrete. First we claim that Γ cannot

contain a subgroup » Z 3 . For otherwise, by the consideration of cohomologi-

cal dimension and passing to a subgroup of finite index we may take f « Z 3

and M is compact. By (4.2), Case 2 (iii), this happens only when Γ c 5 x C

« R2, so Γ c φ 1 ^ X C) « R2 X Z and f must be cocompact in φ~\B X C).

Since Γ acts properly so does φ~\B X C) cf. [11, §1]. But then φ~\B X C)/Z

= B X C would also act properly contradicting (5.1). Hence Γ does not

contain a subgroup » Z 3 .

Now we consider two cases.

Case 1. Assume Γ is abelian. Then from the above argument it follows that

any finitely generated subgroup of Γ is « Z or Z 2 . The part (2)(i)(ii) of (4.2)

lists these possibilities and again the consideration of possible centralizers of

elements in Pλ X Pλ and their inverse images in I^S^) shows that f must be

finitely generated and ~ Z or Z 2 .

Case 2. Assume Γ to be nonabelian. Then the beginning of the proof of

(4.2), Case 3 shows that Z(Γ) Φ e and in fact Γ cannot be solvable. This

contradiction finishes the proof.

(6.2) Remark. The Z's or Z 2 ' s acting properly discontinuously on S^ can

be easily classified from the above proof, cf. also (2.4). Notice that the only

subgroups « R2 of ^(S^) which act properly are up to conjugacy, contained

in Jo and are conjugate to A X K or N X K (cf. (3.3)).

7. Finiteness of level
(7.1). Throughout this section we use the notations of (4.1), namely, f is a

subgroup of I^S^l Z = Z(I0(SJ) = <*>, φ: I0(Sn) - I^SJ = Pλ X Pl9

the canonical projection and /?,: PλX Pλ^> Pl9 i = 1,2, the projections into

the first and second factor resp., φ ( f ) = Γ, pt(T) = Γf , Ψι = ker/?2 |Γ, Ψ2 =

ker/^Jp. Moreover as explained in (4.1), by passing to subgroups of finite

index, we may assume that for finitely generated Γ, all the groups f, Γ, Γf are

torsion-free and finitely generated. The Theorem (7.2) below shows that a

compact space-form has finite level, whereas (7.1) partially describes the
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structure of space-forms which are not necessarily of finite level.

Theorem. Let M = t\Sco be a space-form with Γ ~ πλ(M) finitely gener-

ated and contained in I^S^). Assume that Γ, Γ, Γ are torsion-free. Then one of

the following possibilities occur.

(1) M has finite level,

(2) Γ « Z or Z 2 ,

(3) There exists a subgroup Φ of Pλ and a representation p: Φ -> P1 such that,

up to switching of factors, and writing Φp = {(x, p(x))\x e Φ) we have either

(i) Γ = ( Φ , ^ 2 > ~ Φp X % w h e r e %~ Z and Φ ~ I\ is a discrete non-

abelian free subgroup of Px\ moreover Γ is not discrete iff Ψ2 is contained in a

subgroup conjugate to K, or

(ii) Γ = Φp; moreover if p is not an isomorphism then Φ is a discrete

nonabelian free subgroup of Pv

Proof. Suppose the possibilities (1) and (2) do not occur. So in particular

φ: Γ -^ Γ is an isomorphism. First consider the case when there exists

z ^ Z / ( S ) ( f ) — Z. (By (4.2), this is necessarily the case if Γ is not discrete.)

Let φ(z) = (x, y). We cannot have x Φ e Φ y, for otherwise Γ c

Zp XP((x,y)) would be abelian and hence ~ Z or Z 2 by (6.1). So, up to

switching of factors, assume that x = e Φ y. Then, Γ c Pλ X B where B =

ZPι(y) is a 1-parameter group.

Subcase a. Γ not discrete. Then by (4.2), Γ = (Φ ,Ψ 2 ) with Φ = a dis-

crete nonabelian free subgroup of P 1 ? and p: Φ -> B a suitable representation.

Also Γ2, and hence Ψ2, are finitely generated abelian groups. If Ψ2 contains a

subgroup » Z 2 , then f « Γ would contain a subgroup θ » Φ X Z 2 . The latter

has cohomological dimension 3 hence θ\SO0 would be compact. But then θ

would be a Poincare duality group, but Φ X Z 2 is not. Hence Ψ2 * Z.

Moreover, if B is conjugate to A or JV, clearly Γ would be discrete. Since we

are assuming Γ to be nondiscrete, B must be conjugate to K.

Subcase β. Γ discrete. So Ψv Ψ2

 a r e discrete. Also Γ2 is abelian, so Ψ2 ~ Z

and B is conjugate to A or N. If Ψλ is abelian it is clear that Γ would be

abelian, hence « Z or Z 2 by (6.1). So Ψλ is nonabelian, discrete and torsion

free, hence nonsolvable, and I\ which normalizes Ψ1 is a discrete subgroup of

Pl9 cf. (3.1), (3.2). Write Γx = Φ. Exactly as in the last part of (4.2) we see that

Γ = (Φ , Ψ 2 ) s φ x Ψ2 for a suitable representation p: Φ -> B. Moreover as

in (4.2) we see that Φ must be isomorphic to a nonabelian free group.

Now consider the case when no such element z exists. Then, since by

hypothesis f has infinite level, Γ « Γ has trivial center, and by (4.2), Γ is

necessarily discrete. We claim that px and p2 cannot both fail to be isomor-

phisms. For otherwise Ψx Φ e Φ %. If either of Ψλ or Ψ2 is abelian, clearly
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Z(Γ) Φ e. So Ψv Ψ2

 a r e both nonabelian and discrete, hence contain non-

abelian free subgroups consisting (necessarily) of nonelliptic elements. Then,

by (3.5), Γ Π φ~ι(Ψf), i = 1,2, each contains hyperbolic elements of exponen-

tial type. This is impossible by (6.2).

So one of pl9 p2, say pl9 is an isomorphism. Setting Φ = /?1(Γ) and

P = P2° P\l we have Γ = Φp. The last assertion of part (3)(ii) is clear by

previous arguments.

(7.1.1) Remark. By (7.1) and (5.2), and trivially if Γ « Z « Z, or Z 2 , we

see that we always have Γ = Φp or (Φ p , Ψ 2 ) . All these cases with Γ discrete but

not necessarily properly discontinuous do occur. An interesting example of this

type is Φ with Φ = a discrete subgroup of Pλ such that Φ « ττι (a closed

surface of genus > 2) and p: Φ -> Pλ faithful with discrete image. Then

φ" x(Φ p) = Φ x Z ! In fact, there is no known example of Γ = Φp acting

properly discontinuously on 5^ Φ a nonabelian free group, and image of p not

contained in a group conjugate to K.

(7.2) Theorem. Let M = Γ \ S^ be a compact space-form. Then M has finite

level.

Proof. Suppose not. By passing to a finite covering we may assume that Γ

is contained in I^S^). Then h = the generator of Z centralizes f and induces

a Lorentz isometry A of M. Let G be the full group of Lorentz isometries of

M. It is well known (cf. [29]) that G is a Lie group. First assume that (A) is not

a discrete subgroup of G. Let C be the identity component of its closure.

Clearly C has dimension ^ 1. Let C be the identity component of the group

induced by C on S^. Then C is contained in ZIQ{S ^Γ) , and we are in the

situation described at the beginning of the proof of (7.1). The possibilities (2)

and (3) there only involve groups of cohomological dimension < 2. But since

M is compact the cohomological dimension of f is 3. This contradiction shows

that M is of finite level—and so (A) is indeed finite.

Now we claim that (A) cannot be an infinite discrete subgroup of G. Indeed

A is a Lorentz isometry and so preserves the associated volume form. Since M

is compact, its volume is finite. So by the well-known recurrence theorem of

Poincare, cf. for example [24], almost all points are recurrent, i.e., for x, not in

a nowhere dense set of measure 0, Jιn(x) is close to x for infinitely many

integers n. Now if we coordinatize S^ as a product D X K where D is a lift of

the disk of a conjugacy class of elliptics in Pv then in these coordinates A acts

as a translation in the ΛΓ-factor. So in these coordinates A* = 1. In other

words, if Tιn(x) = y is close to x and T is the parallel translation along a

geodesic from x to y, then AJ is close to T*. SO, since M is compact, A" is

close to identity i.e. (A) cannot be discrete unless it is finite. This finishes the

proof.
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(7.3) Corollary. A compact Lorentz orbifold has a finite (orbifold) covering

which is homeomorphic to a circle bundle over a closed surface of genus > 2.

Proof. Let M be a compact Lorentz orbifold. It has a finite orbifold

covering Mx which is a compact Lorentz space-form with π^M^ ~ Γ c

Λ)(Soo)> s o t h a t b v ( 7 2 ) a n d ( 5 2 ) t h e image Γ of Γ in I^SJ is Φp for a

suitable discrete cocompact subgroup Φ of Pv By passing to another finite

covering if necessary we may assume that Φ is torsion free, hence » πλ (closed

surface of genus > 2). The result now follows by a well-known result of

Waldhausen, cf. [36].

(7.4) Remark. Let M = Γ \ Sx be a compact Lorentz space-form so Γ is

torsion free. Then, M is homeomorphic to a closed 3-manifold. If we moreover

assume that M is Haken in the sense of 3-dimensional topology, cf. [6], then

by [36] it follows that M itself is a Seifert fiber space and in fact, the

hypothesis that M is Haken may also be dropped by the recent result of Scott,

cf. [30]. This structure of a Seifert fiber space on M may be chosen so that the

Lorentz isometries which yield the covering Mx -> M are, up to an equivalence

of covering spaces, isomorphisms of a perhaps deformed Seifert structure on

Mv This last fact is not obvious and depends on some subtleties in the Seifert

construction in the framework of [3]. Moreover, if we do not assume f to be

torsion-free so that M = f \ Sx is only a Lorentz orbifold we may still

characterize the topology of M. By a recent unpublished result of Meeks and

Scott, cf. [17] such compact M is necessarily a Seifert orbifold (to be defined

more precisely in the next section). Unfortunately, all this uses recently

developed deep 3-dimensional topology and still does not relate the Lorentz

structure to the Seifert structure. In the standard Lorentz orbifolds, studied in

the next section the relationship between the Lorentz structure and a "natu-

rally preferred" Seifert structure is clear.

We note however that a structure of a Lorentz orbifold on a large class of

closed Seifert fiber spaces must be standard as the following result shows.

(7.5) Proposition. Let M = Γ \ S^ be a Lorentz orbifold such that Γ c

(Λ)(•$»)> 'u 0) and Γ = Φ(Γ) has a subgroup Γx c 70(S 1) of finite index with

nontriυial finite center. Then M is standard. In particular, if M is covered by

Mλ = a circle bundle over a closed orientable surface of genus g > 2 whose Euler

number b does not divide 2g — 2, then M is standard.

Proof. Indeed if z e Z(ΓX), z Φ e, then up to a suitable conjugation,

z E i ^ x A : and I\ c Px X K. So Γ is standard by (2.8). As for the latter

statement note that 7r(Mx) has a presentation:
8

= lai9bi9t PI (α/5 bj) = tb, t central \.
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Identifying π^M^ with a subgroup of IoiS^) we see that the image / of t in
IQ{SX) is of finite order by (7.2), and t Φ e since b \ 2g — 2. So Mx and hence
M are standard by (2.8).

In view of §8, [28] and §10, we note that // M is a nonhomogeneous compact
space-form with e(Mλ) Φ 0, then M must be standard.

(7.6) Remark. It is not difficult to see that (7.2) cannot be extended to
space-forms of finite volume.

8. Standard Lorentz orbifolds and Seifert orbifolds

(8.1). In this section we shall restrict to subgroups Jo and J of I^S^), cf.
(2.4) and (2.5). By a standard Lorentz orbifold we mean one whose group is
conjugate to a subgroup of J. Since / acts properly on S^, the standard
Lorentz orbifolds just correspond to discrete subgroups of /. We shall relate
the standard orbifolds to Seifert orbifolds which are constructed purely topo-
logically and which, for the purposes of this paper, are defined as follows. Let
M be a Seifert fiber space in the usual sense cf. [32], [20], or [7], cf. also [14] for
an elementary intuitive account. For simplicity, we restrict to the case when
πγ(M) is finitely generated. Let G be a finite group of fiber-preserving
homemorphisms of M, and G = the group of all lifts of elements of G to the
universal cover M. A space of the type H\M, or more precisely the triple
(M,H,H\M), where H is a subgroup of G will be called a Seifert orbifold.
Thus the fibers are homeomorphic to S1, or R, or a closed or half closed
interval. The orbit-space (obtained by identifying each fiber to a point) is a
2-manifold possibly with boundary. Moreover, exactly as in the usual case of
Seifert fiber spaces, if H does not contain Z or Z 2 as a subgroup of finite index
then the orbit-space admits a structure of a 2-dimensional spherical, Euclidean
or hyperbolic orbifold. This structure on the orbit-space is not necessarily
unique, but the type of the geometry is determined by H itself. The general
theory of Seifert orbifolds is contained in that of "Seifert construction" in [15],
which, to our knowledge appears for the first time in [3]. It would lead us too
far to explain this machinery and therefrom deduce our present case. We shall
need its full force in [13] when we consider Lorentz orbifolds and their
deformations of structure. Here, instead, we shall work more directly. This is
possible, and indeed, is of special interest, because of the more precise
knowledge in low dimensions.
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(8.2). We now explain how the difference between a Seifert fiberspace, and
a Seifert orbifold shows up in their associated groups. The fundamental group
of a closed Seifert fiber space of type (Oo) has a presentation, cf. [20],

τ r = l a i 9 b i 9 x j 9 t fl K-, ft/) fl Xj = central

where

(**) g.c.d.(α, ,j8,) =

The subgroup (/) is central and

(•••) π / ( t ) * Φ = ( a i 9 b i 9 x j

which is a well-known presentation of a planar discontinuous group. The
rational number

χ ( φ ) = 2 - 2 g - t ( l - ]-
7 = 1 \ J

is called the Euler characteristic of Φ. As is well known χ ( Φ ) > 0 , = 0 , < 0
according to whether Φ can be realized as a discrete group of isometries in the
2-dimensional spherical, Euclidean or hyperbolic geometry respectively. If
χ(Φ) < 0 then (t) « Z and (*) exhibits π as a central extension of Z by Φ
whose congruence class defines an element of H2(Φ; Z) cf. [16, Chapter 4].
Notice that if χ(Φ) < 0 then Z(ττ) = (t) and Φ is canonically associated with
7Γ. Now every central Z-extension of Φ clearly has a presentation of the type (*),

but (**) precisely picks up the torsion-free ones. The groups m defined by (*) with

χ ( Φ ) < 0 but not necessarily satisfying (**) are precisely the "fundamental

groups of closed Seifert orbifolds of type (Oo) with hyperbolic base ".

We should remark that when the fibers are all circles, the underlying
topological space of a Seifert orbifold is also a Seifert fiber space. But the
"branching", which is reflected in the torsion in the group, is an extra
invariant of the structure.

Similarly

k

Uaj = {- = tX:, aΛ = Γ
7 = 1
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are the groups of closed Seifert orbifolds of type (On)

I g u v

(*)o ^ = ( 0, > bi9 X; yk9 t Π (ai> bi) Π ^ Π Λ = /

\ 1 - 1 7 = 1 k=l

( * ) ό w = = (ti'Xj'yk'

r central \

x°J = Ά ykt = tyk, a,t = raΛ

with υ > 0 are the groups of nonclosed Seifert orbifolds of type (Oo) and (On)
resp., with all fibers « Sι where throughout we are restricting to finitely
generated ones. If a Seifert orbifold is obtained from a Seifert fiber space by
factoring out by a finite group containing a reflection, i.e., an orientation
preserving involution which is orientation reversing on the base and the fiber,
and having a fixed point on the base, then the base of the orbifold is a
2-manifold with boundary, and the fibers over the boundary are closed
intervals. The groups of such orbifolds, if infinite, are again extensions of Z by
crystallographic groups in the plane Euclidean or hyperbolic geometry. The
presentations of these groups are complicated cf. [39, p. 119], but actually
straightforward once one notes that the topology of the base, and the branch-
ing data, uniquely determine these Seifert orbifolds.

Since J is orientation-preserving on S^, the standard Lorentz orbifolds are
orientable, so we shall not discuss nonorientable Seifert orbifolds and their
groups.

(8.3). Now we describe the structure of discrete subgroups of Jo and /. We
use the notations of §4. Notice that φ(J0) = PλX K and φ(J) = (PXX K)

Proposition. Let Γ be a finitely generated discrete subgroup ofJ0 such that Γ,

Γ, Γ1? Γ2 are all torsion free. Then either

(1) Γ = Φp where Φ is a discrete subgroup of Pλ and p: Φ —» K a representa-

tion or

(2) Γ is abelian but not discrete with the following possibilities'.

(i) Γ = ((x, y)) x, y both elliptic and one of them is of infinite order;

(ii) Γ « Z 2 contained in B X e where B is conjugate to A or N, or else

contained in B X K where B is conjugate to A or N; or

(3) Γ = (Φ p,Ψ 2> » Φ X Ψ 2 where Φ is a discrete nonabelian free subgroup of

Pλ, p: Φ -> K a representation, and Ψ2

 = (y) with y elliptic of infinite order.
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Moreover, if Γ has finite level then (1) occurs, and if Γ is cocompact then (1)

occurs with Φ « πλ {a closed surface of genus > 2).

Proof. Use (4.2), (5.2), and (7.2). Actually if f is cocompact (and con-
tained in /0) then (7.1) also suffices to ensure that it has finite level.

(8.3.1) Remark. Let f be an arbitrary finitely generated subgroup of /.
Then f contains a normal subgroup Γ' of finite index which has the structure
described in (8.3). From this, actually, the structure of f itself can be
described completely. For instance if Γ has level 1 then Γo = Γ Π φ( Jo) has
the form (Φ ,Ψ2) where Φ is a discrete subgroup of ? l 5 p: Φ -» K a
representation, and % a finite subgroup of e X K. If Γo Φ Γ then Γ = (Γo, γ)
where γ e Pλ x (iu ) which normalizes Γo. A detailed description of Γ's with
higher level can be based on [28, Theorem 1]. Finally, notice that in all cases of
f, Pi ° Φ(Γ) is discrete, except when f ~ Z as in (2)(i) with x of infinite order
or Γ' « Z 2 with Γ' contained in B X e with B conjugate to A or N. In any case
Γ is isomorphic to a group of a Seifert orbifold with hyperbolic base. This may be
more apparent to the reader if one recalls that f ΠR will be discrete and that
Γ/Γ ΠR = Φ = (/?1oφ)(Γ). The Seifert orbifold structure on t\S<Λ now
descends from the normal R subgroup of / and actually factors through
(f/( f Π R ) ) \ S M .

(8.4). To describe precisely the relationship between standard Lorentz
orbifolds and Seifert orbifolds we need the notion of the "Euler number of a
Seifert orbifold". For Seifert fiber spaces this notion was defined in [23]. The
notion is significant for closed Seifert orbifolds of type (Oo) and (On). For an
orbifold M of this type with the corresponding group as in (*) or (*)' in (8.2)
set

(8.4.1) e(M) = e(π) =-Ib + tβj/«X

If m contains reflections, let π0 be the subgroup of π of index 2 which
centralizes (/>. Then set e(π) = i^(ττ0). The significance of the notion is that
it depends only on the congruence class in if 2(Φ;Z) 3 represented by π and
not on the specific presentation given in (*) or (*)'. If there is no "branching"
i.e. no Xj's or (αy, βj)9s, the Seifert orbifold is a circle bundle over a closed
surface, and e(π) = -b which is just the Euler- or Chern-number of this circle
bundle. If TΓ' is a subgroup of finite index in 7r, mf Π (/) = (/m>, and the
image of TΓ' in Φ has index n in Φ, then e(π') = ne(iτ)/m. The proof of this
fact is similar to the one in [23] for the case of Seifert fiber spaces. If M is
nonclosed then set e(M) = e(π) = 0.

3 Note that Z is a nontήυial Φ-module iff Φ contains reflections or glide reflections.
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(8.5) Theorem, (a) (Structure). Let M = T\So0 be a standard Lorentz

orbifold then M is an orientable Seifert orbifold with hyperbolic base. Moreover,

if M is closed then e(M) Φ 0. Conversely,

(b) (Realization). Let M be an orientable Seifert orbifold with all fibers ~ S 1, 4

and hyperbolic base.4 Moreover, if M is closed assume that its Euler number

is Φ 0. Then M admits a structure of a standard Lorentz orbifold.

Proof, (a) First notice that by (8.3.1), Γ is a Seifert orbifold group with

hyperbolic base Φ = / ? 1 ° φ ( Γ ) , soe(Γ) makes sense. The orbits of e X K in Jo

on S^ project down on M and give it a structure of a Seifert orbifold. Now

suppose that M is closed. Using the multiplicative properties of e(M) noted in

(8.4), and passing to a finite cover if necessary, we may assume that Γ satisfies

the hypotheses of (8.3). So Φ ~ mγ (closed surface of genus g > 2). Then the

calculation similar to the one at the end of (4.2) shows that e(T) is a nonzero

rational multiple of 2g — 2 Φ 0. This proves (a).

(b) First consider the case when M is closed with π as in (*), cf. (8.2). We

first realize TΓ as a discrete subgroup of Jo. Note that χ(Φ) < 0, and by

assumption e(π) Φ 0. So p = e(π)/χ(Φ) Φ 0. First realize Φ as in (***), cf.

(8.2) as a discrete subgroup in Pv Then it is possible to choose the generators

άi9 Ί>i9 Xj of Φ and their lifts ai9 />,, Xj to P^ so that xp = t and Yl(ai9 b^Ylxj

= t2g~2+u, cf. [28, Theorem 1]. Geometrically, x acting on the hyperbolic

plane has a fixed point, and is a rotation through 2π/ccj around the fixed

point. Now let

, - ! + !£
1 «, p«,

and set (in the notation of §2)

Then

= [{e,tι/oβή] =
and similarly

TKtjflj
/-i 7=1

One easily checks, starting from the fact that Φ is a discrete subgroup of Pv

that { At, Bt, Xj, T} define a discrete faithful representation of TΓ in Jo.

4 These hypotheses are made for simplicity only. In the next section we deal with the general

case.
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Realizing π in / in the case of (*)'cf. (8.2) is similar. Here we have

/ _ *
Φ = ( β, , Xj Π fl,2Π Xj = e--

and χ ( Φ ) = 2 - k + Σ7

M

= 1(1 - 1/«_,-). Set p = e(τr)/χ(Φ), realize Φ as a

discrete subgroup in Px X (* M o ), and proceed exactly as before.

Realizing TΓ in the class (*)0 and (*)ό in J is analogous, and simpler—take

p to be any nonzero number, e.g. 1, and proceed as before.

Let TΓ \ S^ = N. We still have to ensure that N ~ M as Seifert orbifolds. To

start with, TV does have a structure of a Seifert orbifold where the fibers are the

projections of the orbits of e X K in Jo on S^. First we must check the Seifert

invariants of the singular fibers. Let C be a singular fiber, and C its lift in S^.

For computational purposes identify S^ with P^ so that e is on C, and its

projection in the hyperbolic plane is fixed by Xj. Hence C = e X K, and it is

left invariant by X . Parametrize K by R ^ y -> ty/p. By construction we have

X: = t1/aJ, and so

χ.hy/p\ = /!/«/•+.V/P-0 = f(y-βj/aj)/p

In other words, the action of Xj on C is, in terms of the parameter y, y -> ̂  -

βj/oίj. This precisely means that the singular fiber C has Seifert invariants

(cίj/βj). Topologically, what has happened in passing from the inverse image

7r0 of Φ in P^ to 77 in / is that, π \ S^ is obtained from 7r0 \ S^ by replacing

a fibered solid torus with invariants (α y ,-1) by a fibered solid torus with

invariants (α 7, βj). When JV is nonclosed we have to be careful in choosing Φ

in the first place, so that the genus of the orbitspace of ττ0 \ S^ is the same as

that of the orbit-space of M. With this data in hand one can construct a

fiber-preserving homeomorphism of N onto M as in the original argument of

Seifert, cf. [32] in the case of Seifert fiber spaces.

(8.6). Finally we note the following interesting relationship between the

topology and geometry of a closed standard Lorentz orbifold.

Theorem. The Lorentz volume of a closed standard Lorentz orbifold is an

invariant of the underlying Seifert orbifold structure. This volume is a rational

multiple of ATT2.

Proof. Given a closed standard orbifold M with π as in (*) or (*'), the

rational number v(M) = (χ(Φ))2/\e(π)\ is certainly an invariant of the

Seifert orbifold structure. Let m' be a subgroup of finite index in 7r and let Φ r

be its image in Φ. If the index of Φ r in Φ is n and TΓ' Π (t) = (tm) it is clear

that the index of m' in TΓ is mn. Let Mf be the branched cover of M

corresponding to TΓ'. From the multiplicative properties χ(Φ') = nχ(Φ) and
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e(π') = ne(π)/m it follows that υ(M') = mnv(M). Now if M is the unit

tangent circle bundle of a surface of genus g > 2 its Lorentz volume is easily

computed to be 4ττ2(2g - 2) = 4 π 2 | χ ( Φ ) | = 4 π 2 χ ( Φ ) 2 / k O ) l since in this

case e(π) = - χ ( Φ ) . Since in passing to a branched cover the volume gets

multiplied by the degree, it follows that the Lorentz volume of a closed

standard Lorentz orbifold is 4π2v(M). This finishes the proof.

(8.6.1) Remark. By contrast, one should note that the volume of a non-

closed standard Lorentz orbifold, even among those with finite volumes, is not

an invariant of the orbifold structure.

9. Topology of standard Lorentz orbifolds

(9.1). The quotients of 3-manifolds by orientation-preserving properly

discontinuous groups are again manifolds. So the standard Lorentz orbifolds

are topologically again manifolds. We shall now identify their topological types

thus complementing (8.5), (8.6), and completing the proof of the theorem on

standard orbifolds stated in the introduction. For brevity, we formulate the

theorem in the closed case, but during the course of the proof we shall make

some comments on the nonclosed cases. Recall that a reflection in / is an

involution reversing space- and time-orientations, whereas a reflection on a

2-manifold is an orientation-reversing involution which has a 1-dimensional

fixed point set.

Theorem. Let M = T\SO0 be a closed standard orbifold. (i) // f does not

contain reflections then M is a closed orientable Seifert fiber space with nonzero

Euler number. Conversely a closed orientable Seifert fiber space with nonzero

Euler number admits the structure of a standard Lorentz orbifold of the type

T\Sao with Γ containing no relfections. (ii) If f contains reflections then M is

homeomorphic to a connected sum of lens spaces {including S2 X Sι and S3).

Conversely every such connected sum admits the structure of a Lorentz orbifold of

the type T\SO0 with Γ containing reflections.

Proof, (i) Suppose that f contains no reflections. We have already seen that

Γ \ S^ = M is a Seifert orbifold whose Seifert structure descends from the

R-action on S^, R c / 0, to yield closed time-like geodesies on M. The fibers

are all circles if f contains no reflections. As such, the map which collapses

each fiber to a point M -> Φ \ H, Φ = Γ/(Γ Π R) is a Seifert fibering over a

hyperbolic base in its own right. If we let N denote M as a Seifert fiber space

we may determine easily the Seifert invariants of N from Γ. If a "singular"

fiber of the orbifold M has Seifert invariants (a,-, j8, ) then this fiber, inter-

preted in TV, will have Seifert invariant (αj, βj) where we have divided aj9 and
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βj by the g.c.d.(αy, βj). In this way it is possible for a "singular" fiber of M to
become an ordinary fiber of N. The "ft" invariant associated with M, if it is
relevant, will ordinarily be different from that of N. However still e(t) = e(N).
In particular e(N) Φ 0.

It remains to check, for this situation, that every Seifert fiber space N also
has the structure of a standard Lorentz orbifold provided that N is of type
(Oo) or (On) and e(N) Φ 0, if N is closed. We will achieve this by direct
construction.

Recall the presentation of the fundamental groups of the Seifert fiber spaces
of types (Oo) and (On) as given in 8.2. Since all N 's can be realized as Lorentz
space-forms by the construction in 8.5 if υ Φ 0, we need only concern
ourselves about the closed case. We shall begin with a presentation of iTι(N)
and add carefully generators and relators and alter the long relation of πx(N)
to produce a new group f c /, even when π^N) itself may not be realizable
in /, provided that e(N) Φ 0. We shall then observe that M = T\SO0 is
homeomorphic to N and the resulting Seifert invariants on M are equivalent to
those for N. Thus, the Seifert structure on M descending from the R-action on
5^, via the branched covering map S^ -> T\Soo9 is equivalent to the pre-
scribed Seifert structure on N.

There are many ways to construct different f 's. Here is one method. We
begin with a presentation for π = πx(N) using (*) or (*)'. To ensure that f
will embed in / we add 3 generators to TΓ'S presentation, zι,z2,z3 and the
following relations z\x = /~Yl, z\2 = r Y 2 , zj3 = t~Ί\ where \/yλ 4- l/γ 2 +
l/γ 3 < 1, γ, > 1, and t is to commute with the z/s. We also want to alter the
long relation to

/ = 1 7 = 1 / = 1 7 = 1

Now the resulting group, f, consists of the generators of IT together with the zi

and the added relations and altered long relation. Clearly, it is embeddable in
/, provided e(T) Φ 0, since (Γ)/(ί> = Φ(Γ) is now embeddable in PSL2(2, R)
X Z 2 as a cocompact discrete group. We have constructed f so that e(T) =
e(π) = e(N). In f take the normal subgroup ((zv z2,z3)) generated by
{ zv z2, z3} and form the quotient T/((zl9 z2, z3>). We obtain the group π. In
fact, dividing out by ((z1 ? z2, z3>> induces dividing out on Φ(f) by the normal
subgroup generated by the torsion elements {zl9 z2, z3} to yield Φ(τ7). (one
may even check, when relevant, that the homomorphism Φ(Γ)-»Φ(π) in-
duced from f -> 7r induces the cohomology homomorphism i/2(Φ(τr);Z)->
H2(Φ(Γ); Z) which carries the extension class for m onto that for f.) Conse-
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quently, T\SO0 which will have a Seifert orbifold structure descending from
R e / has Seifert invariants exactly equivalent to those of N. (Recall that the
Seifert invariants corresponding to the zt are (γf , γ;) which is equivalent to
(1,1) and will be regarded as an ordinary fiber on N.) Since e(T) = e(π) Φ 0,
we have shown that N also possesses an orbifold structure compatible with its
Seifert structure.

(ii) Suppose that f contains reflections. Then, Φ also contains reflections.
Let Φ' c Φ be a normal subgroup of index 2, which preserves orientation on
H and f' = <ρr\φ'). Then M =t\SO0 is just the quotient of Γ' \ S^ by the
action of Γ/Γ' = Z 2 which is normalizing, and not centralizing, the induced
51-action on the Seifert orbifold Mf = Y'\S^. Now the involution on Mr

must map S ̂ orbits to S ̂ orbits of the same type. Moreover, Φ/Φ', induces on
the orbit space Φ ' \ i / , a reflection across a 1-manifold. This means that the
orbits in M' above this 1-manifold are left invariant and the Z2-action is just
θ -> -θ on each of these orbits. Thus each such orbit in Mf is collapsed to an
arc in M.

Suppose this 1-manifold separates Φ'\H into 2-components. Then Φ\H
has a section 5f into Φ'\H. Therefore, we may now construct M as follows.
Over y in M' we have an oriented S^-space M'(Sf) with invariant
"boundary" components. M is obtained from M\y) by identifying each
S^-orbit of the "boundary" of M ' ( ^ ) to its orbit under the Z2-action. Now
we still have an S^action on M minus the collection of arcs. The S^action
will extend if we collapse each arc to a point. We show, in the first picture
below, the collection of fibers in M over a short interval in Sf which emanates
transversally from the Z2-image of a nonsingular S^-orbit in the boundary of
y . The second picture (see Figure 2) show the result of collapsing the arc fiber
over the initial point of this interval to a point.

FIGURE 2

Obviously, the topological type of M is unchanged. But now M possesses a
global S^-action with fixed points. Such manifolds are built up as equivariant
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connected sums and are well understood, c.f. Theorems 2 and 4 of [27]. In the
closed case M is homeomorphic to an equivariant connected sum of lens
spaces which include the possibility of S2 X S1 and the 3-sphere. In fact, we
are exactly in the case (i) of Theorem 1 with t = 0 of [21] or [20, p. 20]. In the
open finitely generated case M is the equivariant connected sum of the above
together with the other basic open building blocks of S ̂ actions with fixed
points, R2 X Sι and R2 X R1.

To handle the case where the Z2-action is across a 1-manifold which fails to
separate we just observe that our analysis really was entirely local. The
1-manifold, of course locally separates, and so a neighborhood has a section
and the argument just given above applies. However, there is one feature that
does not appear in the global separating case. Namely, the involution on the
complement will be orientation reversing and so the orbit space Φ\H will be
nonorientable. Moreover, over each orientation reversing curve, (containing no
singular fibers), in the base we shall find in M a one-sided Klein bottle. In the
closed case the equivariant connected sum is still a connected sum of lens
spaces including S2 X S1 and S 3 (Theorem 1, case (iv), with t = 0 of [21]).
Also, the open case is unchanged from the previous discussion.

It remains to check that all possibilities can be realized. As in the case of f
without reflections the realization can be done in many different ways. A
reader familiar with the proof of Theorem 2 of [26] can easily construct such
realizations.

First, we need the following fact. If M' is a Seifert 3-manifold of type (Oo)
then one can always find orientation preserving involutions on M' which
extends the S^action to an O(2)-action. To realize such an action, select an
orientation reversing involution of the base which reflects, at least locally,
across a 1-manifold. We arrange, by an isotopy, for all the singular orbits to lie
above this 1-manifold in a specified order. Choose a section for the S ̂ action
away from invariant tubular neighborhoods of the singular orbits and, using
the involution on the base, define the obvious orientation preserving involution
which reflects the orientation of each S^-orbit. Now the equivariant gluing
map that attaches each fibered solid torus to the boundary tori commutes with
this Z 2 action which is generated by ("J _?) on the boundary tori. The Z 2

action now extends over the solid fibered tori and together yields an 0(2)-
action on M'. All of the Z 2 orbits are free except for the two fixed points of
each of the circles above the reflecting (or local reflecting) 1-manifold in the
base. Thus, o n M = M'/Z 2 we obtain an S ̂ action or local S ̂ action away
from the arcs over the reflecting 1-manifold. Again we may collapse the arcs to
points as in the description above and extend the action or local action so that
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these points are fixed. The homeomorphism type of the orbifold M is
unchanged. It is homeomorphic to S3 connected sum with 2g + h — 1 copies
of S2 X S1, resp. k + h - 1 copies of S2 X S1, where g resp. k is the genus of
the Z 2 orbit space of the base if it is orientable, resp. nonorientable, and h is
the number of connected components of the reflecting 1-manifold.

To obtain any number of specific lens spaces in this connected sum we alter
the procedure slightly and arrange that some of the singular orbits of the same
types in pairs be reflected to one another by the involution cf. [21]. In this way
the S1 or local S^-action on M has any number of components of fixed points
and any number of specified singular orbits. Thus all the possibilities men-
tioned above have been constructed and exhibited as Seifert orbifolds. We
realize M as a standard Lorentz orbifold by embedding f' = πλ(M') into Jo as
in 8.5. Choose generators suitably so that the corresponding Fuchsian group Φ'
is normalized by an appropriate reflection. There, f' will be normalized by a
reflection in J and Γ = (Γ', this reflection) with M =T\SQ0.

(9.2) Remarks, (i) The collapsing of the arcs to points yielded a new
manifold M homeomorphic to M. On M we could extend a local S ̂ action so
that we were able to use the classification of S ̂ manifolds to identify M
topologically. On the other hand, we should not lose sight of the Lorentz
structure on M. The R-orbits on S^ descend to time-like geodesies on M.
These are all closed and simple except for the arcs. The travel along the
exceptional descended lines is just back and forth across the arcs.

(ii) The closed Seifert 3-manifolds of types (Oo) or (On) which do not
appear as standard Lorentz space-forms are:

(a) All M's so that πλ(M) is finite;
(b) All other M's so that π^M)/(normal Z) is Euclidean crystallographic.

(That is, the quotient Φ contains Z X Z as a normal subgroup of finite index).
(c) All M's so that e(M) = 0. (The condition e(M) = 0 is equivalent to the

existence of a global slice to the induced S^-action, or equivalently, the element
of H2(Φ,Z) representing the extension of π^M) is of finite order, or equiva-
lently, rank H^M, Z) is odd.)

The manifolds in (a) and (b) (with e(M) Φ 0) can appear as Lorentz
orbifolds but those in (c) cannot, except for S2 X Sι and RP3#RP3 for a
rather perverse reason!

(iii) A complete description of all orbifolds for the remaining classical
Seifert manifolds, including those with boundary, can be based on the methods
of the section above.

(9.3). We close this section with some examples and illustrations.
(i) Let M' be an orientable Seifert manifold with base homeomorphic to S2.

After arranging the singular orbits to lie over the equator define, as in (9.2), an
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orientation and fiber preserving involution on M' which on the base S2

reflects across its equator. The quotient M = M'/Z 2 , as we have seen, must be
S3. The map M' -> M is a doubly branched covering and the branching is
over a knot or link in S3. This knot or link is precisely the image of the set of
fixed points of our involution on M'. Each orbit in M' over the equator
contributes exactly 2 branch points. These knots and links are known as
rational tangles and have been studied by numerous people. In particular, each
closed Seifert manifold which is a Z2-homology sphere gives rise in this
manner to a knot in S3.

Any finite group of automorphisms of the Seifert structure of an integral
homology sphere, or more generally of a Lorentz space-form over S2 with all
singular orbit types distinct, must leave invariant the singular orbits. Hence, it
can be seen that it must be isomorphic to a subgroup of 0(2) described above.
Thus, a finite subgroup is at most dihedral with a cyclic normal part imbedded
in the Sι action and the quotient Z 2 inducing a reflection across a separating
circle in the base. Consequently, the orbifold structure is easily calculated.

(ii) We have described a couple of techniques among many available for
obtaining certain Seifert fiber spaces as Lorentz orbifolds. The nilmanifolds
which are principal circle bundles with e(M) Φ 0 are Lorentz orbifolds
but not Lorentz space-forms (because of 9.2(ii)(b)). If we choose Φ =
{a, b, x\aba~ιb~ιx = 1, xa = 1}, a > 1, we get a cocompact discrete group of
Pλ for which Φ \ H is a 2-torus with one branch point of index a. The central
extensions of Z by Φ can be presented as f = [a, b, x, t\aba~ιb~ιx = th,
xatβ = 1, t central), and correspond to the elements of H2(Φ; Z) = Z. As long
as (α,/?) = 1, Γ is a Lorentz space-form. If (β,a)Φ 1, then the Lorentz
structure has singularities and we have an orbifold structure but not a
space-form structure. For example, if we choose b = 0, and β = ka, k Φ 0,
f c / 0 by the construction of (8.5) and f \ S^ is homeomorphic to the
nilmanifold with Euler number = -k. These orbifolds correspond to αZ c Z
= H2(Φ; Z). Another procedure for producing nilmanifolds as Lorentz orbi-
folds is to take f\SO0 = M/ where β = ka + 1, b arbitrary, k arbitrary, and
divide out the Za action contained in the S^-action on M'. This action is not
free it is α-branched over the singular orbit. The singular orbit in M' projects
to an ordinary orbit in M = Za\M' and yields a Lorentz orbifold homeo-
morphic to a nilmanifold with e(M) = -(a(k + b) 4- 1).

(iii) In the open case (or, if one prefers, the almost identical compact case
with boundary) a Seifert manifold over hyperbolic base also admits different
and interesting geometric structures of a Riemannian manifold of nonpositive
curvature. This arises from embedding the group f in (Pλ X Z2) X (R1 XI Z2)
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as a discrete subgroup, f also embeds as a discrete subgroup of / to yield a
Lorentz space-form.

The (/?, q) torus knot space is the complement in S3 of a (/?, q) torus knot.
It admits a natural Siefert and hence Lorentz structure over a hyperbolic
base. The base is a once punctured sphere with 2 branch points of branching
index p and q. Only the (3,2) torus knot is a homeogeneous space
(PSL(2,Z)\PSL(2,R)), cf. [28]. The other groups need to be embedded in Jo.
The only finite groups of Seifert automorphisms are again subgroups of 0(2)
with the cyclic normal subgroups embedded in the S^action. The resulting
orbifolds will be open solid tori, other S ̂ manifolds over the open disk with 2
or fewer branch points, and R3.

10. Homogeneous space-forms

(10.1). A space-form M = T\SO0 is said to be homogeneous if the full
group G of Lorentz isometries of M is transitive on M. Then G = the
subgroup of /(SQQ) which consists of all lifts of elements of G is clearly
transitive on S^ and G normalizes f. Conversely, if G is transitive on S^, Af
is homogeneous. If M is homogeneous, clearly Go is still transitive on S^ and
centralizes Γ. J. Wolf, cf. [37], [38] listed certain families of homogeneous
pseudo-Riemannian space-forms of constant curvature Φ 0. It was pointed out
in [10] that this list is not complete, in fact, the family described below does
not appear there. However [10] described fundamental groups of homogeneous
forms only in a general way. In the present case of 3-dimensional Lorentz
space-forms one can actually classify the homogeneous ones. These include
some interesting families which have appeared in quite different contexts. The
classification actually is quite easy in the present setting. We return back to the
notations of §4. Notice that there are canonical embeddings x -> a [(JC, e)] and
x -> β [(e, x)] of P^ into /(S^). These are conjugate in /(S^)—although not
so in / o ί ^ ) .

Theorem. Let M = T\SO0 be an orbifold. Then M is homogeneous iff f is
conjugate to a subgroup of (^(P^). Moreover, M is necessarily a space-form.

Proof. If Γ, modulo conjugacy, is contained in a{P^), clearly Z f(S }(Γ) D
β(^oo) which is transitive on S^. Hence M is homogeneous. Conversely
suppose M is homogeneous, and let C = Zr(S } (f) . If Co is I0(Soo) then
Γ c Z c α(JPoo). So assume Co Φ /0(^oo) Now assume that f is contained in
Λ)(SΌo) If f, modulo conjugacy, is in a(Px) we are done. If otherwise, there
would exist ( X , J / ) E Γ with x and y not central elements of P^. Since Co c
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Zί(Sχ)(x,y) one sees that Co cannot be transitive on S^ because of dimen-

sional considerations. Therefore f must be, modulo conjugacy, in aiP^). Since

P^ is torsion free so is f. Hence M is necessarily a space-form.

In general, Γ contains a normal subgroup, f ' = Γ Π /0(SΌo), of index at

most 4. C 0 (Γ) c C 0 ( f ' ) and so Γ' c α ^ ) . On the other hand, a straight

forward computational check shows that f = Γ'.

(10.1.1) Remark. Thus the homogeneous space-forms are in 1-1 correspon-

dence with the conjugacy classes of discrete subgroups of P^. The algebraic

structure of the cocompact discrete subgroups of P^ is described in [28,

Theorem 1], and this description contains classification of the topological types

of closed homogeneous space-forms.

11. A strange space-form

(11.1). In this section we shall describe one curious phenomenon which

would never occur in any "Riemannian" space-form problem. Usually, often

without explicit mention, one restricts to Hausdorff spaces, and indeed the

"space-forms" a la Helmholtz-Klein-Killing-Clifford... associated to standard

spaces with Riemannian geometry are Hausdorff. But in as much as a

"space-form" means "a space with the same local geometry as some standard

model space such that the development map of its universal cover onto the

model space is a covering map", cf. [9], or [3, Chapter 3] this only ensures that

the space-form is locally Hausdorff and need not be so globally. Previously this

phenomenon occurred in the famous Brouwer's translation theorem, cf. [1].

Here we show that this can already occur in the rigid structure of Lorentz

space-forms.

A topological group G is said to act locally properly on a locally compact

Hausdorff space X if for every x G l there exists a neighborhood U s.t.

( g G G\gU Π U Φ 0 } is relatively compact in G. If, moreover G is discrete,

the action is said to be locally properly discontinuous.5

We shall prove the

Assertion. There exists f « Z 3 contained in I^S^) which acts locally

properly discontinuously on S^. The resulting quotient M=t\SO0 is an

aspherical, noncompact, non-Hausdorff manifold with πλ(M) ~ Γ ~ Z 3 . It

5 As pointed out in [11, §1], the notion "properly discontinuous" is sometimes confused with
that of "locally properly discontinuous" in the literature. The words "wandering" or simply
"discontinuous" are also sometimes used for the latter notion.
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has the weak homotopy type of a 3-torus but does not have a homotopy type
of any CW-complex. Topologically, it is a 2-torus bundle over a basic example
of a non-Hausdorff 1-manifold, namely, the line with a double point.

We shall call this M a strange space-form. Geometrically it also happens to
be a circle bundle over a "strange" 2-dimensional Lorentz space-form of
constant curvature 1 and irλ » Z 2 .

Here is the construction: In the notation of §2 consider G = AxNQPλX
Px = / 0 (SΊ) acting on Sv Then G « R2 acts locally properly, and any discrete
subgroup Γ « Z 2 of G acts locally properly discontinuously. Take M = T\SX

where Γ consists of Z-actor in each A and N.
Proof (sketch). Let

a =

We have

\λx λ(-rx+y) ]-

[λ xz λ (-rz + w)J

The action is clearly free since JC, Z are not simultaneously zero. Moreover, if p
and

is close to

[z' W

are close, and (a,n)p and p' are close then

\x - xr λ(-rx+y)-y'

\-ιz- zf \-\-rz + w)- w'

One sees easily that (a, n) must be close to identity.
By contrast, recall that G does not act properly, cf. (5.1).
To understand the topology of M consider Pλ/N as the space of horocycles

in the unit disk model D of the hyperbolic plane. Then Px/N « Sι X (0,1)
where θ e Sι denotes the point of tangency of the horocycle at dD and
r G (0,1) is the Euclidean radius of the horocycle. Notice that A has two fixed
points, which we call 0 and oo, on dD outside of which A acts freely. The
induced action of a E. A on Px/N « S1 X (0,1), in the 51-factor is the same
as that on 3D, and on the second factor it amounts to taking the pencil of
horocycles tangent at p e dD to that tangent at a - p. This gives a free
A -action on Px/N and exhibits Pλ/N as a principle R+-bundle on 1 =
A \ Pι/N. (Here R+ is the multiplicative group of positive reals.) The segments
0 X (0,1) and oo X (0,1) project onto two distinct distinguished points, say 0
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and oo resp., in X. On the complement of either of the segments 0 X (0,1) or
oo X (0,1) in Px/N the A -action is proper, and so X — (j or X - oo is « an
open interval. But a neighborhood of 0 is obtained from a neighborhood of oo,
by deleting όo, and inserting 0. In other words X is homeomorphic to the line
with a double point.

Notice that irY{X) « Z but any map of X into a CW-complex is homotopic
to a constant. So X has a weak homotopy type of a circle but does not have a
homotopy type of any CW-complex,

All the statements about M in the assertion are now clear.
Note that A \ Px is a model space for 2-dimensional Lorentz geometry of

constant curvature 1. So A\Pλ/Z is a "strange" 2-dimensional Lorentz
space-form and, M may be regarded as a circle bundle over this one.

(11.1.1) Remark. The first integral Cech cohomology groups of X and M
are a bit weird. They are H\X, Z) = 0, Hι(M; Z) « Z 2. Also Px/N regarded
as a R+-bundle over X is not trivial, but is trivialized on U = X — {0} and
V = X — {oό} The covering {I/, F}, however, is not "numerable" in the sense
of Dold, cf. [4].
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