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MINIMAL SURFACES IN A KAHLER SURFACE

S. M. WEBSTER

We consider a smooth real two-dimensional surface M embedded or im-
mersed in a complex two-dimensional manifold N. In case M is compact and
has only isolated complex tangents, we give a formula relating the Euler
number of M, that of its normal bundle, and the sum over all complex tangents
of a certain index attached to each complex tangent. This formula is a
generalization of a special case of a formula derived previously for a real
rt-manifold in a complex w-manifold. If N is Kahler and M is a branched
minimal immersion which is not a holomorphic curve, we show that the
complex tangents are isolated and that each has a negative index. If M is also
compact, then the above mentioned formula, with the inclusion of a term
involving the total branching order, still holds. One consequence of our
formula is that a two-sphere minimally embedded in the complex projective
plane must be a holomorphic curve, hence a straight line or conic.

First we describe the index ind(/?) of an isolated complex tangent at a point
p in a more general setting. Let M be a real surface, V a complex vector bundle
of rank 2 over M, and V c V a real sub-bundle of real rank 2. Let J,J2= -/,
denote the complex multiplication on the underlying real vector bundle of V.
We have an isolated complex tangent at p e M if Vq and JVq coincide for
q = p and are transverse for q in a deleted neighborhood of p. Let πq denote
the orthogonal projection of Vq along Vq onto its normal space Fφ relative to
some metric on V (or equivalently consider TΓ: V -• V/V). Let υ be a nonzero
section of V near p. Then πJv is a local section of F with an isolated zero at p.
ind(p) is the degree (i.e. winding number) associated to the fiber coordinate of
the map q -» πJυ(q). This is defined up to a sign, which is fixed by choices of
local orientation on M and in the fiber of F near p.

Now suppose / is a smooth immersion of M into a complex surface TV, with
tangent bundle TN. Set V = f~ι(TN), V = /*(ΓM), and F the normal bundle
of Fin V. Here/* denotes the differential of/thought of as a bundle mapping
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from TM to f~ι(TM). A choice of local orientation of M near p induces

naturally a local orientation of TM, and hence of V via /* . This local

orientation of V together with the natural orientation of TN induce a local

orientation of F by the requirement that V θ F = V as oriented bundles.

Given an isolated complex tangent at p, we define inά(p) relative to these

orientations. It is well defined, since a change in the local orientation of M

changes the orientation of both V and F9 and is a local biholomorphic

invariant of M in TV near p. If M is compact, we take on it a smooth tangent

vector field v which is nonzero at each complex tangent and has only isolated

zeros. A comparison of the index sums of v and of πZ/^v, exactly as in [8],

yields the following, in which M need not be orientable.

Proposition 1. Let the compact surface M be immersed in the complex

surface N with only isolated complex tangents. Then

(1) χ(Λ/) + χ ( f ) = Σ > d ( / > ) ,
P

where χ ( M ) and χ(F) are the Euler numbers of M and its normal bundle,

respectively, and the sum extends over all complex tangents to M.

Similar considerations apply to a compact surface M with boundary, how-

ever, we leave this to a future investigation. If M in Proposition 1 is also

oriented and embedded, then χ(F) is the self-intersection number of M in N.

Next we consider a complex vector bundle V of rank r over a manifold. We

suppose that V has a hermitian metric and denote by g(w, v) the real part of

the hermitian inner product of two vectors u and υ. g is a real inner product on

the underlying real vector bundle. We extend g and J complex linearly to

V <S> C = V θ V", V" =V'9J = il on V. Thus if u and υ are sections of V\

then g(w, υ) = 0 and g(w, ϋ) is their hermitian inner product, g is compatible

with /, 7*g = g. We also assume that we have a connection D on V which is

compatible with the hermitian metric. It induces a connection, still denoted D,

on the real bundle with Dg = 0.

Let ei91 < i < 2r, be a local real orthonormal frame field in V and set

Then g(e/5 ej) = 8tj is equivalent to

(2) * ( £ , , £ , ) = (),

We introduce matrices of connection 1-forms ξ = (£/7) and η = (τj/7) by

(summation convention)

(3) DE, = iuEj + ηijEj, DE, = $,,£, + u,,£,.
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Covariant differentiation of (2) gives

(4) ξ + ξ' = 0, η + if = 0.

Now let υi9 1 < / < r, be a local unitary frame field in F', ̂ (u,, £7) = ^S/y. We

have

(5) Dυ, = ttjVj, ψ + ψ = 0.

The two frame fields are related by

(6) Ei = 0 / Λ . + bijϋj, Et = bijϋj + a^j.

From (2) we get (in matrix form)

(7) 0 = ab' + fci', / = flfl' + ^ r .

We substitute (6) into the right-hand side of (3), and also take the covariant

derivative of (6), using (5). Comparison of the results of these two processes

gives

(8) da + αψ = ξa + ηb, db + bψ = ξb + ηa.

Now suppose that r = 2 and F c F is a real two-plane sub-bundle with a

complex tangent at /?. We choose ei9 i = 1,2, to span F and eα, α = 3,4, to

span the normal bundle F. We may further assume that e2(p) = Jeλ(p),
eΛp) = Je3(p)> a n d that υt(p) = £,-(/>), s o that

(9) aιJ(p) = διJ, blJ(p) = 0.

We adapt the unitary frame vt to the frame Ei as in Chern and Wolfson [3]. The

allowable change is

u ; - > G , Λ , GG' = I, G(0) = 7,

which results in α -> aG, and in particular α 1 2 -» anG12 + al2G22. By (9) we

may choose the unit vector field (G 1 2 , G 2 2) orthogonal to ( α n , α 1 2 ) and equal

to (0,1) at p. Then we choose ( G π , G2 1) orthogonal to ( G 1 2 , G 2 2 ) , of unit

length, and equal to (0,1) at p. Thus we may assume al2 = 0. From 0 =

g(El9 Eλ) = 2aubn, we conclude bu = 0 by (9). Also,

0 = g(El9 E2) = anb21 + bna22,

0 = g(E2, E2) = 2(a2lb21 + «22Z)22).

These can be solved for b2ι and Z?22 and substituted into

0 = g(El9 E2) = flnfl21 + Z?12^22 = *
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It follows that a2l = 0, and hence b22 = 0 by (9). Thus we may write

( 1 0 ) E ι = Φi + rϋ^ l^l2 + IH2 = kl2 + M2 = i,

E2 = sv2 + tϋl9 qt + rs = 0, q(0) = j(0) = 1, r(0) = ί(0) = 0.

With this normalization (8) gives

dr - rψ22 = rξn

If we set g = r/q, then (11) gives

(12) dQ =

^ 1 2 >

2 ) + ( ί

^Ψl2 =

' * 1 2 =

&s —rt)q~

= 4l2,

2 ^2

In the special case where F is the tangent bundle of a surface immersed in a
complex manifold, an essentially equivalent formula to (12) was derived in [3].

Note that there is a complex tangent precisely where JEλ = iEv i.e. where r,
or Q, vanishes. Up is an isolated complex tangent, we may approximate F near
p by the plane spanned by Re v2, Im υ2, without altering the index. Since

ex = 2Re(^ϋ1 + rv2), Jex =

it follows that ind(/?) is the winding number associated to the map

(13) P ι

Now we consider a smooth branched minimal immersion f of M into the
Kahler surface (N, g). The theory of branch points of such maps is developed
by Gulliver, Osserman and Roy den [6], (I also want to thank Bob Gulliver for
several helpful conversations.) In particular there are well-defined tangent and
normal planes varying smoothly with p e M. We denote by V and F the
corresponding bundles as before. Then, even at a branch point, we may define
the index of a complex tangent as above. We may assume that there is a
smooth metric g° on M for which/is a weakly conformal, branched harmonic
immersion. f*g = eg0, where c > 0 and has only isolated zeros corresponding
to the branched points.

Proposition 2. Let M, N and f be as just described. If f(M) is not a
holomorphic curve, then it has only isolated complex tangents, each with negative
index.

Proof. We study / near a point p, possibly a branch point, at which the
tangent plane Vp is complex. Let

£0 = 1^0 _ e0)9 φ0 = 00 + W0 = μ d z
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be local frame and coframe fields on M relative to g°. z = x + iy, z(p) = 0, is

a local isothermal parameter and μ Φ 0. If D° denotes the Levi-Civita convec-

tion of g°, then

V = φ° Λ ξ°.

We also choose local adapted frames in V = f~ιTN as in (10) and denoted by

φ, the one-forms dual to E{. It follows that

f*E° = XEι, or

(14) / * φ i s φ i = λφ°, / * φ 2 - φ2 = 0

for a complex factor λ, λλ = c, after changing the local orientation of M if

necessary. Since Λf is Kahler its Levi-Civita connection D coincides with the

hermitian connection, so the previous computations apply. We also have

DΨi = -£,,. Θ Ψj - ηjΊ Θ φJ9

d<Pi = φy Λ £.. + φ. Λ ηjr

We write the Jacobian of/as

/ * = φ°/Φ£° + φ°f*E° = λ φ % + λ φ 0 ^ .

The second fundamental form of/, a symmetric F-valued 2 form, is defined by

II 7 = Z)/*, D = D° ® I + I ® D.

If we take the exterior derivative of the last two equations in (14) and use (15),

(14), and Cartan's lemma, we get

(16) dλ + λ(ξn - ξ°) = λ'φ°,

and

(17) λξ1 2 = aψ° + 6φ°, ληl2 = cφ° + bψ°

for certain smooth functions a, b, c, X'. From (16) it follows that λ satisfies an

equation of the form λ^ = Kλ. By a well-known theorem [1], since λ ^ 0, it

has the form

(18) λ = z7λ0, / > 0 , λ o * 0 ,

at a branch point/?. Also (16) and (17) give
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ξl2 ® Φ l + ηl2 ® φλ = ̂ ( φ 0 ) 2 + 2fcφθφ0 + c(φ 0 ) 2 .

The tension field of /is

= 411f(E°9 E°) = 8(Z>£2 + bE2).

Thus,/is harmonic if and only if b = 0. In that case (12), (17) imply, again by

[1], that either Q = 0, or Q has the form Q = zkQ0, k > 1, Qo Φ 0. If Q = 0,

then f(M) is a holomorphic curve near f(p). Otherwise /? is an isolated

complex tangent, and the map (13) has the form z -> 4ir(z) = 4izkQ0q. It

follows that ind(p) = -k < 0. q.e.d.

Proposition 2 was originally motivated by the following observation. If M is

immersed in N and has an elliptic point p [7], then as proven in [7] there is a

smooth one-parameter family of analytic discs bounding on M and shrinking

down to p. It can be used to construct a local variation of M which strictly

decreases the area, by Wirtinger's inequality. Hence, M cannot be minimal. An

elliptic point has index + 1 [8].

At each branch point/? the exponent / = /(/?) in (18) is the branching order.

The total branching order is

(21) B=ΣI(P)>
P

the sum extending over all branch points. If M does not have a complex

tangent at/? we set ind(/?) = 0.

Theorem 3. Let M be a compact surface, N a Kάhler surface, and f a

branched minimal immersion of M into N, with normal bundle F. Iff(M) is not a

holomorphic curve, then

(22) χ(M)+χ(F) + B= £ind(/>)<0,
P

with equality holding if and only iff(M) is totally real.

Proof. By Proposition 2 and the argument preceding Proposition 1

= Σind(/0<0,

and equality holds if and only if Fis totally real. We relate χ ( F ) t o χ ( M ) a s

follows. Let υ be a smooth vector field on Λf, not vanishing at any branch

point, and having only isolated zeros. f*(υ) is a section of V. To each zero of υ

corresponds a zero of f*(v) of the same index. At a branch point /?, f*(v)

picks up an additional zero of index l(p). Thus χ(V) = χ(M) + B. q.e.d.



MINIMAL SURFACES IN A KAHLER SURFACE 469

If M is also oriented and smoothly embedded in N9 then 2? = 0 and the sum

of its Euler number and self-intersection number is nonpositive.

Suppose, for example, that N = P2(C) (with any Kahler metric!), and that M

is oriented and embedded. Then M has a homological degree H Z , M = ^ P 1

i n / / 2 ( P 2 , Z ) , a n d χ ( F ) = /c2.

Corollary 4. Let M be a compact, orientable surface of genus g minimally

embedded in P2(C) with degree k. If M is not a complex algebraic curve, then

(23) k2 < 2g - 2,

with equality holding if and only if M is totally real.

It follows that an embedded minimal two-sphere (g = 0) in P 2 is an

algebraic curve of degree k, (k — l)(k — 2) = 2g, hence is a complex line or

conic. There is an extensive literature with many examples of immersed

minimal spheres starting with the work of Calabi [2]. For the case of P2(C) see

Din and Zakrzewski [4], Eells and Wood [5], and [3]. If M is an embedded

minimal torus, then (23) implies that it is either a nonsingular complex cubic

curve or has degree k = 0 and is totally real. For the Fubini-Study metric an

example of the latter alternative is provided by the Clifford torus, {\z\ = \w\ =

1} c C 2 c P 2 , where (z, w) are standard nonhomogeneous coordinates.

Finally, we remark that Theorem 3 can be easily generalized to the case

dim N > 2 under the same hypotheses. We set Vp = Vp + JV for p a totally

real point. V is a complex 2-plane sub-bundle oίf~ι(TN) which can be shown

to extend smoothly to the points where M has a complex tangent. F is taken to

be the normal bundle of V in V. Proposition 2 and (22) follow by essentially

the same arguments.

Note. After circulating this work in preprint form in August, 1984, we were

informed of two works containing results related to ours and completed

independently at nearly the same time. These are Gauduchon-Lawson [11] and

Eells-Salamon [10]. We should also mention the work of D. Burns [9].
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