TWO TOPOLOGICAL EXAMPLES IN MINIMAL SURFACE THEORY

PETER HALL

This paper gives an account of examples which the author has constructed to answer two questions posed by W. H. Meeks III.

Question 1. Given a set Γ of disjoint smooth Jordan curves on the standard 2-sphere S^{2}, such that Γ bounds two homeomorphic embedded compact connected minimal surfaces \dot{F} and G in B^{3}, is there an isotopy of B^{3} fixing Γ and taking F to G ([2, Problem 1], [1, conjecture 5])? Meeks has shown that such surfaces always split B^{3} into two handlebodies; it then follows that such an isotopy exists if Γ consists of a single curve or if F and G are annuli [2]. We give two counterexamples: one where F and G are planar domains with three boundary components and one where F^{\prime} and G^{\prime} have genus one and two boundary components.
Question 2. Can a Jordan curve on the boundary of a convex set in \mathbf{R}^{3} bound a minimal disc that is not embedded [1, conjecture 2]? We give an example of a smooth Jordan curve on S^{2} that bounds an immersed stable minimal disc that is not embedded.

Our examples depend upon the "bridge principle" for minimal surfaces, which, roughly stated, is to this effect: if we have two stable minimal surfaces X and Y in \mathbf{R}^{3} and an arc c joining their boundaries, there exists a new stable minimal surface Z which consists of surfaces close to X and Y together with a thin "bridge" running along c. We also require that the boundaries of X, Y and Z should lie on S^{2}. A version of the bridge principle has been proved by Meeks and Yau [4], although without this further requirement; we are able to justify our examples by a slight modification of their technique.

This research forms part of the author's doctoral thesis at the University of Warwick. I am happy to acknowledge the help of J. Eells, W. H. Meeks III, B. Solomon, S. T. Yau and the referee on various points, as well as the constant

[^0]support of my supervisor, D. B. A. Epstein. Part of my research was supported by the Science Research Council of the United Kingdom.

Example for Question 1. We shall first describe the construction informally in two steps, then prove that the surfaces are not isotopic in B^{3} and then give a proof that such surfaces exist.

Step 1. In any system of polar coordinates on S^{2}, consider a pair of latitudes l_{1} and l_{2}. If they are close enough to the equator they bound a stable embedded minimal annulus in B^{3} (Fig. 1(a)). They also bound a pair of stable embedded minimal discs (Fig. 1(b)). Take a great circle g orthogonal to l_{1} and l_{2}; this contains two arcs p and q which join l_{1} to l_{2}. Form a new pair C of disjoint smooth Jordan curves by erasing a short arc from l_{1} or l_{2} at each intersection with g and adding four arcs nearly parallel to p and q. If the bridge principle holds for C, C bounds a stable minimal annulus consisting of surfaces near the discs spanning l_{1} and l_{2} connected by bridges along p and q (Fig. 2(b)). By-for example-the minimal Dehn lemma of Meeks and Yau [3], each component of C also bounds a stable embedded minimal disc inside its convex hull; the convex hulls are disjoint and hence so are these discs (Fig. 2(a)).

Fig. 1

(a)

(b)

Fig. 2

Step 2. Apply the construction of Step 1 to three pairs of latitudes, so as to obtain six Jordan curves on S^{2} each of which bounds a disc in S^{2} disjoint from the others. Denote these curves by $a_{i}, b_{i}(i=1,2,3)$ so that each pair $\left(a_{i}, b_{i}\right)$ bounds an annulus E_{i} from Step 1. Topologically but not metrically, the annuli are arranged as in Fig. 3. To obtain a counterexample where the surfaces F and G are planar domains with three boundary components, we connect these annuli by three further bridges α, β and γ as shown in Fig. 4. The surface F consists of annuli close to E_{1} and E_{3} and discs spanning a_{2} and b_{2}, connected by bridges. The surface G consists of annuli close to E_{2} and E_{3} and discs spanning a_{1} and b_{1}, connected by bridges.

Fig. 3

To obtain a counterexample where the surfaces F^{\prime} and G^{\prime} have genus one and two boundary components, we modify the previous example by adding a fourth bridge δ connecting b_{2} and $b_{3} . F^{\prime}$ and G^{\prime} are the surfaces obtained by adding the additional bridge δ to the construction of F and G. We omit the proofs that F^{\prime} and G^{\prime} exist and are not isotopic, which are similar to those for F and G.

Fig. 4

Proof that the surfaces F and G are not isotopic. Each of the three components of $\Gamma=\partial F=\partial G$ bounds a disc in S^{2} which is disjoint from the others; call this the disc inside that component. Regard B^{3} as embedded in \mathbf{R}^{3}, and attach an unknotted 1-handle h to B^{3} along the discs inside the components of Γ which meet b_{2} and b_{3}. Each of F and G splits B^{3} into a ball and a ball with two handles. For G, the union of this ball with h is a solid torus standardly embedded in \mathbf{R}^{3}. For F it is embedded as a regular neighborhood of a trefoil knot. Therefore F and G are not isotopic in B^{3}.

Proof that the surfaces F and G exist. Following Meeks and Yau [4] we shall construct for each surface a 3-manifold M with piecewise-smooth boundary embedded in \mathbf{R}^{3}, which may be thought of as a regular neighborhood of the surface, and show that a minimal surface with the required properties exists inside M. The boundary of M is required to satisy the following condition (C):
(C1) M is contained in the interior of a compact submanifold N of \mathbf{R}^{3} and there is a smooth stratification of N such that ∂M is a union of strata.
(C2) Each 2-dimensional stratum of ∂M has nonnegative mean curvature with respect to the inward normal.
(C3) Each 2-dimensional stratum H of ∂M extends to a properly-embedded smooth surface K in N such that $H=K \cap M$.

We shall prove the existence of F, the argument for G being similar.
The pairs of curves $\left(a_{1}, b_{1}\right)$ and $\left(a_{3}, b_{3}\right)$ are to be spanned by annuli. For each pair we start from the pair of latitudes l_{1} and l_{2} from which it was constructed in Step 1. For $i=1,2$ we take another two latitudes λ_{i} and μ_{i}, a short distance from l_{i} on either side. λ_{i} and μ_{i} bound an annular region on S^{2}, which is to be part of the boundary of a ball $B_{i} ; \partial B_{i}$ will be piecewise-smooth and satisfy condition (C). The remainder of ∂B_{i} is formed by the smaller caps of spheres of radius $r_{i}>1$ passing through λ_{i} and μ_{i}.

Fig. 5

The bridges connecting the latitudes l_{1} and l_{2} of Step 1 run along arcs p and q of a great circle g. The $\frac{1}{4}$-neighborhood of g has positive mean curvature with respect to the inward normal. We define the three-manifold L to be the union of B_{1} and B_{2} with the portions of the $\frac{1}{4}$-neighborhood of g which lie inside S^{2} and along p and q. (L is shaded in Fig. 5). We note that in the construction we have just described, we are free to take all the latitudes l_{i}, λ_{i} and μ_{i} to be as close as we please to the equator, and r_{i} to be as large as we please.

Fig. 6(A)

Fig. 6(B)

We shall modify L to make its boundary satisfy condition (C). Consider the point x in which p or q intersects $\partial B_{i}(i=1$ or 2). In a neighborhood of x, L consists of part of B_{i} and part of the $\frac{1}{4}$-neighborhood of g, and ∂L consists of a surface Σ which is part of a sphere of radius r_{i}, a surface Φ which is part of the $\frac{1}{4}$-neighborhood of g and part of S^{2} (Fig. 6). Consider a catenoid R whose axis of symmetry is the normal to Σ at x and which is also symmetrical about T, the plane tangent to Σ at x; there is a one-parameter family of such catenoids which differ by a homothety centered at x. Fig. 6 shows the intersection of R with the plane P through the geodesic g. If the angle θ between T and the plane tangent to S^{2} at x is small, then, as we scale down $R, R \cap P$ begins to intersect g near x, and continues to do so for arbitrarily small values of the scale factor (Fig. 6(a)). If θ is close to $\pi / 2$, there is a neighborhood of x in which $R \cap P$ does not intersect g for any scale factor (Fig. 6(b)). It is the latter condition that we require, and we choose $l_{i}, \lambda_{i}, \mu_{i}$ and r_{i} so that it is satisfied. When R has been scaled down sufficiently, the component of $R \cap L$ which lies closest to x is a disc $D . D, \Sigma$ and Φ cut off three balls from L, and we modify L by removing these three balls. (The portions to be removed are shaded in Fig. 6(b).) With this modification at each such point ∂L satisfies condition (C).
We make one further modification to ∂L. Take a stable catenoid spanning two circles close to g, chosen so as to cut off small "channels" from L along the $\operatorname{arcs} p$ and q. By removing these "channels" from L we allow space for the bridges of Step 2.

The curves a_{2} and b_{2} are to be spanned by discs. Here we take two new latitudes a little outside the pair of latitudes from which a_{2} and b_{2} were constructed, and form a single ball satisfying condition (C) in the same way as before. From this ball we remove the portion that lies between two planes parallel and close to the plane of g.

It remains to complete the construction of M by adding neighborhoods of three curves on S^{2} corresponding to the bridges α, β and γ of Step 2. Where these meet the rest of M we intersect with a catenoid as before.
M has been constructed in such a manner that the set of curves $\Gamma=\partial F=\partial G$ may be taken to lie on that part of S^{2} which is in the boundary of M. A theorem of Meeks and Yau [4, Theorem 5], together with their technique for handling a piecewise smooth boundary [4, Proof of Theorem 1], yields the existence of an embedded minimal surface with the properties required of F. (I am grateful to S. T. Yau for drawing my attention to this theorem. An earlier version of the proof used the geometric Dehn lemma and thus was restricted to genus 0 .)

Example for Question 2. We take two disjoint Jordan curves on S^{2} that bound stable minimal discs with interiors that intersect, and connect them by a bridge with boundary in S^{2}.

More precisely, let $l_{i}(i=1,2,3)$ be latitudes close to the equator, l_{2} lying between l_{1} and l_{3}. Form a Jordan curve $\Gamma_{1} \subset S^{2}$ by connecting l_{1} and l_{2} with two arcs nearly parallel to a longitude. By the bridge principle, Γ_{1} bounds a minimal disc D_{1} consisting of discs close to the flat discs spanned by l_{1} and l_{2} connected by a thin bridge. D_{1} does not minimize area, so Γ_{1} bounds another minimal disc D_{2} which lies close to S^{2}. Form a Jordan curve Γ_{2} by connecting Γ_{1} and l_{3} with two arcs nearly parallel to a longitude. Let D_{3} be the flat disc bounded by l_{3}. Then Γ_{2} bounds a stable minimal disc D_{4} consisting of discs close to D_{1} and D_{3} joined by a bridge, and Γ_{2} also bounds a stable minimal disc D_{5} consisting of discs close to D_{2} and D_{3} joined by a bridge. Let Γ_{2}^{\prime} be a Jordan curve close to but not intersecting Γ_{2}. Then Γ_{2} and Γ_{2}^{\prime} bound stable minimal discs that intersect, and these may be connected by a bridge. As with the example for Question 1, we may prove that such a disc exists by constructing a manifold satisfying condition (C), which in this case is immersed in \mathbf{R}^{3} rather than embedded. (The reason for the disc D_{3} is to allow us to use this method to attach the final bridge.)

Remark. The Jordan curve we have constructed appears to bound at least five stable minimal discs, four obtained by the bridge principle together with the disc of least area. It seems that only one of these fails to be embedded. Note that Meeks has shown that an extremal curve that bounds a minimal disc that is not embedded must bound at least two embedded stable minimal discs [4].

References

[1] W. H. Meeks III, Lectures on Plateau's problem, Inst. de Mate. Pura e Apl., Rio de Janeiro, 1978.
[2] The topological uniqueness of minimal surfaces in three dimensional Euclidean space, Topology 20 (1981) 389-410.
[3] W. H. Meeks III \& S. T. Yau, The classical Plateau problem and the topology of three-dimensional manifolds, Topology 21 (1982) 409-442.
[4] The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z. 179 (1982) 151-168.

University of Liverpool

[^0]: Received March 30, 1983 and, in revised form, November 21, 1983.

