THE SIMPLE LOOP CONJECTURE

DAVID GABAI

1. Introduction

The main result of this paper is the proof of the so called Simple Loop Conjecture, Theorem 2.1. In $\S 3$ we prove analogous results for compact surfaces with boundary. In that setting simple arcs play the role of simple closed curves.

I wish to thank Allen Edmonds [see 2.2] for making me aware of the applicability of my work to this problem and to thank Joel Hass and Will Kazez for helpful conversations.

Notation. If $E \subset S$, then $N(E)$ denotes a tubular neighborhood of E in S, $\stackrel{\circ}{E}$ denotes interior of E, and $|E|$ denotes the number of components of E. See [1] or [3] for basic definitions regarding branched covers.

2. Closed surfaces

Theorem 2.1. If $f: S \rightarrow T$ is a map of closed connected surfaces such that f_{*} : $\pi_{1}(S) \rightarrow \pi_{1}(T)$ is not injective, then there exists a non contractible simple closed curve $\alpha \subset S$ such that $f \mid \alpha$ is homotopically trivial.

Proof. We will assume that $T \neq S^{2}$.
Step 1. Either there exists a noncontractible simple closed curve $\alpha \subset S$ such that $f \mid \alpha$ is homotopically trivial or f is homotopic to a simple branched cover (i.e., if f is a branched cover of degree d, then for every $x \in T\left|f^{-1}(x)\right| \geqslant d-$ 1) or $T=\mathbf{R} \mathbf{P}^{2}$ and there exists a simple branched cover $f^{\prime}: S \rightarrow T$ such that $\operatorname{ker} f_{*}=\operatorname{ker} f_{*}^{\prime}$.

Proof of Step 1. Let D be a 2-disc in T. Let $\lambda_{1}, \cdots, \lambda_{n}$ be properly embedded arcs in $T-D$ such that $T-(D \cup \circ N)=E$ is a 2 -disc where N is a product neighborhood in $T-\stackrel{D}{D}$, of $\cup \lambda_{i}$.

[^0]Let g be a map homotopic to f such that:

1. $g: g^{-1}(D) \rightarrow D$ is an immersion;
2. g is transverse to $\cup \lambda_{i}$;
and which minimizes $c(g)=\left(\left|g^{-1}(D)\right|,\left|g^{-1}\left(U \lambda_{i}\right)\right|\right)$ where such pairs are lexicographically ordered.

Let $S^{\prime}=S-g^{-1}(\dot{D})$. Note that $g^{-1}\left(\cup \lambda_{i}\right)$ is a union of pairwise disjoint properly embedded simple arcs and simple closed curves in S^{\prime}. If $T \neq \mathbf{R P}^{2}$ and some component C of $g^{-1}\left(\cup \lambda_{i}\right)$ is a simple closed curve, then C is noncontractible in S hence Step 1 holds. Otherwise C bounds a disc in S and one can find, using the fact $\pi_{2}(T)=0$, a map g_{1} homotopic to f with $c\left(g_{1}\right)<c(g)$, contradicting minimality. If $T=\mathbf{R} \mathbf{P}^{2}$ and C bounds a disc F in S define $g^{\prime}: S \rightarrow T$ so that

$$
g^{\prime}|S-\stackrel{\circ}{N}(F)=g| S-\stackrel{\circ}{N}(F) \text { and }(g(N(F))) \cap\left(D \cup\left(\bigcup \lambda_{i}\right)\right)=\varnothing
$$

Observe that $\operatorname{ker} g^{\prime}{ }_{*}=\operatorname{ker} g_{*}$ and $c\left(g^{\prime}\right)<c(g) . g^{\prime}$ might not be homotopic to g. No component of $g^{-1}\left(\lambda_{i}\right)$ is an arc C such that $g \mid C$ does not map onto λ_{i}. Otherwise g is homotopic to a map g_{1} satisfying (*) such that $\left|g_{1}^{-1}(D)\right|=$ $\left|g^{-1}(D)\right|-2$, again contradicting minimality of g. We can therefore assume that either $f \mid f^{-1}(N \cup D) \rightarrow N \cup D$ is an immersion or we have found a simple loop in $\operatorname{ker} f_{*}$.

Let $H=f^{-1}(E)$ and $K=S-\stackrel{\circ}{H} . f \mid \partial H$ is an immersion into ∂E. Since $\pi_{1}(E)=1$ and each component of K is nonplanar if $T \neq \mathbf{R} \mathbf{P}^{2}, H$ is a union of 2-discs or Step 1 holds. If $T=\mathbf{R} \mathbf{P}^{2}$ and some component c of ∂H bounds a disc F in S but not in H, then we can find $f^{\prime}: S \rightarrow T$ such that $\operatorname{ker} f_{*}^{\prime}=\operatorname{ker} f_{*}$ but $c\left(f^{\prime}\right)<c(f)$. Two maps $h_{1}, h_{2}:\left(D^{2}, \partial D^{2}\right) \rightarrow(E, \partial E)$ are homotopic if and only if $\operatorname{deg} h_{1}=\operatorname{deg} h_{2}$. In particular, if $\operatorname{deg} h_{1}=p \neq 0$ then h_{1} is homotopic to the branched cover h_{3} defined by $z \rightarrow z^{p}$ (viewing F, E as unit discs in \mathbf{C}) and by perturbing h_{3} slightly we can obtain a simple branched cover. It follows that if H is a union of 2-discs then $f \mid H$, hence f is homotopic to a simple branched cover.

Remark. It was pointed out to me that an almost identical version of Step 1 and its proof is contained in the unpublished work of Tucker [5].

Step 2. Construct $g: S \rightarrow T \times I$ such that the following 3 conditions hold.

1) The diagram

commutes where $p=$ projection onto the first factor.
2) If $x \in T$ is a branch point there exists a disc $D_{x} \subset T$ such that $g f^{-1}\left(D_{x}\right)$ is a disjoint union of $n-2$ horizontal (i.e., contained in $T x$ point) embedded discs and one nearly horizontal branched disc, as in Figure 2.1.

Figure 2.1
For each branch point x, let E_{x} be an open disc such that $E_{x} \subset D_{x}$. Let

$$
S^{\prime}=f^{-1}\left(T-\underset{x \text { branch pts. }}{\bigcup} E_{X}\right)
$$

3) $g \mid S^{\prime}: S^{\prime} \rightarrow N \times I$ is a general position immersion i.e., at most 3 distinct points of S^{\prime} map to the same point of $N \times I$ and if D_{1}, D_{2}, D_{3} are pairwise disjoint discs in S^{\prime} such that $g \mid D_{p} p=1,2,3$ is an embedding, then $g\left(D_{i}\right)$ intersects $g\left(D_{j}\right), g\left(D_{j}\right) \cap g\left(D_{k}\right)$ transversely for $i \neq j$ or k. q.e.d.

Observation. To each branch point x in $T \times I$ there exists an immersed double arc in $T \times I$ with one endpoint on x and another endpoint on y, y another branch point in $T \times I$.

Step 3. g can be homotoped to $h: S \rightarrow T \times I$ so that $h^{\prime}=p \circ h$ is a branched cover. Step 2 holds with h, h^{\prime} in place of g, f and each double arc (connecting branch points) is embedded in $T \times I$ and disjoint from all other double curves of $h(S)$ in $T \times I$.

Proof of Step 3. Induction on the number of triple points of $g(S)$ in $T \times I$. If J is an immersed double arc which is either not embedded or intersects other double curves, then J must pass through triple points. In particular there exists a double arc $J^{\prime} \subset J$ such that one endpoint of J^{\prime} is a branch point and the other end of J^{\prime} is a triple point (Figure 2.2(a)). Now homotope g to g^{\prime} as in Figure 2.2(b). Note that $p \circ g^{\prime}$ is a branched cover, $g^{\prime}(S)$ has one fewer triple point than $g(S)$ and after a small isotopy (to satisfy 2) of Step 2) g^{\prime}, $p \circ g^{\prime}$ satisfy 1), 2), 3) of Step 2. Step 3 now follows by induction. q.e.d.

By homotoping g further so that the images, in T, of the double curves connecting branch points are very short and disjoint one can find pairwise disjoint discs $D_{1}, \cdots, D_{r} \subset T$ (where $2 r=$ number of branch points) such that $g f^{-1}\left(D_{i}\right)$ appears as in Figure 2.3(a). See Figure 3.1 for a view of Figure 2.3 chopped in half.

Figure 2.2

Figure 2.3
Since a branched cover without branch points is a covering map; hence, is injective on π_{1}, Theorem 2.1 follows by Step 4 .

Step 4. α is homotopically trivial in T and $g^{-1}(\alpha)=\lambda$ is either a homotopically nontrivial simple closed curve in S or $T=\mathbf{R} \mathbf{P}^{2}$ and there exists a map $f^{\prime}: S \rightarrow T$ such that $\operatorname{ker} f_{*}^{\prime}=\operatorname{ker} f_{*}$ and f^{\prime} has fewer branch points than f.

Proof. α bounds a disc in $T \times I$ hence is homotopically trivial. We now suppose that λ is homotopically trivial in S for otherwise Step 4 has been completed.
λ and $\lambda^{\prime}=g^{-1}\left(\alpha^{\prime}\right)$ (Figure 2.3(a)) bound an annulus in S and individually bound discs E, E^{\prime} such that (after possibly changing the names of $\lambda, \lambda^{\prime}$) $E \supset E^{\prime}$. It follows that there exist branched covers

$$
k^{\prime}=p \circ k: S^{2} \rightarrow T, \quad f^{\prime}=p \circ f_{1}: S \rightarrow T
$$

such that

$$
S^{2}=E^{\prime} \cup F^{\prime}, \quad F^{\prime} \text { a 2-disc and } \quad k\left|E^{\prime}=g\right| E^{\prime}
$$

$k\left(F^{\prime}\right)$ is a horizontal disc (Figure 2.3(b)) such that $k\left(\partial F^{\prime}\right)=\alpha^{\prime}$,

$$
f_{1}|S-E=g| S-E,
$$

$f_{1}(E)$ is a horizontal disc (Figure 2.3(b)) such that $f_{1}(\partial E)=\alpha$.
If $z \in \pi_{1}(S)$, then z can be represented by a curve $\gamma \subset S$ such that $\gamma \cap E=\varnothing$, therefore $f_{*}^{\prime}(z)=f_{*}(z)$ hence $\operatorname{ker} f_{*}^{\prime}=\operatorname{ker} f_{*} \cdot f^{\prime}$ has at least 2
fewer branch points than f. Finally if $T \neq \mathbf{R P}^{2}$ the following Euler characteristic calculation yields, (where b is the number of branch points of k^{\prime} and r is the degree of k^{\prime})

$$
2=\chi\left(S^{2}\right)=r(\chi(T))-b \leqslant 0 .
$$

Remarks. Partial results on this problem were obtained by Berstein and Edmonds in [3] and [2].

Acknowledgement 2.2. The author is grateful to Allen Edmonds for pointing out that the simple loop conjecture follows as a corollary from the remark stated without proof on page 502 of [4] (the remark claims that a stronger theorem than the one proven in [4] is in fact true).

The remark implies that if $f: S \rightarrow T$ is a continuous map of closed surfaces, then either there exists a simple loop in $\operatorname{ker} f_{*}: \pi_{1}(S) \rightarrow \pi_{1}(T)$, or one can find $g: S \rightarrow T \times I$ where g is an immersion, $p \circ g$ is homotopic to f and either $g(S)$ is transverse to the product fibration $T \times I$, except along saddle tangencies, or $g(S)$ is an immersion onto some fibre $T \times p t$. The latter implies that $p \circ g$ is a covering map, hence f is 1-1 on π_{1} while the former could not occur. A point $x \in g(S)$ which is maximal in the I factor of $T \times I$ would correspond to a non saddle tangency between $g(S)$ and the fibration.

3. Surfaces with boundary

One cannot find in general noncontractible simple loops in the kernel of a map of surfaces with boundary. The following example is due to Tom Tucker. If $S=S^{2}-3$ discs, $T=S^{1} \times I$ and $f: S \rightarrow T$ is the 2 fold branched cover, branched over a single point, then $\operatorname{ker} f_{*} \neq \varnothing$ but contains no simple loops.

For manifolds with boundary, simple non boundary parallel arcs play the role of simple loops.

Theorem 3.1. If $f: S \rightarrow T$ is a map of bounded connected surfaces such that $f_{*}: \pi_{1}(S) \rightarrow \pi_{1}(T)$ is not injective, then there exists an essential simple arc $\alpha \subset S$ and a map g homotopic to f such that $g(\alpha)$ is a boundary parallel arc.

This is an unpublished but known result. We indicate a proof along the lines of the proof of Theorem 2.1.

Proof. Apply the methods of Step 1 to conclude that either Theorem 3.1 holds or f is homotopic to a branched cover. Argue as in Steps 2 and 3 to homotope f so that double arcs in $T \times I$ emanating from branched points appear either in pairs (Figure 2.3) or as singles (Figure 3.1). By homotoping f a bit further we can assume that all such double arcs appear as in Figure 3.1. If

Figure 3.1
$T=D^{2}$ the result is trivial. If $T \neq D^{2}$ then arguing as in Step 4 shows that α (Figure 3.1) is the desired simple arc.

Question 3.2. Let $f: S \rightarrow T$ be a map between surfaces with boundary. When does there exist an essential simple closed curve $C \subset S$ such that $f \mid C$ is homotopically trivial?

References

[1] I. Berstein \& A. Edmonds, On the construction of branched colerings of low-dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979) 87-124.
[2] . On the classification of generic branched coterings of surfaces, Illinois J. Math.. 28 (1984) 64-82.
[3] A. Edmonds, Deformation of maps to branched coverings in dimension two. Ann. of Math. (2) 110 (1979) 113-125.
[4] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geometry 18 (1983) 445-503.
[5] T. Tucker, On simple loops and surface maps: A correction to Boundary reducible 3-manifolds and Waldhausen's theorem, preprint, 1975, unpublished.

University of Pennsylvania
Mathematical Sciences Research Institute

[^0]: Received February 8, 1985. Partially supported by grants from the National Science Foundation.

