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TWO TOPOLOGICAL EXAMPLES
IN MINIMAL SURFACE THEORY

PETER HALL

This paper gives an account of examples which the author has constructed to
answer two questions posed by W. H. Meeks III.

Question 1. Given a set Γ of disjoint smooth Jordan curves on the standard
2-sphere S2, such that Γ bounds two homeomorphic embedded compact
connected minimal surfaces F and G in B3, is there an isotopy of B3 fixing Γ
and taking F to G ([2, Problem 1], [1, conjecture 5])? Meeks has shown that
such surfaces always split B3 into two handlebodies; it then follows that such
an isotopy exists if Γ consists of a single curve or if F and G are annuli [2]. We
give two counterexamples: one where F and G are planar domains with three
boundary components and one where F' and G' have genus one and two
boundary components.

Question 2. Can a Jordan curve on the boundary of a convex set in R3

bound a minimal disc that is not embedded [1, conjecture 2]? We give an
example of a smooth Jordan curve on 5 2 that bounds an immersed stable
minimal disc that is not embedded.

Our examples depend upon the "bridge principle" for minimal surfaces,
which, roughly stated, is to this effect: if we have two stable minimal surfaces
X and Y in R3 and an arc c joining their boundaries, there exists a new stable
minimal surface Z which consists of surfaces close to X and Y together with a
thin "bridge" running along c. We also require that the boundaries of X, Y and
Z should lie on S2. A version of the bridge principle has been proved by Meeks
and Yau [4], although without this further requirement; we are able to justify
our examples by a slight modification of their technique.

This research forms part of the author's doctoral thesis at the University of
Warwick. I am happy to acknowledge the help of J. Eells, W. H. Meeks III, B.
Solomon, S. T. Yau and the referee on various points, as well as the constant
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support of my supervisor, D. B. A. Epstein. Part of my research was supported
by the Science Research Council of the United Kingdom.

Example for Question 1. We shall first describe the construction informally
in two steps, then prove that the surfaces are not isotopic in B3 and then give a
proof that such surfaces exist.

Step 1. In any system of polar coordinates on S2, consider a pair of
latitudes lλ and /2. If they are close enough to the equator they bound a stable
embedded minimal annulus in B3 (Fig. l(a)). They also bound a pair of stable
embedded minimal discs (Fig. l(b)). Take a great circle g orthogonal to lx and
/2; this contains two arcs p and q which join lx to /2. Form a new pair C of
disjoint smooth Jordan curves by erasing a short arc from lx or l2 at each
intersection with g and adding four arcs nearly parallel top and q. If the bridge
principle holds for C, C bounds a stable minimal annulus consisting of
surfaces near the discs spanning lλ and l2 connected by bridges along p and q
(Fig. 2(b)). By—for example—the minimal Dehn lemma of Meeks and Yau
[3], each component of C also bounds a stable embedded minimal disc inside
its convex hull; the convex hulls are disjoint and hence so are these discs (Fig.

(a) (b)

FIG. 1

(a) (b)

FIG. 2
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Step 2. Apply the construction of Step 1 to three pairs of latitudes, so as to
obtain six Jordan curves on S2 each of which bounds a disc in S2 disjoint from
the others. Denote these curves by ai9 bι (i = 1,2,3) so that each pair (ai9 bt)
bounds an annulus Ei from Step 1. Topologically but not metrically, the annuli
are arranged as in Fig. 3. To obtain a counterexample where the surfaces F and
G are planar domains with three boundary components, we connect these
annuli by three further bridges α, β and γ as shown in Fig. 4. The surface F
consists of annuli close to Ex and E3 and discs spanning a2 and b2, connected
by bridges. The surface G consists of annuli close to E2 and E3 and discs
spanning ax and bl9 connected by bridges.

FIG. 3

To obtain a counterexample where the surfaces F' and Gr have genus one
and two boundary components, we modify the previous example by adding a
fourth bridge δ connecting b2 and b3. Fr and Gr are the surfaces obtained by
adding the additional bridge δ to the construction of F and G. We omit the
proofs that F' and Gr exist and are not isotopic, which are similar to those for
F and G.

FIG. 4
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Proof that the surfaces F and G are not isotopic. Each of the three compo-
nents of Γ = dF = dG bounds a disc in S2 which is disjoint from the others;
call this the disc inside that component. Regard B3 as embedded in R3, and
attach an unknotted 1-handle h to B3 along the discs inside the components of
Γ which meet b2 and b3. Each of F and G splits B3 into a ball and a ball with
two handles. For G, the union of this ball with h is a solid torus standardly
embedded in R3. For F it is embedded as a regular neighborhood of a trefoil
knot. Therefore F and G are not isotopic in B3.

Proof that the surfaces F and G exist. Following Meeks and Yau [4] we shall
construct for each surface a 3-manifold M with piecewise-smooth boundary
embedded in R3, which may be thought of as a regular neighborhood of the
surface, and show that a minimal surface with the required properties exists
inside M. The boundary of M is required to satisy the following condition (C):

(Cl) M is contained in the interior of a compact submanifold N of R3 and
there is a smooth stratification of N such that ΘM is a union of strata.

(C2) Each 2-dimensional stratum of ΘM has nonnegative mean curvature
with respect to the inward normal.

(C3) Each 2-dimensional stratum H of ΘM extends to a properly-embedded
smooth surface KinN such that H = K n M.

We shall prove the existence of F, the argument for G being similar.
The pairs of curves (av bλ) and (α3, b3) are to be spanned by annuli. For

each pair we start from the pair of latitudes lγ and /2 from which it was
constructed in Step 1. For = 1,2 we take another two latitudes λ, and μ/5 a
short distance from /, on either side, λ, and μz bound an annular region on S2,
which is to be part of the boundary of a ball Bt\ dBt will be piecewise-smooth
and satisfy condition (C). The remainder of dBt is formed by the smaller caps
of spheres of radius ri > 1 passing through λz and μ,.

FIG. 5
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The bridges connecting the latitudes lλ and /2 of Step 1 run along arcs p and
q of a great circle g. The \ -neighborhood of g has positive mean curvature with
respect to the inward normal. We define the three-manifold L to be the union
of Bλ and B2 with the portions of the ^-neighborhood of g which lie inside S2

and alongp and q. (L is shaded in Fig. 5). We note that in the construction we
have just described, we are free to take all the latitudes li9 λi and μt to be as
close as we please to the equator, and η to be as large as we please.

FIG. 6(A)

FIG. 6(B)
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We shall modify L to make its boundary satisfy condition (C). Consider the
point x in which p or q intersects dBt (/ = 1 or 2). In a neighborhood of x9 L
consists of part of Bt and part of the \ -neighborhood of g, and dL consists of a
surface Σ which is part of a sphere of radius rz, a surface Φ which is part of the
^-neighborhood of g and part of S2 (Fig. 6). Consider a catenoid R whose axis
of symmetry is the normal to Σ at x and which is also symmetrical about Γ, the
plane tangent to Σ at i ; there is a one-parameter family of such catenoids
which differ by a homothety centered at x. Fig. 6 shows the intersection of R
with the plane P through the geodesic g. If the angle θ between T and the plane
tangent to S2 at x is small, then, as we scale down R, R n P begins to intersect
g near x, and continues to do so for arbitrarily small values of the scale factor
(Fig. 6(a)). If θ is close to ττ/2, there is a neighborhood of x in which R Π P
does not intersect g for any scale factor (Fig. 6(b)). It is the latter condition
that we require, and we choose /,, λ/5 μt and η so that it is satisfied. When R
has been scaled down sufficiently, the component oΐ R Π L which lies closest
to x is a disc D. D, Σ and Φ cut off three balls from L, and we modify L by
removing these three balls. (The portions to be removed are shaded in Fig.
6(b).) With this modification at each such point dL satisfies condition (C).

We make one further modification to dL. Take a stable catenoid spanning
two circles close to g, chosen so as to cut off small "channels" from L along
the arcs p and q. By removing these "channels" from L we allow space for the
bridges of Step 2.

The curves a2 and b2 are to be spanned by discs. Here we take two new
latitudes a little outside the pair of latitudes from which a2 and b2 were
constructed, and form a single ball satisfying condition (C) in the same way as
before. From this ball we remove the portion that lies between two planes
parallel and close to the plane of g.

It remains to complete the construction of M by adding neighborhoods of
three curves on S2 corresponding to the bridges α, β and γ of Step 2. Where
these meet the rest of M we intersect with a catenoid as before.

M has been constructed in such a manner that the set of curves Γ = dF = dG
may be taken to lie on that part of S2 which is in the boundary of M. A
theorem of Meeks and Yau [4, Theorem 5], together with their technique for
handling a piecewise smooth boundary [4, Proof of Theorem 1], yields the
existence of an embedded minimal surface with the properties required of F. (I
am grateful to S. T. Yau for drawing my attention to this theorem. An earlier
version of the proof used the geometric Dehn lemma and thus was restricted to
genus 0.)
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Example for Question 2. We take two disjoint Jordan curves on S2 that

bound stable minimal discs with interiors that intersect, and connect them by a

bridge with boundary in S2.

More precisely, let /, (i = 1,2,3) be latitudes close to the equator, /2 lying

between lλ and l3. Form a Jordan curve I\ c S2 by connecting lλ and l2 with

two arcs nearly parallel to a longitude. By the bridge principle, I\ bounds a

minimal disc Dλ consisting of discs close to the flat discs spanned by lλ and l2

connected by a thin bridge. Z)1 does not minimize area, so Tλ bounds another

minimal disc D2 which lies close to S2. Form a Jordan curve Γ2 by connecting

I\ and l3 with two arcs nearly parallel to a longitude. Let D3 be the flat disc

bounded by /3. Then Γ2 bounds a stable minimal disc D4 consisting of discs

close to Dλ and D3 joined by a bridge, and Γ2 also bounds a stable minimal disc

D5 consisting of discs close to D2 and D3 joined by a bridge. Let Γ2 be a Jordan

curve close to but not intersecting Γ2. Then Γ2 and Γ2 bound stable minimal

discs that intersect, and these may be connected by a bridge. As with the

example for Question 1, we may prove that such a disc exists by constructing a

manifold satisfying condition (C), which in this case is immersed in R3 rather

than embedded. (The reason for the disc D3 is to allow us to use this method to

attach the final bridge.)

Remark. The Jordan curve we have constructed appears to bound at least

five stable minimal discs, four obtained by the bridge principle together with

the disc of least area. It seems that only one of these fails to be embedded.

Note that Meeks has shown that an extremal curve that bounds a minimal disc

that is not embedded must bound at least two embedded stable minimal discs

[4].
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