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FLOW BY MEAN CURVATURE OF CONVEX
SURFACES INTO SPHERES

GERHARD HUISKEN

1. Introduction

The motion of surfaces by their mean curvature has been studied by Brakke
[1] from the viewpoint of geometric measure theory. Other authors investigated
the corresponding nonparametric problem [2], [5], [9]. A reason for this interest
is that evolutionary surfaces of prescribed mean curvature model the behavior
of grain boundaries in annealing pure metal.

In this paper we take a more classical point of view: Consider a compact,
uniformly convex w-dimensional surface M = Mo without boundary, which is
smoothly imbedded in Rπ+1. Let Mo be represented locally by a diffeomor-
phism

Fo: R" D U -> F0(U) c Mo c Rw+1.

Then we want to find a family of maps F(-,t) satisfying the evolution
equation

γtF(x,t) = ΔtF(x9t)9 ί e ί / ,

F( ,0) = F0,

where Δ, is the Laplace-Beltrami operator on the manifold Λf,, given by
F( , 0 Wehave

Δ , F ( x , 0 = -H(x9t) v(x9t)9

where H( , t) is the mean curvature and v( , t) is the outer unit normal on Mr

With this choice of sign the mean curvature of our convex surfaces is always
positive and the surfaces are moving in the direction of their inner unit normal.
Equation (1) is parabolic and the theory of quasilinear parabolic differential
equations guarantees the existence of F( , /) for some short time interval.

Received April 28,1984.
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We want to show here that the shape of Mt approaches the shape of a sphere

very rapidly. In particular, no singularities will occur before the surfaces Mt

shrink down to a single point after a finite time. To describe this more

precisely, we carry out a normalization: For any time t, where the solution

F(-9t) of (1) exists, let \p(t) be a positive factor such that the manifold Mt

given by

has total area equal to |M 0 | , the area of Mo:

dμ = |Afo| for all t.
Mt

After choosing the new time variable t(t) = /0' Ψ
2(τ) dτ it is easy to see that F

satisfies

j ^ . - - . . 1 .

(2) ^7 ' r « r ^ ' ''

where

h= f H1 dμ/f dμ
JM ' JM

is the mean value of the squared mean curvature on Mt (see §9 below).

1.1 Theorem. Let n ^ 2 and assume that Mo is uniformly convex, i.e., the

eigenvalues of its second fundamental form are strictly positive everywhere. Then

the evolution equation (1) has a smooth solution on a finite time interval

0 < / < Γ, and the Mt

9s converge to a single point £) as t -> T. The normalized

equation (2) has a solution M~t for all time 0 < t < oo. The surfaces M~t are

homothetic expansions of the Mt

9s, and if we choose © as the origin ofRn + 1, then

the surfaces M~t converge to a sphere of area \M0\ in the C00-topology ast^> oo.

Remarks, (i) The convergence of M-t in any C^-norm is exponential.

(ii) The corresponding one-dimensional problem has been solved recently by

Gage and Hamilton (see [4]).

The approach to Theorem 1.1 is inspired by Hamiltons paper [6]. He evolved

the metric of a compact three-dimensional manifold with positive Ricci curva-

ture in direction of the Ricci curvature and obtained a metric of constant

curvature in the limit. The evolution equations for the curvature quantities in

our problem turn out to be similar to the equations in [6] and we can use many

of the methods developed there.

In §3 we establish evolution equations for the induced metric, the second

fundamental form and other important quantities. In the next step a lower
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bound independent of time for the eigenvalues of the second fundamental
form is proved. Using this, the Sobolev inequality and an iteration method we
can show in §5 that the eigenvalues of the second fundamental form approach
each other. Once this is established we obtain a bound for the gradient of the
mean curvature and then long time existence for a solution of (2). The
exponential convergence of the metric then follows from evolution equations
for higher derivatives of the curvature and interpolation inequalities.

The author wishes to thank Leon Simon for his interest in this work and the
Centre for Mathematical Analysis in Canberra for its hospitality.

2 Notation and preliminary results

In the following vectors on M will be denoted by X = {X*}, covectors by
Y= {Yi} and mixed tensors by T = {Ttf}. The induced metric and the
second fundamental form on M will be denoted by g = {g/7} and A = {Λ/y}
We always sum over repeated indices from 1 to n and we use brackets for the
inner product on M:

(τ/k, sjk) = gisg
jrgkuτ ks

s

ru, \τ\2 = (τ k, τ;k).

In particular we use the following notation for traces of the second funda-
mental form on M:

- MI 4 .
By (* > *) w e denote the ordinary inner product in Rn+1Λί M is given locally by
some F as in the introduction, the metric and the second fundamental form on
M can be computed as follows:

x e Rw,

where v(x) is the outer unit normal to M at F(x). The induced connection on
M is given by

1 fel

so that the covariant derivative on M of a vector X is

J dxj Jk
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The Riemann curvature tensor, the Ricci tensor and scalar curvature are given
by Gauss' equation

&ijkl = "ik"jl ~ "il"jk>

Kik = Hhik - hug%k9

R = H2 - \A\2.

With this notation we obtain, for the interchange of two covariant derivatives,

V,V,XΛ - V,V,** = RlJkX" = (h,jh,k - hlkhu)g-'Xk,

v,vjΐk - v ,v ,n = RiJklg""Ym = {hlkhj, - huhjk)g""Ym.

The Laplacian ΔΓ of a tensor Ton Mis given by

AT' = σmnT7 V7 Ti

whereas the covariant derivative of T will be denoted by vT = { V{TJk}. Now
we want to state some consequences of these relations, which are crucial in the
forthcoming sections. We start with two well-known identities.

2.1 Lemma, (i) ΔΛ,.. = vtVjH + Hhilg

imhmj - |Λ|2/*0,
(ii) ±Δ|Λ|2 = (h^VFjH) + \VA\2 + Z.

Proof. The first identity follows from the Codazzi equations Vihkl = Vkhu

= V/Λ|Λ and the formula for the interchange of derivatives quoted above,
whereas (ii) is an immediate consequence of (i).

The obvious inequality \VH\2 < w|V^4|2 can be improved by the Codazzi
equations.

2.2 Lemma.(i) \VA\2 > 3/(n + 2) |V# | 2 .
(ii)|VΛ|2 - \vH\2/n > 2{n - l)|vΛ|2/3n.

Proof. Similar as in [6, Lemma 11.6] we decompose the tensor vA:

= Eijk

where

Then we can easily compute that \E\2 = 3|vH\2/(n + 2) and

(Eijk> Fijk) = (Eijk^ihjk - £I>Λ) = °»

i.e., ̂  and F are orthogonal components of vA. Then

which proves the lemma.



FLOW OF CONVEX SURFACES 241

If Mtj is a symmetric tensor, we say that M ly is nonnegative, Mtj > 0, if all

eigenvalues of Mtj are nonnegative. In view of our main assumption that all

eigenvalues of the second fundamental form of Mo are strictly positive, there is

some ε > 0 such that the inequality

(3) htJ > εHgiJ

holds everywhere on MQ. It will be shown in §4 that this lower bound is

preserved with the same ε for all Mt as long as the solution of (1) exists. The

relation (3) leads to the following inequalities, which will be needed in §5.

2.3 Lemma. IfH> 0, and (3) is valid with some ε > 0, then

(i) Z > nε2H2(\A\2 - H2/n).

(ϋ) IVA/ H - V z # hkl\
2 > \ε2H2\vH\2.

Proof, (i) This is a pointwise estimate, and we may assume that gzy = δ/y

and

0

K2

In this setting we have

Z = HC- \A\4 ••
n \ I n

i - l

and the conclusion follows since

1 Aμ | 2 _ I i f 2 = I Σ ( κ κ ) \
n n r*. v ' 7 /

ί<7

(ϋ) We have

H - \{V,H • hkl + VkH • hu) - K v , i ί hkl - VkH • hu)\2

H - \(v,H • hkl + VkH • A,7)|2 + \\v,H • hkl - VkH • hf

>\\viH-hkl- VkH-hf,
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since Vthkl is symmetric in (/, k) by the Codazzi equations. Now we have only

to consider points where the gradient of the mean curvature does not vanish.

Around such a point we introduce an orthonormal frame el9— ,en such that

eλ = vH/\vH\. Then

10, i > 2,

in these coordinates. Therefore

T Σ {v,H'hkl- VkH-huf

h22-V2H huf

since any eigenvalue, and thus any trace element of htj is greater than εH.

3. Evolution of metric and curvature

In this and the following sections we investigate equation (1) which is easier

to handle than the normalized equation (2). The results will be converted to the

normalized equation in §9.

3.1 Theorem. The evolution equation (1) has a solution Mt for a short time

with any smooth compact initial surface M = Mo at t = 0.

This follows from the fact that (1) is strictly parabolic (see for example [3,

III.4]). From now on we will assume that (1) has a solution on the interval

0 < t < T.
Equation (1) implies evolution equations for g and A, which will be derived

now.

3.2 Lemma. The metric ofMt satisfies the evolution equation

( 4) γtSu = ~2Hhu

Proof. The vectors dF/dxt are tangential to M, and thus
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From this we obtain

9F 3

dF\ JdF 3

= -2HhtJ.

3.3 Lemma. The unit normal to M, satisfies dp/dt —
Proof. This is a straightforward computation:

3ί" ~ \ 3ί"' 3x, Jdxj8 \V' dt

Now we can prove
3.4 Theorem. The second fundamental form satisfies the evolution equation

lh,j = ΔΛ,7 - 2Hhug
lmhmJ + \A\2htj.

Proof. We use the Gauss-Weingarten relations

32F r J t 3F , 3 , /m 3F
= 1 h v v = h ,Q

x3x, l'Jdxk

 h'JV' dx/ hJ>8 dxto conclude

_3_ 3

3/ '7 3ί

- v,v/r - Hh,,g'"hmJ.

Then the theorem is a consequence of Lemma 2.1.
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3.5 Corollary. We have the evolution equations:

(i) ^H = AH+ \A\2H,

(ϋ) j^\A\2 = A\A\2 - 2|VΛ|2 + 2\A\\

Proof. We get, from Lemma 3.2,

and the first identity follows from Theorem 3.4. To prove the second equation,

we calculate

+ 2gikgJ'hkl{Ahu - 2Hhimgm»hnJ + \A\2h,j)

= 2gikgJ'hkAhiJ + 2\A\\

= gklVkV,{g"gm»hpmhqι,) = 2gPigm"hpmAhqn + 2\VA\\

The last identity follows from (ϋ) and

γfH
2 = 2if(Δi/ + μ | 2 ^ ) = Δ ^ 2 - 2\VH\2

3.6 Corollary, (i) If dμt = μ,(3c) dx is the measure on Mn then μ = Jdet gtj

and dμt/dt = -H2 μr In particular the total area \Mt\ of Mt is decreasing.

(ii) // the mean curvature of Mo is strictly positive everywhere, then it will be

strictly positive on Mt as long as the solution exists.

Proof. The first part of the corollary follows from Lemma 3.2, whereas the

second part is a consequence of the evolution equation for H and the

maximum principle.

4. Preserving convexity

We want to show now that our main assumption, that is inequality (3),

remains true as long as the solution of equation (1) exists. For this purpose we

need the following maximum principle for tensors on manifold, which was
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proved in [6, Theorem 9.1]:

Let M^bea vector field and let giJ9 M{j and Ntj be symmetric tensors on a

compact manifold M which may all depend on time /. Assume that Ntj = p(Mip

gtj) is a polynomial in Mi} formed by contracting products of Mtj with itself

using the metric. Furthermore, let this polynomial satisfy a null-eigenvector

condition, i.e. for any null-eigenvector X of Mtj we have NiJX
iXJ > 0. Then we

have

4.1 Theorem (Hamilton). Suppose that on 0 < / < T the evolution equation

holds, where NέJ = p(Mij9 g/y) satisfies the null-eigenvector condition above. If

Mtj > 0 at t = 0, then it remains soonO < t < T.

An immediate consequence of Theorems 3.4 and 4.1 is

4.2 Corollary. J/λ,7 > 0 at t = 0, then it remains so for 0 < / < Γ.

Proo/. Set Mtj = Al7, «
Λ ^ 0 and NtJ = -2Hhug""hmJ + μ4|2*,y.

We also have the following stronger result.

4.3 Theorem. If εHg^ < Λ/y < βHgij, and H > 0 at the beginning for some

constants 0 < ε < \/n < β < 1, ίAew r/zw remains soonO < / < Γ.

Proof. To prove the first inequality, we want to apply Theorem 4.1 with

M,j = -£- εgiJ, uk = jjgklV,H,

NiJ=2εHhiJ-2himg'"'hIJ.

With this choice the evolution equation in Theorem 4.1 is satisfied since

^ i m g lJ'

u

H8

It remains to check that N^ is nonnegative on the null-eigenvectors of Mtj.

Assume that, for some vector X = {X1},

hijXj = εHXr

Then we derive

NyX'XJ = lεHhtjX'XJ - 2himgmIhlJX
iXJ

= 2ε2H2\X\2 - 2ε2H2\X\2 = 0.

That the second inequality remains true follows in the same way after reversing

signs.
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5. The eigenvalues of A

In this section we want to show that the eigenvalues of the second funda-

mental form approach each other, at least at those points where the mean

curvature tends to infinity (for the unnormalized equation (1)). Following the

idea of Hamilton in [6], we look at the quantity

which measures how far the eigenvalues Ktoi A diverge from each other. We

show that \A\2 — H2/n becomes small compared to H2.

5.1 Theorem. There are constants δ > 0 and Co < oo depending only on M o,

such that

for all times 0 < t < T.

Our goal is to bound the function/, = {\A\2 - H2/n)/H2~σ for sufficiently

small σ. We first need an evolution equation for/σ.

5.2 Lemma. Let a = 2 — σ. Then, for any σ,

(2 - a)(a -
+(2 - a)\Affa.

Proof. We have, in view of the evolution equations for \A\2 and H,

1/ =AίMl!_Iί/2
dtJ° dt\Ha n

= HA\A\2 - a\A\2ΔH _ (2 - «) f j 1 - .

Ha+1
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Furthermore

I2 - «MI2v,ff ( 2 - α ) ,

(2-<*)„,-,
n

1 (2-α)(l-α), 2

F | V i ί |

(5)

and now the conclusion of the lemma follows from reorganizing terms and the

identity

Iv,*w # - v,^ AJ2 = H2\VA\2 + μ|2|VH\2 - (v,μ|2, V,

Unfortunately the absolute term (2 — α)|^4|2/σ in this evolution equation is

positive and we cannot achieve our goal by the ordinary maximum principle.

But from Theorem 4.3 and Lemma 2.3(ϋ) we get

5.3 Corollary. For any σ the inequality

(6) ltfσ < Δ/σ + ̂ Z i ) ( V | H > V ί Λ ) _ ε 2 ^ |vt f | 2 + o\A\2fσ

holds onO < t < T.

The additional negative term in (6) will be exploited by the divergence

theorem:

5.4 Lemma. Let p > 2. Then for any η > 0 and any 0 < σ < \ we have the

estimate

nε2ffPH2dμ < (2ηp + 5)/ -^ff-^VH]2dμ

Proof. Let us denote by Λ^ the trace-free second fundamental form
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In view of Lemma 2.1(ϋ), the identity (5) may then be rewritten as

H ~ W • A * Ί 2 " f

Now we multiply the inequality

by//" 1 and integrate. Integration by parts yields

0 > (P - l)ff.p-2\vfa\
2dμ + f jpίZfΓ1dμ

-2(a-l)f jjfΓ'ivJ^v

where we used the Codazzi equation. Now, taking the relations

(7) ab < f α2 + J-62, α < 2,
2 2i)

into account, we derive, for any η > 0,

/ jp fΓ'Zdμ < (2η/> + 5)/ ^ / / - ^

The conclusion then follows from Lemma 2.3(i) and Theorem 4.3.
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Now we can show that high ZAnorms of fσ are bounded, provided σ is

sufficiently small.

5.5 Lemma. There is a constant Cλ < oo depending only on M o, such that,

for all

(8) p > lOOε"2, σ < \έp~X/\

the inequality

(ίJMt

holds onO < t < T.

Proof. We choose

x:— (|Afo| + 1) sup (sup/ σ )
σ e [01/2] V Λ/o

 J

(
σ e [0,1/2] V Λ/o

and it is then sufficient to show

To accomplish this, we multiply inequality (6) by/?//"1 and obtain

f / S! dμ + p(P ~ 1)/ //"

< 2(β -

where the last term on the left-hand side occurs due to the time dependence of

dμ as stated in Corollary 3.6(i). In view of (7) we can estimate

2(a-l)pf j

and since/? - 1 > lOOε"2 - 1 > 4ε" 2, |^4|2 < H2, we conclude

+ hp{p ~ \)jfΓ2\Vf£dμ + Wpj jpfΓΛvH?dμ

H2fidμ.
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The assumption (8) on σ and Lemma 5.4 yield

+ \p(p - l)jfΓ2\vf.\2dμ + Wpj jpfΓ^H? dμ

5)/ ±.fri\VH\2

for any η > 0. Then (9) follows if we choose η = εp~1/2/4.

5.6 Corollary. If we assume

then we have

\1/p

on 0 < t < T.
Proof. This follows from Lemma 5.5 since

with

n i _Ί n . i n n εσ' = σ + — < — ε3/? 7 + mp 1 / 2 — — < -ε3p 1 / 2 .
/? 16 m 16 8

We are now ready to bound fσ by an iteration similar to the methods used in

[2], [5]. We will need the following Sobolev inequality from [7].

5.7 Lemma. For all Lipschitz functions υ on Mwe have

If \v\n/n~1dμ) <c(n)l[ \w\dμ+ f H\υ\dμ).
\JM I \JM JM )

Proof of Theorem 5.1. Multiply inequality (6) by pfJ-'^ , where fak =

max(/σ — k,0) for all k > k0 = supM /σ, and denote by A(k) the set where

fσ > k. Then we derive as in the proof of Lemma 5.5 for/? > 100ε~2

l Zk \ ) j

σpf H2fP-k
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On A(k) we have

2

and thus we obtain with υ =

3
TΓ-ί v2dμ+( \Vυ\2dμ^op( H2fξ dμ.
0 1 JA(k) JA{k) JΛ{k)

Let us agree to denote by cn any constant which only depends on n. Then

Lemma 5.7 and the Holder inequality lead to

[ V2«dμ\ < c j \VΌ\ dμ + cn[j H" dμ) [I v2^ dμ) ,
\JM ) JM \/suppi; I \JM ]

where

[n/{n- 2 ) , n > 2 ,
\ < oo, « = 2.

Since supp v <z A(k),we have in view of Corollary 5.6

/ \2/n I \2/n

\[ Hndμ\ ^k-2p/n\( Hnfpdμ\ < k~2p/nC2p/\
\js\xpvυ I \JA(k) I

provided

p > 2 ε~ , σ < ~TΣε P~

Thus, under this assumption we conclude for k > kλ = A:X(A:O, C\, π, ε) that

sup f υ2dμ + cn( f υ2q dμ dt
[0, T) JA(k) J0 \JA(k) I[0

<σp Γ f H2fpdμdt.

Now we use interpolation inequalities for L ̂ -spaces

\l/<7o

If ) V<7o / \ α / ^ / \ (

< \( υ2qdμ\ \f v2dμ\
\JA(k) I \JA(k) I

A(k)

( ) ,

with a = l / ί 0 such that 1 < q0 < q. Then we have

0 f
0

\1/q° ί T

f f v2*°dμdt\ <cnσpf [ H2fξdμdt
0 JA(k) I J0 JA(k)

~1/r(ίT f H2r

V Ό JA(k)

f
A(k)

ί f
Ό JA(k)
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where r > 1 is to be chosen and

IM(^)II= / / dμdt.

Again using the Holder inequality we obtain

Γ ί f ^ d μ d t < cnap\\A{k)\Γ/q°~1/r[ Γ ί H*'fm»dμ dt\"'.
J0 JA(k) \J0 JA(k) I

If we now choose r so large that 2 - l/q0 - \/r = γ > 1, then r only depends
on n and we may take

(10) p > rε-6210, σ < ε ^ V 1 / 2

such that by Corollary 5.6

for all h > k > kv By a well-known result (see e.g. [8, Lemma 4.1]) we
conclude

for some/? and σ satisfying (10). Since

dμ < \Mt\ < |Afo|

by Corollary 3.6(i), it remains only to show that Γis finite.
5.8 Lemma. T < oo.
Proof. The mean curvature H satisfies the evolution equation

γtH = Δ// + H\A\2> AH + \H\

Then let φ be the solution of the ordinary differential equation

~«Γ = ~Φ 3

9 φ(0) = ̂ min(O) > 0.

If we consider φ as a function on M X [0, Γ), we get

such that by the maximum principle

H ^ φ on 0 < / < T.

On the other hand φ is explicitly given by

φ(0-
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And since φ -> oo as / -> («/2)i/^(0), the result follows. Moreover, in the
case that Mo is a sphere, φ describes exactly the evolution of the mean
curvature and so the bound T < (w/2)ϋQ^(0) is sharp. This completes the
proof of Theorem 5.1.

6. A bound on I V//|

In order to compare the mean curvature at different points of the surface
Mn we bound the gradient of the mean curvature as follows.

6.1 Theorem. For any η > 0 there is a constant C(η, Mo, n) such that

Proof. First of all we need an evolution equation for the gradient of the
mean curvature.

6.2 Lemma. We have the evolution equation

| 2 2 - 2 |v 2 i/ | 2 + 2\A\2\VH\2

+ 2( v,H • hmj, VjHvhim)

6.3 Corollary.

^ | v t f | 2 < Δ|V#| 2 - 2\V2H\2 + 4M| 2 |V#| 2 + 2H( VtH, V

Proof of Lemma 6.2. Using the evolution equations for H and g we obtain

= 2H(hu, V,# VjH) + ig'Jv

The result then follows from the relations

Δ|V#| 2 = 2g*'Δ( V,^) V,H

Δ( vkH) = vΛΔtf) + g'JvMMicj ~ hkmgmnhnj).

6.4 Lemma. We have the inequality



254 GERHARD HUISKEN

Proof. We compute

9 / \VH\2\ HA\VH\2-\VH\2AH 2 2 2

dt\ H

and the result follows from Schwarz' inequality. We need two more evolution

equations.

6.5 Lemma. We have

(i) ^ J ϊ 3 = Δi/3 - 6H\VH\2 + 3\A\2 H\

w/YΛ α constant C3 depending onn, Co and 8, i.e., only on MQ.

Proof. The first identity is an easy consequence of the evolution equation

for H. To prove the inequality (ϋ), we derive from Corollary 3.5(iii)

Now, using Theorem 5.1 and (7) we estimate

2

C(n, Co, 8)\VA\\

and the conclusion follows from Lemma 2.2(ii).
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We are now going to bound the function

/ = l ^ L + N(\A\
2 _ ±H2\H + NC3\A\2 - ηH3

for some large N depending only on n and 0 < η < 1. From Lemmas 6.4 and
6.5 we obtain

dt

6ηH\vH\2 -

| 4 + 3N\A\2H(\A\2 - ±H2\ - 3τ,\A\2H3.

Since (ϊ/n)H2 < \A\2 < H2, | V # | 2 < n|V^|2 and η < 1 we may choose JV
depending only on n so large that

ft < Δ/+ 2NC,H* + 3NH*(\A\2 - \H2] - \^H\

By Theorem 5.1 we have

2NC3H
4 + 3NH3l\A\2 - ^H2\ < 2NC3H

4 + 3NC0H
55 δ

and hence df/dt < Δ/ 4- C(η, Mo).
This imphes that max/(O < max/(0) + C(η, M0)t, and since we already

have a bound for Γ, / is bounded by some (possibly different) constant
C(η, Mo). Therefore

IVH\2 < τ?if4 + C(η9 M0)H < 2η/ί4 + C(η, Mo)

which proves Theorem 6.1 since η is arbitrary.

7. Higher derivatives of A

As in [6] we write S * T for any linear combination of tensors formed by
contraction on S and Γby g. The mth iterated covariant derivative of a tensor
T will be denoted by V"T. With this notation we observe that the time
derivative of the Christoffel symbols Γ^ is equal to

9 _.. 1 u( ί 9 \ / 9 \ / 9

97Γ^ - 2g { VA **») + **(**") ~ V\T
= -gil{ Vj(Hhkl) + Vk{Hhβ) -
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in view of the evolution equation for g = {g/7 }. Then we may proceed exactly

as in [6, §13] to conclude

7.1 Theorem. For any m we have an equation

j 2 \2 - 2\vm+ιA\2

i +jr + k = m

Now we need the following interpolation inequality which is proven in [6,

§12].

7.2 Lemma. // T is any tensor and if 1 < i < m — 1, then with a constant

C(n, m) which is independent of the metric g and the connection Γ we have the

estimate

/I

This leads to

7 3 Theorem.

d f , m

dt JM,

\vιT\ dμ < C - max|T\
M

We have the estimate

4\ dμ + 2 I | V m + λ A\ dμ < dμ,

where C only depends on n and the number of derivatives m.

Proof. By integrating the identity in Theorem 7.1 and using the generalised

Holder inequality we derive

f
Mt

 JMt

i/2m , χ j/2m

k/2m . v 1/2

{ 1 }
with i + j + k = m. The interpolation inequality above gives

//2m . . i/2m
1 / { )

and if we do the same withy and k, the theorem follows.
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8. The maximal time interval

We already stated that equation (1) has a (unique) smooth solution on a
short time interval if the uniformly convex, closed and compact initial surface
Mo is smooth enough. Moreover, we have

8.1 Theorem. The solution of equation (1) exists on a maximal time interval
0 < / < T < oo and maxM \A\2 becomes unbounded as t approaches T.

Proof. Let 0 < t < T be the maximal time interval where the solution
exists. We showed in Lemma 5.8 that T < oo. Here we want to show that if
maxM \A\2 ^ C for t -> T, the surfaces Mt converge to a smooth limit surface
Mτ. We could then use the local existence result to continue the solution to
later times in contradiction to the maximality of T.

In the following we suppose

(11) max \A\2 < C on 0 < t < T,
Mt

and assume that as in the introduction Mt is given locally by F(x9 t) defined
for x e U c R" and 0 < t < T. Then from the evolution equation (1) we
obtain

for 0 < σ < p < T. Since H is bounded, F(-9t) tends to a unique continuous
limit F(,T) as/ -> T.

In order to conclude that F( 9t) represents a surface MT9 we use [6, Lemma
14.2].

8.2 Lemma. Let gtj be a time dependent metric on a compact manifold M for
0 < t < T < oo. Suppose

/ max dt < C < oo.

Then the metrics gij(t)for all different times are equivalent, and they converge as
t -> T uniformly to a positive definite metric tensor gij(T) which is continuous
and also equivalent.

Here we used the notation

dt8ij

In our case all the surfaces Mt are diffeomorphic and we can apply Lemma 8.2
in view of Lemma 3.2, assumption (11) and the fact that T < oo. It remains
only to show that Mτ is smooth. To accomplish this it is enough to prove that
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all derivatives of the second fundamental form are bounded, since the evolu-

tion equations (1) and (4) then imply bounds on all derivatives of F.

8.3 Lemma. If (II) holds onO < t < T and T < oo, then \ VmA\ < Cmfor all

m. The constant Cm depends on n, Mo and C.

Proof. Theorem 7.3 immediately implies

since the inequality dg/dt < eg on a finite time interval gives a bound on g in

terms of its initial data. Then Lemma 7.2 yields

JMt

for all m and p < oo. The conclusion of the lemma now follows if we apply a

version of the Sobolev inequality in Lemma 5.7 to the functions gm = | V mA\2.

Thus the surfaces Mt converge to Mτ in the C°°-topology as t -> T. By

Theorem 3.1 this contradicts the maximality of T and proves Theorem 8.1.

We now want to compare the maximum value of the mean curvature # m a x to

the minimum value Hπήn as t tends to T. Since \A\2 < H2, we obtain from

Theorem 8.1 that i/m a x is unbounded as / approaches T.

8.4 Theorem. We have Hm3Λ/Hπύn -» 1 as t -» T.

Proof. We will follow Hamiltons idea to use Myer's theorem.

8.5 Theorem (Myers). If Rtj^ (n — V)Kgtj along a geodesic of length at

least πK~1/2 on M, then the geodesic has conjugate points.

To apply the theorem we need

8.6 Lemma. Ifh^ > εHgjj holds on M with some 0 < ε < l/n, then

RiJ>{n-\)ε2H2gij.

Proof of Lemma 8.6. This is immediate from the identity

RtJ = Hhu - himgmnhnj.

Now we obtain from Theorem 6.1 that for every η > 0 we can find a

constant c(η) with \VH\ < \tfH2 + C(η) on 0 < / < T. Since i/m a x becomes

unbounded as t -> Γ, there is some θ < T with C(η) < Wϋmax at ί = fl. Then

(12) Ivi/NηΉLc
at time t = θ. Now let x be a point on M ,̂ where H assumes its maximum.

Along any geodesic starting at x of length at most tfιll^ we have H ^

(1 — η)Hmax. In view of Lemma 8.6 and Theorem 8.5 those geodesies then

reach any point of Mθ if η is small and thus

(13) Hmϊn>(l-η)Hmax onMθ.
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Since H^^ is nondecreasing we have

#max(0 > 2H

maoL{θ) On θ < t < T,

and hence the inequalities (12) and (13) are true on all of θ < / < T which
proves Theorem 8.4.

We need the following consequences of Theorem 8.4.
8.7 Theorem. We have / H ^ ^ τ ) dτ = oo.
Proof. Look at the ordinary differential equation

f f = #maχg, g(0) = Hmaχ.

We get a solution since H^ is continuous in t. Furthermore we have

T^H = ΔH + \A\ H < Δ/f + HmaxH,

and therefore

g^(JΪ " g) < Δ(JΪ - g) + ̂ a x ( ^ " g)

So we obtain i/ < g for 0 < t < T by the maximum principle, and g -» oo as
t -> Γ. But now we have

jΓ H^(τ) dτ = log{g(ί)/g(0)} - oo as / -> Γ,

which proves Theorem 8.7.
8.8 Corollary. //, as /n /Λe introduction, h is the average of the squared mean

curvature

then

= f H2dμ/f dμ9
JM / JM

/ h(τ) dτ = oo.

Proof. This follows from Theorems 8.4 and 8.7 since H^ ^ h < H^.
8.9 Corollary. We have \A\2/H2 - \/n -* 0 as t -> T.
Proof. This is a consequence of Theorem 5.1 since Hmin -> oo by Theorem

8.4.
Obviously Mt stays in the region of Rw+1 which is enclosed by Mt for

tλ > t2 since the surfaces are shrinking. By Theorem 8.4 the diameter of Mt

tends to zero as t -> T. This implies the first part of Theorem 1.1.
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9. The normalized equation

As we have seen in the last sections, the solution of the unnormalized
equation

(1) γtF=ΔF= -Hv

shrinks down to a single point £) after a finite time. Let us assume from now
on that £) is the origin of Rπ+1. Note that £) lays in the region enclosed by Mt

for all times 0 < t < T. We are going to normalize equation (1) by keeping
some geometrical quantity fixed, for example the total area of the surfaces Mr

We could as well have taken the enclosed volume which leads to a slightly
different normalized equation. As in the introduction multiply the solution F
of (1) at each time 0 < t < T with a positive constant ψ(/) such that the total
area of the surface Mt given by

is equal to the total area of Mo:

(14) f dμ= \M0\ on 0 < t < T.
JMt

Then we introduce a new time variable by

/

such that dt/dt = ψ2. We have

and so on. If we differentiate (14) for time ί, we obtain

ψ dt n jdμ

Now we can derive the normalized evolution equation for F on a different
maximal time interval 0 < t < T:

dP dP ,_2 ,_7
— ~ ^ \b = ψ
όt ut

= -HP + -hP
n
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as stated in (2). We can also compute the new evolution equations for other

geometric quantities.

9.1 Lemma. Suppose the expressions P and Q, formed from g and A, satisfy

oP/ot = Δ P + Q, and P has "degree" a, that is, P = ψ°P. Then Q has degree

(a — 2) and

dt n

Proof. We calculate with the help of (15)

= ψ-2{^AP + ψ«ΔP

= -hP + ΔP + Q.
n

The results in Theorem 4.3, Theorem 8.4 and Corollary 8.9 convert unchanged

to the normalized equation, since at each time the whole configuration is only

dilated by a constant factor.

9.2 Lemma. We have

(i) hy > eϊlgij,

(ϋ) h

(iii) ^ ^ \ as t - f.

Now we prove

9.3 Lemma. There are constants C4 and C5 such that for 0 < t < f

0 < C4 < H^ < Hmax < C5 < oo.

Proof. The surface M encloses a volume V which is given by the divergence

theorem

Since the origin © is in the region enclosed by M-t for all times as well, we have

that Fv is everywhere positive on M-t. By the isoperimetric inequality we have

= cn\M0\



262 GERHARD HUISKEN

On the other hand we get from the first variation formula

\M0\ = |M?| = \ / H{Fv) dμ < Hmax • Pj,

which proves the first inequality in view of Lemma 9.2(ii). To obtain the upper
bound we observe that in view of htJ > εHrrύngiJ the enclosed volume V can be
estimated by the volume of a ball of radius ( ε / / ^ ) " 1 :

V< c (FH r ( w + 1 )

The first variation formula yields

V, > -^rjH^f {Fv) Hdμ > ^y^LlMol,

which proves the upper bound again in view of Lemma 9.2(ii).
9.4 Corollary, f = oo.
Proof. We have dt/dt = ψ2 and H2 = ψ"2/ί2 such that

I h(τ) dτ = I h(τ) dτ = oo

by Corollary 8.8. But by Lemma 9.3 we have h < H^ < C5

2 and therefore
f = oo.

10. Convergence to the sphere

We want to show that the surfaces M-t converge to a sphere in the C°°-
topology as / -» oo. Let us agree in this section to denote by 8 > 0 and C < oo
various constants depending on known quantities. We start with

10.1 Lemma. There are constants 8 > 0 and C < oo such that

7ι2 1 ~ o ,_o
f \A\2- - ,-δt

Proof. Let/be the function/= \A\2/H2 - \/n which has degree 0. Then
we conclude as in the proof of Lemma 5.5 that, for some large/? and a small 8
depending on ε,

-δffP\A\2dμ + / (A - H2)f" dμ,

since d/dt dμ = (h — H2)άμ. In view of Lemma 9.2(ii) and Lemma 9.3 we
have for all times t larger than some t0

d
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with a different δ. Thus

where C now depends on t0 as well. The conclusion of the lemma then follows
from the Holder inequality \M}\ = \M0\ and Lemma 9.3.

Now let us denote by h the mean value of the mean curvature on M:

h= I Hdμ/ί dμ

10.2 Lemma. We have

f (H- hfdμ = j H2-h2dμ^ Ce~sl.

Proof. In view of the Poincare inequality it is enough to show that
/ \vH\2dμ decreases exponentially. Note that the constant in the Poincare
inequality can be chosen independently of t since we got control on the
curvature in Lemma 9.2 and Lemma 9.3. Look at the function

where N is a large constant depending only on n. The degree of g is -3, and
from the results in §6 we obtain

for all times larger than some tv Here we used that the term

becomes small compared to H\vΛ\2 as t -> oo since \hQ

kl\ = (\A\2 —
H2/n)ι/2tends to zero. Now using Lemma 10.1 and C4 < H < C5 we conclude
for t > ϊl9

j,j gdμ < -δf gdfi 4- Ce-δl + / (h - H2)gdμ.

Since (h — H2) -+ 0 as t -* ooby Lemma 9.2(ii), we have for all t larger than
some 12

and therefore
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with some constants C and 8 depending on f2, and the conclusion follows from
Q < H < C5.

To bound higher derivatives of the curvature, we need another interpolation
inequality [6,12.7].

10.3 Lemma. If T is any tensor on M, then with a constant C = C(n, m)
independent of the metric g and the connection Γ we have the estimate

, v i/m / \ 1 — i/m

ί \v'n2dμ<C{f \VmT\2dμ\ If \T\2dμ)
JM \JM ) \JM )

for 0 < i < m.
We start with Theorem 7.3. The estimate

(16)

< C max \A\2 f \vmA\2dμ
M JM

carries over to the normalized equation since both sides stretch by the same
factor, and we have max|̂ 4| < C5

2. Let us now introduce the tensor E = {E^}
given by

έu = K - -feu-
Then vmA = VmE for all m > 0 and the right-hand side of (16) can be
estimated by Lemma 10.3:

/ \vmA\2dμ<C{[ \v"+1A\2dβ) If \E\2dμ)
JM \JM I \JM )

By Young's inequality this is less than

Cηf \vm+ιA\2dμ+ Cη-mf \E\2 dμ
JM JM

for any 17 > 0. Choosing η such that Cη < 2 we derive from (16)

d r ~2 /* - 2

But

/ | £ | 2 r f μ = / μ ί | 2 - /̂ΓA+ ^Λ2t/μ

- / | i | 2 - ^ 2 ^ + ^ / (H-h)2dμ,
J\Λ n n J\4
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and both integrals decrease exponentially by Lemmas 10.1 and 10.2. Thus we

have proven

10.4 Lemma. For every m we have j ^ | VmA\2 dμ < C on 0 < t < oo with a

constant depending on m.

From Lemma 7.2 we deduce immediately that higher L^-norms of | V mA\ are

bounded as well:

m9p

and a version of the Sobolev inequality in Lemma 5.7 applied to the function

Em = \VmA\2 yields max^ | v m A \ < C for a constant C < oo depending on m.

Now we can prove

10.5 Theorem. There are constants 8 > 0 and C < oo such that

\A\2 - ^H1 < Ce~81.

Proof. We denote by A the traceless second fundamental form

such that \A\2 = \A\2 — H2/n. Since |Vm^| is bounded we conclude from

Lemma 10.3

in view of Lemma 10.1. Then we have from Lemma 7.2

and the conclusion follows once again from the Sobolev inequality.

Theorem 10.5 is the crucial estimate from where we can proceed exactly as in

Hamiltons paper [6, §17] to conclude

10.6 Lemma. There are constants 8 > 0 and C < oo such that

(i) H^-H^^Ce-*1,

(ϋ)

(iii) max|vmΛ| < Cme's-', m > 0.
M

All surfaces M~t stay in a bounded region around O since Lemma 9.3 implies

a bound on the diameter of M~t. Moreover, by Lemma 9.2(ii) and (iii) we can
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pinch M~t arbitrarily close between an interior and an exterior sphere if t is
large. This already shows that M-t converges to a sphere in some weak sense.
We have the evolution equation

and we conclude from Lemma 10.6(ϋ) and Lemma 8.2 that the metrics g / y(0
converge uniformly to a positive definite metric g/y(oo) as t -» oo. By Lemma
10.6(ϋi) the metrics also converge in the C°°-topology and thus gj7(oo) is
smooth. Finally, g/y (oo) is the metric of a sphere by Theorem 10.5. This
completes the proof of Theorem 1.1.
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