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THE SIMPLE LOOP CONJECTURE

DAVID GABAI

1. Introduction

The main result of this paper is the proof of the so called Simple Loop

Conjecture, Theorem 2.1. In §3 we prove analogous results for compact

surfaces with boundary. In that setting simple arcs play the role of simple

closed curves.

I wish to thank Allen Edmonds [see 2.2] for making me aware of the

applicability of my work to this problem and to thank Joel Hass and Will

Kazez for helpful conversations.

Notation. If E c 5, then N(E) denotes a tubular neighborhood of E in S,

E denotes interior of E, and \E\ denotes the number of components of E. See

[1] or [3] for basic definitions regarding branched covers.

2. Closed surfaces

Theorem 2.1. ///: S -> Tis a map of closed connected surfaces such thatf*:

π±(S) —> πλ(T) is not injectiυe, then there exists a non contractible simple closed

curve a c S such that f\a is homotopically trivial.

Proof. We will assume that T Φ S2.

Step 1. Either there exists a noncontractible simple closed curve a c S such

that f\a is homotopically trivial or / is homo topic to a simple branched cover

(i.e., if / is a branched cover of degree d, then for every x e T | /~ 1 (Λ:) | > d —

1) or T = R P 2 and there exists a simple branched cover / ' : S -> T such that

ker/* = ker/;.

Proof of Step 1. Let D be a 2-disc in T. Let λι,",λn be properly

embedded arcs in T - D such that T - (D U N) = E is a 2-disc where TV is a

product neighborhood in T — D, of'Uλ,..
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Let g be a map homotopic to / such that:

, . 1. g: g~ι{D) -> D is an immersion;

2. g is transverse to Uλ^

and which minimizes c{g) = (\g~ι{D)\, Ig'HUλ,)!) where such pairs are
lexicographically ordered.

Let S' = S — g~ι(D). Note that g^ίUλ,) is a union of pairwise disjoint
properly embedded simple arcs and simple closed curves in S'. If T Φ RP 2

and some component C of g^ίUλ,) is a simple closed curve, then C is
noncontractible in S hence Step 1 holds. Otherwise C bounds a disc in S and
one can find, using the fact π2(T) = 0, a map gλ homotopic to / with
c(g\) < c(g)> contradicting minimality. If T = RP 2 and C bounds a disc F in
S define g': S -* T so that

g'|S - JV(F) = g|S - N{F) and (g(N(F))) n[D u( l jλ , ) ) = 0 .

Observe that kerg'* = kerg* and c{g') < c(g). g' might not be homotopic to
g. No component of g '^λ,) is an arc C such that g\C does not map onto λ,.
Otherwise g is homotopic to a map gx satisfying (*) such that \g\l(D)\ =
\g~ι(D)\ — 2, again contradicting minimality of g. We can therefore assume
that either f\f~ι(NL)D)-+NuD is an immersion or we have found a
simple loop in ker/+.

Let H = f~\E) and K = S - H. f\dH is an immersion into dE. Since
π^E) = 1 and each component of K is nonplanar if T Φ RP2, H is a union
of 2-discs or Step 1 holds. If T = RP 2 and some component c of dH bounds a
disc F in S but not in H, then we can find f':S-*T such that ker/^ = ker/*
but c(/') < c(/). Two maps hvh2: (D2,dD2) -> (E,dE) are homotopic if
and only if deg/^ = degλ2. In particular, if deg/zx = p Φ 0 then Λx is
homotopic to the branched cover h3 defined by z -> z^ (viewing /% £" as unit
discs in C) and by perturbing h3 slightly we can obtain a simple branched
cover. It follows that if H is a union of 2-discs then f\H, hence / is homotopic
to a simple branched cover.

Remark. It was pointed out to me that an almost identical version of Step
1 and its proof is contained in the unpublished work of Tucker [5].

Step 2. Construct g: S -> T X / such that the following 3 conditions hold.
1) The diagram

TX I

commutes where p = projection onto the first factor.
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2) If x G T is a branch point there exists a disc Dx c Γ such that gf ι(Dx)

is a disjoint union of n - 2 horizontal (i.e., contained in Tx point) embedded

discs and one nearly horizontal branched disc, as in Figure 2.1.

FIGURE 2.1

For each branch point JC, let Ex be an open disc such that Ex c Dx. Let

s'-rι(τ- Uεx )•
^ x branch pts. 'pts

3) g\S': S' -* N X / is a general position immersion i.e., at most 3 distinct

points of S' map to the same point of N X / and if D{, Z)2, D3 are pairwise

disjoint discs in S' such that g\Dp p = 1,2, 3 is an embedding, then g(Di)

intersects g(Dj), g(Dj) Π g(Dk) transversely for / Φ j or k. q.e.d.

Observation. To each branch point x in T X / there exists an immersed

double arc in T X / with one endpoint on x and another endpoint on y, y

another branch point in T X /.

Step 3. g can be homotoped to h\ S -> T X / so that h' = p ° h is a

branched cover. Step 2 holds with h, h' in place of g, / and each double arc

(connecting branch points) is embedded in T X / and disjoint from all other

double curves of h{S) in T X /.
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Proof of Step 3. Induction on the number of triple points of g(S) in T X I.
If J is an immersed double arc which is either not embedded or intersects
other double curves, then J must pass through triple points. In particular there
exists a double arc J' c J such that one endpoint of J' is a branch point and
the other end of Jr is a triple point (Figure 2.2(a)). Now homotope g to g' as
in Figure 2.2(b). Note that p ° g' is a branched cover, g'(S) has one fewer
triple point than g(S) and after a small isotopy (to satisfy 2) of Step 2) g',
/? ° g' satisfy 1), 2), 3) of Step 2. Step 3 now follows by induction, q.e.d.

By homotoping g further so that the images, in T, of the double curves
connecting branch points are very short and disjoint one can find pairwise
disjoint discs Dly , Dr c T (where 2r = number of branch points) such that
gf~l(Dt) appears as in Figure 2.3(a). See Figure 3.1 for a view of Figure 2.3
chopped in half.

FIGURE 2.2
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a) b)

FIGURE 2.3

Since a branched cover without branch points is a covering map; hence, is
injective on πλ, Theorem 2.1 follows by Step 4.

Step 4. a is homotopically trivial in T and g~1(a) = λ is either a homotopi-
cally nontrivial simple closed curve in S or T = RP2 and there exists a map
/' : S -> T such that ker/* = ker/* and / ' has fewer branch points than /.

Proof, a bounds a disc in T X / hence is homotopically trivial. We now
suppose that λ is homotopically trivial in S for otherwise Step 4 has been
completed.

λ and λ' = g~ι(a') (Figure 2.3(a)) bound an annulus in S and individually
bound discs £, E' such that (after possibly changing the names of λ, λ')
E D E'. It follows that there exist branched covers

k' =pok: S2 ' =p°fx: S

such that

S 2 = £ ' U F ' , F'a2-disc and k\E' =
r) is a horizontal disc (Figure 2.3(b)) such that Aτ(aFr) = a\

fx\S -E=g\S-E,

fx(E) is a horizontal disc (Figure 2.3(b)) such that / ^ θ ^ ) = α.

If z e TΓjίS), then z can be represented by a curve γ c 5 such that

γ Π £ = 0, therefore /i(z) = /*(z) hence ker/i = ker/+. / ' has at least 2
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fewer branch points than /. Finally if T Φ R P 2 the following Euler character-

istic calculation yields, (where b is the number of branch points of k' and r is

the degree of k')

Remarks. Partial results on this problem were obtained by Berstein and

Edmonds in [3] and [2].

Acknowledgement 2.2. The author is grateful to Allen Edmonds for point-

ing out that the simple loop conjecture follows as a corollary from the remark

stated without proof on page 502 of [4] (the remark claims that a stronger

theorem than the one proven in [4] is in fact true).

The remark implies that if /: S -> T is a continuous map of closed surfaces,

then either there exists a simple loop in ker/*: π^S) -> n^T), or one can find

g: S —> T X / where g is an immersion, p ° g is homotopic to / and either

g(S) is transverse to the product fibration T X /, except along saddle tangen-

cies, or g(S) is an immersion onto some fibre T X pt. The latter implies that

p © g is a covering map, hence / is 1-1 on πλ while the former could not occur.

A point x G g(S) which is maximal in the / factor of T X / would correspond

to a non saddle tangency between g(S) and the fibration.

3. Surfaces with boundary

One cannot find in general noncontractible simple loops in the kernel of a

map of surfaces with boundary. The following example is due to Tom Tucker.

If S = S2 - 3 discs, T = Sι X / and /: S -> T is the 2 fold branched cover,

branched over a single point, then ker/* Φ 0 but contains no simple loops.

For manifolds with boundary, simple non boundary parallel arcs play the

role of simple loops.

Theorem 3.1. ///: S —» T is a map of bounded connected surfaces such that

/ * : 7 7 Ί ( 5 ' ) ~ > W Ί ( ^ ) is n o t injective, then there exists an essential simple arc

a c S and a map g homotopic to f such that g(α) is a boundary parallel arc.

This is an unpublished but known result. We indicate a proof along the lines

of the proof of Theorem 2.1.

Proof. Apply the methods of Step 1 to conclude that either Theorem 3.1

holds or / is homotopic to a branched cover. Argue as in Steps 2 and 3 to

homotope / so that double arcs in T X / emanating from branched points

appear either in pairs (Figure 2.3) or as singles (Figure 3.1). By homotoping /

a bit further we can assume that all such double arcs appear as in Figure 3.1. If
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FIGURE 3.1

T = D2 the result is trivial. If T Φ D2 then arguing as in Step 4 shows that a

(Figure 3.1) is the desired simple arc.

Question 3.2. Let /: S -> T be a map between surfaces with boundary.

When does there exist an essential simple closed curve C c S such that f\C is

homotopically trivial?
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