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THE DIRICHLET PROBLEM FOR HARMONIC
MAPS FROM A SURFACE WITH BOUNDARY

ONTO A 2-SPHERE WITH
NONCONSTANT BOUNDARY VALUES

JURGEN JOST

1. Discussion of the main result

Let Σx and Σ 2 be two compact two-dimensional Riemannian manifolds,
3Σ2 = 0. In [8] and [9], Lemaire showed that if π 2(Σ 2) = 0 every map φ from
Σλ to Σ 2 is homotopic to a harmonic map u which minimizes energy in its
homotopy class and satisfies u\dΣλ = φ|3Σ1 in case 3ΣX Φ 0 . (If 3ΣX = 0,
this was proved independently by Sacks and Uhlenbeck [10]; cf. also [11].) If
7Γ2(Σ2) Φ 0, then such an existence result is no more true, however. Lemaire
showed in [8] that the minimum of energy is not attained among maps of
degree 1 from a surface of positive genus onto the two-dimensional sphere S2,
and hence there does not exist an energy minimizing harmonic map in those
homotopy classes. Actually, Eells and Wood [3] proved that there is no
harmonic map at all from the torus onto S2 of degree 1. Furthermore,
concerning the boundary value problem, Lemaire also demonstrated in [8] that
any harmonic map from the unit disc onto S2 with constant boundary values
has to be constant itself.

Hence, in this case the Dirichlet problem cannot be solved in any nontrivial
homotopy class. Lemaire's proof consists in showing that such a harmonic map
necessarily has to be conformal and therefore constant, since there exists no
surjective conformal map from the disc onto S2. In particular, this implies that
the limit of an energy minimizing sequence has to fall out of a nontrivial
homotopy class and has to become trivial. Lemaire's argument, however, raises
the question what happens if the prescribed boundary values are nonconstant
(and, e.g., separate S2 into two different regions which are conformally
equivalent to the disc) and more precisely, whether one can find at least two
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homotopically different harmonic maps which minimize energy in their respec-
tive homotopy classes.

The purpose of the present note is to provide an affirmative answer to this
question. Actually we shall prove the following more general result.

Theorem. Suppose Σx is a compact two-dimensional Riemannian manifold

with nonempty boundary 92X, and Σ2 is a Riemannian manifold homeomorphic to

S2 (the standard 2-sphere), and ψ: dΣλ -> Σ2 is a continuous map, not mapping

9ΣX onto a single point and admitting a continuous extension to a map from Σx to

Σ2 with finite energy. Then there are at least two homotopically different

harmonic maps u: Σx -» Σ2 with u\dΣx = ψ, which minimize energy in their

respective homotopy classes.

Again, it might be asked whether this result is optimal or whether the
minimum of energy is attained in every homotopy class of maps from the disc,
e.g., onto S2 with nonconstant boundary values. This is not the case, however,
as the following easy modification of Lemaire's argument [8, p. 65f] shows
where again the nonexistence of a conformal map will imply the nonexistence
of an energy minimizing map.

Let D be the unit disc in the complex plane, and k: D -> S2 be a conformal
map mapping D onto the upper hemisphere and dD onto the equator.
Furthermore, suppose that k is equivariant with respect to the rotations of D
and S2 (the latter ones leaving the north and south pole of S2 fixed). We
choose the orientation on S2 in such a way that the Jacobian of k is positive.

Let Z>(0, r) be the plane disc with center 0 and radius r (i.e. D = Z)(0,1)).
Let hr be a map from Z>(0, r) onto S2 which maps 9Z>(0, r) onto the north
pole, is injective in the interior of Z>(0, r) and has a positive Jacobian there,
and is ε-conformal. We introduce polar coordinates (p, φ) on D and define for
0 < r < 1 the mapping kr by

H
hr(p,<p) ifO < p < r .

Using the ε-conformality theorem it is easy to see that the energy of kr can be
made arbitrarily close to 6π if we choose r > 0 sufficiently small.

On the other hand, 677- is just the area of the image of kn counted with
multiplicity. Hence, if there is an energy minimizing map homotopic to kn its
energy has to be equal to the area of the image, and it therefore has to be
conformal. Since the boundary values are equivariant, this conformal map
itself has to be equivariant (otherwise there would exist infinitely many
homotopic conformal maps with the same boundary values which is not
possible). This, however, implies that it would have to collapse a circle in D to
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a point which is not possible for a conformal map. Hence there is no energy
minimizing map homo topic to kr

By letting hr cover S2 more than once, we obtain other classes without
energy minimizing maps by a similar argument. If Ar, however, has degree — 1,
then kr is homotopic to a map of D onto the lower hemisphere and hence
homotopic to an energy minimizing map. Hence, in this example, there are
precisely two homotopy classes which contain energy minimizing maps.

Lemaire's argument also indicates that what can go wrong with a minimizing
sequence is the "bubbling off" of a sphere with some multiplicity. (That this is
indeed the only way a limit of a minimizing sequence can leave its homotopy
class was shown by Sacks and Uhlenbeck [10].)

Our proof will use some ideas introduced in our previous paper [6], We shall
show with the help of a maximum principle and a careful replacement
argument that the minimum of energy is attained in two different homotopy
classes and hence in those classes no sphere can bubble off. These classes are
related to each other by attaching a sphere with multiplicity - 1 . Our replace-
ment argument was inspired by Wente's paper [14]. One should note that the
fact that if a sphere bubbles off the energy has to drop at least by the area of
the image, was also used in the recent solution of the Rellich conjecture by
Brezis and Coron [1] (an independent, though somewhat weaker solution was
provided by Struwe [13] and Steffen [12]).

I am grateful to A. Baldes and M. Struwe for drawing my attention upon
this problem. After I had finished the first version of my paper, J. M. Coron
informed me that a similar result had been obtained by Brezis and himself.
Their work will appear in [2]. I thank him for several useful comments on my
paper. In particular, the discussion with him led me to discover an error of
mine concerning the topological setting of the problem and to work out the
remark following the statement of the result. A proof of this latter fact by
direct calculation will also appear in [2].

For a detailed account of the theory of harmonic maps between surfaces the
reader can consult [7].

2. Some lemmata
An essential tool in our proof of the theorem will be the following maximum

principle.
Lemma 1. Suppose B(p,s):= {q e N: d(p,q) < s) is a geodesic ball in a

Riemannian manifold N with distance function J( , •), and

), 7r/2/c),
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where i(p) is the injectiυity radius ofp, and κ2 is an upper bound for the sectional

curvature of N.

If h: Ω -» N, Ω being a domain on some Riemannian manifold, is energy

minimizing among maps which are homotopic to some g: Ω -» B(p, s), and if

Λ(9Ω) c B(p, s), then also Λ(Ω) c B(/?, s).

For a proof, cf. [6].

Furthermore, we shall make use of the following result of Hildebrandt, Kaul

and Widman [5] (cf. [6] for an easy proof).

Lemma 2. Suppose Ω is a domain on some surface Σl9 3Ω Φ 0, and B(p, M)

is a disc on another surface Σ 2 , with M < π/2κ, where κ2 is an upper bound for

the Gauss curvature on B(p, M), and ψ: ΘΩ -> B(p, M) is continuous and

admits an extension ψ: Ω -> B(p9 M) with finite energy E(ψ).

Then there exists a harmonic map h: Ω -» B(p, M) with Λ|3Ω = ψ, and h

minimizes the energy with respect to these boundary values. Conversely, each such

energy minimizing map is harmonic. The modulus of continuity of h can be

estimated in terms of a lower bound of the Gauss curvature of Σv the injectivity

radius i(Σx), M, /c, £ ( ψ ) , and the modulus of continuity ofψ.

Finally, we shall use the following result due to Lebesgue and Courant (cf.

[7, Lemma 3.1]).

Lemma 3. Suppose u: Ω -> Σ 2 , Ω being a domain of some surface Σ 1 ? is a

map with finite energy E(u), x0 e Ω, - λ2 is a lower curvature bound on Ω, and

δ<min(l,ι(Σ1),l/λ2).

Then there exists some r G ( δ , / δ ) with

d(u(Xl), u(x2)) < 2π£(κ) 1 /

for all xv JC2 e Ω with d{x^ xQ) = r (i = 1,2).

3. Proof of the theorem

We put s = j min(/(Σ2), π/2/c), where /c2 is an upper curvature bound on

Σ 2 and /(Σ2) is the injectivity radius of Σ 2 .

Let δ0 ̂  min(l, i(Σλ)
2,1/λ2) (-λ 2 being a lower bound for the curvature of

Σλ) satisfy

(1) 2π £ ( φ ) 1 / 2 ( l o g l / δ 0 Γ 1 / 2 < s/2,

where E(<ρ) is the energy of φ, and

(2) d(x1,x2)ζfc=>d(φ{x1),φ(x2))*ίs/2 for xlt x2 e 32X.
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Let 0 < δ < δ0. There exists a finite number of points xi e Σ l 9 i = 1, m =
m(δ), for which the discs B(xi9 8/2) cover Σv We let un be a continuous
energy minimizing sequence in [φ], E{un) < E(ψ) w.l.o.g. for all n.

Applying Lemma 3 and using (1) and (2), for every n, we can find rΛ l,
δ < rnχ < V ,̂ and/?π,i e Σ 2 with the property that

(3) un(dB(xl9rnl))c:B(pn^s).

(Here, we have defined B(x, r) = {7 e Σx: d(;c, j>) < r} and thus 3Z?(;c, r) =
3(Z?(.x, r) Π Σλ) near the boundary.)

We now have two possibilities: either
(1) There exists some δ, 0 < δ < δ0, with the property that for any x e Σ l 9

every sufficiently large «, and some r with δ < r < yfδ and with ww(32?O, r))
c .β(^, 5) for some p e Σ 2 , w^l^ίx, r) is homotopic to the solution of the
Dirichlet problem

g: B(x, r) -> B(p, s) harmonic and energy minimizing,
( 4 )

(the existence of g is ensured by Lemma 2; g is actually unique, but this is not
needed in the following constructions); or

(2) Possibly choosing a subsequence of the un, we can find a sequence of
points xn e Σl9 and radii rn > 0, xn -> x0 e Σx, rn -» 0, with Mn(35(xn, r j) c
#(/?„, εn) for some pn G Σ 2 , Pn~^ P ̂  2 2 , εM -» 0 (using Lemma 3), but for
which Mn|5(xrt, rn) is not homotopic to the solution of the Dirichlet problem

(4).
In case (1), we replace un on B(xv rnl) by the solution of the Dirichlet

problem (4) for x = xx and r = rnl. We can assume rnl -» rx and pnl -> /?χ e
Σ 2 , and, using the interior modulus of continuity estimates for the solution of
(4), that the replaced maps, denoted by u\, converge uniformly on B(xx, δ - η),
for any 0 < η < 8. By Lemma 1

(5) E(u\,)*E(un).

By the same argument as above, we then find radii rn2, 8 < rn2 < ]fδ , with

uι

n(dB(x29rna))<zB(pn:λ9s)

for pointspn 2 Ξ Σ 2 .
Again, we replace wj on B(x2, rn2) by the solution of the Dirichlet problem

(4) for x = x2 and r = rΠf2. We denote the new maps by u\. Again, w.l.o.g.,
rn2 -* r2. If we take into consideration that, by the first replacement step, u\ in
particular converges uniformly on B(x2, r2) Π B(xv 8 - η/2), if 0 < η < δ,
we see that the boundary values for our second replacement step converge
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uniformly on dB(x2, rn2) Π B(xv δ - η/2). Using the estimates for the mod-
ulus of continuity for the solution of (4) at these boundary points (cf. Lemma
2), we can assume that the maps u\ converge uniformly on B(xl9 δ — η) U
B(x2,δ - 77), ifO < η < δ.

Furthermore, by Lemma 1 again and (5),

E(u2

n) < £ ( « i ) < £ ( « „ ) .

In this way, we repeat the replacement argument, until we get a sequence
u™ =:vn with

(6) E(vn) < £(«„),

which converges uniformly on all balls B(xt, δ/2), / = 1, ra, and hence on
all of Σ1 ? since these balls cover Σv

We denote the limit of the υn by u. By uniform convergence, un is homotopic
to φ. Since E(vn) ^ E(φ) by (6), we can assume that the vn converge also
weakly in H\ to M, and by lower semicontinuity of the energy w.r.t. weak H\
convergence and since the υn are a minimizing sequence by (6), u minimizes
energy in its homotopy class.

In particular, u minimizes energy when restricted to small balls, and hence it
is harmonic and regular by Lemma 2.

We now investigate what happens in case (2). W.l.o.g., £(/?„, εn) c Z?(/?,2εw),
and εn ^ s/2 for all «, and thus the solution g of (4) for x = xn, r = rn is
contained in B(p, 2εn) by Lemma 1. Since un\B(xn, rn) is not homotopic to g,
it has to cover Σ2 \ B(p, 2εn). If we define

un=\ n

 o n B \ χ r \9 Ά '

then we see that

lim E(uJ > lim E{ un\Σλ \B{xn, rn)) + lim E( un\B(xn, rn))

> l i m ^ ( w J + Area(Σ2),

since E(g) -> 0 as n -> 00, because

as n -> 00, if we choose rn as in the proof of Lemma 3. (Furthermore, it is
elementary that E(v\B) > Area(>(2?)), and equality holds if and only if v is
conformal.) We now define

Ea:= inί{E(v): v e a)
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for a homotopy class a of maps with v\dΣx = ψ, and E:= minaEa. We first
show the existence of a minimizing harmonic map in any homotopy class a
with

(8) Ea <E + Area(Σ2).

We choose a minimizing sequence unin a with

E(un) < E + Area(Σ2).

Assuming that case (2) holds, we define ύn as above. Since clearly E(ύn) > £,
this would contradict (7), however. Therefore, as shown above, we obtain an
energy minimizing harmonic map in a.

Now let ά be a homotopy class with Es = E, and let ύ be an energy
minimizing map in ά, i.e. E(ύ) = E. We want to construct a map v in some
homotopy class a Φ a with

(9) E(υ) < £ ( w ) + Area(Σ2).

Then the arguments above show that we can find a harmonic map of minimal
energy in α. In order to complete the proof, it thus only remains to construct v.

The metric on Σ 2 is conformally equivalent to the standard metric on S2,
and thus, we can use S2 as a parameter domain for the image.

Since ψ is not a constant map, also ύ is not a constant map, and hence we
can find a point x0 in the interior of Σx for which dύ(x0) Φ 0. Rotating S2, we
can assume that w(x0) is the south pole/?0. We introduce local coordinates on
the image by stereographic projection TΓ: S2 -> C from the south pole /?0

dπ(p0) then is the identity map up to a conformal factor. By Taylor's theorem,
7r o ύ\dB(x0, ε) is a linear map up to an error of order O(ε2), i.e.

(10) \π o δ(x) - d{π o u){xo)(x - xo)\ = O(ε2)

for* e 92?(.x0, ε).
We now look at conformal maps of the form

w = az H — , a, b €i C, a = ^ + ia2, b = b1 + ib2.

The restriction of such a map to a circle p(cos θ + /'sinθ) in C is given by

u = (αxp + bλ/ρ)cosθ +(b2/p - α2p)sin0,

u = (a2ρ + b2/p)cosθ +(aλp - b1/ρ)sinθ,

where w = u + w.
Therefore, we can choose α and fc in such a way that w restricted to this

circle coincides with any prescribed nonconstant linear map. This map is
nonsingular if

P4 * (bl + bl)/{al + a\).
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W.l.o.g. p4 < (b\ + b\)/(a\ + aj) (otherwise we perform an inversion at the
unit circle). Hence w can be extended as a conformal map from the interior of
the circle p(cos# + isinθ) onto the exterior of its image. We are now in a
position to define υ. On Σx\B(xθ9 ε) we set v = u. On B(x0, ε — ε2) we
choose a conformal w as above which coincides on the boundary with the
linear map d(π ° u)(xo)/(l — ε), and put

v = π~ι ° w.

On B(x0, ε)\B(x0, ε - ε2) we inteφolate in the following way. We introduce
polar coordinates r, φ and define

g(φ):=

r 1
/(/%φ):= (/(φ) - g(φ))— + ~(g(φ) - ( 1 -

ε ε

Thus /(r, φ) coincides with /(φ) and g(φ), resp., for r = ε and r = ε — ε2,
resp.

The energy of ί(r, φ) on the annulus 5(x 0, ε)\B(x0, ε — ε2) is given by

Using (10), |/ r (φ)| = O(ε) and |g'(φ)| = O(ε) we calculate £(/) = O(ε)\ and
hence also,

£(^0/) = O(ε3).

We put υ = TT~1 © r on the annulus B(x0, ε)\B(xθ9 ε - ε2). Therefore

E(v) = E( u\Σλ \B(x0, ε)) + E( IT'1 O H ^ ( ^ O »
 ε " fi2))

= £ ( δ ) - O(ε2) + Area(Σ2) + 6>(ε3),

since E(u\B(x0, ε)) = O(ε2), because du(x0) Φ 0, and the energy of π~ι ° w is
the area of its image, since π and w and hence also π~ι o w are conformal.
Thus, for sufficiently small ε > 0 (9) is satisfied, and the proof is complete.

Remark. In spite of the argument presented in §1, our proof shows that in
many cases, we even get more than two homotopically distinct harmonic maps.
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Apart from the possibility that there might be several homotopy classes ά with
Es = £, our construction of the map υ can yield two different new homotopy
classes as soon as the functional determinant of w, a map with E(u) = E,
changes sign or if there exists a point where the functional determinant of u
vanishes, while du is nonzero at this point.
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