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CONTRACTIONS OF INVARIANT FINSLER
FORMS ON THE CLASSICAL DOMAINS

EVAN FLETCHER

Abstract

The Schwarz-Pick inequality shows that every holomorphic map of the complex unit disk into

itself contracts the Poincare metric. We consider the analogous question for holomorphic maps and

biholomorphically invariant Finsler forms, on any of the classical Cartan domains of rank > 1.

Theorem. Suppose D is a classical Cartan symmetric domain of rank > 1. // /; D -» D is a

nonconstant holomorphic map that contracts all invariant Finsler forms, then f is a biholomorphism.

The question of which maps contract all invariant Finsler forms contrasts with previous work

giving a Schwarz-Pick inequality for the Bergman metric on bounded symmetric domains (see e.g.,

Kobayashi: Hyperbolic manifolds and holomorphic mappings) and also with work defining systems

of metrics contracted by all holomorphic mappings (the "Schwarz-Pick" systems of pseudometrics

of Harris).

1. Introduction

Let D be any one of the four classical Cartan domains in Cn. This paper
answers the following question: which holomorphic maps / : / ) - > / ) contract
all biholomorphically invariant infinitesimal Finsler forms on DΊ

If D is the Poincare disk then of course the answer is familiar. The
infinitesimal Poincare metric is (up to scalar multiples) the only invariant
infinitesimal Finsler form on D and by the Schwarz-Pick inequality every
holomorphic/: D -> D is a contraction.

When the rank of D is greater than 1 the situation is radically different. We
shall see that except for the biholomorphisms themselves, there are no noncon-
stant holomorphic contractions of every invariant Finsler form.

The question of which maps contract every invariant form seems to contrast
with previous work on the Schwarz-Pick inequality. Koranyi [6] showed that if
G is a bounded symmetric domain of rank k then every holomorphic/: G -> G
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satisfies f*ds < k1/2ds, where ds is the infinitesimal Bergman metric; generali-
zations of this result may be found in Kobayashi [5]. Harris [4] considered the
question of assigning a pseudometric to each complex domain in such a way
that holomorphic maps between domains are contractions and the metric
assigned to the unit disk is the Poincare metric. The Caratheodory and
Kobayashi pseudometrics are respectively the largest and smallest of these
"Schwarz-Pick" systems; on any bounded symmetric domain the two coincide.

This paper was motivated by work of Ball and Helton [1] which char-
acterized the set of " totally contractive" mappings of the n X n matrix ball (a
type I classical domain); examples are the linear fractional mappings that
commonly occur in electrical network design. "Totally contractive" mappings
are contractions for many but not all invariant Finsler forms; the question
then arises which maps do contract them all.

Figure 1 provides some insight into the answer in the case of the 2 X 2
matrix ball. The indicatrix of a Finsler form F is the set of matrices Y in the
tangent space at 0 which satisfy F(09 Y) < 1. If F is biholomorphically
invariant then F(0, UYW) = F(0, Y) when U and W are unitary matrices;
since there exist unitary [/, W which reduce Y to diagonal form with real
entries, the indicatrix of F is completely determined by the set ΔF of real
diagonal matrices contained in it. The figures show ΔF as a subset of R2\ a
matrix Y may be identified with the point (σ l9 σ2) whose coordinates are the
singular values of Y.

Suppose Λ is a linear map on the tangent space at 0 which contracts every
Finsler form of the type represented in Figure 1 with increasingly sharp spikes;
evidently Λ must preserve the ratio σ2/σ1 for each Y or map Y to 0. We will
show that such a Λ must be a linear isometry or the zero map; thus the forms
of Figure 1 force the conclusion of our main theorem.

In contrast, Figure 2 represents a Finsler form contracted by all 'totally
contractive" maps, a large class. The requirement here is that the intersection
of every horizontal and vertical line with ΔF is an interval; this prevents sharp

slope = r
,."2)
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spikes from forming. Clearly any convex indicatrix falls into this category,
hence each Finsler metric is contracted by every totally contractive map. This
and other results for the convex case are given in [2].

The author would like to thank both his advisor J. W. Helton and the referee
for suggestions which clarified the ideas and exposition of this paper.

2. Cartan domains and Finsler forms

For the first three classical Cartan domains we use the definitions given in
[5, p. 34]. Let * denote conjugate transpose and let Ik denote the identity
matrix of order k. Then

R^m.n) = [m X n matrices Z: Im - ZZ* > 0).

We may assume that m > n. This domain has rank n.

Ru(n) = [n XnZ\Z = ZτJn- ZZ* > θ } .

The rank is n.

# m ( Ό Ξ {nXnZ:Z= -Zτ,In- ZZ* > θ } .

The rank is [n/2].
We define each Cartan factor X^m, n), Xu(n) and Xm(n) to be the tangent

space at 0 of the corresponding Cartan domain; it is clear conversely that a
Cartan domain is the open unit ball of its Cartan factor in the operator norm.

For domains of type IV it will be convenient to use a realization given in [3].
A factor of this type is a closed subspace Xιy of Xλ{n, n) such that Y e Xιγ

implies Y* e Xιw and Y2 = cyln for some scalar cy. There is an inner product
on * I V defined by (Y, Z)In = \{YZ* + Z*Y).

A domain Rιy is then the open unit ball of a factor Xιw in the operator
norm. The operator norm may be expressed in terms of the inner product by

||z||2 = (z,z)+((z,z)2-|(z,z*)|2)1/2,
which leads us to the standard definition of Rιy as given in [5]. The rank of
any RlY is 2 unless X1W is one-dimensional.

Now let TZ(D) and T(D) be respectively the tangent space at Z and the
tangent bundle of the domain D. An infinitesimal Finsler form is a continuous
nonnegative map F: T(D) -> R satisfying F(Zy cY) = |c|F(Z, Y) for every
scalar c and F G TZ(D). We say F is biholomorphically invariant if for every
biholomoφhismΛ: D -* D wehaveF(Λ(Z), Dh(Z){Y}) = F(Z, Y).

Let D be a Cartan domain and Z G D . The Moebius transformation

(i) t±z(γ) = z + (/ - ZZ*)1/2Y(I + z*γy\i - z*z)ι/2
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is a biholomorphism of D such that ίΔ Z(0) = Z, / Δ z = / Δ _ z and the following

derivative formulas hold:

(2a) />ίΔZ(0){K} = (/ - ZZ*)1/2V(I - Z*Z)1/2>

(2b) Z ) / Δ _ Z ( Z ) { F } = ( / - zz*y1/2v(i- z*zyι/2.

For the proof of these facts, see [3, Theorem 2].

The rank A: of a Cartan domain D is equal to the maximum number of

distinct nonzero elements in the spectrum of Z^Z as Z ranges over D\ each Z

has k canonical values σλ(Z)^ ••• > σ A : ( Z ) > 0 belonging to the spectrum of

( Z * Z ) 1 / 2 . For domains of type I and II the canonical values and the singular

values of Z coincide. For skew-symmetric matrices (domains of type III) the

singular values occur in pairs, except for matrices of odd order, where the last

singular value is 0. For Z e Rιγ there are at most two distinct eigenvalues of

Z*Z. Thus there are [n/2] canonical values for Z e Rm(n) and 2 canonical

values for Z e Λ I V.

3. Finsler form contractions

Theorem 1. Let D be a Cartan domain of rank > 1. // /: D -» D is a

nonconstant holomorphic map that contracts all invariant Finsler forms then f is a

biholomorphism.

The proof uses the following three lemmas.

Lemma la. If a linear map Λ: T0(D) —> T0(D) does not increase any

invariant Finsler form at 0, then for each 7 G TO(D) there is a constant c ^ 0

such that the canonical values of A(Y) are c times those of Y.

Proof. Define the following family of infinitesimal forms at 0, indexed by

the parameters A , m,y"withθ < r < l,y G {2, -,&} and m e {1,2, }:

ίmσ^Y) -{m- l)θj{Y)/r ύoJ/oι ^r,oλΦ 0,

^.r,y(0, Y) = < mσj(Y) -(/fir - 1)^(7) if σ/σ, >r,oλΦ 0,

(θ ifσ1 = 0

forO < r < 1;

Fmfij(P> Y) = *n°j(Y) + ^ ( 7 ) ; FmXJ(0, Y) = mσ^Y) ~(m- ΐ)θj(Y).

It is easy to verify that each Fm r j is continuous; Figure 1 shows ΔF with

0 < r < 1 for the case of a rank 2 domain.

Now suppose σy(7) = r'σ^Y) but σ7(Λ(7)) # r'σ^Λty)) and

0. If σy(Λ(7)) = r V A ( 7 ) ) + δ for some δ > 0, then



CONTRACTIONS OF INVARIANT FINSLER FORMS 32 9

, Y) = oτ(Y)9 Fmyj(0, Λ(7)) = mδ +

so FW t Γ V(0, Λ(7)) > -Fm,rV(0, 7) as soon as m > (σ^Y) - σ i(Λ(y)))/δ. A
similar calculation gives the same result when σy (Λ(y)) < rfσ1(A(Y))m

If Λ contracts every invariant Finsler form at 0 then for each Y and each j it
follows that σ y(Aίy^σxί A(y» = θj{Y)/oλ{Y) or Λ(Γ) = 0. This proves the
lemma.

Lemma lb. If A: T0(D) -* T0(D) satisfies the conclusion of Lemma la, then
A is a multiple of a linear isometry on T0(D) in the operator norm.

Proof. We will show that if Λ is not the 0 map then there is a nonzero
constant c such that (l/c)Λ maps the set of extreme points of D into itself and
additionally that Λ is injective. It will then follow by the Schwarz lemma that
(l/c)Λ is a linear isometry L.

Step 1. (l/c)Λ maps extreme points to extreme points.
By a result of Kadison-Harris (see [3, Theorem 11]), the extreme points of D

are the partial isometries of rank n - 1 when D = Rm(n) for odd /?, and the
rank n isometries in every other case. Thus for each domain the extreme points
are the matrices of the corresponding Cartan factor having all canonical values
equal to 1. Lemma la then tells us that Λ maps extreme points to multiples of
extreme points.

If there exists a constant c such that ||Λ(ί/)|| = c for each extreme point U9

then by the maximum principle c > 0. We show in each case that c exists.
Case 1. D is any of the domains Rλ{n, «), Ru(n), Rιu(2n), Rιy.
For each of these domains the extreme points are the unitary matrices

belonging to the corresponding Cartan factor.
Let U and V be two extreme points. If λ is an eigenvalue of V*U then

U — λFis singular. Since Λ by Lemma la is rank-preserving, Λ(t/) - λΛ(F)
is also singular; let ^be a unit null vector. Then A(U)v = λA(V)v; taking the
norm of each side gives ||Λ(ί/)|| = | |Λ(F)| | since A(U) and A(V) are each
multiples of a unitary matrix and |λ| = 1.

Case 2. D = Rγ(m, n) for m > n.
Here the extreme points are the rank n isometries.
We claim the following:
(i) If U and V are extreme points having a column in common then

Suppose the /th column of U and Fis the vector/. Then U - Vis singular,
hence the same is true for A(U) — Λ(F), and our claim follows from the same
argument as used in Case 1.

(ii) If U and V are extreme points having the same range then ||Λ(ί/)|| =
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If U and V have the same range then V*U is unitary on Cn. If λ is an
eigenvalue of V*U then U - XV is singular, since VV* is the orthogonal
projection onto range(F) = range(ί/); the claim then follows as before.

Now let U and V be any two extreme points. Let u be the first column of ί/,
?the first column of Fand find an ^-dimensional subspace of Cm containing u
and v. Expand u to an orthonormal basis for this subspace and let Uλ be the
isometry whose columns are these basis vectors with u in the first column.
Likewise expand v to an orthonormal basis for this subspace and let Vx be the
isometry having this set of vectors as its columns with υ as the first. Then we
have

by(i)

by(ii)

Case 3. D = Rιu(n) for odd n.
The extreme points are the partial isometries of rank n - 1. Every matrix of

XUι(n) is singular and its null space is odd-dimensional. In what follows
cyΓ(Z) and */(Z) will denote respectively the null space and the initial space
(i.e., ^Γ(Z)-1) of Z; π(Z) denotes the dimension of the null space. We claim
the following:

(i) If U and V are extreme points such that n(U - V) > 3 then ||Λ(ί/)|| =

If n(u — υ) ^ 3, then by Lemma la we have also n(Λ((/) — Λ(F)) ^ 3,
hence there is a unit vector f e / ( Λ ( ί / ) ) Π / ( Λ ( F ) ) such that A(U)v =
A(V)υ. The assertion then follows as before.

This assertion follows immediately from the fact that n(U - V) > 3.
(ii) UJT(U) = Jί(V) then ||Λ(ί/)|| = ||Λ(F)||.
If U and F have the same null space then because they are skew-symmetric

they also have the same range. Thus V*U\^(υ) is unitary. If λ is an eigenvalue
of V*U\s(υ) then {U - W)\J(U) is singular since VV* is the orthogonal
projection onto range(F) = range((/). But^Γ((ί/ - λV)\J(U)) is orthogonal to
Λ*(U) = ̂ ( F ) ; since nullity is odd, we have n(U - XV) > 3 and the asser-
tion follows from (i) and the fact that |λ| = 1.

Now let E be the partial isometry defined by Eii+1 = —Ei+li = l for odd /,
with all other entries equal to 0. Then ̂ (E) is spanned by en = (0, ,0,1)Γ.
Let Y be another extreme point having the same first two columns as E and
any skew-symmetric partial isometry Y' of rank n - 3 in the remaining block
of order n — 2:
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Y =

0
- 1
0

1
0
0

0
0

• 0
• 0

T
0 0

w = 0

0

w
0

0

0
0
1

0

•

1
0

where/' =

0
0
0
0
1

Note that JΓ(Y) is spanned by / = (0,0, j>3, 9yn)
τ, where / ' = (y39 9yn)

τ

spans Ji{T). Let W be defined so that the upper left 3 x 3 block W is
unitary and the remaining nonzero entries are l's along the diagonal.

Suppose V is an extreme point with unit null vector υ = (υl9- -,vn)
τ. We

will show that | |Λ(F) | | = | |Λ(£) | | . Pick Y having null vector

and W satisfying

0,0, ΣH
1/2

Then Wυ = (0,0, v'τ)τ spans JT{Y) so V and WTYW have the same null
space. Also Wen = en so WτEWand E have the same null space. Then:

| |Λ(F) || by(ii)

by (i) since n(WτYW - WTEW)

= n(Wτ(Y- E)W) > 3

= | |A(£) | | by(ii).

Step 2. A is injective.
Suppose Λ(Z) = 0. Let ί/be an extreme point of D. Then for each nonzero

scalar z, we have Λ(Z + zU) = zA(U) is a nonzero multiple of an extreme
point; by Lemma la the same must be true for Z + zU. If Z Φ 0 then letting
z -+ 0 shows that Z is also a nonzero multiple of an extreme point. But we
have seen from Step 1 that Λ sends no extreme points to 0.

Thus Λ is injective so (l/c)Λ = L maps the extreme points of D onto
themselves. Then L is a biholomorphism of D preserving the origin, so by the
Schwarz lemma is a linear isometry. This proves Lemma lb.

Suppose / : / ) - > / ) does not increase any of the Finsler forms defined in
Lemma la, that is, for each (Z, Y) G T(D) and all r, mj we have

Fr,mJ(f(Z),Df(Z){Y))<F,,mJ(Z,Y).
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By biholomorphic invariance of Frmj, this is the same as

Defining a new function fz = h-f(Z) °/° 'ΔZ> w e Λen rewrite the above
inequality as

(3) f w (

By Lemmas la and lb it then follows that Dfz(0) is a multiple of a linear
isometry.

Lemma 2. Suppose f:D-+Disa holomorphic map such that /(0) = 0 and
Df(0) Φ 0. If for each Z ^ D there exists a scalar az and a linear isometry L ( Z )

such that Dfz(0) = azL{Z), then f is itself a linear isometry.
Proof. Since /(0) = 0 we have f0 = /, so by hypothesis Df(0) = a0L(0)

where L (0) is a linear isometry and aQ Φ 0. To conserve notation we will take
a = a0 and L = L ( 0 ).

Without loss of generality we may take a to be real. If we can show a = 1
then it will follow from the Schwarz lemma that / = Df (0) = L and our
assertion will be proved.

We have the power series expansion f = aL + Σ™ Pk, where each Pk =
Dkf(0)/(k\) is a /^-homogeneous polynomial. We first show that P2 = 0, then
apply this result t o / z for small | |Z | | to show that a = 1.

Step 1. P2 = 0.
To obtain a contradiction suppose otherwise. If z is a real scalar and S e Z>,

then we have the following expansions:

(4) /(zS) =

(5) Df(zS){Y] = aL(Y) + zDP2(S){Y) +

From (2a), (2b), the definition of/2S and the chain rule, we have

Df2S(0){Y} = (I-f(zS)f(zS)*y1/2

(6) x [Df(zS){(l - SS*)1/2Y(I - S*S)1/2}]

x(/-/(zS)*/(zS)Γ1/2.

Now substitute the expansions (4) and (5) in (6); collect like powers of z on the
right side and set the left side equal to azSL(zS) by hypothesis. The result is

(7) azSL(zS)(Y) = aL(Y) + zDP2(S){Y] + O(z2).

Case 1. D = Rm(n) for n odd or Rγ{m, n) for m > n, n > 2.
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Formula (7) implies that rank(Z)P2(S){7}) ^ rank(7), since for small
enough \z\ the rank of the right side of (7) is at least mnk(DP2(S){Y}) and
L(zS) is rank-preserving. Now recall that P2(Z) = A2(Z, Z) where A2 is a
symmetric bilinear map. Thus DP2(S){Y} = 2A2(S, 7) = 2Λ2(7, S) =
DP2(Y){S] implies also that τaήk(DP2(S){Y}) ^ rank(S).

Now suppose that S has rank 1 (if S e R^m, n)) or rank 2 (if 5 e Λ I Π ( Λ ) )

and 7 is an extreme point. Then L(7) and L(zS)(y) are also extreme points.
Divide both sides of (7) by azS, then multiply each side by its conjugate
transpose. The resulting equation has the projection L(zS)(Y)*L(zS)(Y) on the
left side. Subtract the square of each side from this equation to obtain

0 = α'2(l -a'2)L{Y)*L(Y)

+ z(a'/azS)[(l - a'2)(L(Y)*DP2(S){Y) + DP2(S){Y}*L(Y))

W -a'2(L(Y)*L(Y)DP2(S){Y}*L(Y)

+ L(Y)*DP2(S){Y}L(Y)*L(Y))\ + O(z2),

where ar = a/azs. If the second summand in the linear term is nonzero, then
(8) gives (1 - a'1) = 0{z). But we can pick a vector v such that
DP2(S){Y}*L(Y)v = 0, since DP2(S){Y) has rank 1 or 2 while L(Y) is full
rank (n or n — 1). Then multiplying (8) on the left by u* and on the right by u
gives

0 = a'(l - a'2)v*L(Y)*L(Y)υ + O{z2),

in other words (1 — a'2) = O(z2). From this contradiction we conclude that
the summand in question is 0; the same argument holds when we replace S by
iS in (8). But then we have that L{Y)*L(Y)DP2(S){Y}*L(Y) is both
hermitian and skew-hermitian, hence equal to 0. Because L(Y) has full rank,
this means DP2(S){Y) = 0.

So we have shown that A2(S9Y) = 0 whenever S has rank 1 (in R^m, n))
or rank 2 (in Rιu(n)) and Y is an extreme point. But the m X n rank 1
matrices contain a basis for Xι(m9 n) and the skew-symmetric rank 2 matrices
contain a basis for Xιu(n). In addition, each Z e ΰ may be expressed as a
convex combination of extreme points. It then follows by linearity that
A2(S, Z) = 0 for arbitrary S, Z e D, hence P2 = 0.

Case 2.D = R^n, n\ Ru(n), Rm(2n) or ΛIV.
In this case it will suffice to show that A2 vanishes on pairs of unitary

matrices. Let 7 be unitary. Then L(Y) and L(zS)(Y) are unitary; multiplying
each side of (7) by its conjugate transpose gives

a]sI = a2l + za[L(Y)*DP2(S){Y) + DP2(S){Y}*L(Y)} + O(z2),
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which holds for all z sufficiently close to 0. This implies that the linear term on
the right side is a multiple of /. Replacing S by iS in the above and taking the
two equations together then gives that L(Y)*DP2(S){Y} is a multiple of /, in
other words DP2(S){Y) = csL(Y).

Now suppose V is another unitary matrix not a multiple of Y. Then we have
cvL(V) = DP2(Y){V) = DP2(V){Y} = cyL(Y) which implies that cυ = cy

= 0. Thus A2(V, Y) = 0. If V is a multiple of 7, take a sequence of unitary
matrices {Vk} such that Vk -> Y and each Vk is not a multiple of 7. This gives
A2(Y, Y) = 0. Since each Z e D may be expressed as a convex combination of
unitary matrices, linearity implies P2 = 0.

We have now shown that/ = ah + P3 + .
Step 2. α = 1.
From the definition of fz it is easy to see that fz contracts all invariant

Finsler forms on D if / does. Also /z(0) = 0 and for Z close to 0 we have
^l/z(0) ^ 0 since by hypothesis Df(0) Φ 0. Thus the hypotheses of Lemma 2
apply to/ z 5 as well as to/for small |z|, so by Step 1 we have D2fzS(0) = 0.

We will use this fact to prove our result by calculating the linear term of the
series expansion in z for D2fzS(Q){Y, Y} and setting it equal to 0 (we continue
taking z to be real).

Applying the chain rule twice tofzS we have

D2fzS(0){Y,Y}

= D\_f(zS)(f(zS)){Df(zS)oDt^zS(0){Y},Df(zS)oD^zS(0){Y}}

+ Df(zS){D\zS(0){Y,Y}}}.

We will also need the following formula which holds for arbitrary points V,
W,X:

D2g(X){V,W]

= lim [g(X + tV + tW) - g(X + tV) - g(X + tW) + g(X)]/t2.
t->0

It will only be necessary to calculate the constant and linear terms for each
summand on the right side of (9). We start with the second summand.
Applying (1) and (10) to tAzS and expanding the result as a series in z shows
that D2tAzS(0){ Y, Y} has linear term equal to -2zYS*Y. Then by (5) we have

(11) Df(zS){D\2S(0){Y,Y}} = -2azL(YS*Y) + O(z2).
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Next, by (2a) we have Dt±zS(Q){ Y} = Y to order 1 in z, so

(12) D2f(zS){Dt,zS(0){Y},DtAzS(0){Y}} = zD2P3(S){Y9Y}

to order 1 in z. Finally, Dt^_f(zS)(f(zS)) acting on the sum of the expressions
in (11) and (12) contributes no new terms of order 1 or lower in z, as can be
seen from (2b) and (4), so the second summand on the right of (9) is

(13) Z[D2P3(S){Y,Y) -2aL{YS*Y)} + O(z2).

Now we calculate the first summand on the right side of (9). Using (2a), (5)
and the fact that P2 = 0, we see that to order 1 in z we have
Df(zS)°Dt±zS(0){Y) = aL(Y). Then in the same way as we did for
£>2tAzS(°){γ> γ}> using (10) (and the fact that L(Y)L(S)*L(Y) = L(YS*Y)\
see [3]) we determine that to order 1 in z, the first summand on the right of (9)
is

(14) 2a3zL(YS*Y).

Combining (13) and (14) yields

D2fzS{0){Y, Y] = Z[D2P3{S){Y,Y) + 2{a3 - a)L(YS*Y)} + O{z2).

Since we must have D2fzS(0){ Y, Y] = 0 for z close to 0, we set the coefficient
of the linear term equal to 0 and obtain

D2P3(S){Y, Y] = 2(a - a3)L(YS*Y).

The right side of this equality is conjugate linear in 5, while the left side is
linear in S. This is possible only if a = 1, so the lemma is proved.

Proof of Theorem 1. Let /: D -> D be a holomorphic map contracting all
invariant infinitesimal Finsler forms. If Dfz(0) = 0 for each Z e D then by the
definition of fz we have Df(Z) = 0 for each Z, so / is constant. Suppose / is
not constant. Then for some Z we have Dfz(0) Φ 0; by applying Lemma 2 to
/ z , it follows that fz = L is a linear isometry. Then / = ίΔ/(Z) ° L ° ίΔ_z is a
biholomorphism.
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