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0. Introduction

Let q = q(A) be the Kac-Moody Lie algebra associated to a symmetrizable

generalized Cartan matrix A = (aij)ι^ij<i and let S c (1, •,/} be a subset

of finite type. Denote by p s the corresponding "parabolic"; r " the maximal"

reductive subalgebra of ps and u~ the orthocomplement of ps (so that u " Φ p s

= q). Let L ( λ 0 ) be the quasi-simple q-module, with highest weight λ 0 .

Further, let (Λ(u~, L ( λ 0 ) ' ) , 9) be the standard chain complex associated to

the Lie algebra u~ with coefficients in the right module L ( λ 0 ) ' , and let

(C(q, r), d) denote the standard cochain complex associated to the Lie algebra

pair (q, r) (with trivial coefficient C). There is associated (in general infinite

dimensional) a group G (resp. a "parabolic" subgroup Ps) with q1 (resp.

Ps n Q1)- The flag variety G/Ps admits a Bruhat cell decomposition with cells

{ Vw } parametrized by w e Ws \ W = W$ {W is the Weyl group for q).

In this paper we explicitly compute the action of the Laplacian Δ = 39* +

3*9 on Λ(u~, L(λ0Y). Further, we use this to prove the "disjointness" of the

operators d and 9 (defined in §3), acting on C(q, r). This gives rise to a "Hodge

type" decomposition, with respect to the pair d, 9 (d, 9 are not adjoints of each

other), of the space C(q, r). In particular, every d cohomology class in C(q, r)

has a unique d, 9 closed representative. The "Hodge type" decomposition also

gives, by a slight refinement of the arguments, that #*(q,r) is bigraded;
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H%*q(<l>*) = 0 unless/? = q and H$'p(q,r) is a vector space with a "canonical"

C-basis {sw}wGlvι w i t h l e n g t h w=p. Finally (and this was one of our main points of

interest) we prove that, properly defined, JVw,s
w = 0 unless w = w' and fyws

w

> 0. So the d, 3 harmonic forms {sw}wGlvι, properly normalized, are dual to

the Bruhat cells of the flag variety G/Ps. This result, in particular, applies to

the based (at e) loop space Ώ,e(K0) of a finite-dimensional compact connected

simply connected Lie group Ko. Garland and Raghunathan had conjectured

the existence of such a dual basis {sw}, in this case. The topology of Ωe(K0)

has been studied extensively by Bott via Morse theory.

When q is a finite-dimensional semisimple Lie algebra, all these results are

due to Kostant and are contents of his papers [16] and [17]. In the infinite

dimensional situation, Garland has computed Δ for a special case. Most of the

other results are new (as far as is known to the author).

The author's indebtedness to various ideas in Kostant's two important

papers [16] and [17] would be clear to any informed reader.

Now, we describe the contents of this paper in more detail.

In §1 we recall the (well) known (though scattered) facts from Kac-Moody

Lie algebras, which we would, often, be using. We also fix some notations to be

used throughout the paper.

Let q = <\(A) be the Kac-Moody Lie algebra associated to a symmetrizable

generalized Cartan matrix A and let S c {1, •,/} be a subset of finite type.

In §2 we briefly define r, u~, L ( λ 0 ) and the chain complex (Λ(u~, L ( λ 0 ) ' ) , 3)

in §1. The main theorem of this section (Theorem (2.1)) describes the action of

the Laplacian Δ = 33* -I- 3*3 on Λ(u~, L ( λ o ) ' ) More precisely, the theorem

states: Let Wβ be an irreducible x-submodule of Λ(u~, L ( λ 0 ) ' ) with highest

weight β. Then Δ | ^ is scalar multiplication by \[σ(λ0 + p, λ 0 + p) -

σ(β + p, β 4- p)]. We would also like to isolate Remark (2.2) and Proposition

(2.10). Remark (2.2) gives an (equivalent) "invariant" reformulation of the

main theorem, e.g., when L(λ0) is the one-dimensional trivial module, it says

that the Laplacian 2Δ is "essentially" negative of the Casimir operator.

Proposition (2.10) describes the action of a "Casimir like" operator on u~.

When q is finite dimensional, this proposition is well known and is trivial to

prove. Of course, as an important corollary (Corollary (2.3)(a)) of Theorem

(2.1), we can deduce one of the main theorems of Garland-Lepowsky in [6],

which describes the homology 7/*(u~, L ( λ 0 ) ' ) .

In the infinite-dimensional situation; Garland [5] has computed the action of

the Laplacian in the special case when q is an affine Lie algebra; p is the

standard maximal F-parabolic and L(λ0) is the one-dimensional trivial mod-

ule. His computation (unpublished) is fairly long and complicated.
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The proof of our Theorem (2.1) differs, in many ways, from Kostant's
original proof. Trying to generalize Kostant's proof as it is, one encounters
many difficulties, most notably; one encounters various infinite (often
meaningless) sums (e.g. Σ φ e Δ ad yφ ad xφ acting on u~!).

To conclude, the amount of cancellations (occurring in the proof of the
theorem) has some parallels with the proof of the Index Theorem given by V.
K. Patodi, which involved an enormous amount of cancellations. It is not
known if a proof of Theorem (2.1) can be given similar in spirit to the proof of
the Index Theorem evolved after works of Gilkey and Patodi (see [1]). The
author is indebted to Professor H. Garland for some of these thoughts.

In §3 the operators d\ d'\ 3' and 3", acting on C(q,r), are defined, d' (resp.
d") corresponds to the holomorphic (resp. antiholomorphic) differential and
d ^ d' + d". 3 = 3' + 3" is obtained by transporting the differential of the
chain-complex Λ(u Θ u~), corresponding to the Lie algebra u θ u~ (defining
[u, u~] = 0), via the map e induced by the Killing form. The main theorems of
this section are Theorems (3.11) and (3.15). Theorem (3.11) states that the pair
(</, 3) (resp. (d\ 3'); (d'\ 3")), acting on C(q,r), is disjoint (in the sense of
Kostant). The content of Theorem (3.15) is: 1) i/(C(q,r), d) is bigraded, 2)
//^(C(q,r), </)« Hp>q(C(q9τ), d"\ 3) Hp-*(C(q,r), d) = 0 if p Φ q and
Hp*p(C(q, r), d) is a vector space of dim/C equal to the number of Weyl group
elements in W$ of length p. (The properties 1) and 2) are shared by all the
compact Kahler manifolds!). In fact, more strongly, there is available a
"Hodge type" decomposition of C(q,r), with respect to the operators (d, 3).
This is the content of our Theorem (3.13). In particular, this gives that in every
d-cohomology class, there is a unique form s which is both d and 3 closed. This
fact will be used in §4.

In the general case, Lepowsky has computed the cohomology H£(q, r) by a
different method (see [18, Corollary 6.7]). But his results neither give informa-
tion about the bigraded cohomology groups nor do they give the existence of a
d, 3 closed form in every cohomology class (a fact which will be very crucially
used, as in [17], in the next section). Actually in our Remark (3.3), we have
indicated a very simple proof to recover [18, Corollary 6.7].

The proofs in this section are fairly along the lines of [17], except that some
of them require modifications and correct formulations. As in [17], we have
used the computation of the Laplacian done in the previous section, in the
special case when L(λ 0) is the one-dimensional trivial module. We would like
to specifically mention one difficulty arising in the case when q is infinite
dimensional. This is Lemma (3.8), stating that KerS θ Im S = C(q,r), where
S = dd + dd. This is trivial in the case, q is finite-dimensional, but requires



392 SHRAWAN KUMAR

more subtle argument in the infinite dimensional case. We have introduced a
"natural" topology on C(q, r), which helps to simplify the arguments.

A word is in order. We could have omitted proofs of some of the lemmas in
this section (referring the reader to [17]), but we decided to present them here
for clarity and completeness.

In §4, the main theorem is Theorem (4.5). To describe this, there is a Bruhat
decomposition (see §4.1) for the flag variety G/Ps with cells {Vw}wG^ι, where
dimj j^ = 2.1engthw. Further to any w e W^ there is associated a rf, 3
harmonic form sw e C21engthvv(q, r), obtained by the disjointness of d, 3 and
using the r-module structure of //*(u~, C). Now, Theorem (4.5) states that,
defined appropriately, fyw.s

w = 0 unless w = w' and fVws
w > 0.

In the infinite-dimensional case, at least for the "based loop groups" (which
are flag varieties associated to the affine groups) this was conjectured by
Garland-Raghunathan (see the last paragraph in [7]). In fact this was one of the
main motivations behind the whole paper.

Acknowledgments. My most sincere gratitude is due to Professors Howard
Garland and M. S. Raghunathan. Their questions led to this work and I had
many very helpful conversations with them. I would also like to thank
Professors I. G. Macdonald, Arne Meurman and Dale H. Peterson for some
helpful conversations.

1. Preliminaries and notations

We recall some facts, now fairly known, about Kac-Moody Lie algebras
which we will be using frequently in our paper. (See, for the details, [6],
[10]-[14], [18], [19]).

1.1 Definitions, (a) A symmetrizable generalized Car tan matrix A =
{aij}ι<i 7 < / is a matrix of integers satisfying au = 2 for all /, atJ < 0 if / Φ j \
DA is symmetric for some diagonal matrix D = dia(#l5 ,q() with qι > 0 e Q.

(b) Choose a triple (h, π, mv\ unique up to isomorphism, where h is a vector
space over C (the field of complex numbers) of dimension / + corankv4,
77 = {oti}1<i<1 c h* and πy = {hi}ι^i<ι c h are linearly independent indexed
sets satisfying aj{hi) = atj. The Kac-Moody algebra q = q(A) is the Lie
algebra over C, generated by h and the symbols ef and /; (1 < / < /) with the
defining relations [h,h] = 0; [h, et] = α^A)^-, [h, f] = -a/(A)/) for A e h and
all 1 < i < /; [ei9 ft = δ^ for all 1 < i, j < /; (ad e , . ) 1 "^^) = 0 =
(ad f^-^ifj) for all 1 < i Φj < /.

h is canonically embedded in q.
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1.2 Root space decomposition. There is available the root space decomposi-

tion q = h θ Σ α e Δ c h * q α , where qα = {x e q: [h, x] = a(h)x, for all / i G h }

and A = { α G h * - {0} such that qa Φ 0}. Moreover Δ = Δ + U Δ_, where

Δ + c {ΣI

i=ιniai: ni e Z + ( = the nonnegative integers) for all/} a n d Δ _ = - Δ + .

Elements of Δ + (resp. Δ_) are called positive (resp. negative) roots.

1.3 Parabolics. We fix a subset S (including S = 0 ) of (1, •,/} of finite

type, i.e. the submatrix As = {aiJ}LjGS is a classical Cartan matrix of finite

type. There is a natural injection qs = q(As)
 c-> q(^4). Define Δ1^ (resp. Δs_) =

Δ + Π ί Σ ^ ^ Z α , . } (resp. Δ_Π{Σ / e S Zα f .}). Then

q s = h s e Σ q « θ Σ q«>

where hs = linear span of { A/} / e 5. Define the following Lie subalgebras.

n= Σ q«; n = Σ q«;
«εΔ+ αeΔ_

u= Σ q«; u = Σ q«;
«eΔ+\Δs

+ αeΔ_\Δs

r = qs + h; p = r θ u.

Of course, q = h θ n θ n " = u " θ p and r is a reductive algebra, p is called the

F-parabolic subalgebra (F for finite-dimensionality of q 5 ) , defined by S (see

[6, §3]). If 5 = 0 , the associated parabolic p ( = h θ n ) is the "BoreΓ

subalgebra. If A itself is of finite type (i.e. A is a classical Cartan matrix), then

the F-parabolic subalgebras are precisely the parabolic subalgebras of q

containing the Borel subalgebra h θ n.

1.4 Weyl group. There is a Weyl group W c Aut(h*) generated by the

reflections {ri}ι<i<ι (^(φ) = φ - φίλ Jα,-), associated to the Lie algebra q.

(W, {f/ji^/^/) is a Coxeter system, hence we can talk of the lengths of

elements of W.

W preserves Δ. Δre is defined to be Wo π and Δ im = Δ \ Δre. For a e Δre,

d imq α = 1 and A π Z α = {a,-a}.

Given a subset S of finite type as in (1.3), there is defined a subset W^ of

the Weyl group W, by w£ = {w G W: Δ + Π WΔ_C Δ + \ Δ S

+ } .

1.5 Cartan involution. There is a (C-linear) unique involution ω of q defined

by ω(/)) = -ei for all 1 < / < / and ω(h) = -h for all A e h. It is easy to see

that ω leaves q(R) ( = "real points" of q) stable.

Further, there is a unique conjugate-linear involution ω0 of q which coincides

with ω on q(R).
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1.6 Killing form. There exists a nondegenerate, q-invariant, symmetric
C-bilinear form ( , ) on q, described as follows.

First define σ(α,, αy) = qμ^ for 1 < /, j < /. Set Aα = qfi;. It is possible to
extend σ to a symmetric bilinear form, again denoted by σ on h*, satisfying:

(1) σ is ^-invariant.
(2) σ(λ, α, ) = λ(Aα.) for all 1 < i < / and all λ e h*.
We fix one such σ. Now define ( Aα , Aαy = σ(αf , αy ). The form ( , ) on πy

can be extended to a nondegenerate, q-invariant, symmetric C-bilinear form,
again denoted by ( , ) on q, satisfying:

(1) (JC, y) = Oforx e qα,j; e q^withα, /? e A U {0} and α + /? # 0.
(2) [x, y] = (x, .y)Aα for x G q α j e q_α and α = Σι

i=ιniaι e Δ+. (Aα =

We fix, once and for all, one such form. The symmetric form ( , ) on q,
described above, gives rise to a hermitian form { , } on q, defined by
{x, y] = - (*, ωo(j>)) for x, y G q. The hermitian form { , } is positive
definite on n" (and n). (see [22, §12] and [13, Remark IV, p. 1782]).

1.7 The Casimir operator ([12, §2.3] and [6, §4]). Let 0 denote the full
category of all the (left) q-modules M (modules will be left, unless stated),
satisfying:

(1) M is a weight module whose weight spaces are finite dimensional, i.e.
M = Σ λ € h * M λ with all Mλ being finite dimensional, where Mλ = {m e M:
h m = \(h)m for all A e h}. λ is called a weight of M if Mλ Φ (0).

(2) Let D(M) be the set of all the weights of M. Then there exists a finite
subset {λ1, ,λπ} c h* such that D(M) a (JkD(λk), where Z>(λΛ) =

{ λ . - Σ U Z + α,}-
Fix a p e h * satisfying p(A, ) = 1 for all 1 < / < /.
There exists a natural transformation Γ = Γq, called the Casimir operator, of

the category 0 (i.e. given a Af e 0, there is a q-module map ΓM: M ^> M,
satisfying / ° ΓM = Γ^ ° / for any q-modules M, N and a q-morphism /:
Λf-* Λ^).

For α G Δ + , define ωα = Σtksk G ί7(q) (the universal enveloping algebra),
where {s*} is any basis of qα and {tk} is the dual basis of q_α with respect to
( , ) . Γ is defined as I\ + Γ2, where I\ is the operator 2 Σ α e Δ + ωa (although
an infinite sum, this makes sense for modules in the category Θ) and Γ2 acts on
the weight space Mλ as scalar multiplication by σ(λ + p,λ + p) — σ(ρ, p).

The action of the Casimir TM\0 on a highest weight module M λ °, with
highest weight λ 0 , is through scalar multiplication b y σ ( λ o + ρ ,λ o + p ) -
σ(p, p).
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1.8 Quasi-simple modules. A q-module L is called quasi-simple if it is a
highest weight module with highest weight vector x0 such that there exists
n e Z + with/^jto) = 0 for all 1 < / < /.

Let D be the set of all the dominant integral elements β in h* (i.e.
£(*,.)€= Z+foral l l < / < /).

Though we would not be needing, the quasi-simple q-modules are indexed
by D (in a bijective manner) (see [11, Corollary] and [6, Corollary 9.8]). The
correspondence is given by attaching to a quasi-simple module its highest
weight.

We denote by L(λ) the quasi-simple q-module with highest weight λ e D .
1.9 Algebraic group associated to a Kac-Moody Lie algebra q ([13], [14] and

[21]). A q1 (= [q,q]) module (F, π) (π: q1 -> End V) is called integrable if
iτ(e) is locally nilpotent whenever e e qα for a e Δre. Let G* be the free
product of the additive groups {qα}αGΛre> W l t n canonical inclusions zα: qα -*
G*. For any integrable q1-module (F, π), define a homomoφhism π*: G* -»
Aut c V by π*(/α(e)) = exp(τr(e)) for e e qα. Let TV* be the intersection of all
ker(π*). Put G = G*/N*. Let # be the canonical homomoφhism G* -> G. For
e e qα (a e Δre), put exp e = q(iae), so that ί7α = expqα is an additive one
parameter subgroup of G. Denote by U (resp. U~) the subgroup of G generated
by the Ua (resp. £/_α), α e ΔΓ .̂

Choose Λ, e h* (1 < i < /) satisfying Λ^Ay) = δ/y for all 1 <y < /. There
is an embedding [14, p. 162-163]

i: G ̂  3ί = e ^(A,-)) θ Θ L*(Λf.)

defined by i(g) = g(Σ(=1 ϋΛ/) + g(Σ(=1 ^ ( ) .
Here (L(Λ f ), π(Λf )) is the quasi-simple module defined in §1.8; L*(Λf ) is

the vector space L(Λf ) regarded as a q-module under τr*(Λl ) = π(Aj)° ω; yΛ

is a highest weight vector in L(Λy) and ι;Λ. is denoted by υ*. when regarded as
an element in L*(ΛI ).

By "differentiating" /, we get an embedding /: q1 -+ 5ί. More explicitly
ϊ(x) = xffί.x ϋΛ/) + x(ΣU v*) for x e q1.

3ί is endowed with a Hausdorff topology defined as follows. A set V c 91 is
open if and only if V (Ί F is open in F for all the finite-dimensional vector
subspaces F of 9ί. Now, put the subspace (through /) topology on G. G may be
viewed as a, possibly infinite-dimensional, affine algebraic group in the sense
of Safarevic [20] with Lie algebra q1. For a proof, see [14, §4].
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1.10 Notation. Throughout the paper, unless otherwise specifically stated,
all the vector spaces will be over C; linear maps will be C-linear maps; tensor
products and exterior products will be over C. For two vector spaces V and W,
Hom(F, W) would mean Homc(F, W). The q-module maps between q-
modules V and W would be denoted by Homq(F, W). A(V) denotes the
exterior algebra.

For a Lie algebra pair (q,z) and a (left) q-module X: (1) Λ(q,z, X') will
denote the standard chain complex associated to the pair, with coefficients in
the right module X\ We follow the sign convention as in [6], (X* is the right
q-module, whose underlying space is X and on which q acts by the rule
x b = -b x for all b e q and x e X)\ (2) C(q,z, X) will denote the stan-
dard cochain complex associated to the pair, with coefficients in X. (see, e.g.,
[9, §1]).

Λ(q, 0,X') (resp. C(q,0,X)) will be abbreviated to Λ(q, X') (resp.
C(q, X)).

For a Lie algebra q, ί/(q) denotes its universal enveloping algebra.

2. Computation of the Laplacian for some "nilpotent" Lie algebras

with coefficients in a quasi-simple module.

Let A = {fl/yji^i y ̂ / be a symmetrizable generalized Cartan matrix and S a
subset of (1, •,/} of finite type. We have defined q = q(A), p,u,u~ and r in
§§1.1-1.3. Let L(λ0) be the quasi-simple q-module with highest weight λ0 (see
§1.8). This admits a k = { x E q : ωo(x) = x} (ω0 is defined in §1.5) invariant
positive definite Hermitian form. This result is due to Garland [22, §12] in the
affine case. The general case is similar and is due to Kac-Peterson. We fix one
such. Then, there is a canonical Hermitian form { , } on Λ(u~) ® L(λ0).

Let 3: Λ(u~) <8> L(λ 0) -> Λ(u") ® L(λ 0) be the differential (of degree -1)
of the chain complex Λ(u~, L(λ o) r) Denote the adjoint of 3 with respect to
{ , } by 8*. Existence of θ* will be clear when we come to the proof of the next
theorem. (Notice that Λ(u~) Θ L(λ 0 ) is not complete!)

Since [r, u~] c u~, the reductive Lie algebra r acts on u~ by adjoint action
and acts on L(λ 0 ) as restriction and hence Λ(u~) Θ L(λ 0 ) is an r-module. It is
easy to see that 3 is an r-module map and hence so is 3* (use k in variance of
{ , }; see §1.6). Define the Laplacian, as usual, by

Δ = 33* + 3*3.

Λ(u~)®L(λ 0) decomposes as a direct sum of finite-dimensional irreducible
r-modules (see, e.g., [6, Proposition 6.3]). Now, we can state the main theorem
of this section.
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2.1 Theorem. Let q = q(^4) be the Kac-Moody Lie algebra associated to a

generalized symmetrizable Cartan matrix A = {ctij)ι^i 7 < / and let S be a subset

of (1, •,/} of finite type. Let L(λ0) be the quasi-simple q-module with highest

weight λ 0 . Then, with the notations as above, the action of the Laplacian Δ on

Λ(u~, L(λo)
{) is as follows.

Let Wβ be an irreducible x-submodule of Λ(u~, L(λ0Y), with highest weight β,

then Δ reduces to a scalar on Wβ and the scalar is ^[σ(λ0 + p, λ 0 + p) —

σ(β + p,β + p)].

The bilinear form σ on h* and p are defined in §§1.6 and 1.7.

2.2 Remark. Following is an equivalent reformulation of the theorem,

which seems interesting.

Extend the r-module structure onΛ(u~) ® L(λ0) to a p-module structure by

letting u act on Λ ( u ~ ) ® L ( λ 0 ) as the identically zero homomorphism. Con-

sider the tensor product U(q) ®J(p)[Λ(u~) ® L(λ0)] ( ® ' is to distinguish

the (7(p) action on Λ(u~) <8> L ( λ 0 ) , just given, from the £/(p) action on

Λ ( u ~ ) ® L ( λ o ) « Λ(q/p) ® L(λ0) used frequently in the sequel). It may be of

interest, at this point, to see [6, Proposition 6.4]. Of course, ί/(q) ®^(p)[Λ(u~)

<8> L ( λ 0 ) ] breaks up as a (possibly infinite) direct sum of highest weight

modules. Now, an equivalent reformulation of the theorem is

2Id β'Δ = -Γ ( r ( q ) β , ( p ) [ Λ ( u - ) β £ ( λ o ) ] ) + Id ®'(ld ® Γ2 ( λ o ) ),

as maps from

In the case when L(λ0) is the trivial module C, it says that 2Δ is "essen-

tially" negative of the Casimir operator.

2.3 Corollaries, (a) As the most important corollary of the above theorem, one

recovers the following important theorem of Garland-Lepowsky in full generality.

Theorem [6, Theorem 8.6]. With the notations as in Theorem (2.1), the jth

homology space Hj(u~, L(λ0Y) is finite dimensional and when equipped with the

standard r-module action, it is naturally r-module isomorphic to the direct sum

Σ M(w(λo+p)-p)
i v e d j with
length w —j

of inequivalent irreducible r-modules. Actually, for any w Φ wf e Wg, the irre-

ducible modules M(w(λ0 + p) - p) and M(w'(λ0 + p) - p) are inequivalent.

(See §§1.4 and 1.6 for the definitions of Wg, length w and p. Further,

M(w(λ0 + p) — p) is the finite-dimensional irreducible r-module with highest
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weight (w(λo + p ) - p ) , which remains irreducible as a q^-module as well.

See, for more details, [6, Proposition 3.1].)

In fact, the chain complex Λ(u~, L(λ0Y) decomposes as the direct sum

of two subcomplexes B = ΣJ>0Bj and B' = ΣJ>0Bj, such that d\B is identi-

cally zero; H*(B') = 0 and Bj can be taken to be the sum of all the

irreducible r-submodules M(λ) of Λy(u~, L(λ0Y) = Λy(u~) ® L(λ 0 ) such that

σ(λ + p,λ + p) = σ(λ 0 + p, λ 0 + p) (with λ e h* satisfying λ(λf-) e Z + for

all i e S).

Of course, as is well known, HJ(u~, L(λ 0 )*) is canonically isomorphic with

the contragredient r-module Hom(///(u~, L(λ 0 ) ' ) , C).

Proof (of the corollary). Define B = kerΔ and Br = ImageΔ. Then, of

course, 3 | β = 0 and H*(Bf) = 0. The expression for Δ, stated in the theorem,

gives that Bj is the sum of all the irreducible r-submodules M(λ) of A7(u~) ®

L ( λ 0 ) such that σ(λ + ρ,λ + p) = σ(λ 0 4- p, λ 0 + p).

Hence, Hj(u~9 L(λ0Y) « Hj(B) » £,. Now using [6, Propositions 8.3 and

8.4], the corollary follows.

(b) One can specialize Theorem (2.1) to the case when S = 0 (50 ί/zύtf

u ~ = n~), to get the action of the Laplacian Δ on Λ(n", L ( λ 0 ) ' ) .

(c) O/?e c<2H specialize Theorem (2.1) /o //ze cα^e w/ze/i 4̂ w « standard affine

Car tan matrix, p w the standard maximal F-parabolic and λ 0 = 0 (50 /Aα/

L(λ0) = C) to recover Garland[5, Theorem 2.5].

(d) JJ^eH we specialize Theorem (2.1) to //ze awe w/ze« 1̂ w a classical Cartan

matrix of finite type, we recover Kostant's one of the main theorems [16, Theorem

5.7].

Now, we come to the proof of the theorem. Throughout the proof, we write

L for L ( λ 0 ) . Fix an orthonormal (with respect to the positive definite

Hermitian form) basis {yφ}φ€Ξr (respectively {va}aeΓ) of u~ (resp. L), consist-

ing of weight vectors, and define xφ = -ωQ(yφ). Clearly {xφ}φ€Ξί is an

orthonormal basis of u. Further, (xφ, yφ) = δψ φ (the Kronecker delta). Choose

any C-basis {hm}m(Ξj of r, consisting of weight vectors, and let {A*} m e / be

the dual basis, with respect to ( , ), of r, i.e., \hm, h*/ = Sm n for m, n e /.

Of course / is finite. Throughout; the symbols φ, φ, γ (resp. m,ri) (resp. a, b)

would be assumed to run over I (resp. J) (resp. / '). For later purposes, we well

order /.

Since q = u~Θ p (see §1.3), u~ is canonically isomorphic (as r-module) with

q/p. So, the adjoint 3*: Λ(u") Θ L -> Λ(u~) ® L can be thought of as a map

(again denoted by) 3*: A (q/p) ® L -> A(q/p) <8> L.

We have the following (observe that q/p, and hence A (q/p), is a p-module

under the adjoint action).
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2.4 Lemma {Expression for 3*). For Y e Λ(u~) and v e L,

φ

(Since (ad x φ ) y 0/?<i xφf are zero for all but finitely many φ's, the above

expression makes sense.)

Proof. Define two operators 3X and 32 (of degree -1): Λ(u~) Θ L -> Λ(u~)

® L, by

3i( JΊ A Λ ^ ® ϋ) = 3u-( j x Λ -- Λys)®υ

(where 3U is the differential of the chain complex Λ(u~, C)) and

d2(yλ A ••- Λys®υ)= £ ( - l Π j Ί Λ Λ yp Λ ••• Λ ^ ) ® ^ , ϋ ,

for^ j ,ys e u~ and v ^ L.

By definition 3 = 3X + 32. Clearly,

= 2 Σ {[^ψ, y], yφ}yΨ

 Λ JΦ ( f r o m q-invarianceof ( , ))

Consider the operator θ: Λ(q/p) -> Λ(q/p), defined by

ad xφ(Y), for 7 e Λ(q/p).

It is easy to see that β is an antiderivation (of degree +1). Also, (3U-)*

can be seen to be an antiderivation: Λ(q/p) -> Λ(q/p). Hence (3U)*7 =

- i Σ φ yφ Λ ad xφ(Y) for all Y e Λ(q/p). So we have

A adxφ(Y)®v fo r7GA(q/p)andι ;GL.
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Now, we seek an expression for 9*.

d%(yι A ••• Ays® v)

Σ { Λ Λ ••• Ays®υ,d2(yψι A ••• Λ j φ + i ®va)}

^ x λ fle/'

> Λ

(-1) 5 + 1

7^7 Σ Σ { J Ί Λ •• Λ Λ , 7 φ i Λ -. Λ ^ Λ

(from the k in variance of { , } on L)

s\
Σ Λ , Λ

 Λ
 Λ Λ

So

( I 2 ) Θ2*(Λ Λ Λ ys β ϋ) = - Σ yΨ A Λ Λ Λ Λ (8)

for j>x Λ Λ ys e Λ5(u~) and υ G L.

Adding (I x) and (I 2 ) we get the lemma.

We extend the operator 3*: Λ(q/p) <S> L -> Λ(q/p) <S> L to the operator

Id <g> 9*: ί/(u") <S>c[Λ(q/p) Θ L] -^ ί/(u~) ® c[Λ(q/p) ® L]. Since the canoni-

cal map U(u~) <8>c[A(q/p)<8> L]^> U(q) ®U(p)[A(q/p) ® L] is an isomor-

phism (the p-module structure on Λ(q/p) <S> L is just the tensor product

module structure), we get an operator (of degree +1)

3*: 1/(4) ®U(p) [Λ(q/p) ® L] -* £/(q) ® ̂  [ A(q/p) 0 L ] .

Caution. 3* is, in general, not a ί/(q)-module map, but it is indeed a

ί/(u ~)-module map.



GEOMETRY OF SCHUBERT CELLS 401

We further describe a differential 3 of degree -1 on U(q) ®U(p)[A(q/p) <8> L].
For any Lie algebra pair (b, a), there is a standard (b, a) free resolution of the

trivial one-dimensional b-module C as follows (see [2, §9]).

• - ί/(b) β ^ Λ ' ί b / a ) ^ • • -> ί/(b) β ^

εo

On tensoring this resolution with any b-module F, we get a resolution (of the
b-module V)

a, old

*™[ t/(b) 0 ^ ( a ) Λ ° ( b / a ) ] Θ C V*™ K - 0.

Now, by using the Hopf algebra principle as given in [6, Proposition 1.7], we
can identify (as b-modules)

t
U(b) β ^ j Λ ' ί b / a ) ® C F] - [ί/(b) Θ^A^b/a)] ® C F.

(We will describe ψ in the next lemma.)
Define a differential 35 (abbreviated to 3 in the sequel): U(q) ®υ{p)[As(q/p)

0 L] -* ί/(q) ^(/(^[Λ^^q/p) ® L], by 35 = ψ-χ(35 Θ Id)ψ. Of course, 3 is a
q-module map. (Here we have substituted q, p and L for b, a and V
respectively.) The following lemma describes 3.

2.5 Lemma.

>(Y® υ)) =A ®(3

for A e U(q), Y = yλ A Λ ys e Λ5(u") α«J i; e L.
Here 7 ( / > ) denotes j x Λ Λ yp A Λ ys and 3u-(7) is the differential of

Y in the chain complex Λ(u~, C).
Proof. Let us recall the expression for ψ and ψ"1 from [6, Proposition 1.7]:

® ( 7 ® ϋ)) = Σ ( A , ® I") ® ̂ 2 ^ ,
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for A e £/(q), Y e Λ(q/p) and ϋ e L. Here Δ(Λ) = ΣnAln ® Λ 2 n is the

diagonal map: £/(q) -> ί/(q) <S> £/(q) and Γ is the unique anti-automorphism:

U(q) -> ί/(q), which is -1 on q.

Using these expressions for ψ and ψ"1, the lemma is easy to prove, q.e.d.

Define A = 33* + 3*3. Δ is an operator of degree 0 on U(q) ®ί/(P)[Λ(q/p)

0 L ] . Now, using Lemmas (2.4) and (2.5), we get the following expression (all

the expressions are in the space ί/(q) ®£/(P)[Λ(q/p) ® L])\

2 Δ ( 1 Θ 7 ® ί;) =

+ 23*11 ® 3 u -(y) ® i;

I /> = !
+ Σ

for y = yλ A • A ys G Λ5(u") and e; e L. (y ( / 7 ) is defined in the statement

of Lemma (2.5)).

Again applying Lemmas (2.4) and (2.5) and cancelling, we get the following

lemma.

2.6 Lemma. For Y = yx A Λ ys e Λ5(u~) and υ e L,we have

2Δ(1 ® y ^ ί ; ) = Σ [ 2 ® ( a d ^ ) y ® j c φ ϋ - l ® 8 u - ( ^ φ Λ ( a d j c φ ) y ) ® ι ;

- 1 ®yφA ίidxφ(du-Y)®v

- 2yφ ® y <δ> xφί; + 2 (8) y <S> 7 φ x φ y

+ Σ ( - I ) ^ ^

+ Σ (-i)p+ι[χΨ,y
p=l

-yφ®(aάxφ)Y® v

where [xφ, yp]_ denotes the image of [xφ, yp] under the canonical projection

q = u ~ θ p -^ u".
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Proof. The lemma can be easily checked, using the well-known (and easy

to verify) relation

(I3) du (y A Y) + y Λ 3 u -(y) = -(ad y)Y fory e u~ and Y e Λ(u~).

q.e.d.

Let us specialize the above lemma to the case when L is the one-dimensional

trivial module C. Let us denote the Laplacian in this case by Δo. Then we have

2Δ0(i ® y) = Σ [ - i ® K-{yΨ

 Λ ^Xφ(γ)) -yφ ®(adxφ)y
ψ

for y = j ; χ Λ Λ ̂  e Λ5(u~).

We have the following, slightly simpler, expression for Δ o .

2.7 Lemma.

2A0(i ® y) = Σ (-2)y9 ® ad * φ (y) + f (-1)'+ 1 ® F ( ^ ) Λ

(//i t/(q) β ^ A ί q / p ) ) for Y = y, A • • • Λ y, }

«r^ defined just before Lemma (2.4)). The operator F = i^: u~—> u~ w defined by

F{y) = Σφ(Ξί[yφΛxφ, y]-]fory e u~.
Remark. We would describe F more explicitly in Proposition (2.10).

Proof.

φ p = \

= ΣΣΣ(-i)'+ 1{K
φ /? φ

= Σ Σ Σ ί - i ) ^ V Φ ® { φ » ^ } φ
Φ P Ψ

= Σ t (-lΓV*«U.*J.Λl r ( " (bytheinvarianceof{ , }),

Σ Σ (-1
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((ad xφ) Y is to be inteφreted as an element of Λ(u ) « Λ(q/p)).

Φ P

Φ P

+ ΣΣHΓ'«
Φ p

So, using the definition of F, we get
s

YJ 1 ® ad v> (ad x^Y) = T*

ad;v(y<'>).

Φ P

Now we seek an expression for 8u~(ad x φ 7 ) - ad ;cφ(3u-(y)). We have

described an operator 9 (of degree -1) on U(q) ® U{p)[A(q/p) <S> L], just before

Lemma (2.5). Let us specialize to the case when L is the one-dimensional trivial

module C and denote the operator 9, in this case, by 90. Since 90 is a

£/(q)-module map,

3 0 ( l ® a d x φ ( Y ) ) = x φ . 3 0 ( l ® Y)

(by Lemma (2.5)).

Further, it is easy to verify that the following diagram is commutative

Γ 1 Id<8>30

ί/(q) ® Λ(q/p) >C (
J

TS
Λ(q/p)

t/(q) ® Λ(q/p)
t/(p)

TS
Λ(q/p)

(The vertical map is Y ^> 1 ® (1 Θ y).) Hence

+ adx φ (3 u -(y)) inΛ(ι r ) .
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Finally,

φ m

Ψ Φ

m φ

Φ Ψ

= - Σ ad hjyp) A ad h*(Y<»>) - Σ ad yφ(yp) A ad xφ

Now Lemma (2.7) follows by substituting the identities (I3) and (I5)-(I8) in
(14), along with the (trivially verified) identity

D-l

p = \

£ (-1)' 0 ad ^ ( ^ ) Λ ad x9(YM) = 0.

q.e.d.
We have two expressions for 2ΔO(1 ® 7), one given by the identity (I4) and

the other by Lemma (2.7). Equating these two expressions, we get the identity

Σ [-1 ® 3 U - U A ad xφ(Y)) -yφ®ad xφ(Y)

Σ

Oio)

valid in
L.

^φ Λ adx φ (3,-y)| β B

c^> where 7 = ̂  Λ Λ5(U ) and υ
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Taking ψ"1 (see the proof of Lemma (2.5)) of both the sides, we get the

identity

(In) hi = ψ-'Uio) v a l i d i n £/(q) ® [Λ(q/p) ® L],
ί/(P)

We prove the following lemma, which would be used to simplify the

expression for A.

2.8 Lemma.

Proof.

Λ*ι;, m ί/(q) (g) [Λ(q/p)®L],
ί/(p)

= yλ A - - A ys G Λ5(u~) am/ υ ̂  L.

φ /?

+

+

Σ
Ψ

P

Σ

Σ
ψ

Σ
P

φ

Σ
P

Σ
p

Σ
<P

Σ
Φ

Σ
m

( -

/? φ

= £[-18 ad^(y)βxψi>- 1

Now, the lemma follows.
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Substituting the identity ( I n ) in the expression of 2A (as given in Lemma

(2.6)) and using Lemma (2.8), we get (after cancellation)

2Δ(i ® Y ® ϋ) = Σ [-2yΨ ® γ ® χφ» - 2yΨ ® a d χ

Ψ(γ) ®«>]

(I12) 2 ® Y (-1)
p+\

Σ Σ (-l
m p=l

for Y = yλ Λ Λ >>5 e Λ5(u~) and ϋ G L.

The following lemma, which relates Δ and Δ, is easy to prove

2.9 Lemma. Δ: £/(q) Θ^(p)[Λ(q/p) ® C L] -> l/(q) ^ ^ ( p )

U(μ~)-module map and the following diagram is commutative.

Λ(q/p) (8) L
c

-Λ(q/p) ® L
c

C <g> fί/(q) <g) [Λ(q/p) ® L]\ ^ C <g) l/(q) ® fΛ(q/p) ® L ]
/7(u~) [ t/(p) J Id®Δ ^/(u) (7(p) L C JJ

Here the vertical map is the canonical map given by

Assuming the next proposition, we are in position to complete the proof of

Theorem (2.1).

Using the above Lemma (2.9) and the identity (I1 2), we get

(In)

2Δ(Y® υ)

= Σ 2Y ® yφxφv + Σ (-l)P+1F(yp) A
φ /7 = 1

+ Σ (- l) 'ad hm(yp) Λ ad o - 2ad Am(y) ® A>

J
(continues)
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φ p = l m

+ Σ Σ (-l)'ad hm(yp) Λ ad A*(7 (") 9 υ - Σ ad hjY) 9 h*mυ

hmυ-Σ ad h*m ad hm(Y) 9 v - Σ Y ®
AW m AW

+ £ ad hi ad ΛM(y) ® v + Σ Y ® h#mhmυ.
m m

(By the next Proposition (2.10) and using Σm ad hm{Y) 9 h#υ

The above sum reduces to

Σ 2Y 9 yφxφυ ~Σ^hZ ad hm(Y) 9 υ - Σ ad Λ* ad ΛM(7 β ι;)

= Y®Tv- Γ(Y®v),

where Γ (resp. ΓΓ) is the Casimir operator for q-modules (resp. r-modules), as
defined in §1.7, with respect to the (already fixed) nondegenerate symmetric
form ( , ) on q (resp. the restricted form on r). Here, we are using the
well-known fact that ΓΓ = ΣmeyΛ*Λm.

Since v e L(λ 0), T(v) = [σ(λ0 4- p, λ 0 + p) - σ(p, p)]υ and for

(see §1.7, last paragraph). So the proof of the theorem is complete modulo the
next proposition.

We come to the following proposition, which seems interesting on its own.
2.10 Proposition. F(y) = -Σm € Ξ /ad /z* ad hm(y) for all y <= u~, where

F{y) = Fs(y) = Σφ[yφΛxφ, y]-] {see Lemma {2.1)).
Proof. First, we assume the proposition for the case S = 0 and prove it

for all the subsets S of finite type.
The maps Fs and Σ ad A* ad hm are both r-module maps: u~-^ u~ (F s is an

r-module map, can also be seen by observing that Fs = 2Δ0: u ~ ^ u", see
(I13)). So, to prove the above proposition, it suffices to prove that Fs{y) =
-Σ w ad A* ad Am(^), for^ a highest weight vector with respect to the action of
r (with weight -/?). It is easy to see that, for any such y9 Fs{y) = F0{y)
{F0 corresponds to the case when S = 0). But

F0{y) = -[°(~β + P, -i8 + p) - σ(p, p)] ^,
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(since we have assumed that the proposition is true in the case S = 0).
Further, Σm ad /** ad hm is the Casimir operator ΓΓ and hence

Σ ad hi ad hm(y) = [σ(-β + p, -0 + p) - σ(p, p)] ^.

(See just before this proposition.) This completes the proof of the proposition
for all the subsets S of finite type, assuming the proposition for the case
S = 0 .

We come to the case 5 = 0 . We need to prove that

Fφ(y) = -[σ(-j8 + p,-jβ + p) - σ(p, p)] y fory e q^with j8 e Δ + .

We prove this by induction on \β\ = Σ W,, where β = Σw^,, It is indeed
true for simple roots αf , as σ(p - α;, p - αf ) — σ(ρ, p) = 0 (see §1.6).

Assume, by induction, that it is true ίoτ y e q_ .̂ We want to show that it is
true for [/.;, y] for any 1 < /0 < /. For notational convenience we take i0 = 1.
We can assume, without loss of generality, that β Φ av

For a root a = Σ n ^ , we denote a = Σ/ > : L n^- (ά may note be a root). By
the αΓroot string through α, defined Φα, we mean (α + Zax} Π Δ. Φα is finite
[6, p. 49]. If a e Δ+ with α ¥= 0, clearly, we have Φα c Δ+. Define the operator

fφa- q -> q by

/Φo(j)= Σ Σ
γ e Φα / = 1

where {Xγ,- -,x"(y)) is an orthonormal basis of q γ and yι

Ί = -ωo(xι

y) for all
1 < / < «(γ). The operator fφ commutes with the adjoint action of the
Lie-subalgebra generated by [eλ, / l 5 /z^, on q (see [6, proof of Proposition
4.2]). We denote Δ + + = {a e Δ + : a Φ 0}. Two roots α, a! e Δ + + are called
equivalent (denoted a - a') if Φα = Φα>. Clearly Φα c Δ + + for a e Δ + + . Now,
we have

FΦ(y)= Σ

+ Σ
i = \

for j e q_^ with any β = Σ m / α , e ^ + + , where δ is the Kronecker delta and
the last term is to be interpreted as 0 if /? - aλ £ Δ+.

The proof of this identity is easily checked, keeping in mind:
(1) If a = Σ β l niai e Δ, then either all wf. > 0 or all wf < 0, and
( 2 ) Z α 1 n Δ = {+«!}.
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Applying the identity (I14) to F0[fv y] and F0(y), we get

= Σ ^ V
α e Δ + + /
with α <

+ Σ - Σ
with a < β

- Σ

Since/φ commutes with the action of/l5 we have

+ Σ

ι,y

/i, [/i. [^i,

-as y

n(β)

- Σ

Finally, we prove the following identity.

n{β-aγ) n(β)

y\]\ - Σ

Since [x^_O], ^] e q.α |, we have
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So, substituting, we get

n(β-<*ι)

Σ
niβ-eti)

fu Σ

Exactly, similarly, we have

n(β)

Σ
7 = 1

>i./i)

Substituting (I 1 6 ) in (I 1 5 ), we get

lfι.1

Ί » Jl/

[fi,[hi,y]\ =

(since, if/rjj = 0,

fι,y],

= 0)

p,-β + p)- o(-β - β l + p, -β - a, + p)][/ χ, y].

By induction hypothesis, F 0(^) = -[σ(-β + p,-β + p) - σ(p, p)]y and
hence, by (I1 7), the proposition follows.
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3. Disjointness of d and 9.

Let q = q(A) be the Kac-Moody Lie algebra associated to a symmetrizable

generalized Cartan matrix A = (aiJ)1<iJ^j and let S be a subset of {1, •,/},

of finite type. Recall the definitions of u, u~, r and p from §1.3. Also recall

from §1.10; C(q, r) denotes the standard co-chain complex, with differential d

(of degree +1), associated to the Lie algebra pair (q, r) with trivial coefficients.

More explicitly, C(q, r) is defined to be Σ 5 > 0 Horn r(Λ5 (q/r), C) (r is acting

trivially on C). Extend d to a derivation d of Σ 5 > 0 H o m c ( Λ 5 ( q / r ) , C), as

follows.

Since q/r can be canonically identified with u θ u", the projection q -> q/r

has a canonical splitting θ. Define d as the composite of

Σ [Λ*(q/r)] -» Σ[Λ*(q)]* - Σ[Λ'(q)] - Σ[Λ'(q/r)] ,
s>0 s s s

where the first map is the canonical inclusion, d is the differential of the

cochain complex Σ[Λ5(q)]* and Ω is the projection induced by the splitting θ.

Caution! d, in general, is not a differential.

We have the canonical decomposition

[Λs(q/r)]* = Σ

In the sequel, we denote Homc{Ap(x\) ® Λ*(u~),C) by Cp'q\ H o m ^ Λ ^ u ) <8>

Λ«(u-),C) by C?^ and put Cs = Σp + q.sC™', Cs = Σp + q=sC^^ so that

Cs = Cs(q, r) (in the earlier notation).

It is easy to see (by using, just, the definitions) that d(Cp'q) c Cp + ι'q θ

Cp*q+ι. Define d'\ Cp*q -> Cp + hq to be the projection of d on the first factor

and d"\ Cp'q -> Cp'q+ι to be the projection of J o n the second factor.

Similarly, we define 5r and 3" as follows. Put a Lie algebra bracket on

u θ u ' b y demanding [u, u~] = 0 and brackets in u and u " are the ones coming

from the brackets in q. Let 90 denote the differential (of degree -1) of the chain

complex Λ(u θ u~). Using the nondegenerate form ( , ) on q (described in

§1.6), we canonically embed

(*) e = e( f > : £ Λ5(u Φ ι T ) -• £ [Λ5(u Φ U " ) ] * .

Further, we topologize Cs = Hom c(Λ 5(u Φ u"), C) by putting the topology of

pointwise convergence, i.e., /„ -> / i n Cs if and only if fv(υ) -^ f(υ) in C (with

the usual metric topology), for all v e Λ5(u θ u~). It is easy to see that C\

with this topology (we would not be considering any other topology on Cs), is

a complete, Hausdorff, topological vector space (see [4, Proposition 15.20]).

Moreover, e(Λ5(u Φ u~)) can be seen to be dense in Cs.
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30 can be extended (uniquely), under the identification (*), to a continuous

map 3: Cs -> C s l . Further, d(Cp'q) c Cp~1^ θ C™" 1. Define 3': C™ ->

Cp~ι*q (resp. 3": C™ -> Cp'q~ι) to be the projection of 3 on the Cp~hq (resp.

C™" 1 ) factor.

Of course, all the d, 3, d\ d'\ 3' and 3" are continuous and r-module maps.

Define d, 3, </', d"', 3' and 9" to be the restrictions of d9 3, d\ ά", 3' and 3"

(respectively) to the subspace C(q,r) = Σ ^ C ^ q , ! - ) . We have the following

relations:

(lie) (d'f = (d")2 = 0,

(I 1 9 ) 0 ' ) 2 = (3") 2 = 0.

The relation (I1 8) (resp. (I19)) follows immediately from the corresponding

fact for ί/(resp. 3).

Now, we prove the following

3.1 Lemma. With the notations as above,

3'J" + d"~d' = d"d' + J ' 3 " = 0 on Σ Cs-

Proof. Let b" (resp. V) be the (degree +1) cochain map of C =

ΣΛHom(Λ5(u θ u~), C), considering u θ u~ as a Lie algebra by demanding

[u, u] = 0 (resp. [u~, u~] = 0); [u,u~] = 0 and putting the subalgebra structure

(coming from q) on u~ (resp. u). Define c" = d" — ~b" (resp. c' = df — b'). It is

easy to see that d", b" and c" are all derivations (of degree +1), are

continuous and, further,

(I20) c"(λ) = (-l)T(ad>v)(λ)®>V* forλeHom(Λ»,C),

= 0 forμ

Here y* denotes the element of Hom(u~, C) defined by y*(yφ) = δφ φ for all

φ , φ G /({ ̂ φ}φ G /is defined in §2) andu~θ r acts on

H o m ( Λ ' ( q / ( ι r θ

under the adjoint action ( u ' θ r derives its Lie algebra structure from q) (see,

just before Lemma (2.4)). (For a fixed element u e Λ^(u) 0 Λx(u"), [ad yψ(λ)

® y*]u = 0 for all but finitely many φ G / , hence the expression Σ ad >>φ(λ) ®

y* makes sense.) Since c" is a derivation, we have by (I 2 0) and (I2 1),

( I 2 2 ) c"(\ 0 μ) = (-1)P Σ (ad yψ)(λ) β ^ Λ μ
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for λ e [Λ^u)]* and μ e [Λ^(u")]*. Further, the following identity is easy to
see.

(I 2 3 ) 3'fc" + £"3' = O onC 5 .

Moreover, by (I2 2) (for Y e Λ^(u~) and ju e Hom(A«(u~), C))

θ'c" + c"~d'(e(Y) ® μ) = (-l)p~d'Σ [ad yφ(e(Y)) ® >£ A μ]

(sincee(Y) e Hom(Λ*(u),C))

(by the continuity of 3')

by using the invariance of e and the definition of d'. But 30(ad yφ(Y)) =
ad^ φ (3 0 (r)) (as is easy to check), hence d'c" + c"d'(e(Y) ® μ) = 0. By
continuity, we get

(I 2 4 ) a^ ' + c ' ^ ' ^ O onC 5 .

Adding (I 2 3) and (I2 4) we get d'd" + d"%' = 0. Exactly similarly we can
prove the other half, q.e.d.

Now, we can state one of the crucial propositions of this section.
3.2 Proposition. The map //(kerθ', d") -> i/(C(q,r), J r/), induced by the

inclusion 6>/ker 3' in C(q, r) w an isomorphism.
Observe that ker 3r is c/" stable, by the previous lemma.
Proof. For a = Σniai G A U {0}, define \a\ = \a\s = |Σ l ί 5 Λ / | . Further,

define

Λ5

α-)(u-) = Σ q-ft A Λ q_ f t c A J(u")
all^eΔΛΔ^

satisfying

(Δ5

+ is defined in §1.3). Put Λ(A)(u~) = Σs>0A\k)(u-). By [6, Proposition (5.4)],
each Λ5

(A)(u~) is finite dimensional and, of course, As

(k)(u~) = 0 for s > k.
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Denote

Fm = Σ H o m U » ® Λ^(u-)/ Σ Λ*(u) 0 Λ^(u-),c) - C(q,r).

(By definiton of | |, Λ5

(/:)(u~) is an r-module.)

We have the filtration

since, for α, β, α + /? e Δ U {0}, |α 4- β\ < |α| + |/?|, it is easy to see that all

the Fm's are d" closed.

Define Fm = π(Fm\ where π is the canonical projection: C(g,r)->

C(g, r)/ker 9'. This gives the filtration

( j r 2 ) C(g,r)/ker 3' = Fo D FX Ώ F2 D .

Let .fi'/'2'" denote the spectral sequence associated to the filtration (J^2). We

want to compute E^\ By the definition, E^n = Hm+n(Fm/Fm+ι).

Recall that for any a-modules V and W (a is any Lie-algebra), the map ξ:

Hom c (F, W*) -+ [K® ^ ] * , defined by | ( / ) ( ϋ ® w) = /(ϋ)w (for / G

Hom(F, W*), v G Kand w G W )̂, is an a-module isomorphism.

Denote Zp = ker 9' Π C^0. Fm can be identified with

This shows that Fm/Fm+ι can be identified (under the restriction map) with

Σ ^ H o m Λ Λ ^ O O , λp{u)*/ZP). The inclusion A^^u")-> Λ^(ul has a

canonical r-module splitting. This allows us to identify Σ^ ̂

Ap(u)*/Zp) with a subspace of Σp,q Homr(A^(u~),

C(g,r)/ker9 r. Under this identification, Σ^^Hom r (Λ^ m ) (ul, Λ^(u)*/Z^) is

^''-stable. (By (I 2 3), b" descends to C(g,r)/ker 8r.) From the expression (I22)?

c"(Fm) C ^m+l ' h e Π C e C / /(^M) C ^m +

(1 2 5) Hrn(FJFm + ι) - H^n(Fm/Fm + ι).

By the definition of b" and (125), it is easy to see that

(126) £Γ "= Σ [//(%(u-)®Λ»*/Z']r,
/? 4- ςr = m + n

where T/^^u") denotes the cohomology of the complex Σ^Hom(Λ^m)(u"), C).

Consider the embedding eγ\ ΣpA
p(W) -+ ΣpA

p(u)*, given by (eλ(Y))X =

(y, X) for Y e Λ/7(u") and X G Λ^(U). ex is an r-module map and, of course,

3U ) c ΣpZ
p(du- is the differential of the standard chain complex
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Λ(u~, C)). We have the following inclusion

[H<m)(u-) ®(A'(ir)/(ker8 u -n

(**)

Using Corollary (2.3)(a), we see that (**) is an isomorphism and the left side

of (**) is equal to 0 for all m, p and q. So, from (I26)» w e g e t E\*n = 0 for all m

and n. Hence E™*n = 0, as well. In particular, the canonical map H(Fm) ->

i/(C(g, r)/ker 3') is surjective for all m. Using this we want to conclude that

7/(C(g,r)/ker3', d") = 0. F i x / e C ( g , r ) such that </"/eker3 ' . We can

choose/w e Fm such that π ( / , J - π(f) e ^"(CCarJ/ker 3'). By the definition

of topology on C(g, r), it is easy to see that the sequence {/m}w e N con-

verges to 0. Further, in the remark following Lemma (3.8), we prove that

under the quotient topology on C(g,r)/ker 3', d"(C(g,r)/ker 3') is a closed

subspaceof C(g, r)/ker d\ So τ τ ( / ) <Ξd"(C(g, r )/ker 3'), implying that

//*(C(g, r)/ker 3', d") =. 0. Of course, this immediately proves the proposition.

3.3 Remark. Define

Gm = Σ Hom r (Λ"(u) 9 A » ( u - ) / Σ ΛfAi)(u) ® Λ ^ 2 ) ( u " ) ,

It is easy to see that Gm is d-closed and hence we get a filtration

(<c) C(q,r) = Go=) G i D G2 =>••-.

Let E™*n(κ) denote the corresponding spectral sequence. It is straightforward

to see (the computation is exactly similar to the computation of E™-n{ <F2) in

the proof of the previous proposition) that

kι+k2 =

Using Corollary (2.3)(a)and the fact that Hp(Hom(A(kι)(u),C)) is r-module

isomorphic with Hp(A(kι)(u~))y we get E"un(κ) = 0 unless m + n is even. In

particular, the spectral sequence Er

mn(κ) degenerates at the Ex term itself and

hence H\% r, C) is isomorphic (although not canonically) with Σm + n=s E"un(κ).

So

(Λ \ us( r\ /° if ^ is odd,
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Again using Corollary (2.3)(a), we get

d i m c H2p(q, r, C) = number of irreducible r-submodules in Hp(u)

2 8 = number of elements of length p in W$ .

This result is due to Lepowsky, who proved it by a different method (see [8,

Corollary 6.7]). A sharper result is the content of our Theorem (3.15).

We derive the following

3.4 Lemma. d'"d"u e kerθ" for any u e C = C(q,r) implies d"u = 0. A

similar statement is true with " replace by ' throughout.

Proof. Since Aq(u~) = Σk>0A
q

(k)(u~) (recall the notation Λ ( Λ ) (u") from

the proof of Proposition (3.2)), we have

Hom(Λ*(u-),C) = Π ^ 0 H o m ( Λ ^ ) ( u - ) , C ) .

Denote, for any /?, q > 0,

Vq = Π Hom(Λ«w)(u-),C); Vf= Π

= Homr(Λ^(u), VI); C ^ = Homr(Λ'(u),

We prove the lemma by contradiction. Suppose that d"u Φ 0. We can

assume that u is homogeneous, i.e., u e Cp'q+1 for some/?, q. In the sequel, we

would drop superscripts/?, q if no confusion is likely. Let k0 be the minimum

integer such that d"u £ C ^ . Thus d"u = υλ + υ2 with vλ Φ 0 e

Hom r(Λ(u), Λ ( Λ }(u~)*) and v2 G C£Q. This gives

(1 2 9) d"V'u = b"υx + c'^! + d"υ2,

where b"υx e Hom r(Λ(u), Λ ( A . Q ) (U~)*) and, by (I22)5 c"v\ + ^ / / y2 e ^

Further, we prove that b"υλ Φ 0. We define a positive definite Hermitian

form { , } on Λ ( Λ )(u~)* by transporting the Hermitian form { , } from Λ(A:)(u)

under the map eλ(k): Λ(Λ)(u) ^ A{k)(u~)*, where (eι(k)X)Y = (X, Y) for

X e Λ ( Λ )(u) and Y e A{k)(u~). It is easy to see that -b" is adjoint of 3" under

{ , }, i.e.,

(130) {b"fιJ2} = -{fι^"f2}
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By choice, u e Cp'«+1 = Π*Homr(Λ^(u), A ^ i T ) * ) - Define u(ko) to be

the projection of u on the Λ:oth factor. We have, for any X e Λ^u),

(by(i 3 0 ))

(by using d"u = υx + u2, 3"(w(*o)) = (9"M)(* 0 ))

^ 0 f o r s o m e l G Λ ^ u )

(since, by assumption, υx Φ 0).

This establishes b"υx Φ 0. Moreover, by assumption, d"Wu e Ker 3", hence

by (I 2 9 ), 3"</"3"w = 0 = V'b"υx + ϋ, with v e C^ . But a'T/'^ G

Hom r(Λ(u), Λ(Ao)(u~)*), so Wb"υΎ = 0. Again using (I 3 0), we get

{d"b"υλ(X), υλ{X)} = ±{b"υι(X), b"υx(X)} Φ 0

for some X e A^(u), because b"υx Φ 0, a contradiction. This contradiction

arose because we assumed 3"w =£ 0. This proves the lemma.

Define the following operators on C:

5 = dd + 3d, 5' = </'3' + 3'έ/', 5" = d"3" + 3/rί/";

L = bd 4- 3/?, L' = fc'9' + 9'6', L" = ̂ ' θ " -h θ '^",

where 6 is defined as b' + 6".

By Lemma (3.1), we get

(131) 5 = S' + S".

Also, it is easy to prove

(1 3 2 ) L = L' + L".

3.5 Lemma. S' = S" = S/2 as operators on C = C(q, r).

Proof. Recall the map e: Σ5^0Λ
5(u θ u~) -• Σs>0[As(u θ u")]* given by

the nondegenerate form ( , ), defined earlier. Also recall the identity (I3),

applied to Λ(u), which states du(xφ A X) 4- xφ A du(X) = -(ad xφ)X for any

X e Λ(u) (xφ, yφ are defined in §2). Applying the map e, we get

(133) 9"U* Λ e(X)) +y; Λ 3"(e(*)) = -{^xφ)e(X).

(For the notations^* and ad xψ(μ), see the proof of Lemma (3.1).)

Using the expressions (I 2 2) and (I 3 3), we get

(13 4) (3T + cwϊ")(e(y)βe(ί)) = - Σ
φε/

for F e Λ*(u") and X
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Exactly similarly

(3'c' + crd')(e(Y) ®e(X)) = -Σ ad yφ(e(Y)) ® ad xφ(e(X)).
φG/

So, by continuity, we have

(I 3 5) d'c' + c'3' = 3"c" + c"3" on C.

Further, we show that L' = L" on C. To prove this, we use our Theorem

(2.1) in the special case when L(λ 0) is the one-dimensional trivial module C.

For y e Λ^u") and X e Λ*(u), using the analogue of (I3 0) for (6", 3")

replaced by (&', 3'), we have

(87/ + 6'8')(e(Γ) ® e(X)) = (3'ί/ + 6'3')(e(y)) ® e(X)

where Δu is the Laplacian, operating on Λ(u~), as defined in §2.

So, using Theorem (2.1), we get

(3'&' + ϊ'3')(

for y e ^ c Λ^(u~), where Wβ is an irreducible r-module with highest

weight β.

Exactly similarly

$"b" + b"l"){e{Y)*e{X))
1 3 7 J = -έ[σ(p, p) - σ(jB' + p, )8' + p)] e(7) ® e( Jf),

for ^ e H o m ( ^ , C ) c Λ (̂u).
(I3 6) and (137), put together, give (using continuity)

(I 3 8) Vb' + fe'3' = 3//6// + fc"3" on C = [C] r.

Adding (I3 5) and (I38), the lemma follows.

3.6 Definition. Following Kostant [16, §2]; two operators d, 3: C -* C are

called disjoint if the following holds.

(1) ddX = 0, for any I e C , implies 3X = 0 and

(2) ddX =0, for any I G C , implies <£T = 0.

Now, we are in position to prove the following

3.7 Proposition. d\ 3': C -> C are disjoint. Similarly d"^"\ C ^ C are

disjoint.

Proof. We would prove disjointness of d", 3" (disjointness of d\ 3' is

similar). By Lemma (3.4), it suffices to show that d"d"u = 0 implies d"u = 0.
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Clearly S"d"u = 0. But Sr = S" (Lemma (3.5)), hence (d'd' + dfV)d"u = 0.

Again using Lemma (3.4), this gives d'(d"u) = 0. By Proposition (3.2), d"u =

d"υ for some v e ker 3'. Further, c" (ker 3') c Image 3'. (This is easy to see,

using the identity (I 2 2) and the following analogoue of (I3 3)).

8'(JC; Λ e(Y)) + x% Λ 5'(e(y)) = -ad j>φ(e(Γ)), for Y e Λ(u").

Hence d"?; = £"*; + c"ϋ e ImZ?" + Im3'. From the classical Hodge decom-

position, since, by (I 3 0), -b" is adjoint of 3" with respect to a positive

definite Hermitian form, Im L" = Im b" θ Im3". So rf"ϋ e Im £" + Im3' c

Im L" + Im L' = Im L", by (I 3 8). But by assumption Wd"υ = 0, so that

d"υ e l m L" Π ker 3r/ = Im3", i.e., d"u = rf"u = d"θ for some fl e C.

Lemma (3.4) gives 3r/^ = 0, proving the proposition.

3.8 Lemma. kerS θ Im S = C.

/VΌO/. By the disjointness of dr and 3', kerS' Π Im S' = (0). So, by

Lemma (3.5), kerS Π Im S = (0).

In the case C is finite dimensional, the lemma is immediate from dimen-

sional considerations. For infinite dimensional C, we need to do more work.

By the classical Hodge decomposition, L (= 2Z/) | I m L : Im L -» Im L is an

isomorphism. Let M denote its inverse. Define two operators M, Λ: C -> C by

For any fixed w e C and ^ e Λ(u) <S> Λ(u~), there exists j0 = jo(a) such that

(Rju)a = 0 for ally ^ j0. To prove this, observe

(1) Homr(Λ#(u), Hom(Λ ^(u"), C)) is stable under 3", b".

(2) c"(Ct) c C^+x (use the identity (I2 2)). (See the proof of Lemma (3.4),

for the notations.)

So, for any given k, (Rk + ιu) e Q 1 , hence (Rju)a = 0 for all sufficiently

largey. In particular, for any u e C, Σ y > 0(Λ yw) converges in C. (C is given the

subspace topology from C.)

Now ML\lmL = I d | I m L , hence MS\lmL = lά\lmL - R\lmL. Further, it can

be seen that Im L is closed in C. Hence (ΣJ>0R
J)(lm L) c Im L. This gives

that MS| I m L = Id - R\lm L: Im L -> Im L is an (onto) isomorphism. So

In particular (observing that ker L c Ker 3, from the Hodge decomposition

for the operator L) C = Im d + ker 3, hence ker d c Im rf + ker 5*. So

rr/^ i\ kerJ I m d + k e r S ker 5

Im d \md ker S Π Im rf "
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Hence dim H\C, d) < dim(kerSΊc,). By Remark (3.3), dim HS(C, d) =
dim HS{C, 3) = dimker(L|cί). But, by (I3 9), dim(CyS(C*)) < dimker(L|c.)
< dimker(5Ίc,).

Since ker S Π Im S = (0), the lemma follows.

Remark. We show that J"(C(g,r)/ker3') is closed in C(g,r)/ker3'
(C(g, r)/ker 3' is equipped with the quotient topology).

Since U and S' both commute with 3', by Lemma (3.5) and identity (I3 8), S
and L both descend as operators on C(g,r)/ker 3'. It is fairly easy to see that
(from the Hodge decomposition with respect to 3' and b') L: C(g,r)/ker 3' ->
C(g, r)/ker3' is an isomorphism. Further, a proof similar to the one given
above (of Lemma (3.8)) implies that S: C(g, r)/ker 3' -> C(g, r)/ker 3' is again
an isomorphism. In particular,

C(g,r)/kerθ' = rf"(C(g,r)/ker3') + 9"(C(g,r)/ker 3').

Let/n e C(g, r) be such that

Lt. d"{ π(fn)) = ττ{f), for some/ e C(g,r)
n —*• o o

= </"(77(g)) + 3r/(τ7(/z)), for someg, h e C(g,r).

Taking ί//r, we get that d"d"(h) e ker 3', i.e., 3 « " ( / / ) = 0. By Lemma
(3.1), we get d"3"(37i) = 0. Using Lemma (3.4), we have 3"3'(A) = 0, i.e.,
d"h e ker 3'. So, Lt.^^^ d'\π(xn)) = d"(π(g)\ proving the assertion.

3.9 Lemma {Hodge type decomposition). Let C be any vector space {not
necessarily finite dimensional) and d,d: C -> C be two disjoint operators such
that d2 = 3 2 = 0. Further, assume that

(*) kerS + ImS = C (where S = dd + dd).

Then the following hold
(l)kerS = ker do ker 3,
(2) kerS n Im S = (0), i.e., C = ker 5 Θ Im S,
(3)ImS = imdΘ Imd and
(4) the canonical maps

ker S -> ker d/lm d and ker S -> ker 3/Im 3

are both isomorphisms.
Proof. Easy to verify.
3.10 Remark. (*) is automatically satisfied if C is finite dimensional and in

this case this lemma is nothing but [16, Proposition (2.1)].
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Now, we are in position to prove the following main theorem of this section.

3.11 Theorem. Let A = (aiJ)ι^iJ^ι be a symmetrizable generalized Cartan

matrix and let S be a subset of (1, •,/}, of finite type. Let C = C(q, r), where

q = g(^4) is the Kac-Moody Lie algebra associated to A, and r = rs is the Lie

subalgebra defined in §(1.3). Then d and 3: C -» C are disjoint.

Of course, (d\ 3') (and (d", 3"))*. C -> C were shown to be disjoint in

Proposition (3.7).

3.12 Remark. This theorem, when specialized to the case when q is a finite

dimensional, semisimple Lie algebra, gives [17, Theorem 4.5].

Proof (of the theorem), du = d'u + 3"w (resp. du = d'u + d"u). By using

Lemmas (3.5), (3.8) and (3.9) and Proposition (3.7), we get du (resp. du) <Ξ Im S.

Now assume that ddu = 0. Then, clearly, du G kerS. But du is seen to

be G ImS. So 3w = 0.

Exactly similarly 3dw = 0 implies du = 0. q.e.d.

Lemmas (3.8) and (3.9) and Theorem (3.11) give, as an immediate corollary,

the following.

3.13 Theorem. Let C = C(q, r) be as in Theorem (3.11). Then, for the pair

(d, 3), the following hold

(l)kerS = Ker</Π ker3,

(2) C = im d θ Im3 θ kerSand

(3) ί/ze canonical maps

φds: kerS -> H(C,d) and ψ9 s : kerS -> //(C, 3)

are Z?o//z isomorphisms.

3.14 Remark. The above theorem is true with the pair (J, 3) replaced by

the pair (d', 3r) or the pair (d", 3").

Let C be a bigraded vector space (i.e. C = ΣpqC
p-q) with an operator e:

C -> C satisfying e2 = 0, of total degree ± 1. Define

( ker e
a G H(C,e) = J ^ ' {a + Ime) Π C^'* ^ 0

H(C, e) is said to be bigraded if

Now, let us consider the situation when C = C(q, r) and e is any one of the

differentials d, 3, d\ d", 3r or 3r/. C(q,r) is bigraded by C(q,r) = Σp,qC
p'q =

Σ / , w Hom r (Λ / ' (u)^ A^u-^C). Also, the operators d\ d"\ 3' and 3/r are of

pure bidegrees (1,0), (0,1), (-1,0) and (0,-1) respectively. Hence S\ S" are

operators of bidegree (0,0). But more important is the fact that S (by Lemma

(3.5)) is of bidegree (0,0). In particular, in view of Theorem (3.13), this implies
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that //(C, d) (resp. //(C, 3)) is bigraded and ψd s (resp. ψ 8 s) is an isomor-

phism of bidegree (0,0). Further i/(C, 3) is relatively easy to describe. This

gives the following generalization of [17, Corollary 5.3.4], to all Kac-Moody

Lie algebras and any parabolics of finite type.

3.15 Theorem. Let C = C(q, r) be as in Theorem (3.11). Then

(1) H(C,d) is bigraded,

(2) H™(C, d) ~ H™(C, d") and

(3) Hp%C, d) = 0 for p Φ q and, for any p > 0, άimcH
pp(C, d) = the

number of elements of length p in W$ {see §1.4 for the notation) = number of

r-irreducible components in Hp(u~, C).

Proof. (2) is easy since S = 2S". Now, Hpq(C, d) « kerS Π Cp« «

Hp*q(C,d). Further, by the definition of θ and finite dimensionality of

Hp«(C,d)~ [Hq(u,C)®Hp(u,C)]r ( n o t i c e t h e shift in (p,q))

- [Hσm{Hq(U-,C),C)®Hp(u-,C)]τ

«Homr{Hq(u-,C),Hp(ur,C)).

Now the theorem follows using Corollary (2.3)(a).

3.16 Remark. Lemma (3.5) and properties (1) and (2) in the above theorem

are the analogues of the corresponding properties for compact Kahler mani-

folds (see, e.g., [8, Chapter 0, §7]).

Finally, we have the following proposition, which determines KerS more

explicitly, although we would not be using it in this paper.

3.17 Proposition. Let h e Ker L. Then of course h determines an element [h]

in H(C, 3). Let s(h) = yfo]s([h]) (see Theorem (3.13) for the notation). Then

s(h) = ΣJ>0R
J(h). (R is defined in the proof of Lemma (3.8).)

Proof. There exists a u e Im L such that s(h) = h + u. It suffices to show

that(l - R)s(h) = h:

(1 - R)s(h) = (1 + MS - ML)s(h)

= (1 - ML)s(h) (sinces(h) e KerS)

= h (since h e KerL and ML\lmL = I d | I m L ) .

4. Identification of the dual of Schubert basis for
G/P with a d, 3-harmonic basis

Let q = q(A) be the Kac-Moody Lie algebra associated to a symmetrizable

generalized Cartan matrix A = (aiJ)ι<iJ^ι and let S be a subset of {1, •,/},

of finite type. Let G denote the (possibly infinite dimensional) affine algebraic
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group/C in the sense of Safarevic, associated to the first derived Lie algebra q1

(see §1.9 for details). Recall, from §1.5, the conjugate linear involution ω0 of q.
On "integration", this gives rise to an involution of G. Let K denote the fixed
point set of this involution.

The subgroup of Autc(h) generated by the reflections { r;} x<f<i (respectively
{J/}/es)is denoted by ^(resp. Ws\ where rt{h) = h - «,•(*)*,-, for all Λ e h .
It is easy to see that, under the canonical identification χ: Auth ~ Aut(h*)
(given by (χf)ψ(h) = ψ(f~ιh% for / e Auth, φ e h* and h e h), W corre-
sponds with W, in fact χ(rf ) = rf for all 1 < / < /. From now on, we would
identify W with W (under x) and use the same symbol W ίor both.

For each 1 < / < /, there exists a unique homomorphism ψ,: SL2(C) -> G,
satisfying φf.(i {) = exp(tef ) and φ,.(} f) = exp(//z) (for all / e C) (see §1.1 and
1.9 for various notations). Define

G, = φ/(SL2(C)), N; = Normalizer of Hi in G, ,

H+ (resp. H) = the subgroup (of G) generated by H+ (resp. all # z ) ,

N = the subgroup (of G) generated by all Λf .

There is an isomorphism φ: W -> #///, such that φ(r,.) is the coset NiH\H,
mod // (see [13, §2]). In the sequel, we would identify W with N/H under φ.

Put B = HU, B= HU' (t/, I/" are defined in §1.9) and P = Ps = £ H ^
(P 5 are called the standard parabolics, corresponding to the subset S c
(1, ,/}, containing B). Denote by Ks the subgroup K Π Ps. It is easy to see,
using [14, Theorem 4(d)], that the canonical inclusion K/Ks -» G/Ps is a
(surjective) homeomorphism. (K c G is given the subspace topology and
topology on G is described in §1.9.)

4.1 Bruhat decomposition [13], [14]. Recall the definition of Wς from §1.4.
Wς can be characterized as the set of elements of minimal length in the cosets
Wsw (w G W\ (each such coset contains a unique element of minimal length).

G can be written as disjoint union

(<z(w) is an element of N satisfying a(w) mod H = φ(w); in fact, we will
choose a(w) ^ N Π K, which is possible because KH z> N),so that

= U (ί/flίwΓ'V
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As announced in [14, Theorem 4], G/Ps is a CW complex with cells { Vw =

Ua(wyιPs/Ps}w(- wχ and dimR Vw = 2length w. (To interchange right and left

cosets we have, in the expression of Vw9 a(w)~ι instead of a(w) as in [14].) We

describe Vw more explicitly.

Define, for any w e If,

Uw = (a(w)Ua(w)'1) Π U~ and Uw = (a(w)Ua(w)~ι) n U.

Using [13, Corollary 5], it is easy to see that a(w)Ua(w)~ι = Uw Uw, so

that

Ua(w)~ιPs = a(wyla(w)Ua(w)~1Ps = a(w)~ιUwPs (since ί / w c ί / c Ps).

Now for w e W$\

(1) Uw is a finite dimensional, connected, simply connected, unipotent,

complex group (with the subspace topology) of complex dim. = length w and

(2) Uw Π Ps = (e). Hence the canonical map

Γ: a(wYlUw - a(WyιUwPs/Ps = Vw

is a homeomorphism

4.2 A canonical basis for KerL. Recall the definition of the operator L:

C = C(q,r) -^ C from §3 (just before Lemma (3.5)). We describe a basis for

KerL.

Fix a w e W^1 of length p. Define Φw = wΔ_Π Δ+. Φw consists of only real

roots (say {/?l5 ,βp}) (see [6, Proposition 2.2]). Pick yβ G q_^ ( ^ being

real, q_β is one dimensional) of unit norm with respect to the form { , } and

let xβ = -ωo(yβ). Let M(wρ — p) c Λ ^ u " ) be ί/ze (see §2.3(a)) irreducible

r-submodule with highest weight (wp - p). The corresponding highest weight

vector can be easily seen, using [6, Proposition (2.5)], to be yβι A Λ yβ .

There exists a unique element Γ G [M(wρ — p) ® Λ^u)]1", such that Aw =

(2i)p(yβι A Λ yβ Λ x^ Λ Λ jc^)mod Pw <S> A^(u), where Pw is the

orthogonal (under { , }) complement of yβι A Λ yβ in M(wρ — p) ( c

Λ ^ u " ) ) . Denote r w = (2i)p(yβι A Λ yβ A xβι A Λ xβp) and denote

e(rw) (resp. ^(A^)) by r w (resp. \w). (e is defined in the beginning of §3.) It is

easy to see that hw e kerL. Moreover {hw}WGlvι w i t h l e n g t h w=p is a C-basis of

Finally define (see Proposition (3.17)) sw = ^i,s([Aw]), where [A1"] denotes

the element in i/(C, 9), determined by hw and ψ 8 > s is defined in Theorem

(3.13).
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4.3 Definition. Let M be a finite-dimensional smooth ( = C°°) manifold. A

map /: M -> K/Ks is said to be smooth if, for all x0 e M, there exists an open

neighborhood N c M and a continuous map /: Λf -> AT satisfying

(1) 7r © / = / l ^ , where π: K -> K/Ks is the canonical projection and

(2) consider the composite of the maps

Nx L K^ G Λ 2ί

(i is defined in §1.9). Since i ° f: Nx -> 21 is continuous, may be after shrinking

NXQ, there exists a finite-dimensional vector subspace F c 21 such that

io°f(NXo)<zF.

We demand that / ° /: N -> F is a smooth map in the usual sense. Such a

lift/: NXQ -> AT will be called a local smooth lift.

4.4 Definition. Let M be a finite-dimensional smooth manifold. Given a

w G C*(q, r) and a smooth map/: M -> K/Ks, we construct a smooth s-form

/ * ( M ) on M as follows.

Fix a JC0 e M. Choose a local smooth lift /: A^ -> K. Consider the map

/ © Lf(Xo)-ι °f: NXo -> 9ί, where LJ{XQ)-\ is the left translation (by /(*o) *) :

K ^ K. Define (f*u)Xo = (i ° LJ{XQ)-\ °/)*W, where w is any translation in-

variant s-form on 2ί (so that ύ is given by u0 G Hom c(Λ 5(2ί), C)) satisfying

"ol Λ q̂1) = u\ \s(qι)' > n e r e ' w e a r e u s m g t n e imbedding of q1 in 3ί via / (see §1.9).

It is a routine checking that /*(u) is well defined, i.e., (/*u) does not

depend upon the particular choices of /; u and further /*u is a smooth s-form

on M.

Now, we can state the main theorem of this section, which is a generalization

of [17, Theorem (6.15)].

4.5 Theorem. Let q = q(A) be the Kac-Moody Lie algebra associated to a

symmetrizable generalized Cartan matrix A = (aiJ-)ι^j j^/andfe/Sc {1, ,/}

be a subset of finite type. Recall the corresponding group G (defined in §1.9) and

P = Ps, defined earlier in this section.

For any w (of length p) G W^ we have the Bruhat cell (of real dimension 2p)

in G/Ps (defined in §4.1) and also, we have defined a d, 9 harmonic form

s"' <Ξ C2 / 7(q,r) IΛ§4.2.

Then Γ: a(w)~ιUw -+ Vw <-> G/Ps = K/Ks is a smooth map and (iw)*(sw')

is an integrable 2p-form (see §4.3 and 4.4 for definitions), for any w, w' G W$ of

length p. Further f(iw)*sw' = 0 // w Φ wf G W$ and J(iw)*sw > 0 for all

w G Wς (Uw is oriented by its complex structure and sign convention is that of
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[15, Chapter IX, Proposition (2.1)]). In fact the form (iw)*sw' itself is identically

zero, ifwΦw'G: W$ with l(w) = l(w') and

j (Γ)*s» = 2<2*>J^ (exP2(M;p - p))h(g) dg

(the map h (g) is defined in the proof).

Proof. We first show that iw is a smooth map. The map K X i/+X £/ -> G

(defined by (/:, A, w) •-> /:Aw) is a homeomorphism [14, Theorem 4]. So, any

g ^ G can be uniquely expressed as g = k(g)h(g)u(g) with k(g) e AT, A(g)

e 7/+ and w(g) e ί/. Let k: G -* K be the projection on the first factor. We

have a commutative diagram

G-ύΠ(L(Λ,.)-(0))xΠ(L (Λ(.)-(0))
/ = 1

K ^ Π (L(Λ,) - (0)) X Π (L*(Λ,) - (0))

where k is the map defined by

Σ V
i = \

for ϋf. e L(ΛZ) - (0), and w; <= L*(ΛZ) - (0). (Here || y,. comes from a K-

invariant, positive definite, normalized (so that ||uΛ ||f. = 1) Hermitian form on

L{Ai) and dt denotes the conjugate of υt under the canonical conjugation on

L(Λ y), obtained by its real form U(q(R))vA . Further ^/Hf̂ H is to be consid-

ered as an element in L*(Λy) = L(Ai).)

This proves that iw is a smooth map. Now, we compute la(w)-iu iw*(sw).

Since the map iw\ a(w)~ιUw -> G/P factors through G/B and sw' G"C 2 / ?(q,r)

restricts to the d, 3 harmonic form (corresponding to w') in C2/7(q,h), it

suffices to compute this integral for the case S = 0 , i.e., P 5 = B.

Define /": t/w -» G/B = K/T(T = B Π K)by iw(g) = gB. Since a(w) e ϋ:
and 5W' is a ΛT-invariant form, we have

a(w)~ιΠ
s»

f = f

The Lie algebra uw (of Uw) can be easily seen to be Σ α e _ φ = w ; Δ + n Δ qα. Let

Vol denote the volume form with respect to the left invariant metric on Uw,

induced by the restriction of the Hermitian form { , } (on q) to uw.
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There is associated the adjoint representation Ad: G —> Autq (see, for the

details, [13, §2]). A d | β keeps b-stable. Let Ad: B -> Aut(q/b) = Aut(n") be

the map, induced by the restriction of Ad (to B). We extend (again denoted

by) Ad : B -> Aut c (n Θ n"), by

Ad(*)(<>i + v2) = woAd(b)(woVι) +Ad(b)(v2)

for b G B, vγ G n and v2 G n~.

This gives rise to the dual representation (again denoted by) Ad: B -»

A u t c ( H o m c ( n θ n~, C)). It is easy to see that for any u ^ U and h & H

(1) (Adw)0 - θ G Imθ, for 0 e ker 3, and

(2)(AdA)(Im3)c Im9

(3 is defined in the beginning of §3). (To prove (1), use (I 3 ) together with the

definition of U as the group generated by £/α's, a e ΔΓ^. See §1.9.)

Now, fix a g e ί/w. The integrand

(i 4 0 ) [(/w) ί w ' ] g

By the "left ΛT-invariance" of sw\ we have

(1 4 1 ) [(Γ)*s»']g= {[L*(g)(s«)]e,Vo\e}Vo\g,

where Lh(g): Uw -» (?/£ is the map Σ A ( g ) ( α ) = ^(g)α5 = b(g)ab(gy
1B for

all α G t/w.

It is easy to see that

(1 4 2 ) [[L*(s)(s»)]e,Vo\e} = s»{Adb(g)-r») = (Ad(A(g)-ι)ίw')rw,

where P is defined in §4.2.

Further, for any / G Hom(Λ5(n θ n~), C) and υ = υλ A Λ ^ G

Λ5(n θ n")

(143) f(υ)= {/^(-w 0 ϋi) A ••• Λ <?(-W(A)},

({ , } on Hom(Λ(n θ n~), C) is defined by transporting { , } from Λ(n θ n~)

via e\ see also the proof of Lemma (3.4)).

( I 4 4 )

But, sw' = rw' + dθ for some θ G C(q,r), since rH ' = hw' (by assumption

5 = 0 ) . Hence
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for some θf e Homc(Λ2 / 7 + 1(n Θ iO,C). By (I 4 2) and (I 4 4), we get

since 3*(rw) = i ( r w ) = 0. Finally

0 if wΦw'9[Ad(h(g) )^.^j =

This proves the theorem.

Added in proof.

(1) As an application of the results in the paper, we prove that G/Ps is a

formal space in the sense of rational homotopy theory. Further, we have

explicitly determined the minimal model of G/B and the structure of π*(G/B)

<S> z C as a Lie algebra under Whitehead product.

(2) We also prove that H*(q,rs) (resp. H*(q1)) is canonically isomorphic (as

a graded algebra) with the singular cohomology algebra H*(G/PS,C) (resp.

//*(G, C)). Moreover, the isomorphism is explicitly given by an 'integration'

map.

(3) The author, together with Kostant, has determined the value of the

integral in Theorem 4.5 and show that it is equal to

(-4,7)' Π o(wp,φ)
-1

We, together, also prove that there is a filtration of the ring QH^1] (C[ Jf̂ 1] is

the space of all the functions: Wς -> C. This is made into a ring under

pointwise multiplication), such that the corresponding grade algebra GrC[W$]

is naturally isomorphic (as an algebra) with the singular cohomology

H*(G/PS,C). Exactly similar result is true with G/Ps replaced by any left B

invariant closed subvariety F^of G/Ps. In this case, Wς gets replaced by a

subset J^of Wg, defined by Jί?= (w e Wς\ wmod Ps e V^}. In particular,

this result holds for closures of Bruhat cells BwPs\Ps.

In the case S = 0, so that Ps = B, the isomorphism of GrC[W] with

H*(G/B,C) is also shown to be W-equivariant, under the action of W on

C[W] by (w f)η = f(w'ιτ\\ for w, η e W and / e C[H^]. Of course, the

action of W « N(T)/T on H*(G/B, C) is induced from the action of N(T) on

the space G/2? « ΛΓ/Γ defined as follows.

ii -(^modΓ) = (/iJt/i-^modΓ, for/i e iV(Γ) and it e ίΓ.
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We use these results to determine the cup product of any two cohomology

classes in H*(G/B).

(4) The author learned that Kac-Peterson have also proved the Proposition

2.10 in their recent paper: Unitary structure in representations of infinite-dimen-

sional groups and a convexity theorem, Invent. Math. 76 (1984) 1-14.

(5) The author discovered that he has used the same symbol S to denote two

different objects; one to denote a subset of {1, •,/}, of finite type and the

other to denote the operator dd + dd acting on C(q, r) defined in §3.4. But it is

unlikely to cause confusion.

Results in (1), (2) and (3) are true for any symmetrizable Kac-Moody group

G and any standard parabolic subgroup Ps of finite type. The details will

appear elsewhere.
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