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HARMONIC MAPS TO SPHERES

BRUCE SOLOMON

0. Introduction

Let Mk be an open Riemannian manifold. Let S" c RM+1 be the familiar
unit sphere. Here k and n are unrestricted positive integers, and for the rest of
this paper, Σ = Σ " " 2 c S " will denote an arbitrarily chosen, totally geodesic
subsphere of codimension two. Our principal objects of study will be harmonic
maps of the form F: M -> Sπ, which avoid Σ. We have discovered that such
maps possess special properties.

For example (leaving definitions momentarily aside), if M is compact,
F(M)nΣ = 0 , and F is null-homotopic as a map to Sn ~ Σ, then F is
constant (Theorem 1). When F is energy-minimizing, and bounded away from
Σ (M typically noncompact), we obtain regularity and Liouville theorems.
Namely, F is everywhere smooth (Theorem 2), and if M = R*, n > 1, actually
constant (Theorem 4). Note these last two results are false without the
boundedness assumption; e.g., the radial projection R"+1 -> S" minimizes
energy whenever n > 6 (and possibly even when n > 2) [8].

Our paper concludes with an appendix, containing a theorem on nodal
(zero) sets of eigenfunctions on a compact Riemannian manifold. We include it
here because it leads to an alternate proof of Theorem 1, and thereby casts a
different, more geometric light on our results.

Let us make some of our terminology more precise. For further details, and
usage not covered here, we recommend that the reader consult [3] or [7].

Consider a smooth map F: Mk -> Nn between Riemannian manifolds,
which has square summable first derivatives; that is, F e L\λoc(M, N). Associ-
ated to F, there is a function on M known as the energy density, and denoted
here by |2λF|2. It is defined, at any point x e M b y the formula

\DF\2=Σ(DF(e,),DF(ei))N,
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where DF is the usual differential of F, ev- -,ek is an orthonormal basis for

TXM, and ( , ) ^ is the metric on N. Integrating the energy density against the

volume form dυM on a compact subset K c M, we obtain a functional known

as the energy integral:

= ί \DF\2dυM.
Jκ

The map F will be termed harmonic if for every compact K c M, it is a smooth

critical point for E^, in the sense of the classical calculus of variations.

An alternative variational hypothesis to harmonicity is that of energy

minimization. F is said to be energy-minimizing if

whenever K c Mis compact, G e L\λoc{M, N), and G = Fa.e. on M ~ K.

A deep result concerning energy-minimizing maps is the regularity theorem

of Schoen & Uhlenbeck [7, Theorem II], which states that such maps are

always smooth on the complement of a closed subset of M (the singular set of

F, denoted sing(F)), whose Hausdorff codimension is at least 3. The same

authors, in a subsequent paper [8] studied the special case N = S"1, showing

that sing(F) c M is then generally smaller, having codimension at least C(n).

C(n) is an explicitly given integer which depends on n, but is always less than

8. (For k < C(«), this of course implies global regularity.) They then deduce a

Liouville theorem, corresponding to their smoothness result, under the dimen-

sional restrictions k < C(«), n > 3. Namely, for such k and n, an energy-

minimizing map F: Rk -> Sn is constant.

By way of comparison, the regularity and Liouville theorems we obtain in

this paper are analogous to the latter results of [8], replacing the dimensional

restrictions there with the condition that F be bounded away from Σ, as

mentioned earlier.

The salient feature of Sn - Σ here is its warped product structure, as

discussed in §§1, 2. In fact, our smoothness argument, which is based on the

results of Schoen & Uhlenbeck in [7], goes through in this more general,

warped product setting. As a consequence, we are able to deduce regularity for

a larger class of targets than in [7] (Theorem 3).

In addition to our main results, we obtain several corollaries. Among other

things, these deal with minimal submanifolds of Sn and energy-minimizing

maps from R2 to Sn. In particular, Corollary 4 restates a pivotal result from a

previous paper on area-minimizing hypersurfaces [6, Theorem 1]. The latter

result bears a very similar relationship to the regularity and Bernstein theorems

in [6] for hypersurfaces, as Theorem 1 here bears to our present regularity and
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Liouville results. It seems a curious feature of this entire subject area that the

more highly nonlinear theory of area minimization generally has preceded the

very analogous, but relatively linear, theory of energy minimization.

Before we begin, we wish to thank R. Schoen for his interest in our work,

and for helping us obtain the energy estimate of Lemma 2 below.

1. A maximum principle

Consider the (topological) product ]V" = I " " 1 X R, where L is some

Riemannian manifold. Let IT: L X R -> R be the canonical projection. We

establish in this section that for a certain class of metrics on N, any real-valued

function π ° F on a Riemannian manifold Mk, which is obtained by projecting

a harmonic map F: M -* N into the R factor in JV, satisfies an elliptic

differential equation, and thereby a maximum principle.

The class of metrics we have in mind can be characterized as follows. There

is a smooth function w: N -> R + such that, given an orthonormal basis

ev- - -,en_1 for TPL (the tangent space of L at p e L), and a unit vector

v e Γ,R, then at (p,t) e N, the metric ( , > satisfies

Here, δf is the Kronecker delta, and /, j = 1, ,« — 1. In a slight departure

from more standard terminology (which would require w to be independent of

t), we will refer to this as a warped product metric on N, and write N = L XWR

to denote the resulting Riemannian manifold.

Remark. It can be shown that, modulo certain diffeomorphisms φ: N -* N

which satisfy π ° φ = π, this is exactly the class of metrics on TV which make

each hypersurface L X { / ) ( I E R ) , totally geodesic.

We may now introduce the elliptic equation mentioned above. The intrinsic

divergence and gradient on M will be denoted by divM and gradM, respectively.

Lemma 1. Let M, w, iV be as above, let F: M -> Λf be harmonic, and define

θ: M -* R via θ = π ° F. Then

divM[w2gradM0] - ^ ^

Proof. Since N = LXWR, there exists a map/: M -> L such that F = (/, 0).

An easy calculation then shows that the energy density \DF\2 decomposes as

follows:
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At the same time, for any compactly supported test function φ: M -» R,

there is a variation extending θ, and thereby F, to M X (-1,1) in such a way

that for each (x, s) e M X (-1,1),

f ^ 5 ) = ( / ( J C ) , 0(JC, s)), 0 := -Γ- = φ.

A standard first variation argument based on the harmonicity of F conse-

quently yields the identity

0 =

But θ = φ, and since 3/3 s commutes with differentiation on M, we may

integrate by parts to obtain

0 = fφγiwM{w2gmdMθ) - ^ ^ I g r a d ^ η dvM.

In the usual way, the fact that this holds for arbitrary φ now implies the truth

of Lemma 1. q.e.d.

Combining this lemma in an obvious way with the strong maximum princi-

ple, we obtain a useful corollary.

Corollary 1. If M is compact, then F(M) lies in L X {t} for some t e R.

We end this section with an application of these ideas. Consider a harmonic

map F: M -> N, where some covering space of Λf is assumed to admit a warped

product metric. The following corollary is then immediate, by passage to a map

between universal covers.

Corollary 2. If N is covered by a warped product, M is compact, and πx(M)

is finite, then the image of any harmonic map F: M -> N lies in a totally geodesic

hypersurface of N.

2. The Linking Theorem

This section and the next are concerned with harmonic maps to the unit

sphere Sn c Rw + 1. Our previous results will come into play here because of the

following key observation.

Observation 1. // Σn~2 c S" is any totally geodesic, codimension two sub-

sphere, then Sn ~ Σ (the complement of Σ in Sn) is isometric to a warped

product.

To see this, first rotate S" - Σ so that

Σ = S" Π {(xl9. , J C Λ + 1 ) G R w + 1 : x2 + x\ = 0}.
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Denoting by Sl~ι c R" the (n - l)-dimensional open upper hemisphere,

SΓι = { ( Λ , ,yH) e R": y\ + + y2

n = 1, Λ > 0},

we then have

S" - Σ = S ^ ^ X ^ 1 ,

where

(Here 0 denotes a point in S1.) Indeed, the map which sends

to

is easily seen to be an isometry.
The terminology of our next theorem is as follows. A map F: M -* Sn will

be said to meet Σ if F(M) ΠΣ Φ 0 . If F does not meet Σ, but as a map to
S" ~ Σ it is homotopically nontriυial, we will say F links Σ. Note that this
definition extends the usual, homological notion of "linking with Σ", for
immersions F: Mι -> Sn ~ Σ.

Theorem 1. Let F: M -> Sn be a nonconstant harmonic map on a compact
manifold M. Then F either links or meets Σ.

Proof. We will show that if F neither meets nor links Σ, F is constant.
Indeed, in this situation, F is a null-homotopic harmonic map to S*l~l XWSX,
and such a map necessarily lifts to a harmonic map

because the latter target is universal cover to the former. By Corollary 1, it then
follows that F(M) c S^Γ1 X{t] for some t e R, hence F(M) c Sn

+~ι X{θ]
for some 9 G S1. In other words, we may view F as a map to S++ι. But it is
well-known that a harmonic map from a compact manifold to an open
hemisphere is always constant. In fact, going back to our characterization of
S+~ι as the upper hemisphere of Sn~ι c Rw, we recall [3] that harmonicity of
F: M -> S"~ι is equivalent to the Euler-Lagrange system

Here ΔM denotes the intrinsic Laplace operator of M, and Ft = yi ° F. Since
Fn > 0, set / = n and integrate the associated Euler-Lagrange equation over M.
\DF\2 is thereby forced to vanish identically, and F is constant. This proves
Theorem 1. q.e.d.
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We next wish to insert a simple topological observation which will soon play

a useful role. Note that Sn

+~ι X S 1 is homotopy equivalent to Sι. Hence a map

F: M -> Sn+~ι X Sι is null-homotopic if and only if its projection onto the Sι

factor is null-homotopic. But homotopy classes of maps M -> S1 form a group,

(commonly known as the first cohomotopy group of M, and denoted by

τr1(M)), which is canonically isofnorphic to the first integral cohomoίogy group

Hι(M). (The isomorphism is induced by pulling back a generator of Hl(Sx).)

We therefore have the following.

Observation 2. If Hι(M) = 0, then all maps F: M ^> S" ~ Σ are null-ho-

motopic^ i.e. fail to link Σ.

We conclude this section with two corollaries regarding minimal submani-

folds of the sphere.

Corollary 3. A compact minimal Mk c S" either links or meets every great

Σn~2 c Sn.IfH\M) = 0, M meets every Σ.

Proof. Combine Theorem 1, Observation 2, and the well-known harmonicity

of minimal immersions, q.e.d.

The above corollary should be compared with the familiar fact that any

minimal Mk c Sn meets every great Sn~ι c S". (Indeed, since M is harmoni-

cally immersed, its center of mass must reside at the origin in Rw + 1.) The

corollary below, on the other hand, restates a key result from our earlier paper

[6, Theorem 1]. In fact, the present work has its beginnings in our efforts to

find a more illuminating proof of that theorem, which now follows easily.

Corollary 4 ([6]). Let Ma Sn be a compact orientable minimal hypersurface

(k = n - 1), with Hι(M) = 0. If the Gauss image of M in Sn omits Σ, then M is

an equator.

Proof. Combine Theorem 1, Observation 2, and the well-known harmonicity

of the Gauss map on M (i.e., the restriction to M of the Gauss map on the

central cone over M in RM + 1 ) .

3. Regularity

Given our linking theorem in the previous section, we can easily exploit the

theory of Schoen & Uhlenbeck to obtain a regularity theorem for energy-

minimizing maps to Sn - Σ.

Theorem 2. An energy-minimizing map F\ M —> Sn, which omits a neighbor-

hood of a codimension-two great subsphere Σ c Sn, is everywhere smooth.

Proof. Recall that for any energy-minimizing map F: M -> N between

arbitrary Riemannian manifolds, the codimension of singίi7) c M is at least 3,

and that this lower bound can be raised by information concerning N alone.
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Indeed, to paraphrase Theorem IV of [7], if for some k > 1, and each d =

1, ,k, every smooth harmonic mapf: Sd+ι -> N is constant, then sing(F) c M

has codimension at least 3 4- k. In our present situation, we may apply this fact

with N = Sn ~ Σ. Since Hι(Sd+1) = 0 for every positive integer d, the desired

result now follows immediately from Theorem 1 and Observation 2 of the

preceding section, q.e.d.

Actually, the above proof only argues a special case. To see this, we return to

the warped product setting of §1. Consider any Riemannian manifold TV

having a Riemannian covering space N which admits a warped product

decomposition; say, N = L XWR. Since Sd+ι is simply connected for every

d > 1, each smooth harmonic map /: Sd+ι -> N lifts to a harmonic map /:

Sd+ι -> N, which in turn factors through a harmonic map f:Sd+1^>L,by

Corollary 1. The general version of Theorem 2 is therefore given as follows.

Theorem 3. IfM, L, N, and N are as above, k > 1, and for every d = 1, , k,

each harmonic map /: Sd+ι -> L is constant, then the singular set of any

energy-minimizing map F: M -> N has codimension at least 3 + k.

Finally, we state another special case.

Corollary 5. // L has negative sectional curvature, or is strictly geodesically

convex, then every energy-minimizing map F: M —> L XwTlis everywhere smooth.

Proof. The required information about harmonic maps from spheres into L

is given in the Corollary on p. 310 of [7], based on well-known results of Eells

& Sampson [4] (in the negative curvature case), and Hildebrandt, Kaul &

Widman [5] (in the strictly convex case).

4. Liouville theorem

In this section, we will establish a Liouville theorem for energy-minimizing

maps F: Rk -> Sn which are bounded away from a codimension-two, totally

geodesic subsphere Σ a Sn. First, we require an energy growth estimate. Let

Bk (or simply Br, when the dimension is clear from context), denote the open

ball of radius r, centered at the origin in R*.

Lemma 2. If F: Rk -> Sn is an energy-minimizing map which omits a

neighborhood of some point p Ξ Sn, then

\DF\2dx < Crk~2

Br

k

for all r > 0. Here C = C(n, k) is a constant.

Remark. The main content of this lemma resides in the case n = 2; it holds

when n > 2 even without the omitted neighborhood assumption (cf. proof of

[8, Theorem 2.7]).
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Proof. When k = 1 or n = 1, the lemma holds trivially because \DF\2

vanishes identically. We leave this as an exercise for the reader and proceed

under the assumption k9 n > I.

In this case, by using exponential polar coordinates centered at the point

q G Sn antipodal to /?, we may consider F as a map into B£. But for any map

G e Li(2?r*, B%), the energy density \DG\2 can be measured relative to either

the flat metric (induced by the inclusion B£ c Rw), or the spherical metric

(which makes B£ isometric to S" ~ {p}). Precisely, we have

\DG\
2 = (<^ί\ +\DTG\2 (flat metric),

|DG| 2 = I -Γ- I + ^ r ^ " l ^ r G | 2 (spherical metric),
\ or ) r*

where the "tangential" (as opposed to radial) energy \DTG\2 is, in fact, defined

by the first of these equations. Correspondingly, we obtain two values for the

energy integral

f k \DG\2dx,

which we will denote by

E r (G ) (flat metric), E r (G) (spherical metric),

for the rest of this section. Since the particular map F being considered here

omits a full neighborhood of/? e S", we actually have a map to B£_δ for some

strictly positive δ > 0, and consequently

for some constant C = C(δ). Thus, whereas F minimizes E, it will be useful to

compare it, given r > 0, with the harmonic map Hr e L\(B^ B£_8) which

agrees with F on 82?*, and minimizes E. The existence of Hr for almost all

r > 0 is guaranteed by Fubini's Theorem and the convex hull property for

harmonic maps to RM.

Observe that each coordinate function of Hr is itself harmonic, hence may be

expanded in terms of spherical harmonics on R*. Using this expansion,

together with Green's Theorem and the Schwarz inequality, it is then a

straightforward matter to deduce the estimate

Er{Hr) < C^ \Hr\
2 dxj ^ U
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for some C = C(n, k). But \DτHr\
2 = \DTF\2, and we have \Hr\

2 < (π - δ) 2,
so that

Er(F) < CEr(F) < Ctr{Hr) < CEr(Jϊr),

hence

/ \ 1 / 2

Er(F) ^ C(π - δ)(rk-i)1/2 / 2

Squaring this relation, we then obtain the following differential inequality,
with C independent of F:

That is, wfl/ess E r(iΓ) vanishes identically, we have

~ * l ϊ J > (<£.«) (t-2).

For A: > 2, we then obtain our lemma by integrating the above inequality
from r to infinity, observing that by the monotonicity formula for energy, [7,
Proposition 2.4], E Λ (F) -» oo as R -> oo.

When A: = 2, a similar integration, from say, r toΛ, leads to the apparent
conundrum

1 1 1 ^Λ (R
• > C l n —

The contradiction here as R -> oo forces us to conclude that, contrary to our
earlier assumption, Er(.F) vanishes identically. In other words, Lemma 2 holds
trivially in this final case, and its proof is complete, q.e.d.

With out last argument (for k = 2), we have established more than just the
statement of the lemma. Indeed, thinking of Sn as the "Riemann sphere", with
p as the point at infinity, we obtain a precise analog of the classical holomor-
phic Liouville theorem, for energy minimizing maps.

Corollary 6. Let F: R2 -> Sn be an energy-minimizing map which is bounded
away from some point in Sn. Then F is constant.

Note that every harmonic function on R2, reduced modulo 277, gives rise to a
harmonic map R2 -> S2 whose image is the equator. Corollary 6 is thus clearly
false for maps which are stationary, but not minima.

We can now give the statement and proof of our main Liouville theorem.
Again, Σ c S" is a codimension-two, totally geodesic subsphere.
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Theorem 4. When n > 1, any energy-minimizing map F: Rk -> S" which is

bounded away from Σ, is constant.

Proof. Since « > 1 and F omits a neighborhood of Σ, i 7 omits a neighbor-

hood of a point. Consequently, by combining Lemma 2 with the degree k - 2

homogeneity of E under scaling, we conclude that the maps

Fj\ BΊ -* Sn ~Σ

defined by Fj(x) = F(jx) for x e 2?f,7 = 1,2, , are uniformly bounded in

energy, hence in h\. It is therefore possible to extract a weakly convergent

subsequence {Fj} tending to a limit F^, and by [7, 4.6], F^ is actually a strong

limit in L\. It follows that F^ omits a neighborhood of Σ, and via the argument

of [7, 4.7], that F^ is weakly harmonic (though not necessarily minimizing), as

well as radially homogeneous (i.e., the radial derivative of F^ vanishes a.e.

onJBf).
F^ is therefore precisely the type of map one obtains by "blowing up" an

energy-minimizing map at an interior point of its domain (cf. [7, 4.7]). The

dimension reducing technique of [7, §5] thus applies in our setting, and F^ is

subject to the same regularity criterion we saw in the previous section. Namely,

since every smooth harmonic map/: Sd+ι -> Sn ~ Σ is known to be constant,

F^ is necessarily smooth. Being radially homogeneous too, F^ is in fact

constant.

This, finally, implies the constancy of F itself. For by the monotonicity

formula for energy, [7, 2.4], our L^-convergent sequence Fj -> F^ has nonde-

creasing energy, whereas, by the above, IZλF^I2 = 0.

S. Appendix on nodal sets

Here we make some observations which relate the behavior described in

§2 for harmonic maps M -> S"1, to the nodal sets of eigenfunctions for a

Schrodinger operator on a compact Riemannian manifold M. A Schrodinger

operator on M is a differential operator of the form Δ M 4- F, where V is a

smooth potential function. The nodal set of a function /: M -> R is the

preimage/'^O) c M.

Nodal sets of eigenfunctions are intrinsic geometric objects on a Riemannian

manifold, but very little is known about them, even when V is constant, i.e. an

eigenvalue of the Laplacian. Several open questions are discussed in Yau's

Problem Section [9], and some basic results on nodal sets are proved in a paper

of Cheng [1], especially for two-dimensional M. In fact, Lemma 4.2 of Cheng's

paper gives a (rather special) condition which forces the nodal sets of two
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linearly independent eigenfunctions to intersect each other. Under a much
weaker, more natural assumption, we draw precisely the same conclusion in
Theorem 5 below.

Using Theorem 5, the reader should find it easy to fashion an alternate, and
very geometric, proof of our linking theorem (Theorem 1, §2). Indeed, simply
rotate Sn ~ Σ as in Observation 1, §2, and apply Theorem 5 to the functions
Fl9 F2, appearing in the Euler-Lagrange system for the harmonic map F (see
proof of Theorem 1).

In the following, Λ^will denote the nodal set of a function/: M -> R, and by
a nodal domain of/, we shall mean a connected component of M ~ Nf.

Theorem 5. Let u, v: M -> R be nontriυial solutions of a Schrodinger opera-
tor on a compact Riemannian manifold M, and assume Hι{M) = 0. Then

NUΠNV= 0 iff NuUNυ= 0 .

Remark. This result fails when Hι(M) does not vanish. For instance,
consider the nodal sets of solutions to(Δ Λ / +l)w = 0 when M = S1.

Proof. Assume that NUΓ) Nυ = 0 . Then u2 4- v2 > 0 on M, and we may
form the map

u2 + v2

Since Hι{M) = 0, θ is null-homotopic as a map to S1, hence lifts to a
real-valued function, call it 0, such that

θ = (cos0,sin0).

Letting

Z = {nπ/2 e R : / j G Z } ,

y + = max^f?, y~= min^fl,

we first observe that if y + e Z, then for any sufficiently small neighborhood of
a point/? e M such that θ(p) = y+, either M or υ would vanish, but not change
sign. This is impossible by a well-known argument based on the Hopf
boundary point lemma; we must conclude thatj>+£ Z. Similarly fory~. Thus,
denoting by / the connected component of R - Z which contains y+, we see
that the preimage of / under θ must consist of nodal domains for one of the
solutions u or v. It follows that Θ(M) is actually contained in /, for otherwise
these nodal domains of one solution would all be properly contained in nodal
domains of the other solution. It is a classical fact that such "concentric" nodal
domains cannot occur (see [2, p. 458], for example). Consequently, neither u
nor v has any zero, and the proof of Theorem 5 is complete.
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