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HARMONIC MAPS FROM S2 TO G24

JAYAKUMAR RAMANATHAN

0. Intoduction

The energy of a smooth map φ: M -> N between two smooth Riemannian

manifolds is given by

(0.1)

where dφ: TM -» TN is the differential of the map φ and dvo\M is the volume
element on M induced by the metric. The norm on dφ is given by

(0.2) \dφ\\x) = Σ (dφiei), dφie,)) N, xtΞM,

where e,, -,em is an orthonormal frame of TMX. The map φ is harmonic if it
is a critical point of this energy functional. This means that for any C°° one
parameter variation φt: M -^ N with t E (~δ, δ), δ > 0 and φ0 = φ,

(0.3)
"* , = 0

(See [4] and [5] for more information about the general theory of harmonic
maps).

Eells and Wood [6] have given a classification theorem for harmonic maps φ:
CP1 -> CPn which reduces their study to that of holomorphic maps of CP1 to
CP". In this note, we give a similar description of all harmonic maps φ:
CP ι -* G 2 4, G24 being the Grassmann manifold of complex two planes in C4.
This uses the results of Eeels and Wood in the special case of maps from CP1

to CP 3. Our method involves a conservation law that holds for any harmonic
map φ: CP1 -> Gk k+n, Gk n+lc being the manifold of complex k planes in
Cn+k. The proof of this conservation law given here, suggested by John
Rawnsley and Karen Uhlenbeck, is much simpler than the authors original
computations.

Received July 20, 1983.
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We conclude this section with some well-known results needed in the sequel.

The references of this material are [4], [5], [6], and [9].

Let φ: M -» N be a smooth map between two C°° compact Riemannian

manifolds. Then there is a global C°° section of the vector bundle φ*(TN) over

M, denoted τ(φ), satisfying the following property. Given a smooth one

parameter variation φt: M -» N with t E (-8, δ), δ > 0 and φ0 = φ, we have

(0.4) dvol.Λ/
/=O/ N

Lemma 0.1. Given a smooth global section of φ*(TN)9 X, there is a smooth

one parameter variation φt such that X = (dφt/dt) \t=0. Explicitly, the variation

is given by φt(x) = expφ{x)tX.

Corollary 0.2. The map φ is harmonic if and only ifτ(φ) = 0.

The section τ(φ) is called the tension field of φ. Explicit formulae for τ(φ)

can be found in the references mentioned.

Theorem 0.3 [5]. Let M and N be real analytic manifolds with real analytic

metrics. Then a harmonic map φ: M -> N is necessarily real analytic.

Suppose now that M is a compact Riemann surface and N is a Kahler

manifold. Also assume the metric on M is the real part of a Hermitian metric

on M. (Hence the metric on M gives the same conformal structure as the

complex structure on M). If φ: M -» N is a given smooth map, the complexi-

fied differential dφc: TCM -> TCN determines complex vector bundle maps

dφ'\ TU0M -» Th0N and dφ"\ T0ΛM -> Tλ>°N. Define the 9 energy of φ by

(0.5) ^ ( Ψ ) = / A

and the 3 energy of φ by

(0.6) E"(φ) = [ \dφ"\2dvolM.

The norms here are as in (0.2) with the distinction that a unitary frame on

Th0M (T0ΛM) is used (as opposed to an orthonormal frame).

A straightforward computation (see [6]) gives

M
M

(° 7 ) 1 1 c

where ωN is the Kahler form of N.

Theorem 0.4 [6]. (a) E"(φ) - E\φ) = fMΦ*(ωN) depends only on the

homotopy class of φ.

(b) The critical points ofE, E' and E" coincide.
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Denote by V the pullback of the Hermitian connection on Th0N to

φ*(Th0N). The Euler-Lagrange conditions for Ef and E" are given in the

following result.

Theorem 0.5 [6]. (a) The map φ is harmonic if and only if for any holomorphic

chart (ί/,z) of M,

(0.8) V2-dφ'[ 5- = 0
v z \dz}

on U, (where Vz is abbreviation for Vd/dz and V; abbreviates Vd/dί).

(b) The map φ is harmonic if and only if, for any holomorphic chart (U, z) on

M,

(0.9) vzd4

on U.

1. The metric and connection on the Grassmannian

Let Gk n+k be the space of complex k planes k planes in Cn+k. Gk n+k is a

compact complex manifold of dimension kn. Let Ek n+k be the standard rank

k holomoφhic vector bundle over Gkn+k. Explicitly, Ekn+k — {(P, v) G

Gk n+kX Cn+k: t ) G ? ) with the first coordinate giving the projection map

from Ek n+k to Gk n+k. There is a vector bundle inclusion of Ek n+k into
Gk,n+k x c"+k> the trivial rank n + fc bundle over Gkn+k. This trivial bundle

has a standard Hermitial inner product and connection. Let Ekn+k be the

orthogonal complement of Ekn+k in this trivial bundle. Hence Ekn+k is an

antiholomorphic vector bundle of rank n over Gkn+k.

Given an open set U C GktΛ+k, let s G Tυ(Ekn+k) and ^ G Γ ^ Γ c G ^ ^ ^ )

be sections over U. Then

(1.1) X(s)=Dxs + Bx(s),

where Z)^5 G Tu(Ek^n+k) and ^ ( 5 ) G Γ£ /( JE^Λ + j k). A standard argument

shows B is a section of Aι

cGkn+k ® Hom(2sΛι/I+Λ, Ekn+k), i.e. it is actually a

tensor. (This well-known fact follows from an argument analogous to that

showing the 2nd fundamental form of a submanifold is a tensor; see [9].)

Similarly, for* G T^E^) and X G 1 ^ ( 7 ^ „+*),

(1.2) X(s) = Dis + B}s,

where D%s G Tu(Ekn+k) and B* is a section of A]

cGkn+k 0

The Hermitian structure on Ek n+k and Ekn+k induce a Hermitian structure

on the bundle Homίϋ^ n+k, Ekn+k). Moreover the connections D and D*
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induce a connection on Hom(Ek n+k9 Ekn+k) that is compatable with this

Hermitian structure. Denote this induced connection by D. If T E

Tυ(Hom(Ektn+k, E£n+k)) and s E Tυ(Ekn+k) on some open set of U,

(1.3) (DxT)(s) = Dx(Ts)-T(Dxs).

The metric we use on Gkn+k is the Fubini-Study metric. Our task is to

identify the holomorphic tangent space, Tι'°Gkn+k, with Hom(Ek n+k, Ekn+k)

as Hermitian vector bundles with connections.

Proposition 1.1. The vector bundle map I: Tu0Gkn + k ->

Hom(Ek n+k, Ekn+k) given by X\-+ Bx is an isomorphism of vector bundles.

Proof. Let U(k, n + k) be the space of matrices Z with k columns and

n + k rows such that ιZZ — Id. In other words U(k, n + k) is the space of

unitary k frames in Cn+k. The map Π: U(k, n + k) -» Gkn+k, which takes

Z E i/(/c, H + k) to the A: plane spanned by the column vectors of Z, makes

U(k, n + k) into a fibre bundle over Gk n+k with fibres isomorphic to

We have that

(1.4) TzU(k,n + k)= {A <ΞM(k,n + k): 'AZ+'ZA = 0 } ,

where M(k9 n + k) is the space of all complex matrices with k columns and

n + k rows. An inner product on U(k, n + k) is given by

(1.5) (At, A2) = MM'^A))
for Λ, E TzU(k, n + k). The vector bundle F consisting of those vectors in

TU(k, n + k) tangent to the fibres of Π is given by

(1.6) Vz= {ZA:A <Ξu(k)}9

where u(k) is the Lie algebra of U(k). Let H be the orthogonal complement of

V in TU(k9 n + k). The bundle i/ has a natural complex structure that makes

the inner product (1.5) into the real part of a Hermitian metric on H. This

inner product projects via Π to the Fubini-Study metric on Gkn+k (see [9] for

more information).

Given X E Tp*°G9 it is enough to show that Bx has the same norm as X.

Without loss of generality we may assume P is the k plane of those vectors in

Qn+k w h o s e last n coordinates are all zero. Let s — (sλ, -,sk) be a lift from a

neighborhood of P to U(k, n 4- k) such that s(P) = (£*) (Id is the unit kX k

matrix). Then ds(X) is the matrix (X(sx), ,X(sk)). The vertical vectors at

s(P) are of the form (Q), when A E u(k) and 0 is the n X k zero matrix.

Hence (B^s^ ,Bx(sk)) gives the component of ds(X) orthogonal to the

fibres of Π. The result follows.

Proposition 1.2. The connection D on Hom(Ek n+k, Ekn+k) pulls back via I

to the Levi-Cevita connection on Tx'°Gkn+k.
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Proof. Since I*(D) is a Hermitian connection on Tlf0Gkn+k it suffices to

check that I*(D) is of type (1,0). This automatically forces I*(D) to be the

Levi-Cevita connection. Let X be a local holomorphic vector field on Gk n+k.

We need to check that (I*D)γ(X) = Dγ(Bx) = 0 for any (0,1) vector Y. If s

is a holomorphic section of Ek n+k,

DY(Bx)(s) = D*(Bx(s)) - Bx(Dγ(s)).

Dγs = 0 so Dγ(Bx(s)) = D*(Bx(s)). Now X(s) = Z)y(^) + £ y ( s ) . Differen-

tiating by the (0,1) vector Y and noting that Dx(s) is holomorphic gives

0 = Y(X(s)) = Y{Dx(s)) + Y(Bx(s)) = Y(Bx(s)).

It follows that D$(Bx(s)) = 0. Hence DY(BX) = 0. Hence Dγ(Bx) = 0. This

finishes the proof.

2. A conservation law

Let φ: M -+ Gkn+k be a smooth map from a compact Riemann surface.

Write E = ψ*Ektn+k and E1- = Φ*Ek

L

n+k. The connections I> and />* pull-back

to connections V and V* on E and E1-, respectively. Note that M X Cn+k =

E θ is-1 as Hermitian vector bundles. The connections V and V * are precisely

the restrictions of the trivial connection on M X Cn+k to E and E1-, respec-

tively. On an open set U C M, suppose X E Tυ(TcM) and j G ^ ( . B ) . Then

as in equation (1.1),

(2.1) X(s) = Vxs + βx(s),

where β is a global section of Λ'M ® Hom(£, f:-1). UsGΓ^E) then

(2.2) Jf(ί) - Vϊs + β}(s),

where β* is a global section of Λ !M ® H o m ί ^ ^ , £"). Since Hom(£, E^) —

φ*D coincides with the connection induced by V and V* on Hom(£, E±).

Proposition 2.1. (a) The map φ is harmonic if and only if, on each holomor-

phic chart (£/, z) with a unitary frame eλ, ,ekofE,

(2.3) vM(«,) = Σ {^,

(b) 7%e m φ φ w harmonic if and only if on each holomorphic chart ([/, z) with

a unitary frame eu- -9ek ofE,

(2.4) v,β*(eι) = 2 ί^,e\β^ej), Ki<k.

(Here, we have abbreviated βd/dz by βz, etc.)
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Proof. By the identification given in Propositions 1.1 and 1.2, we have

(2.5) I(dφ'(d/dz)) = Bmd/dl), I(d<j>"(d/dl)) = Bdφ,,(d/dίy

Pulling back via φ one has

(2.6) Φ*(BdφXd/dz)) = Bz9 Φ*(Bdφ,,(d/dΞ)) = B-.

Equations (0.8) and (0.9) can then be written as

(2.7) (φ*D)d/dz(βz) = 0, (φ*D)d/dz(βΞ) =0 on tΛ

Evaluating on the section et gives

Now since

(2.9)

equations (2.3) and (2.4) immediately follow.

The following theorem is a special case of general results of Koszul and

Malgrange [8].

Theorem 2.2. Given a C°° complex vector bundle B over a Riemann surface

M, a complex connection on B induces a unique holomorphic structure on B whose

3 operator is the (0,1) part of the connection.

It follows that the (0,1) part of the connection φ*D induces a complex structure

on Hom(£, E^).

Proposition 2.3. The map φ is harmonic if and only if, on each holomorphic

chart (£/, z), the section βz is a holomorphic section ofHom(E, E±).

Proof. As was implicit in the proof of Proposition 2.1, φ is harmonic if and

only if each holomorphic chart (ί/, z),

(φ*D)Ξβz = 0

(see (2.7)). By Theorem 2.2 this is just what it means for βz to be homomorphic.

Let β = β' + β" where β' is a global section of Λ 0 J M <8> Hom(£, £ l ± ) and

β" is a global section of A0ΛM ® Hom(£, E^). The previous result shows that

φ is harmonic if and only if β' is a holomorphic section of Λ 1 0 M ®

Hom(£, £ x ) . Let φ- 1 : M -* GΛ ϊ l I + A. be given by ^ (/?) = (Φ(^))- 1 . Then φ-1

is harmonic if and only if (β*)' is a holomorphic section of Λ10M<8>

Homί^- 1 , £ ) . Since Gkn+k and Gw π + ^ are isometric, φ is harmonic if and

only if φ x is. The following lemma then follows.
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Lemma 2.4. // φ is a harmonic map then the section (β*)' ° β' of 1\}'°M ®

Λ 1 0 M ® Hom(£, E) is holomorphic. In holomorphic coordinates ([/, z),

(β*) ' o β' has the form dz ® dz ® β* o β .

Fix a h o l o m o φ h i c chart (U, z) of M. Let sx,— -9sk be the elementary

symmetric functions of β* o /}z. They are clearly h o l o m o φ h i c on U. Moreover,

it can be easily checked that the forms

(2.10) S, =s{dz® dz, S2 = s2 dz\. ..,Sk = sk dz2k

are globally defined on M. Hence we have the following theorem.

Theorem 2.5. If φ: M -> Gk n+kis a harmonic map, the differential forms in

(2.10) are all holomorphic.

Corollary 2.6. // φ: CP 1 -» Gk n+k is harmonic then the forms Sγ, -,5^

vanish identically.

3. Harmonic maps to G 2 4

We first recall the main theorem in [6] and [7]. Let h: M -* C P " be a full

holomoφhic map (i.e. Im φ lies in no proper projective subspaces of CPn). Let

(ί/, z) be a holomoφhic chart of M and h: U -> 5 2 π + ! a lift of /z. Define

(3.1) Θk(z) = span{dJh/dzJ: O^j^k), k^n.

It can easily be checked that θ^ is independent of the choice of coordinate and

lift. Moreover dim θ^ = A: + 1 everywhere except possibly at a discrete set of

points. As it turns out, Θk can be extended uniquely to a globally defined

holomoφhic map θ^: M -> Gk+hn+ι. Put 0_, = {0} and define

(3.2) hk(z) = 6k(z)netM

for k = 0,1, ,«. The map hk\ M -^ CPn is harmonic for each of the above

values of k. h0 = Λ is holomoφhic and Λw is antiholomoφhic.

The procedure can be reversed when M — CPι.

Theorem 3.1 [7]. Let φ: CP 1 -» CPn be αfull harmonic map. Then there is a

unique full holomorphic map h: CPι -> CPn and an integer k, 0 < k < n, such

thatφ = Λ .̂

This theorem was discovered by the physicists, Glaser and Stora [7]. Eells

and Wood [6] have given a mathematically rigorous proof of this theorem. This

theorem was also proved by Burns [1]. More recently, Jon Wolf son has given a

proof from the point of view of moving frames [11].

The following technical lemma will be needed in later sections. It is implicit

in the papers mentioned.
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Lemma 3.2. Let h: M -> CPn be a full holomorphic map. Suppose hk:

U -» S2n+ι are lifts ofhk on a holomorphic chart (I/, z)for0^k^ n. Then for

a fixed i,

(3.3) (dhi/dzJk)=O

for k> i + 1 or k< i. Note also that (hi9 dhjdz)- {dhjdz, hk)=0 for the

same range of indices.

Proof. dht/dz lies in Θi+λ(z) for each z E U. By definition hk(z) is orthog-

onal to 6 / + j(z) for k > i + 1. Suppose k < i. Now ho = his holomorphic. This

implies that dho/dz is a scalar function times h0. It follows from (3.1) that

dί
7-c dzJ

is in 6^. Hence (dhf/dz9 hk)= (A , dhk/dz)= 0 on ί/.

We now consider harmonic maps φ: CP 1 -> G 2 ϊ 4. It is convenient to make

the following definition.

Definition 3.3. Given a smooth φ: M -* Gkn+k, an adapted chart,

{(ίΛ z), (<?,),( jf)}, for φ at/? is:

(a) a holomorphic chart (U, z) containing/?,

(b) maps *?,: U -> C n + / c (1 < / < it) and jζ : 1/ -> C n + f c (1 <y < n) such that

at each z E ί / , e , , , ^ , / , , -,/„ gives a unitary frame of C w + / c and

(c) e,, ,βΛ spans the bundle Φ*(Ekn+k) over U.

Lemma 3.4. Given a harmonic map φ: CP 1 -* G2 4 «/ /eα5/ owe o/ the tensors

β' or (β*)' have to be of rank strictly less than 2.

Proof. Let {(I/, z), (*,.), (jζ.)} be an adpated chart for φ. Corollary 2.6

implies that β2* <> βz is nilpotent on U. Hence there is an open subset V QU

such that at least one of βz or β* has less than maximal rank. But φ is real

analytic (Theorem 0.3), so both β' and (β*) ' are real analytic objects. Hence if

either one has less than maximal rank on some open set of M, it must be so on

all of M.

By replacing φ with φ1- if necessary, we may henceforth assume that jS' is of

rank less than two everywhere.

Lemma 3.5. If β' is not identically zero then it has only isolated zeros.

Proof. On any holomorphic chart (U, z) the tensor βz is a holomorphic

section of Hom(£, E^. Since β' is given locally as dz ® βz, β
r is a holomor-

phic section of Ah°CPι ® Hom(£, E^. The result follows.

If β' is identically zero then φ is antiholomorphic. Henceforth in this section

we assume that φ is not antiholomorphic.
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Lemma 3.6. Let φ: CP1 -> G24 be a harmonic map with β' ^ 0 and rank β'
< 2 et>eryw/iere. Giro* α point p G CP\ there exists an adapted holomorphic
chart {(£/, z), (e,), (jζ.)} /or φ α//? M̂CΛ

(b) <&,/<&, /,> = 0 and (df2/dz, eλ)=0.
Proof. We have that β' is a holomorphic section of the bundle Λ^CP 1 ®

Hom(£, E^. On any holomoφhic chart (£/, z) of Λf? /?2 is a nonzero holomor-
phic section of Hom(£, E^). βz has only isolated zeros in U and where
nonzero is always of rank < 2. If βz vanishes at some point p G U9 then βz can
be expressed locally as (z — z(p))my where γ is a nonzero holomoφhic section
of Hom(E9 E±) in a neighborhood of p. Clearly γ is also of rank < 2. It
follows that Ker/?z and Im/?z give holomoφhic line bundles in E and E1-
respectively. Let (e,, e2) be a unitary frame of £, on a perhaps small open set
of U, such that eλ spans Ker/?z. Let (/i, /2) be a unitary frame of E1- such that
f2 spans Imj8z. Since eλ spans Ker)82 we have that βz(e{) — 0. Now
<A(^ λ/i>=0for/ = l,2.Byadjointness(^(^),/1>= -<^, ̂ /(Z,)). Hence
# ( / , ) = 0. Also (β£e2\ /,>= <^2/rfz, /,>= 0 and

Hence both equations in (b) are true. This finishes the proof.
Moreover, it is clear from the discussion that the elements in the above

frame are uniquely determined up to multiplication by scalars with values in
S] C C*. Hence the elements in the above frame give globally defined maps of
CP1 to CP 3 with

Φf : CPι -> CP 3 corresponding to ei9 i = 1,2, and

%: CP1 -̂  CP 3 corresponding to/ , 1 = 1,2.

Theorem 3.7. Let φ: CP1 -> G24 be a harmonic map with β' not identically
zero and rank β' < 2 everywhere. Then there is a nonconstant holomorphic map
h: CP1 -* CP 3 with Φ2 = hm_λ and% = hm for some m, 1 < m < 3.

Proof. Let {(ί/, z),(ef ),(jζ )} b e a n adapted chart for φ given by Lemma
3.6. Then equations (2.3) and (2.4) give

V/A(e2) = (

= ( 2 / , 2 > A ( 2 )
( 3 * 6 ) vz)8/(/2) - (df2/dz, f2 )βf{f2)
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Now β*(f2) is some nonzero scalar function times e2. The second equation in
(3.6) then implies that (de2/dz, eλ) = 0 on U. This means that

(3.7) A Λ O = A, a(*2)
We also have that βz φ(e2) is a scalar function times f2. Since (df2/dz, eλ) = 0,

(3.8) V f*φ£,φ(e2) = Vf*φ2&,φ2(e2)

The first equation in (3.6) can then be written as

(3.9) Vi*φA,Φ2(e2)

This is just (2.3) for the map Φ2: CP1 -> CP 3. A similar argument works for
Ψ2: CP1 -> CP 3. Moreover, since βz^2(e2) is a scalar multiple of f2, it follows
that Φ2 and Ψ2 are consecutive harmonic maps generated by some holomorphic
map A: CP1 -> CP 3.

Let if: CP1 -> G2,4 be given by #(/?) = (hm^(p) θ Am(/?)) for all/? E CP1.
A map F: CP1 -» CP 3 such that F(/?) ± hm_λ{p) θ Am(/?) for all /? E CP1

determines a unique subbundle of rank 1 in H*E24. Conversely, any sub-
bundle of rank 1 in H*E24 determines a map from CP1 to CP 3 with this
property. The trivial bundle CP1 X C4 induces a connection on the subbundle
H*E24. The (1,0) part of this connection induces an antiholomorphic structure
on H*E24 (see Theorem 2.2).

Theorem 3.8. Let φ: CP1 -* G24 be as in Theorem 3.7. The complex line
bundle determined by Φ λ in H*E2 4 is antiholomorphic.

Proof. Using the frame described in Lemma 3.6, we have (deλ/dz, /•) = 0
for / = 1,2. It follows that the line bundle Φf£1>4 is lift fixed by the (1,0) part
of the connection on H*E24. The conclusion follows.

We now prove a converse to this theorem.
Theorem 3.9. Let Φ2 = hm_λ and Ψ = hm where h: CP1 -* CP 3 is a non-

constant holomorphic map. Defining H as before, we have that any antiholomor-
phic subbundle of rank 1 in H*E24 gives rise to a map Φ,: CP1 -* CP 3 with
Φ, θ Φ2: CP1 -> G24 harmonic. Moreover φ = Φ{ θ Φ2 has β' 2 0 and rank β'
< 2 everywhere.

Proof. Let (£/, z) be a holomorphic chart on CP1 with lifts e, : ί / - > 5 7 C C 4 ,
/ = 1,2, of Φ7: CP1 -> CP3, i = 1,2. Assume also that /: t/ -> S 7 gives a lift
of Ψ on £/. Then since (e^e2)=0 and < ^ 1 , / ) = 0 , (de]/dz,f) =
-(el9 df/dz)= 0. (Lemma 3.2 implies that df/dz is always in the span of e2

and/.) Since Φ, gives an antiholomorphic line bundle in H*E24, it follows that
βz,φ(e\) — 0 on ί/. Since Φ2 is harmonic,
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But, by Lemma 3.2, fcfΦa(e2) = βz,φ(e2) and V*ΛβtΛ(e2) = VΞ%β2fφ2(e2).

The harmonic equations for Φ2 can then be rewritten as

V?φβ2,φ(e2) = (de2/dz,e2)β2je2).

Since βzφ{e2) = 0 it follows that (^1? e 2 ) satisfies the system (2.3). Hence φ is

harmonic. Also βz(e2) is a nontrivial scalar function times/. So β' is nonzero

and rank β' < 2.

We now write out more explicitly the maps in Theorem 3.9 when the

holomorphic map h: CPλ -> C P 3 is full.

Example 3.10. Let A: CP 1 -» C P 3 be a full holomoφhic map. Then let Ao,

A,, A2, A3 be the harmonic maps generated by A as in (1.14) (Ao = A).

Case I. Φ2 = Ao, * = A,. In this case Φ,: CP 1 -> C P 3 is forced to be

antiholomorphic map such that Φ}(p) C A2(/?) Θ h3(p) for all/? G CP 1 . Any

such choice of map Φ, yields a harmonic map φ = Φ, θ Φ 2 : CP 1 -> G 2 4 . This

is a special case of the examples of Din and Zakrzewski [3] of harmonic maps

into general Grassmannians.

Case II. Φ2 = A2, Ψ = A3. In this case H — h0 θ A, and Φj is forced to

come from an antiholomorphic bundle of rank 1 in H*E24.

Case III. Φ2 = hl9 Ψ = A2. In this case, H = h0® A3, and Φ,: CP 1 ^ C P 3

comes from an antiholomorphic line bundle in H*E24.

4. An example in the higher rank case

In this section we give some examples of harmonic maps into higher rank

Grassmannians that are suggested by Theorem 3.9.

Let A: CPX -> CPN be nondegenerate holomoφhic. By the method in §1, A

generates N + 1 harmonic maps Ao, , h N with Ao = A.

Lemma 4.1. Let 5 ={/,,- ,/y} C{0, ,Λ }̂ be an arbitrary nonempty

subset. Then φ = A, θ ΘA7 w a harmonic map from CP 1 /o Gk N+x.

Proof. Given a point/? E C P 1 , let e o , -,eN be a unitary frame defined on a

h o l o m o φ h i c chart (£/, z), / > E ί / , such that ef. U -> S 2 Λ Γ + 1 is a lift of A,.:

C P 1 -* C P ^ . We want to show that {eiχ, -,eik) satisfies the system (2.18).

Since each A, is harmonic we have

for i — Q," ,N. Lemma 3.2 shows that (deim/dz, eiχ)^ 0 only if m = 1 or

/, — im— 1. If /Ί = /m — 1, βz(e, ) — 0. Hence the system we have to verify is

(4.2) V f%β,φ(e,J =
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for m=l9" ,k. If / m + l 6 S, βz,φ(eim) = 0 and equation (4.2) is valid.

Suppose i w + l ί S. Then using Lemma 3.2, βz^(eim) — βz Λ (e,w) and

V/ώ/l J > , ) = VfΛ.(e. ). Equation (4.1) then implies equation (4.2) for

such m.

Suppose that subset S of {0, ,7V} is small enough so that the set

S" = {j G Z: 0<j <N,j <£ S, j - 1 ί S } is nonempty. Let the cardinality

of S' be given by k'. Then define the map H: CP 1 -> Gk*tN+ι by H = hh

θ ΘΛΛ, where 5 ' = {y,, j Λ , } . H*Ek, N+ι has a complex connection Z)

gotten by restricting the standard connection on CP 1 X C ^ + 1 . By Theorem

4.2, H*Ek, N+ι has a unique antiholomorphic structure induced by the (1,0)

part of D. Let F b e a fixed antiholomorphic subbundle of H*Ek, N+x of rank r.

V induces a map ψ: CP 1 -> GrN+ι such that ψ(/>) JL φ(/?) for all p E CP 1 .

With this set-up we have the following.

Proposition 4.2. φ θ ψ: CP1 -> Gr+k N+ι gives a harmonic map.

Proof. Let (U, z) be a holomorphic chart on CP 1 with lifts eQ9- —,eN of

h0," -,hN respectively. So (ei9 ^ ) = δzy on £Λ Assume also that maps of U to

S2N+ι, fx,— -,fr, are given that produce a unitary frame for V on U. We can

now easily verify that the unitary frame eiχ,- ,e/Λ, f\,— -,fr satisfies system

(2.18). (Here the connection and second fundamental forms involved are with

respect to the map <j> θ ψ.) By Lemma 4.8 and the definition of S\ system (4.2)

still holds with β and V * now being induced by the map φ θ ψ . Since

βz(fj) = 0 for 1 < y ̂  r, (4.2) gives

V*βI(eim)=(deiydz9eim)βt(eim)

+ 2 (delm/dz9fj)βM(fj).
7 = 1

By Lemma 4.8 and the definition of 5", (dfj/dz, eim)=0 on £/ for all

1 <j <r and 1 < w < k. It follows that

v/AU) = o= 2 (^/Jz,^))βz(^)

(4.4)

+ Σ (df/dz,fm)βz(fm).
m=\

Equations (4.3) and (4.4) together give system (2.18) for the map φ θ ψ .
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