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THE TWISTED INDEX PROBLEM
FOR MANIFOLDS WITH BOUNDARY

PETER B. GILKEY & LANCE SMITH

SECTION ZERO

0.1 Introduction
The Atiyah-Singer index theorem gives a formula in ̂ -theory for the index

of any elliptic operator. The Atiyah-Patodi-Singer twisted index theorem [2] is
the suspension of the Atiyah-Singer index theorem and gives a measure of
spectral flow and spectral asymmetry using the eta invariant with coefficients
in a locally flat bundle. It is possible to recover the Atiyah-Singer theorem
from the twisted index theorem using certain product formulas so the results of
[2] can be viewed as a generalization of the ordinary index theorem as we shall
see in §1.3.

It is well known that certain elliptic complexes (for example the signature
complex) do not admit local boundary conditions. However, for those which
do, the Atiyah-Bott theorem [1] provides a generalization of the index theorem
to manifolds with boundary. In a similar fashion, not every twisted index
problem admits local boundary conditions; the operator * d ± d * is one of
those which does not as we shall see later. This paper is an effort to combine
both the Atiyah-Bott index theorem and the Atiyah-Patodi-Singer twisted
index theorem to derive a formula in terms of characteristic classes for the
twisted index on a manifold with boundary given local boundary conditions.
We are able to treat completely all the operators, arising naturally in Rieman-
nian geometry, which admit local boundary conditions, but the general case is
still incomplete although we have a number of strong results in that direction.
This formula would contain both the Atiyah-Patodi-Singer twisted index
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theorem and the Atiyah-Bott index theorem (with strongly elliptic boundary
conditions) as special cases.

In discussing boundary conditions, the natural boundary conditions to
impose are much stronger than those considered by Atiyah-Bott. This is due in
part to the more delicate nature of the eta invariant in contrast to the ordinary
index and does pose technical difficulties we shall discuss in the third section.

The organization of this paper is as follows: the first section is divided into
three subsections. §1.1 gives a brief review of secondary characteristic classes
and the Chern character. In §1.2 we discuss Bott periodicity in the setting
which we will need it. We also discuss suspensions and the relation of the index
theorem to the twisted index theorem. In §1.3 we discuss the formula for the
twisted index for manifolds without boundary and obtain equivalent formulas
by suspension.

The second section is divided into four subsections. §2.1 gives notational
conventions and a review of the definition of ellipticity. In §2.2 we discuss
operators with leading symbols given by Clifford multiplication. In §2.3 we
show that the eta function is regular at s — 0 for such operators with elliptic
boundary conditions, while in §2.4 we derive a formula in ^-theory for the
twisted index of such operators.

The third section contains two subsections. §3.1 deals with deriving a
suitable candidate in ^-theory to generalize the formulas of Atiyah-Bott. In
§3.2 we show that this formula in AΓ-theory has the same functorial properties
as the twisted index does.

The remainder of this introduction consists of a discussion of the eta
invariant in the context which we shall need. This paper is quite topological in
flavor and relies heavily on the results which we derived in [7] regarding the
analytical facts about such operators.

In particular, the analysis of [7] requires in an essential fashion that certain
bundles H±(p) over the fiber spheres in T*(M) be topologically trivial in a
very strong sense. We do not see at present how to remove this restriction in
order still to obtain all the requisite analytic results. The referee has kindly
informed us that the η-invariant for the signature operator in this context has
been discussed by Cheeger (Spectral geometry of singular Riemannian spaces, to
appear in J. Differential Geometry) in a context which can be viewed as
equivalent to that of global boundary conditions. It is unclear to what extent
such global boundary conditions would permit the analysis of [7] to be
extended; in particular η can jump by a noninteger amount under perturba-
tions of some boundary conditions as discussed in [7]. We would like to thank
the referee for bringing this matter to our attention.
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0.2 Analytical facts concerning the eta invariant

Let M be a compact manifold of dimension m with smooth boundary dM,
and let V be a smooth vector bundle over M. Let P: C°°(V) -> C°°(F) be a
partial differential operator of order d > 0. If JM ^ 0, we let B be a suitable
boundary condition. Let PB denote the operator P restricted to the space of
smooth sections of V satisfying the boundary condition B. Let y G M and let
(y, £) denote a point of the cotangent space T*M. Let p(y, ξ) be the leading
symbol of P. Suppose that

det(p(y, ξ) - it) ^ 0 for ξ G T*M, t G R, ({, /) *(0,0),

and say that p is elliptic with respect to the imaginary axis. If dM =£ 0, we
impose a stronger condition on p and the boundary condition which will be
discussed in the second section.

Under these ellipticity conditions, the spectrum of PB is discrete. Each
generalized eigenspace is finite dimensional and consists of smooth sections to
V satisfying the given boundary condition. Let {λ,,} denote the eigenvalues of
PB repeated according to multiplicity; only a finite number of eigenvalues lie
on the imaginary axis. We define

V(S9P,B)= Σ K - Σ (-KΓ
Re(λ,)>0 Re(λ,,)<0

as a measure of the spectral asymmetry of the operator PB. This is holomorphic
in s for Re(^) > 0. η(s, P, B) has a meromorphic extension to C with isolated
simple poles at s = (m — n)/d for n = 0,1,2, . The residue of η at these
poles is given by a local formula [7].

The pole at s = 0 is of particular interest. In [7] we showed that if (Pe, BE) is
a smooth 1-parameter family of such operators and boundary conditions, then

which shows that the residue is a homotopy invariant. Let V(iR) denote the
finite dimensional vector space generated by the generalized eigensections
corresponding to purely imaginary eigenvalues. We define

ή(P9 B)=\ [η(s9 P, Λ) - 7 Rcss=oη(s, P9 B) - dimK(ίΛ)) ,
L \ S ) s=0

modZ,

in C/Z. ή(Pε, Bε) is differentiable in the parameter ε since we have corrected

for the jumps which occur as eigenvalues cross the imaginary axis. We showed

that dή(Pe9 Bε)/dε is given by a local formula in the jets of the operators

(Pε, Bβ9 P., Bε).
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If the boundary of M is empty, then η(s, P) is regular at s — 0, [2], [6]. It is

worth noting that this does not follow from a local calculation as the local

formula for the residue at s = 0 does not vanish identically in general [5]. In

the second section of this paper, we will show that η(s, P, B) is regular at

s = 0 for a suitable class of first order operators.

We can construct a nontrivial twisted index by taking coefficients in a

locally flat bundle. Let p: ττλ(M) -> GL(k, C) be a representation of the

fundamental group. If M is the universal cover of M, we define

where π^M) acts on M by deck transformations and on Ck by the representa-

tion p. The transition functions of Vp are locally constant. Vp inherits a

connection v p from M XCk with zero curvature. The holonomy of Vp is just

p. Since the curvature of Vp is zero, the rational characteristic classes of Vp

vanish. This implies that Vp is a torsion class in the reduced ^-theory group of

M\ i.e., «Pp — \nk for some integer n.

Since the transition functions of Vp are locally constant, we can define Pp on

C°°(V<8> Vp) and a boundary condition Bp to be locally isomorphic to λ>copies

of (P, B). (P p, Bp) will also satisfy the given ellipticity conditions. The residue

of the poles of η is given by a local formula. Since (P p, Bp) and fc(P, B) are

locally isomorphic, any local formulas will be the same, so the two local

formulas cancel in the poles for η(s, Pp, Bp) — kη(s, P, B). This shows that

η(s, Pp, Bp) — kη(s, P, B) defines an entire function of s.

Define

ind(p, P, B) = ή(P p , Bp) - kή(P, B) G C, mod Z.

If (Pε, Bε) is a smooth 1-parameter family of such operators, the same

cancellation of local formulas for locally isomorphic operators implies

which shows that ind(p, P, B) is a homotopy invariant of (P, B).

One cannot lift ind(ρ, P, B) from C mod Z to C consistently in general

without imposing some additional structure. The bundle Vp is rationally trivial.

We suppose henceforth that Vp is itself topologically trivial and choose a global

frame Γfor Vp. This permits us to define k(P, B) acting on C°°(V® Vp) ^

C°°(F<8> 1*). The two operators (Pp, Bp) and k(P, B) have the same leading

symbol. Define (Pε, Bε) = ε(Pp, Bp) + (1 - ε)(kP, kB). This 1-parameter

family satisfies the ellipticity conditions and

ind(P,P,B)=offεη(PE,Be)dε.
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Since the derivative is given by a local formula, this identity gives a lift of

ind(p, P9 B) from Cmod Z to C and shows that ind(p, P, B) is given by a

local formula (which depends on the global frame ΐ chosen). It should be

noted that different choices of global frames will in general give rise to

different liftings from C mod Z to C.

If dM — 0 , then the twisted index theorem of Atiyah et al. [2] gives a

formula for ind(p, P) in terms of secondary characteristic classes if m is odd;

the corresponding generalization for even m can be found in [6]. There is also a

formula in X-theoretic terms valid for general p. Since this formula is more

complicated to explain, we shall restrict our attention to the case in which Vp is

topologically trivial. We refer the reader to [2], [6] for examples.

Before discussing the Atiyah-Patodi-Singer formula for ind(p, P, B) which

we will generalize, we first review the Atiyah-Bott and the Atiyah-Singer index

theorems. We fix a Riemannian metric on M. Let D(T*M) denote the unit

disk, and S(T*M) the unit sphere bundles of Γ*M, i.e., let

D(T*M)= {ξET*M: \ξ\<l), S(T*M) = { ξ G P M : | £ | = 1 } .

If dM = 0 , then S(T*M) is the boundary of D(T*M).

Let Σ(Γ*M) be the fiber suspension of S(T*M). Σ(T*M) is the unit sphere

bundle in Γ*M θ 1. It can also be defined by taking two copies D±(T*M) of

the unit disk bundle and joining them along their common edge S(T*M). Let

N and S be the north and south poles of Σ(T*M). N is the zero section to

D+ (Γ*M), while S is the zero section to D_(T*M).

We can describe the Atiyah-Singer index theorem using Σ(T*M). Let

Q: C°°(F,) -* C00^) be an elliptic operator with leading symbol q which

defines a map q: S(T*M) -> END(K lf V2) from the sphere bundle of T*M to

the bundle of maps from Vλ to V2. Let Σ(q) be the bundle over Σ(Γ*M),

where we use q to identify Vλ with V2 over the edge S(T*M).

Let TODD(M) denote the real Todd class of M. This is a complicated

polynomial in the Pontrjagin classes of T*M. TODD is a multiplicative class in

the sense that T O D D ^ X M2) = T O D D ^ ) Λ TODD(M2). We refer to

[3] for details. Let ch(Σ#) denote the Chern character of the bundle Σq. Using

a suitable orientation of ΣΓ*M, which will be discussed in more detail later,

the Atiyah-Singer formula becomes

index( Q) = ί TODD( M ) A ch( Σq).
JΣ(T*M)
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(To be precise, there is an additional factor (- l ) m because of the orientations

chosen. We will discuss this in more detail in §2.3 and postpone until then a

precise discussion of this formula.)

To extend this to the case in which dM — 0, we must impose elliptic

boundary conditions. If we restrict q to dM, then the boundary condition B

defines an explicit homotopy qB of the symbol to a symbol which is indepen-

dent of the fiber coordinate. Define AT = dM X [-1,0] U M where we iden-

tify dM X {0} with the boundary of M\ this sews on a collar. We use the

homotopy to extend q to a symbol qB defined on M' such that qB(y, ζ) = qB(y)

is independent of the fiber coordinate ξ G T*M ϊory G dMι. If index(β, B) is

as defined in [1], then the Atiyah-Bott formula has the form

index(ρ, B) = ί TODD(M) Λ ch(ΣqB).
JΣ(T*M')

(It is worth noting that index((>> B) is not dim(Kerββ) — dimKer((>£) in

general.)

Since this is not the form in which the Atiyah-Bott formula is most

commonly stated, it is worth digressing briefly to consider an alternate

formulation. Suppose first that dM = 0, and that Vλ — V2— V are trivial

bundles. We can interpret q: S(T*M) -> GL(y, C). Let ω = dg g'1 be the

Maurer-Cartan form and define:

(We will discuss these normalizing constants further in §1.1. This is the

transgression of the Chern character.) We pull-back Teh using q* to define

4*(Tch) as the sum of the odd-dimensional cohomology classes on S(T*M).

An easy application of Stokes theorem converts the Atiyah-Singer formula into

index(β) = f TODD(M) Λ ?*(Tch).
JS(T*M)

λidMΦ 0 , S(T*M) is not the full boundary of D(T*M). The homotopy qB

defines an extension of q to the restriction of the unit disk bundle over dM:

This defines qB on all of the boundary of D(T*M), and the Atiyah-Bott
formula can be expressed in the form

index(β, B) = f TODD(M) Λ ^(Tch).
Jd{D{T*M))

We now consider the twisted index.
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Let P: C°°(V) -> C°°(F) have symbol/? and let dM = 0 . If i> is elliptic with

respect to the imaginary axis, let Π ± (p) be the bundles over S(T*M) spanned

by the generalized eigenvectors of p, which correspond to eigenvalues with

positive/negative real part. (Since p has no purely imaginary eigenvalues,

Π H- (p) have constant rank and define smooth bundles.) In a suitable sense, P

is determined by the bundles U±(p) in much the same way that Q was

determined by Σq; we refer to [2], [6] for a more precise description of this

relationship. The virtual bundle Π+(/?) - U_(p) e K(S(T*M)) is an infini-

tesimal measure of the spectral asymmetry of P.

Let ?be a global frame for Vp and let Vp(s) = ω Γ define the connection

1-form ω E C°°(T*M ® END(F)). Let

Then

ind(p, P) = \ ί Tch(p) Λ TODD(M) Λ ch(Π+ (p) - U_(p)).
*• JS(T M)

Since U+(p)ΘU_(p)=V9 ch(Π+(/>) - Π_(/>)) = 2ch(Π+ (/>))- ch(F).

Since ch(F) does not depend on the fiber coordinate, it contributes nothing to

the top dimensional (2m — l)-form which we integrate over S(T*M% so we

can express

ind(p, P)= f Tch(p) Λ TODD(M) Λ ch(Π + (/?)).
JS(T*M)

Unfortunately, this theorem does not generalize directly to the case of

manifolds with boundary; a boundary condition does not define a homotopy

of p to an operator with symbol independent of the fiber through symbols

elliptic with respect to the imaginary axis. In §1.3 we will discuss a generaliza-

tion of this formula which has the form

ind(p, P) = f Tch(p) Λ TODD(M) Λ ch(Π+ ( Σ 2 ^ ) ) ,
JΣ2J(T*M)

where j > 0, and where Σ r will be defined in §1.1 and §1.2. We will use the

elliptic boundary condition to define a homotopy of Σp, which we shall denote

by ΣpB. We emphasize that this homotopy is not the suspension of a

homotopty pB in general. This will provide the context in which to generalize

the Atiyah-Bott theorem.

In this paper we always work in the smooth category. Some of the ho-

motopies which we will construct are only piecewise smooth; we always

smooth out these continuous homotopies at the corners. To avoid complicating

the exposition, we will usually not explicitly mention such smoothings.
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SECTION ONE

1.1 The Chern character and secondary characteristic classes

We first recall the definition of the Chern character. Let W be a smooth
vector bundle over some manifold N, and let V be a connection on W. If ? is a
local frame for F, let V? = ω ? be the connection 1-form. The curvature is an
invariantly defined section of A2(T*M) ® ΈHΌ{W) which is defined by
Ω = dω — ω Λ ω. Define

which is a closed 2A:-form independent of the frame I chosen. The total Chern
character is given by

ch(v) = 1 + ch,(v) + +ch^(v) + E H2\N\ C).

If Vi and Vo are two connections on W, we form Vt = tvλ + (I — 0 v 0 .
Let θ = ω, — ω0, then θ is tensorial. The connection 1-form of V, is ωt = tθ +
ω0. If Ω, is the curvature of the connection V,, by using the identity

we obtain (for further details see [4])

chA(v.) - ch,(v0) =Qf j t chA(V/) dt =

where

This shows that the difference chk{vλ) — chA:(v0) is exact, so that ch(JF) =
ch( V) E H2*(N; C) is defined in cohomology independently of the connection
chosen. It is immediate that

ch(Wx θ W2) = ch(jy,) •+• ch(W2), chίPF, Θ »Γ2) = c h ( ^ ) c h ( ^ 2 ) .

The Chern character defines an isomorphism between ^-theory with complex
coefficients and the even dimensional cohomology on N with complex coeffi-
cients.

Teh is the transgression of the Chern character and is independent of the
frame chosen. Suppose for the moment that both Vi and Vo are flat so that
Ωj = Ωo = 0. Choose a local frame so ω0 = 0. Then ωλ = θ and

Ω, = dθ - θ Λ θ = 0.
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Consequently ω, = tθ and Ω, = tdθ - t2θ A θ = (t - t2)θ A θ. As in the in-
troduction, we define the constants

so that

We illustrate these ideas by establishing the equality of the two formulas
which we have given for the index of an elliptic operator. Let dM = 0 and let
Vλ = V2= \k be the trivial bundle. Let Q: C°°(lk) -* C°°(l*) be an elliptic
complex. Let ? ± be global frames for Σq over a neighborhood of D± (T*M) so
that ?_= qs+ on the overlap S(T*M). Choose connections v± for Σq so
V± (s±) = 0. Then Ω± = 0 on D± (T*M). Thus

index(β) = f TODD(M) Λ ch(v_) = ί TODD(M) Λ ch(v + ).
JΣ(T*M) JD_{T*M)D_{T*M)

On D_, Ω_= 0 so ch(V + ) = ch(V + ) - ch(v_) = </Tch(v+ , V_). Stoke's
theorem implies

index(ρ) = ί TODD(M) Λ Tch(v + , V_).
JS(T*M)

Both connections have vanishing curvature near the equator S(T*M). The
transition function is given by ?_= qΐ+ so θ = dq q~ι and

T c h ( V + , V_) - ^*(Tch) = ΣckTτ((dq • ί" 1 ) 2 *" 1 ) ,

which implies, as S(T*M) = -boundary(D_),

index(ρ) = ί TODD(M) Λ ^*(Tch).
JS(T*M)

1.2 Bott periodicity

It will be helpful to have a brief review of Bott periodicity from a slightly
nonstandard point of view to motivate the constructions we give in this and
later sections. We adopt the notational conventions:

[X,Y] = {homotopy classes of maps from X to Y}.
Vect^ί^) = (isomorphism classes of A:-dimensional complex vector bundles

over X}.

GL(k, C) = {k X k invertible complex matrices}.

GL'(k, C) — [k X k invertible complex matrices without pure imaginary
eigenvalues}.
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U(k) = {k X k unitary matrices}.

£/(*) = the limit of U(k) under the inclusions U{k) -» U(k + 1) ->

H(k) = {kX k Hermitian matrices h with h2 - / } .

H0(2k) = {h G #(2A;): Tr(Λ) = 0}.

Ho(*) = the limit of H0(2k) under the natural inclusions

#0(2λ: + 2) - .

is a deformation retract of GL(k,C), and #(&) is a deformation

retract of GL'(k9C). U(k) and H(k) are compact; H0(2k) is one of the

connected components of H(2k).

Let X be a compact simplicial complex. The suspension Σ(X) is defined by

identifying X X {π/2} to a single point N and X X {—τr/2} into a single point

S in the product X X [-π/2, τr/2]. Let /^(A") denote the northern and

southern "hemispheres." Then D+(X) Π !>_(*) = X

If Ŵ  is a vector bundle, choose a fiber metric on W, and let ΣW be the

fiberwise suspension of the sphere bundle S(W). We may also identify ΣW

with S(W θ 1).

Let 2A: > dimC^) and identify K0(X) with Vect^Jf). If WEVectk(X),

there exists »Γ' G Vect^Jf) such that W®W'^ \2k. W is unique up to

isomorphism, and we can choose the isomorphism W θ W ^ l2/c so that W

and Ŵ ' are orthogonal subbundles of l2k. li x E: X, let π±(x) be orthogonal

projection on W and Ŵ ' respectively in 1 2 \ and let /7(x) = π+(x) — ir_(x).

This defines a map p: X -> H0(2k). Conversely, given p: X -> H0(2k), we can

let W = Π+ be the span of the positive eigenvectors of /?(JC); Wis the range of

ΐ ( l H- /?(Λ:)) = τr+ (x). This identifies

Similarly, if q: X -+ U(k), we let W be the bundle over ΣX which is defined

by glueing D+(X)X Ck to D_(X) X Ck along the edge XX Ck using the
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clutching function q. This identifies Vect^Σ f) = [X, U(k)]. We now define
two suspension maps:

Σ: [X9U(k)] -+[ΣX9H0(2k)]9 Σ: [X9 H0(2k)] -+[ΣX9U(2k)]9

which will be isomoφhisms and represent Bott periodicity. Let/?: X -> H0(2k)
and let q: X -» U(k). Define

Σp(x9 θ) = cos(θ)p(x) - isin(θ)I2k,

sm(θ)lk cos(θ)q*(x)

^cos(θ)q(x) -sin(θ)lk

It is immediate that these maps are well defined with the indicated ranges.
Lemma 1.2.1. Let p = Σq: ΣX -» H0(2k). Then the bundle U+(p) is

represented by the clutching function q.
Proof. Let a E C*. Then {{I + />χg) E Π+ (/?). This is not (g) for a Φ 0

and 0 > -ττ/2, and defines a frame for Π+ (/>) on Σ_,_(/?) on ΣX minus the
south pole S. Similarly, the map \(I + p(S)): Π+ (p)(x, θ) -> Π+ (p)(S) is an
isomoφhism for (x, 0) ^ iV. The composition of these two isomoφhisms when
restricted to the equator X gives the clutching function which sends

This map is homotopic to q, and our proof is complete.
In the introduction we defined Σq to be the bundle with clutching function

q. To avoid notational confusion we replace that by Π + (Σq) henceforth.
Σq is the element corresponding to q when we identify [X, U(k)] =

Vectk(ΣX) — [ΣX, H0(2k)]. We now compute the double suspension:

/ sin(0) cos(0){cos(φ)/7(x) + *sin(φ)} \
P{XΦ' } \cos(^){cos(φ)/;(x)-/sin(φ)} -sin(^) / '

Σ2 ( ώ ΘΛ = ί c o s W s i n ( Φ ) " i s i n ( ^ ) cos(θ)cos(φ)q*(x)
±Kx>9> ) y cos(θ)cos(φ)q(x) -cos(^)sin(φ) - /sin(0)

where φ is the variable of the first suspension, and θ is the variable of the
second suspension. Bott periodicity is the assertion that the following two
maps are isomoφhisms in the stable range:

Σ 2 : Vectk(Jf) =[X, H0(2k)] - Vect 2 A(Σ 2*) = [Σ2X, HQ(4k)],

Σ2:Vectk(ΣX) =[X,U(k)] -» Vect2 A(Σ3Z) =[Σ2X,U(2k)].

It is convenient for later work to extend the ranges and domains:

Σ: [X,GL'(k,C)] -+[ΣX,GL(k,C)],

Σ: [X,GL(k,C)] -+[ΣX,GL'(2k,C)].
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If p: X-* GL'(k,C)9 let U±(p) be the subbundles of \k spanned by the
generalized eigenvectors of p corresponding to eigenvalues with positive/nega-
tive real part. If q: X -> GL(k,C), then q is the clutching function of the
bundle Π + (Σ^) .

To specialize to the case of a sphere X = Sn, we introduce coordinates
x = (*„• - ,xn) G S " j = (*, χ Λ + 1 ) G SH+\ and z = (>>, xn+2) G 5 W + 2 , and
extend/?: S" -> GL'(ifc, C) and 4: S"1 -» GL(fc, C) to Rn+ι to be homogeneous
of degree 1 taking values in the space of k X k matrices. Then it is immediate
that

2 , x

It is convenient to rewrite Σ2p slightly. If we conjugate by the matrix (1,}) then
Σ2p is replaced by the homotopic matrix:

i D(x) i(x + ix

, ~~*\Xn+\ ~~ iχn + l) ~P\X)

'p(x) cxp(i(θ + π/2))'

\θ + tr/2)) -p(x)

where xn+i + ixn+2 — exp(t0). It is clear this matrix is homotopic to the
matrix in which we replace exp(/(0 + τr/2)) and exp(-/(0 + τr/2)) by e\p(iθ)
and exp(-/0) so Σ2p is homotopic to the matrix:

P(x) Xn + \ + ixn

xn+x - ixn+2 -p(x)

.«(ϋ ί)
We suspend again to conclude:

Lemma 1.2.2. Letp: Sn -• (7L'(A:, C). ΓΛe« the following hold.
(si)Σp=p(x)- ixn+ι.

(b)
i x

n+l
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This is homotopic to the matrix

(c) Σ3/?(z, JC Λ + 3 ) w homotopic to the matrix

"*>•(.' >*«•(! ί)+* «(ϊ ί)+*.«tt !)•
We can now describe Bott periodicity on spheres. Recall that:

. Z if n is odd,

VectifcS»=f;f i ί n i s e ? , n '
10 if « is odd,

provided that 2 k > n is in the stable range. First suppose n = 1, and let
#O) = JC0 4- ixx = exp(/0) generate πx(Sλ) = Z. Then we compute:

for w = x2 + ίx3 and t> = x0 + /x,. If we multiply this matrix on the left by
(?o)> w e convert Σ2q to the homotopic matrix (£~£) which has values in
SU(2) = S3. The induced map S3 -> »S3 is a diffeomorphism and consequently
generates T7 3 5 3 = π3SU(2) = π3U(2) = Z. This shows by explicit calculation
that Σ 2 : T^S1 -* π3U(2) and Σ 2 : Vect^^2) -> Vect2(54) are isomoφhisms.

To generalize these isomoφhisms, we introduce Clifford algebras. Fix n = 2k
and let (eo, -9en} be a collection of 2* X 2k self-adjoint matrices satisfying
the relations e^j + ejei = 2δ/y where δ/y is the Kronecker symbol. If n — 2, we
can take eo = (ι

0°_ι),eι = (?}>), and e2 = (?f. j). More generally, we can take the
matrices of the spin representation.

The dimension of the representation space is 2k. Since this is the minimal
dimension possible, the center e0 en — ±ikl is scalar.

Lemma 1.2.3. Let {eθ9-
 m,en} be Clifford matrices where 2k — n. Define

p(x) = xoeo + +xHeH: Sn ^ H0(2k). Then U+p generates K0(Sn) = Z.
Proof. We remark that sometimes Clifford matrices are chosen to satisfy

the commutation relations ejek + ekej — -2δJk. Such matrices are skew-sym-
metric and related to the convention which we have chosen by a factor of /-T.
We also note that in general such maps p(x) arise as the symbols of elliptic
complexes as we shall see later.

It is clear p(x)2 = |x | 2 / = /. Since eoeλ + eλeQ = 0, Tr(<?0) = 0 so Tτp(x)
— 0. Thus in fact p: S" -> H0(2k) is trace free. Π + ΘΠ_ is the trivial bundle
on S". We project the flat connection on the trivial bundle to define connec-
tions v ± o n Π ± . W e wish to compute ch^Π^). SO(n + 1) acts transitively



406 P. B. GILKEY & LANCE SMITH

on Sn and preserves the norm |JC|2. ρ(x) is defined invariantly by the con-
dition p{x)2 =\xfl which is a coordinate free representation. Thus the group
SO(n + 1) also acts on Π ± to preserve all the structures. Since everything is
equivariant, it suffices to compute at the point A = (1,0, ,0). Let ?0 be a
basis for Π + (A). Let ?(JC) = π+ (JC)?0. ΐ(x) is a basis for Π+ (x) for JC φ -A.
We use the local frame ?{x) to compute the curvature:

V+ V + ?(x) = π+d(π+ d(π+s0)) = π+dπ+dπ+s*0.

Since £(A) = ?0, this shows that the curvature at A is given by

Q(A) = π+dπ+dπ+ = ±(l + e o ) ( ^ i + *' ' +eHdxH)2.

Consequently

Qk(A) = n !2-"- ! (l + e o )(e, en)dxλ Λ ΛΛcΛ

- ± I Λ Λ ! 2 - Π - I ( 1 + *0)έ/vol(i4).

Since Tr(l H- e0) = 2k

9 this shows that

chΛ(Q) = ±n\2-n-ι2k(2πyk(k\)~ldvol(A) = ±vo\(Sn)'1 dvόί(A).

Consequently

' cMπ+)=±i.I
We note for later use that if {e'0, —,e'n) are self-adjoint matrices which obey
the Clifford commutation relations and if Tτ(ef

0 e'n) Φ 0, then Π + will be
nontrivial. The computation is similar and therefore omitted.

This shows that Π+ is nontrivial. If Wis any vector bundle over Sn

9 then the
Atiyah-Singer index theorem for the spin complex with coefficients in W shows
that

index(spin^) = / G Z.

Thus the map chΛ: K0(Sn) -> Hn(Sn) = Z is an isomorphism which shows
that Π + is the required generator. Hence the proof of the lemma is complete.

Given {eo, ,en} we define

_ /0 /\ <o> , ,, _ / 0 ι\

The t>ό, , < + 2 } a r e 2 / : + 1 x 2k+] Clifford matrices. It is immediate that
Σ2p(z) = xoe'Q + + x n ^ ; + JCV;+ 1 4- x " < + 2 . This implies that Σ 2 takes a
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generator for K0(S") to a generator for K0(Sn+2) and proves

Lemma 1.2.4. Σ 2 : K0(S") - K0(Sn+2) and Σ 2 : πn_,£/(•) -* irπ+1t/( ) are

isomorphisms.

We constructed explicit generators for ΛΓQS"1 in Lemma 1.2.3. By suspending

these generators, we construct generators for the homotopy groups of the

unitary group as follows.

Lemma 1.2.5. Let 2k = n, and let {eθ9- -,*?„} be 2k X 2* Clifford matrices.

Set q(x) = xoeo + ,•••, + V * ~ *xn+\ τ h e n agenerates πn+ xU(2k).

We remark in general that given a linear map p(x) withp(x)2 = |JC| 2 / that

the bundles Π ± (p) are defined and / chj. H+p E Z. The natural connections

on these bundles actually have harmonic curvatures as are discussed in [8].

1.3 Orientation of T*M, ΣVT*M, and formulas for ind(p, P) if dM = 0

Let y — (yx, -,ym) be local coordinates on Λf, and let ξ — (ξl9- , i m ) be

the corresponding dual fiber coordinates on T*M. It is customary to orient

T*M using the simplectic orientation on T*M. Let

<»2m = dyx Λ dξx Λ . Λ φ m Λ rfgm

define the orientation of T*M. If 7V̂  is the outward pointing normal on

5(Γ*M), we orient S(T*M) by taking the orientation of Stokes theorem;

For example, if m = 1 and M = S\ then S(T*M) = M X { 1 } U M X { - 1 }

has the orientation dθonMX {-1} and -</0 on M X {1}.

Let u = (MJ, -,uk) be the natural coordinates on Rk. Let ω 2 w + A : = ω2m Λ

& ! Λ • • Λrfw^ define the orientation on T*M Θ 1*, and orient ΣkT*M =

S(T*MΘ \k) so that JVΛω^+fc-! = ω 2 m + Λ . Unfortunately, the simplectic

orientation on Γ*M is not really the correct orientation from the point of view

of the index theorem, and it would probably be preferable to take the

orientation given by the negative simplectic structure. Let Q: C°°(VX) -> C°°(V2)

be an elliptic complex over M with symbol q. Define

Then the transition function of Π + Σ # is q, and the Atiyah-Singer index

theorem becomes

index(ρ) = ( - l ) m ί Todd(M) Λ c h ( Π + Σ ? ) .
JΣT*M
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We suppressed this sign in the introduction, because we had not discussed the
orientation conventions at that point.

We illustrate this formula with a specific example which we shall need later.
Example 1.3.1. Let M = T2 be the flat torus, and U & holomorphic line

bundle of Chern class 1. Identify A°>°(T*M) = Λ01(Γ*M) with the trivial line
bundle. Let Q: C°°(U) -> C°°(ί/) be the Dolbeault complex with coefficients in
U; Q = da. The index of Q is 1. Since M is flat, TODD(M) = 1. Modulo a
constant factor, the symbol of Q is multiplication by ({, + iξ2). Let

Then Σq(ξ, u) = p(ξ9 u) Θ 1 .̂ We compute

ί TODD(M) Λ ch(Π+ (Σq)) = ί ch(Π+/>) Λ ch(ί/).
JΣ(T*M) JΣ(T*M)

Topologically, Σ(T*M) = T2X S2. The orientation on T*M θ 1 is dyx A dξλ

Λ dy2 Λ dξ2 A du = -dyλ A dy2 A dζx A dξ2 A du, so this identification re-
verses the orientation. Since the integral of ch(ί/) over T2 is 1, we must
compute -jsi ch(Π+/?). We argue as in the first section that this is just

which is correct.
The Atiyah-Patodi-Singer formula expresses:

ind(p, P) = (- l ) w f Tch(p) Λ TODD(M) Λ ch(U+p).
JS(T*M)

Again, it is helpful to illustrate this formula with a specific example:
Example 1.3.2. Let m = 1 and let P = -id/dθ on the circle Sι = [0,2ττ].

Let pc be the representation of π, given on the generator by e2πιε. Since the
locally flat section defining v p is given by s(θ) = e/e*, we compute Vp(l) = -
iεdθ and consequently Tch(p) = εdθ/2π. S(T*M) = Sι X {1} U Sι X {-1}.

The symbol of P is just multiplication by the dual variable £, so ch(Π+/?) = 1
on 5 1 X {1} and 0 on Sι X {-1}. The orientation on S X {1} is -dθ, so
multiplying by (-l)m = -1 cancels this sign and gives

ind(p,P) = / Tch(p) = fj-dθ = e.

We can also compute this index directly. Pε = eiεθPe~iεθ — P — ε. Thus

Φ,Pt)= 2 sign(*-ε)|«-εf = 2 {(» - eΓ - (» + eΓ} + e"'
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provided that ε is small and positive. Differentiating this we get

4-Ms, P.) = si 2 (« - eΓ"1 + («+ βΓ"1 - β-'

Comparing this with the ordinary zeta function gives

Since η(s, PQ) = 0, this implies η(0, Pe) = 2ε and ind(p, P) = ε.

The following combinatorial formula relates the twisted index formula and

the index formula.

Lemma 1.3.1. Let Mx and M2 be manifolds without boundary. Let Vλ and V2

be vector bundles over M l 5 and let V3 be a vector bundle over M2. Let

q: S(T*M}) -> ΈSΌ(Vl9V2) and p: ΣJ(T*M2) -> END(F 3 )

be symbols for j > 0. Assume that q is elliptic and that p has no purely imaginary

eigenvalues. Extend q and p to T*Mλ and T*M2 θ V to be homogeneous of

orders vi > 0. Define the symbol

=( *
P

q

 q*p) : Γ*(M, X M2) Θ V -* END((F, θ F2) ® V3),

which is elliptic with respect to the imaginary axis on ΣJ(T*(M} X M2)). Let p be

a representation of πλ(M2) such that Vp is topologically trivial. Extend p to

πλ(MγX M2) so that Vp is independent of the first coordinate and such that the

global frame is independent of the first coordinate. Then

ί Tch(p) Λ TODD(M, X M2) Λ ch(Π + (r))

= j TODD(M,) Λ ch(Π+ (Σq))

f Tch(p) Λ TODD(M2) Λ ch(Π+ (/>)).

Proof. If j = 0 and if q and p are polynomials of the same degree, then this

is just the assertion that ind(p, R)(-\)m = ind(p, P)(-l) W l index(g)(-l) W 2 .

This follows from the identity ξ(s, R) = ξ(s, P)index(β) and ξ(s9 Rp) =

ζ(s, Pp)index(Q) which was discussed in [2], [6].

It is clear that the degrees of homogeneity do not matter, so we take
v\ — vi~ l We smooth off the extension to be identically zero near T*Mt so

that everything is smooth. We also note that T O D D ^ X M2) = ΎOΌΌiM^

Λ TODD(Λf2). We shall give a combinatorial proof of this lemma rather than

attempting to extend the proof given above for differential operators to the
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pseudo-differential case to keep the present discussion as self-contained as
possible. The orientations are crucial in our discussion, so we pay unusually
careful attention to them in what follows.

We choose local coordinates

If ξx > 0, then dξλ points outwards, so the orientation of Σj(T*(Mx X M2)) is
given by

Λ rfί, Λ . . Λrfχπ Λ £/{„ Λ φ, Λ ^ Λ ^ Λ .. Λφ w Λ </fm

Λdux Λ

We parametrize Σ\T*(MX X Λf2)) = S(Γ Af,) X [0, w/2] X Σ\T*M2) in the
form

(cos(0) |,sin(0) f , s i n ( 0 ) W ) ,

where |gp =|f p + ιι2 = 1. At the point β = iτ/4, € = (l,0, ,0), ? =
(1,0, ,0); this gives the orientation

dxx Λ dθ A dx2 A dξ2 A - - - Adxn A dξn A dyχ A dy2 A dζ2

We define

/sin(fl) cos(θ)q*

\cos(θ)q -sin(ί)

Consequently r has no purely imaginary eigenvalues, and

Π + (r) = Π + ( Σ 9 ) ® Π + (/,) θ Π . ( Σ 9 ) ®

ch(Π+ (/,)) + ch(Π.(/»)) = ch(Π+ (;,) Φ Π.(^)) = ch(F3).

Since V3 does not depend on the fiber coordinates (£, w), we may replace
ch(Π_(/?)) by -ch(Π+(/?)) without changing the integral. Similarly, we may
replace ch(Π_(Σ^)) by -ch(Π+(Σ^r)) without changing the integral. This
expresses

f Tch(p) Λ TODD(M! X M2) A ch(Π+ (r))
JΣ\T*(MιXM2))

= lf TOΌΌ(MX) A ch(Π_, (Σq))
JS(T*Mι)X[0,n/2]

• f Tch(p) Λ TODD(M2) Λ ch(Π+/ι),
JΣ\T*M2)
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where we use the orientations on S(T*Mλ) X [0, ττ/2L and ΣJT*M2, which
agree with

-dxλ A dθ A dx2 A dξ2 A Adxn A dξn,

-dyλ Ady2Adζ2A. . Adymλdζm A du A . . Adum,

at θ = flr/4, ξ = (1,0, ,0) and ξ = (1,0, ,0).
We wish to extend this integral to range over [-ττ/2, π/2]. If we replace θ by

-0, we change the orientation and replace Σq by

-sin(0) cos(θ)q*

cos(θ)q sin(fl)

Conjugating this with the matrix (ι

0 °_λ) we find that this is equivalent to

-sin(0) -cos(0)#*\ _

-cos(θ)q sin(0) / ~ ~*'

If we replace r by -r, then we interchange the roles of Π + and Π_. If we
replace Π_ by Π + again, we must change the sign. This sign change takes care
of the change of orientation, so the integral over [-ττ/2,0] is equal to the
integral over [0, ττ/2]. Therefore

2 ( TODDίM,) Λ ch(Π+ (Σq))
JS(T*Mι)X[0,τr/2}

= ί
JS(
JS(T*Mι)X[-π/2,π/2]

W e i d e n t i f y S(T*MX) X [-π/2, π/2] w i t h ΣT*M} b y s e t t i n g ( ξ 9 u λ ) =
(cos(ί )ξ, sin(^)). This gives the orientation

-dxx Adx2Adξ2A' - Adxn A dξn A dux

which is the orientation for ΣT*Mλ to that we have chosen. This completes the
proof of the lemma.

This doubling argument in extending the parameter range will play an
important role in the second section, when we discuss ind(p, P, B) for mani-
folds with boundary. Unfortunately, the formula

ind(p, P) = {-\)m ί Tch(p) Λ TODD(M) Λ ch(Π+ (/?))
JS(T*M)

does not generalize to manifolds with boundary. We must suspend this formula
in order to obtain a suitable extension if dM Φ 0 .

Theorem 1.3.2. Let j be a nonnegatiυe integer. Let dM = 0 . Let p be a
representation of πλ(M) such that Vp is topologically trivial. Let P be a pseudo-
differential operator on C°°(V), which is elliptic with respect to the imaginary
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axis. Define

ind,(p, P) = (- l ) w f Tch(p) Λ TODD(M) Λ ch(Π
JΣ2J(T*M)

Then ind(p, P) = indy(p, P).

Proof. If j — 0, this is the formula proved in [3], [6]. We proceed by

induction ony. Apply Lemma 1.3.1 to M, = T2 and M2 = M, where Γ2 is the

flat torus. Let

P Q*
r = I 2 - 2

where # is the symbol of the Dolbeault complex on T2 with coefficients in a

holomorphic line bundle of Chern class 1 as discussed in Example 1.3.1.

Lemma 1.3.1 implies that

i n d ^ p , R) = i n d e x ^ i n d . ^ p , P) = ind(p, P)

by induction. We compute directly. Let (xl9 x2, v]9 v2) be coordinates on T*T2

and let (yx,- -,ym, ξ{9- ,ξw, « l5 -,u2J_2) be coordinates on T*M θ \2j~2.

Then

Topologically, T*(T2 X M) θ I 2 ' " 2 = (Γ*M θ l2^) X Γ2. However, the orien-

tations

dxλ Λ dvx Λ rfχ2 Λ dv2 A dyx A dξx A - - Adym A dξm A duλ A Adu2j_2,

dyx Adξx A " - Adym A dξm A dux A Adu2j_2 A dvx A dv2 A dxx A dx2

do not agree. We replace υ2 by -v2 to take care of the flip in orientation so that

Σ2J~2p vx + iv2

vχ-iυ2 -Σ2J~2p

Therefore we compute

ind(p, p) — indy.jίp, p) = indy_,(p, R)

= (-\)mf Tch(p)ΛTODD(M)Λch(Π+(Σ2^)) ί ch(ί/),
JΣ2J(T*M) JT2

= indy(p, P)

which completes the proof.

r —
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We note that if V is topologically trivial, then the integral can also be

rewritten using Stokes theorem as

- ί Tch(p) Λ TODD(M) Λ (Σ 2 ^V)*(Tch).
JΣ2J~\T*M)

In the introduction we remarked that the twisted index theorem implies the

Atiyah-Singer index theorem as a special case. Deriving the index theorem

from the twisted index theorem is in a sense circular since the index theorem

was used to prove the twisted index theorem in the first instance. We present

the derivation nevertheless because it is instructive and illustrates the results of

this subsection.

Let Q: C°°(VX) -> C°°(F2) be an elliptic pseudo-differential operator over a

compact Riemannian manifold M, without boundary. We may assume without

loss of generality that Q is first order. Suppose for the moment that Q is in fact

differential. Let P = -id/dθ on C°°(S}). Let M = Mλ X Sx and let R = (£ %)

be the twisted operator over M defined earlier. Let g generate TTX(SX) — Z and

let ρ(g) = exp(2τπε) for ε real. We extend p to be trivial on πx(Mx). Then

ind(ρ, R) - ind(p, P)index(β) = εindex(Q)

by Example 1.3.2. Furthermore

ind(p, R)=f TODD(M) Λ Tch(p) Λ ch(Π+r)

= f TODD(Λf,) Λ c h ( Π + Σ 9 ) ί Tch(p) Λ ch(Π+(/?))

= ε ί TODD(M,) Λ ch(Π + Σq) = ε index(ζ>)

by the combinatorial argument given in the proof of Lemma 1.3.1. This

identity true (mod Z) for all values of ε implies

index(β) = f TODD(M,) Λ ch(Π + Σζ)),
JΣ{T*MX)

which is the Atiyah-Singer index formula.

If Q is not differential, then R is not a pseudo-differential operator on

Aίx X S 1. There is a technical trick to handle this case, and we refer to [6] for

details to avoid unduely complicating the exposition. The Atiyah-Singer theo-

rem can be viewed as a map

ind: K(Σ(S(T*M))) -* Z,
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and the twisted index can be interpreted as a map

ind(p, ): K(S(T*M)) -> R/Z.

By using Bott periodicity, one can relate K(S(T*M)) to K(Σ2(S(T*M))). By
using product formulas as discussed, it is possible, in a certain sense we shall
not make precise, to regard the one formula as the suspension of the other.

SECTION TWO

We now return to the case of dM Φ 0. Although we shall be primarily
concerned with the first order case in this section and shall postpone a detailed
treatment of the higher order case until the third section, we first review briefly
the definition of ellipticity that we shall be using.

2.1 Notational conventions

Let M be a compact Riemannian manifold of dimension m, and let
y — (>>,,• -,ym) be a system of local coordinates on M. Let dM denote the
smooth boundary of M. Near dM, we choose coordinates y — (x, r) for
x — (x,, ,jcm_j) s o M = {y: r(y) > 0}. We further normalize the choice of
coordinates by requiring that 3/3r is the inward unit normal on dM and that
the curves y(r) = (JC0, r) are unit speed geodesies for any x0 E dM. If we use
the inward geodesic flow to identify a neighborhood of dM in M with
dM X [0, r0), we define a splitting T(M) = T(dM) θ T(R) and a dual split-
ting T*(M)=T*(dM)®T*(R). Let € = (?, z) for ? = (£„• ,fw-i) <=
T*(dM). If P: C°°(F) -> C°°(F) is a differential operator, let /?(>>, ξ) =
/?(.*, r, f, z) be the leading symbol of P.

If ί/M = 0, it suffices to assume det(/? - //) T^ 0 for (ξ, ί) =̂ (0,0) as an
ellipticity condition. For manifolds with boundary, however, the corresponding
analysis is much harder, and it was convenient to work with the heat equation
in our earlier paper [7]. Consequently, we must impose a stronger condition of
ellipticity in this case. Let

6 = ( λ G C : |Im(λ) |> |Re(λ) | ;

this is a 45° cone about the imaginary axis. We say that P is elliptic with
repsect to β if det(/? - λ) ψ 0 for (|, λ) φ (0,0) and ξ G T*M, λ G β.

A graded vector bundle ί/ over ί/Af is a bundle £/ together with a fixed
decomposition into bundles of the form U — Uo θ θ ί / ^ , . We permit
L̂  = {0} in this decomposition. Let Wbe the bundle of Cauchy data over dM.
W consists of */-copies of the restriction of V to dM and inherits a natural
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grading where Wj — V]fiM represents normal derivatives of order j . Let Dr —
-id/dr9 and φ, = (Dr)%M for φ G C°°(V). Define the natural map γ: C°°(K)
-C°°(HO by γφ = (φ0, •••,*„_,)•

Let W be an auxiliary graded vector bundle over dM, and let B: C°°(W) ->
C°°(Wf) be a tangential differential operator. Decompose B = Bi} for £ / y:
C°°( WJ) -> C°°(P^). B is of gradί*/ 0/γfer v if *> is the smallest integer such that
ord(2?/y) < v +j — i for all (1, 7). We define the graded leading symbol of B
by

= »u = ( , ^
^ [σ(5 / 7) if ord(2?/7) = p + y - ι .

We assume henceforth that dim(JΓ) = rf dim(£/) is even. Let W be an
auxiliary graded vector bundle over dM of dimension {άim(W). Let JB:
C°°(PΓ) -» C°°(PF') be a tangential differential operator of graded order 0.
Consider the ordinary differential equation

P(x,0, ξ, Dr)φ(r) = λφ(r) and Limφ(r) = 0,
(2.1)

ξeτ*(dλf)9 λ e β , ( f , λ ) ^ ( o , o ) .

We say that the pair (P, B) is elliptic with respect to β if P is elliptic with
respect to β and if for every such (f, λ) and ψ' E W there is a unique solution
φ to (2.1) satisfying o\B)(x, ξ)yφ = ψ'.

There is an alternate formulation of this condition of ellipticity which is
purely algebraic in nature and will prove useful in what follows. Let W± (ζ, λ)
be the subsets of W corresponding to Cauchy data of solutions of (2.1)
vanishing as r -> ± 00. Decompose p(x,0, ξ, z) = Σjpd_j(x9 ζ)zJ where pj is
homogeneous of order j in ζ. We rewrite the ordinary differential equation of
(2.1) as a first order system in the form

where r is the dX d matrix

0 -1 0 0 0

0 0 -1 0 0

T =
0 0 ••• 0 -1

PolPd-\ PoXPd-2 '" PolPi PolP\

If rφ = -izφ, then Σjpd_j(x9 ζ)zjφd_x = λφd-\. This implies that r does not
have any purely-imaginary eigenvalues for (f, λ) φ (0,0) if P is elliptic with
respect to β. It is clear from this description that W± (ξ, λ) are the span of the
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generalized eigenvectors of T, which correspond to eigenvalues with
positive/negative real part, and therefore that W± (f, λ) define vector bundles
over T*{dM) X β - (0,0). Let λ = it and let Π ± (τ)(ξ, /) = W± (£, it) define
bundles over Σ(T*dM); these bundles will be important in what follows.

The ellipticity condition can be rephrased in this language as the condition

σ8B(x, ξ): W+ (ξ, λ) -* W is an isomorphism

for (f, λ) *(0,0)f E T*(dM), λ G β.

In particular, the existence of such boundary conditions implies that the
bundle Π+ (T) over Σ(T*dM) is topologically trivial. We will construct opera-
tors in the next subsection, for which this is not true and which therefore do
not admit such boundary conditions.

2.2 Operators with symbol given by Clifford multiplication

We restrict for the remainder of the section two to first order operators. B is
a 0 th order boundary condition and T = ipol(p(x, f) — λ). Choose a Rieman-
nian metric on M, and let \ξ\ be the length of ξ E T*M. We say that the
leading symbol of P is given by Clifford multiplication if

P(y, ξ)2 =lέ| 2/, i e., P2 = -gtW/dXjdXj / + lower order terms,
where we adopt the convention of summing over repeated indices. Such an
operator is automatically elliptic with respect to β since the eigenvalues ofp are
± | £ | . Equivalently, let {e,, ,em} be a local orthonormal frame for T*M. If
M is oriented, we shall suppose ex Λ f\em — ωm is the orientation form on
M. Expand ξ = iiel E Γ*M and let p(y, ξ) = iiP&y). The leading symbol of
P is given by Clifford multiplication if ptpj H- pjpi — 2δiJ9 or equivalently if
{/?,,-• ,pm} is a set of Clifford matrices.

Such operators arise naturally in differential geometry.
Example 2.2.1. Let V = Θ^ APT*M be the bundle of all differential forms

ndleti ) = ( J + δ ) .
Example 2.2.2. Let M be a holomorphic manifold, and let V =

®pA°*(T*M) and let P = /2(θ + δ").
Example 2.2.3. Let M be a spin manifold, F = Δ(M) be the total spin

bundle, and P be the Dirac operator.
Example 2.2.4. Let M be an oriented odd dimensional manifold, and let *

be the Hodge operator. Let V= Φp A2p(T*M) be the bundle of even differen-
tial forms. Let P - (Bpi

(m~l)/2(-\)p+\*d - d*)\ this is the operator which
appears in the Atiyah-Patodi-Singer signature theorem for manifolds with
boundary.
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Example 2.2.5. Let Wbe a coefficient bundle, and let P: C°°(V) -> C°°(F)
have leading symbol given by Clifford multiplication. Let Pw\ C°°(F® W) ->
C°°(V® W) have leading symbolp ®\W.PW is well defined modulo 0 th order
terms.

Let ext(£) denote exterior multiplication, and int(£) the dual map interior
multiplication. Let c(ζ) = ί(ext(£) — int(ξ)) be Clifford multiplication; this is
the leading symbol of (d + δ). Let Clif(T*M) be the universal tensor bundle
generated by T*M subject to the relations

€, {2 + {2 €I = 2 ( € I , € 2 ) .

Since c(ξ)2 =\ξ\2I, it extends to an algebra morphism c: C\if(T*M) -»
END(ΛΓ*M). If we send 0 -> c(0) 1, we define a vector space isomorphism
between Clif(Γ*M) and Λ(Γ*M); this is not, of course, an algebra morphism.

If the leading symbol of P is given by Clifford multiplication, then p extends
to an algebra morphism/?: Clif(Γ*M) -> END(F). Conversely, given such an
algebra morphism or representation, we can construct an operator P with
symbol p. If we fix a connection V on F, then P can be defined using the
diagram:

P: C°°(V) -> C°°(T*M® V)~*C°°(V).

It is worth noting that in this situation we can always choose an inner product
on V, sop(y, ξ) is unitary and Hermitian for \ξ\= 1, and consequently we can
always find a formally self-adjoint operator P with symbol/?.

Next dM we choose a local orthonormal frame, so em — dr is the normal
covector. We expandp(y, ξ) = p(x, r, f, z) = Σ ^ j 1 ζipi + zpm. Recall that

τ(f, λ) = ipm(p(S) - λ) for λ G β, f E ^ ( Λ / ) , (?, λ) ^(0,0).

Π ± (f, λ) are the complementary subbundles of V, which are spanned by the
eigenvectors of r corresponding to eigenvalues with positive/negative real part.
(We will also denote these bundles by Π ± ( τ ) when it is necessary to dis-
tinguish them from other similarly defined bundles.)

Since P is a first order operator, a boundary condition B is just a 0 th order
map B: V ^ W where dim(F) = 2dim(PF') such that the null space N(B)
does not intersect Π+ . Suppose/? E END(F) satisfies

p2=l,Pp(ξ)+p(ξ)P = 0.

This is equivalent to assuming {/?, /?,,- ,/?m} forms a set of Clifford matrices.

Define q = ipmp, and note that {q, pm9 ipmpx,- 'JpmPm-\) f o r m s a s e t o f

Clifford matrices, so that q anticommutes with T. Let B± = \{I ± q) be the
projection on the ±1 eigenspace of q. B± will be said to be a Clifford
boundary condition.
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Lemma 2.2.1. Let the leading symbol of P be given by Clifford multiplication
and let B be a Clifford boundary condition. Then (P, B) is elliptic with respect to
the cone β.

Proof. We recall that τ(f, λ) = ipmp(ξ) + iλpm since p^ = pm. Since T
anticommutes with q, these two operators do not have any common nonzero
generalized eigenvector. Assume B = B+ for the sake of definiteness. N(B) =
U_(q) and U_(q) Π Π+(τ) = {0}, so B is injective from Π+(τ) to U+(q)
and hence bijective as both these spaces have dimension \ dim(F). We note
that if P is formally self-adjoint, then (P, B) is self-adjoint if p (or q) is
self-adjoint.

We can now state a basic existence result.
Lemma 2.2.2. Let the leading symbol of P be given by Clifford multiplication.
(a) // dim(M) = m is even, and M is orient able, then there always exist

Clifford boundary conditions for P.
(b) If dim(M) = m is odd and if Tr(/?j pm) Φ 0, then there do not exist

any boundary conditions so that (P, B) is elliptic with respect to the cone β. In
particular, there do not exist such boundary conditions for the operator of
Example 2.2.4.

Proof. Suppose first that m is even, and let ωm be the orientation form on
M. L e t p ( ω m ) =pλ- pm. It is immediate t h a t { ( - i ) m / 2 p ( ω m ) , pl9 -,pm} is a

set of Clifford matrices, and thus (a) is proved.
We suppose next that m is odd, and let 2 k = m — 1. We fix y E dM, and let

S2k be the unit sphere in Σ(T*dM). We regard Π+ (T) as a bundle over S2k by
setting λ = it so τ(ξ, t) = ipmp(ζ) — tpm. We computed in the first section that
modulo some universal constant ak φ 0,

c h * ( π + ( τ ) ) =akTT(ipmpx '"ipmpm-x pm) = a'kΎτ(pι •• pm-λpm)

= a'kτ*(P\ ' ' 'Pm) = 4 Tr(/>(««))•

Consequently, if this trace is nonzero, the bundle Π + ( τ ) is topologically
nontrivial on each fiber sphere. This implies that there cannot exist a map B:
Π + ( τ ) -> W, and consequently there exists no good boundary conditions. It
is an easy verification that Ύτ(px -pm) φ 0 for Example 2.2.4, so this
operator does not admit boundary conditions of the sort which we are
considering.

If m is even, set/?0 = (-i)m/2p(ωm). We replace P by \{P - p0Pp0) without
changing the leading symbol of P to assume P anticommutes with/?0. Decom-
pose

P = P± : C-(Π±(/» 0)) - C°°(IM/>O))
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to define a two-term elliptic complex. This yields the signature, Dolbeault, and
spin complexes from Examples 2.2.1-2.2.3. We note that the boundary condi-
tion corresponding to p0 in these examples does not define an elliptic boundary
condition for these complexes; these three elliptic complexes do not admit
local elliptic boundary conditions.

The de Rham complex does not fit this pattern since it does not depend on
the orientation of M. It is related to another Clifford boundary condition for
the operator (d + 8). Near dM, we decompose any form into tangential and
normal components as

θ = θx+θ2Λem for 0, G A(T*dM).

Define q(θx + θ2 Λ em) = θx - θ2 Λ em and let B± = ^(1 ± q). This gives
Clifford boundary conditions for (d + δ); it also defines relative/absolute
boundary conditions for the de Rham complex.

Not every boundary condition is a Clifford boundary condition. However, it
is possible to find a normal form for elliptic boundary conditions. Let (P, B)
be elliptic with respect to the cone β with the leading symbol of P given by
Clifford multiplication. Let φ G N(B) Π pmN(B). We decompose φ = φ+ + φ_
so that pmφ = φ+ -φ_. Then φ± = {{I ±pmφ) G N(B). However φ+ G Π+
(τ)(0, -/) and φ_G Π + (τ)(0, +/), so the ellipticity condition implies φ+ = φ_

= 0.
Since N(B) Π pmN(B) = {0}, these two subspaces are complementary. We

define q to be +1 on pmN(B) and -1 on N(B). If Br = i(l + q), then
N(B') = N(B) so (P, B') is equivalent to the problem (P, B) and is elliptic
with respect to β. Since qpm + pmq = 0, this proves

Lemma 2.2.3. Let the leading symbol of P be given by Clifford multiplication,
and let (P, B) be elliptic with respect to the cone Q. Then B is equivalent to a
boundary condition B' of the form B' — \(\ + q) where q2 = 1 and qpm + pmq
= 0.

2.3 R e s J = o η ( j , P9B)

We shall construct a sequence of homotopies for later use. We work only
with the leading symbol, and damp out any homotopy away from the boundary.
We choose a connection V for V, and let (P, B) be elliptic with respect to the
cone β. We choose a Riemannian metric on M, and let 3r0 be the radius of
normal coordinates on dM. We identify dM X [0,3r0) with a neighborhood of
dM in M using geodesic normal coordinates.
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Using parallel translation along the geodesic normal rays in dM, we may
identify the fiber of V at any point (x, r) with the fiber of V at (x,0) for
r < 3r0. In the first homotopy, we replace the original metric by a product
metric near the boundary, and we replace P by an operator whose symbol is
covariant constant in the normal direction near dM.

Homotopy 2.3.1. Let/(7, r) be a smooth function so that

f(t,r) = r f o r r > 2 r 0 , 0 < / ( / , r ) < r ,

/(0,r) = r, / ( l , r ) = ro for r < r 0 .

Define pt(y, ζ) = pt(x9 r, ξ) = p(x9 f(t, r), €). Since />(*, 0, ξ) = />,(*, 0, £),
(P p 5) is elliptic with respect to the cone β. pλ(x, r, ξ) = /?(*, 0, ξ), so the
symbol is covariant constant in the normal direction for r < r0. If we apply this
construction to the operator (d + δ) and square the resulting symbol, we get a
1-parameter family of metrics connecting the original metric to a metric which
is product near the boundary.

We note that if the leading symbol of P is given by Clifford multiplication,
then the leading symbol of Pt is still given by Clifford multiplication with
respect to a perturbed metric. The metric at t — 1 is product near the
boundary. This homotopy is valid equally well for higher order operators.

Let the symbol of P be given by Clifford multiplication. Apply Lemma 2.2.3
to assume B — \{\ + q) for q1 — 1 and qpm + pmq = 0. Extend q to be
covariant constant in the normal direction, so q2 = 1 and qpm + pmq — 0.
Decompose V — U_(q) Θ U+(q) into the ±1 eigenspaces of q. We assume
the connection on V is chosen, so it splits under this decomposition. Let ?_ be a
local frame for Π_(#), which is covariant constant in the normal direction, and
let ?+ — pm^_ be a local frame for H+(q) which is covariant constant in the
normal direction.

Assume that P is as constructed in Homotopy 2.3.1, and near dM decom-
pose

-'• Ho1 ϊ)
where Pτ is a tangential partial differential operator with coefficients indepen-
dent of r. The sign of q9 so B is projection on the second factor, is chosen to
make later sign conventions work out correctly.

Let pτ = p(x,0, f,0) be the symbol of Pτ. The identitiespmpτ + pτPm ~ 0
and Pτ=\ξ \2I imply that pτ must have the form
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where

a(x9 ζ)2 + b(x, ζf = |f|2/, a(x, ζ)b(x9 ξ)a{xy ζ) = b(x9 ξ)a(x9 ξ).

The next lemma gives a useful criteria for ellipticity.

Lemma 2.3.1. Let P have symbol p which is in the form

P(χ,r,i, *) = ,(<> J)+«(*,«(* _0,)+*<*.»( ° J).

• a(x, ξ) and b(x, ξ) are matrices, which are linear in ξ and commute. Let B
be the projection on the second factor. Then (P, B) is elliptic with respect to the
cone β // and only if the matrices a(x, ζ)2 and a(x, ξ)2 + b(x, ξ)2 have no
eigenvalues μ with Re(μ) < Ofor ζ φ 0.

Proof. It is clear that

p(x, r, ξ, zf = (z 2 + a2(x, ξ) H- b2(x, ξ)} I

We suppose first that (P, 5) is elliptic with respect to β. Then p2 has no
eigenvalues with Re(μ) < 0, so a2(x, ξ) -h 62(x, ξ) has no eigenvalues with
Re(μ) < 0. We compute

^.t,X) = ( «*» , - f t - t a ( * »
\-/λ-h w(x,?) -&(JC,?)

Suppose Λ2 has an eigenvalue with Re < 0. Then a must have an eigenvalue
λ G S. Since a and b commute, b preserves the eigenspaces of a, so we can find
a such that aa — λa and ba = μα. Thus

If Re(/x)>0, then ( J ) 6 Π + ( τ ) ( U ) , while if Re(/x) < 0, then (g) ε
Π_(τ)(f, λ) = Π+(τ)(-ί,-λ). Since B(%) = 0, this contradicts the assumed
ellipticity.

Next we suppose that a2 and α2 + b2 have no eigenvalues with nonpositive
real part for ξ φ 0. This implies p2 has no eigenvalues with nonpositive real
part for (z, f) ^ (0,0), and consequently that p has no eigenvalues in β. To
study the ellipticity of the boundary condition, we decompose a into Jordan
blocks which are preserved by b. By taking the direct sum of two copies of
these Jordan blocks, we obtain a subspace which is invariant under {p,τ}. If
Bφ = 0, we decompose φ = Σφv for the φv in distinct Jordan blocks. Then
Bφv — 0. Consequently, it suffices to verify ellipticity if we assume a has a
single Jordan block.
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Suppose first that a is a 1 X 1 block with eigenvalue a, so that τ is a 2 X 2
matrix of the form

= /
\-i

-iλ - ia
iλ + ia -b

where a and b are scalars. T has two distinct eigenvalues, so Π ± ( τ ) are
one-dimensional and consist of eigenvectors. Since -iλ -f ia Φ 0, (ι

0) is «#/ an
eigenvector. Thus 2? is injective and the proof is complete.

Next we study a 2 X 2 Jordan block; the general case is similar and is
therefore omitted, τ is a 4 X 4 matrix with two distinct eigenvalues of multipl-
icity two. Choose a Jordan basis for the matrix a so that aax — &ax, aa2 — αα2

+ α,. Since a and 6 commute, & preserves this subspace and bax = 6α,. The
two-dimensionakspace of all vectors of the form φ = (c

d)aλ is τ-invariant. The
restriction of T to this subspace has two distinct eigenvalues, and {X

0)OLX is not
one of them. Suppose N(B) Π Π + (T) Φ {0}, and choose a basis for Π+ (T) in
the form

where * indicates some complex number. We compute

Since -iλ + id Φ 0, this is not in the span of {φ,, φ2} which contradicts the
fact that Π + (T) is a τ-invariant subspace. Thus the proof is complete.

We use this lemma to construct a homotopy in which we replace the symbol
p by a new symbol which anticommutes with/?0 = -ipmq.

Homotopy 2.3.2. Let P have symbol p of the form

° j),
which is covariant constant in the normal direction for r < 3r0 for some r0.
Assume that a(x9 ζ) and b(x, ζ) are linear in ζ and commute. We also assume
that (P, B) is elliptic with respect to the cone β where B denotes the projection
on the second factor. Let/(ί, r) be smooth such that

0 < / ( / , r ) < l , f(t,r)=\ f o r r ^ 2 r 0 ,

f o r r < r 0 .

Let Pf have symbol



TWISTED INDEX PROBLEM 423

We assumed that a and b commute. Using the ellipticity condition, a2 and

a2 + b2 have no eigenvalues with nonpositive real part. It follows that a2 and

(1 - f2)a2 + j\a2 + b2) have no eigenvalues with nonpositive real part, and

consequently (Pn B) is elliptic for / G [0,1] by Lemma 2.3.1.

Let (P, B) be elliptic with respect to the cone β with the leading symbol of P

given by Clifford multiplication. Using Homotopies 2.3.1 and 2.3.2 we may

replace P by a homotopic operator of the form

near dM where Aτ is a tangential differential operator with coefficients

independent of the normal parameter r which is elliptic with respect to the

cone β. Such an operator will be said to split near dM.

Let M be the double of M. M is constructed by taking two copies Mλ and Λf2

of M and glueing them along the common boundary dM. On the first copy Mλ

we take a neighborhood of dM of the form ί/M X (-ro,0], and on the second

copy M2 we take a neighborhood of dM of the form dM X [0, r0). Since the

metric is product near dM, it extends smoothly to the double.

We take two copies Pt of the operator P on Λ/,. Near dM these have the form

where the difference in sign in the coefficient of d/dr is caused by the

difference between the inward and the outward normal. Consequently we

cannot patch together these two operators directly.

Let V be the bundle over M consisting of two copies Vt of V over Mt which

are patched together near dM using the transition function (r

0 °7). In other

words, if vt E Vt near dM, we decompose vt = vf + υj using the decomposi-

tion oΐVi = Π + ( # ) θ Π_(#), and then identify ϋf = v£ and ©7 = -t^ The

identity

/ / 0 \ p / / 0\_
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implies that the P, patch together smoothly to define an operator P: C°°(V) -»
C°°(V) over M.

Let Mo be the manifold dM X [0, r0] which we regard as a submanifold of
M. Let Po: C°°(K0) -> C°°(F0) be the restriction of P to Mo, and let Bo be the
boundary condition:

«2/ = 0 i m p l i e S a2(^'°) = al(X> rθ) = °

At r — 0, this is just the original boundary condition. At r — r0, we conjugate
(Po, 2?0) by the endomorphism (o _/) to take care of the change in orientation
to see that this is isomorphic to the original boundary condition. Thus (Po, Bo)
is elliptic with respect to the cone β.

If p is a representation of πx(M), we double V to define Vp over M and
restrict Vp to define Vp° over Mo. The following lemma relates these three
operators.

Lemma 2.3.2.
(a) Res^o η(sy P, B) = ±{Ress=0 η(s, Po, Bo)

(b) Ind(p, />, 5) = i{Ind(p, Po, *o) + I n d(
Proo/. We proved in [7] that Res5 = 0 η(s, P, B) can be computed in terms

of a local formula:

Res5 = 0 η(s9 P9B)=ί a(y, P)dvol(y) + / a(x, P, B)dvol(x),
JM JdM

where <ivol(^) and Jvol(x) denote the Riemannian measures on M and dM,
and α(j>, P) and a(x, P, 5) are smooth local invariants of the jets of the total
symbols of the operators involved. Since P is locally isomorphic to P, we have

R e s ^ φ , P) = f_a(y, P)dvol(y) = l[ a(y9 P)dvol(y).
JM JM

Similarly

Ress=oη(s,Po,Bo)= ί a(y9P)dvol(y) + 2( a(x, P, B)dvol(x).
JM0

 JdM
( y ) ( y ) (

JM0

 JdM

However, this residue is independent under perturbations. a(y, P) is not
dependent on the normal parameter r so

M
a{y,P)dvo\(y) = r0. ί a(x,0, P)dvol(x).

JdM

Since this is independent of r0, it must vanish. We add up the two local
formulas to prove the first assertion; the proof of the second follows similarly
and is therefore omitted.

The next lemma lets us compute η(s, Po, Bo).
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Lemma 2.3.3. Let P o = -id/drtfι

0) + ^τ(o -1) on dM X [0, r0]

boundary condition B given by the projection on the second factor. Let Aτ be a

tangential partial differential operator with coefficients independent of r. If

( P o , B) is elliptic with respect to the cone 6, then η(s, P o , B) — η(s, Aτ).

Proof This is Theorem 3.4 of [7] which is based on the identity η(s, P o , B)

— η(s, Aτ) index(-ι'3/3r, B)\ the index is 1 in this setting.

We say that (P, B) is homotopic to an operator which splits near dM if there

is a 1-parameter family of operators (P,, B) which are elliptic with respect to β

such that Po — P and that Pλ splits near dM. In particular, Homotopies 2.3.1

and 2.3.2 give

Lemma 2.3.4. Let (P, B) be elliptic with respect to the cone β, and let the

leading symbol of P be given by Clifford multiplication. Then (P, B) is homotopic

to an operator which splits near dM.

The basic regularity result of this paper is the following.

Theorem 2.3.5. Let (P, B) be a first order operator elliptic with respect to the

cone β and homotopic to an operator which splits near dM. Then

Proof. Using the invariance of the residue under homotopy, we may

assume that P splits near the boundary. We then apply Lemmas 2.3.2 and 2.3.3

to compute

R e s 5 = 0 η(s, P,B)=± { R e s J = 0 η(s9 P ) + R e s 5 = 0 η(s9 Aτ)}.

Both P and Aτ are defined on manifolds without boundary, so the right-hand

side vanishes by [2], [6]. We also note that the formula for ind( , ) on

manifolds without boundary could be used to derive a corresponding cohomo-

logical formula in this case using these techniques. Rather than doing this

directly, we state instead the relevant formula and then prove it is correct by

showing it has the necessary universal properties.

We note that in particular this theorem applies if the leading symbol of P is

given by Clifford multiplication by Lemma 2.3.4.

2.4 Ind j (p, P, B ) for first order operators

We will use the boundary condition to extend p to a collared neighborhood

of M so that the extension depends on | /1 and not on / near the boundary. The

following lemma will be used to show that the resulting integral is independent

of the choices made.

Lemma 2.4.1. Let V be a vector bundle over M. Let ds2(ε) be a \-parameter

family of Riemannian metrics on Af, and V(ε) be a \-parameter family of

connections on V. Let p be a representation of πλ(M), and g(ε): Σ(T*M) ->

END(F, V) be a \-parameter family of elliptic endomorphisms. Assume that
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g£y, £, /) = g£y, £, -t) near dM. Then

f Tch(p) Λ TODD(M) Λ ch(Π+ (Σg(e)))
JΣ2(T*M)

is independent of the parameter ε.

Proof. Choose two values a and b of the parameter ε, and let ε range from a

to b. Without loss of generality we may assume that ds2{ε\ V(ε), and g(ε) are

independent of ε near ε = a and ε = b. Let N = M X [a, b] with the metric

ds2(ε) + dε2. We extend V to N with connection v(ε). ΎOΌΌ(N) =

TODD(M). We apply Stokes theorem to the closed differential form

Tch(p) Λ TODD(iV) Λ ch(Π+ (Σg(ε)))

to conclude that the integral over d{Σ2(T*M) X [a, b]} is zero.

This boundary consists of two pieces: Σ2(T*M) X d{[a, b]} and

d{Σ2T*(M)} X [0, b]. We complete the proof of the lemma by showing the

integral over this second piece is zero. By hypothesis, g is invariant under the

orientation reversing map (y9 £, t) -» (>>, £, -t). Therefore this differential form

is invariant as well. This implies that the corresponding integral must be zero.

Let (P, B) be a first order operator elliptic with respect to the cone Q. We

do not necessarily assume the symbol of P is given by Clifford multiplication.

We can assume the range R(B) is a subspace of V by replacing B by the

projection on some subspace complementary to the null space N(B). We

choose a metric on V so that N(B) and R(B) are orthogonal, and replace B by

the orthogonal projection on B. Let q = 2B — I. Then R(B) = ϊl+(q) and

N(B) = U_(q).

We suppress dependence on x E dM for notational convenience, and define

τ(f, λ) = iPm\p{ξ) ~ λ) for (f, λ) ^(0,0) G Γ*(</M) X 6,

, 0 = Pit) ~ it: Σ(T*M) - GL(V) for (£, ί) e Σ(T*M).

We will construct a sequence of homotopies to deform T to q through matrices

with no purely imaginary eigenvalues, and then multiply by -ipm to get a

homotopy of Σp to -ipmq.

In the first homotopy, we replace T by rλ to be defined below, supress

dependence on (f, λ) for notational convenience, let λ be pure imaginary, and

s u p p o s e ^ 2 + |λ p = l.

Homotopy 2.4.1. Let π± (T) denote the projection o n Π ± ( τ ) relative to the

splitting V = Π + ( T ) θ Π_(T) . Let τλ - π+ (T) - τr_(τ) and τu - uτx + (1 —

u)τ for u E [0,1]. If μ is an eigenvalue of T, then (1 — w)μ ± u is the

corresponding eigenvalue of τM, where we select ± as Re(/i) > 0 or Re(μ) < 0.

Consequently, τw has no purely imaginary eigenvalue.
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Let ττ\ ( T ) be the orthogonal projection on Π + ( T ) and let ττf(τ) — 1 — m\

(T). In the next homotopy, we replace T, by τ2 = 2π% ( T ) — / which is unitary

Hermitian.

Homotopy 2.4.2. Let Π+(τM) = Π + ( τ ) and let Π_(τJ = {vu = (u -

l)ττf(τ)t; + (2 - u)v for v G Π_(τ)} and u G [1,2]. It is clear that IΓ*(ΌU) =

π?(υ). If this vanishes, then t>GΠ + (τ)sot> = 0. This implies dim(Π_(τM)) =

dim Π_(τ) = { dim(F) and also that Π_(τM) does not intersect Π + (τM) so that

V — Π + (τM) θ Π_(τM). Define τu — ± 1 on the appropriate subspaces.

We now use the boundary condition to construct the final homotopy.

Homotopy 2.4.3. Define subspaces Vu = {vu - (u - 2)Bv + (3 - u)v for

v G Π + ( T ) } and u G [2,3]. If Bvu = 0 then Bv = 0, so v G N(B) and v = 0

by the assumed ellipticity. Consequently the Vu have constant rank. Let mu be

the orthogonal projection on Vu and let τu = 2πu — I.

We reparametrize the interval and connect the three homotopies to construct

τu for u G [-1,0] with τ_λ = q and τ0 = τ; τM has no purely imaginary eigenval-

ues.

If P splits near dM, it is possible to give an equivalent formulation of this

homotopy which is more useful for computational purposes.

Homotopy 2.4.4. Let P split near dM. Then

0 -ιλ — ia

/ λ + α 0

where a has no purely imaginary eigenvalues. We define

It is immediate that τ 2 = (sin2(0) + cos\θ){a2 - λ2)}(x

0 ?), so that r has no

purely imaginary eigenvalues. Thus r_v/2 — q and τ0 = T.

Lemma 2.4.2. L̂ / P split near dM. Let B - w π/2 and let τ'(w, •) be the

homotopy given by Homotopy 2.4.4 joining q to T for u G [-1,0]. Let T(M, •) be

the homotopy given by Homotopies 2.4.1 through 2A3. Then these two homo-

topies are equivalent', i.e., there exists T(s,u, ) with no purely imaginary

eigenvalue such that

T(0,u, ) = τ(u, ) , T(l,u, ) = r'(u, ) ,

T(s,-\, ) = q, Γ(ί,0, )=<r( )

Proof. Expand
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By Lemma 2.3.1 we know a has no eigenvalues in β. Use the homotopies

constructed in Homotopies 2.4.1 through 2.4.3 to construct a 1-parameter

family α s joining a to ax where a2 = | ζ |2, and aλ is Hermitian.

Since the as have no eigenvalues in β, the corresponding/^ define operators

Ps such that (Ps, B) is elliptic with respect to βby Lemma 2.3.1. Now apply the

Homotopies 2.4.1 through 2.4.3 and 2.4.4 to this family to construct the

two-parameter families τ(s, «, •) and τ'(s, w, •).

This reduces the proof of Lemma 2.4.2 to the case in which a2 =\ξ|2, a

Hermitian. Decompose Π_(τ) into ± eigenspaces of a, and set w = iλ ± i\ξj

for λ pure imaginary and \w\= 1. This reduces the proof to the case in which
τ — (w o )• Homotopies 2.4.1 and 2.4.2 do not change τ at all; Homotopies 2.4.3

and 2.4.4 are clearly equivalent rotations of the relevant eigenspaces involved.

Suppose P is covariant constant near dM in M by applying Homotopy 2.3.1,

and also assume the metric on M is product near dM. Let M — dM X [-1,0]

U M joined along the edge dM X 0 = dM, and extend Vp and V over M to be

independent of the normal parameter r. We smooth out Homotopies 2.4.1

through 2.4.3 to assume that τM is identically q near u = -1 and identically τ

near u = 0. We extend τu from Σ(T*dM) = S(T*M θ 1) to T*M Θ 1 so that

τu(y9 aξ, aλ) = f(a)τu(y, £, λ) where /: [0,1] -> [0,1] is a smooth monotonic

map which is identically 0 near 0 and identically 1 near 1. (If we just extend τu

to be homogeneous of degree 1, it will be continuous but not smooth at

(£, λ) = (0,0) since τu is not linear in general. This step can be avoided if we

use Homotopy 2.4.4 as τM is linear in this case.)

Define the smooth symbol ΣpB on ΣT*(M) by

_ {p(x,r9ξ,z)-it forr^O,
PB~\-ipm(τr(x,ζ,it) + iz) forr^O.

We emphasize that the notation ΣpB is not the suspension of pB but rather the

extension of Σp using the boundary condition B. The whole point of the

discussion in the first section was to work with Σ2p as ΣpB does not in general

desuspend. By an abuse of notation, we will let ΣvpB — Σv~\ΣpB).

We choose a fixed connection on V and the Levi-Civita connection on T*M.

Let U+(Σ2pB) be the bundle over Σ2T*{M) with clutching function ΣpB

discussed in the first section. This bundle inherits a natural connection which is

the projection of the connection on F = Π + Θ Π _ . We take the component of

the differential form

Tch(p) Λ TODD(M) Λ ch(Π + (Σ2pB))9
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and integrate it to define

ind,(p, P, B) = ( - l ) w f Tch(p) Λ TODD(M) Λ ch(Π + (Σ2pB)).
JΣ2T*(M)

Near the boundary of Σ2(T*M\

ΣpB(x, r, f, z, 0 = -/>w{/(|f | 2 + t2)q + /z}.

We could make a further homotopy to change this to a symbol which is

independent of (f, z, /) but this is not necessary. Since this depends only on

|f|2 + ί2, ΣpB factors through M X I2, so the 2m 4- 1 differential form

defining indj vanishes identically near r — - 1 .

Lemma 2.4.3. Let (P, B) be a first order operator elliptic with respect to the

cone Q. Then the following hold.

(a) ind,(p, P, B) is a homotopy invariant of (P, B) independent of the metric

on M and the connection on V.

(b) There are local formulas a(y9 p, P) and a(x, p, P, B) which depend

functorially on the jets of the metric, the jets of the connection on F, the

connection \-form of Vp, and the jets of the total symbols of(P) and (P9 B) such

that

ind,(p, P,B)= ί a(y, p, P)dvo\{y) + ί a(x, p, P, B)dwol(x).
JM JdM

Proof, (a) follows directly from Lemma 2.4.1 since ΣpB depends only on t2

and not on t near dM. Construct local formulas by integrating over the fibers

of Σ2(T*M) to define a(y, p, P) for y G Λf, and integrate over both the fibers

and the normal variable on dM X [-1,0] to define a(x, p, P, B). q.e.d.

The manifold M is diffeomorphic to M where we simply slide the collar

inside M using the geodesic normal flow suitably damped away from the

boundary. Thus we can regard Σ2pB as being defined on Σ2{T*M) if we like;

this is done by performing the homotopies inside M instead of on a collared

neighborhood.

We can now prove the basic formula of this paper.

Theorem 2.4.4. Let (P, B) be a first order operator elliptic with respect to the

cone β and homotopic to an operator which splits near the boundary. Let p be a

representation of the fundamental group such that Vp is topologically trivial. Then

Proof. Both ind and ind! are homotopy invariants given by local formulas.

Without loss of generality we assume (P, B) splits near dM. We know

ind(p, P, B) = i ind(p, Po, Bo) + {ind(p, P)
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by Lemma 2.3.2. A similar argument shows the same is true for ind,. Therefore

it suffices to prove that

ind(p, P ) = ind^p, P ), ind(p, Po> B°) = ind^p, PQ9 Bo),

where P and (Pθ9 Bo) are as defined in Lemma 2.3.2. Since M has no

boundary, the first equality is the statement of Lemma 1.3.2. We may therefore

restrict our attention to the case where

written in block form. We assume the boundary condition is the projection on

the second factor and that A is a tangential first order differential operator

elliptic with respect to the cone β whose coefficients are independent of the

normal parameter r.

Since Σp is independent of r over M, the integral vanishes over M, so we

may restrict attention to M — M. We study first the portion over dM X 0 and

use Homotopy 2.4.4 to define ΣpB:

^ ) cos(r)α(*, ξ)(

x e dM, r G f ^ . o ] , ξ £ T*(dM), t E R.

If we set ΣpB — -ipm(τ + iz), this defines

This gives the contribution over dM X [-τr/2,0] for the part of M — M, which

is near the left-hand edge. The right-hand edge is isomorphic to the left-hand

edge if we replace r by -r and conjugate by ({> °_ι). It is tempting to compute

the full integral by simply doubling this contribution. We do this in a way

which will extend ΣpB to dM X [-π/2, ττ/2]

We replace r by -r and z by -z. This preserves the orientation and

transforms ΣpB to the form

ϋ)-(? ί
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We conjugate this with (Q °,) to transform this back to Σ/>B. This permits us to

regard M - M - dMX [-π/2, π/2] where ΣpB is defined by

Define ω 2 m _ 2 = dxx Λ J ^ Λ dxm_λ Λ */£„,_! so that the orientation is given

by ωim+\ — ωlm-2 /\ dr Λ dz Λ dt on T*M θ 1. Introduce new parameters

u{ = z, u2 = sin(r), w3 = cos(r) /,

and replace ζ by cos(r)ζ. This changes the orientation and replaces ΣpB by

The relation ί2 + z 2 H- |f|2 = 1 becomes the relation \ζ\2 + \u\2 = 1, so the

new domain of integration is Σ3T*(dM). By Lemma 1.2.2(c) we can replace

the symbol by Σ3a. Since the orientation has been reversed,

= (-1)" 1 " 1 f Tch(p) Λ TODD(</M) Λ ch(U+Σ4a).

Use Theorem 1.3.2 to evaluate this integral as ind(p, A). Since ind(p, A) =

ind(p, P, B), the proof of the theorem is complete.

SECTION THREE

3.1 Definition of i n d ^ p , P, B) if dM φ 0 and </ > 1

It is convenient to work with a larger class of symbols in defining the

homotopies which we will work with. Supress dependence o n x G dM. Let

( £ z, 0 G 7*(Af) θ 1 and let

,(f, z, 0 - Σ y ί y ( f , / ) z ' - ' : 7*(ilf) θ 1 - END(F, K)

be invertible for (f, z,t)Φ (0,0,0). Suppose the q} are continuous and homo-

geneous of order j in (f, /). Then

qj{cξ,cdt) = cJqj(ζ,t) forc>0,
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which implies qo(ξ, t) = q0 is independent of (f, t). Define T as in §2.1. The

ellipticity of q implies τ has no purely imaginary eigenvalues. Let B: C°°(W) ->

C°°(W) be a differential boundary condition, and assume that σg(B): Π + ( τ )

-> W is an isomoφhism for (ζ,t)Φ (0,0). If (P, B) is elliptic with respect to

the cone β, then q — Σp satisfies these conditions.

If d> 1, then q and T do not act on the same bundle, and τ is not

homogeneous. Consequently the construction of §2.4 does not generalize, so we

use instead the Atiyah-Bott homotopy of [1]. We review their construction in

the context we shall be using since some of the technical details and notation

differ from their paper owing to the presence of the parameter t.

Let Vj\= F ® \j denote the direct sum ofy-copies of V. WΊs the restriction

of Vd to the boundary. Let END(F, V) act on Vj in block form. Let SJ(q) = q

θ lj_x on Vj. This process of adding trivial factors is called stabilization. It is

clear Σ(SJq) = ΣqΘ Σ(\j_x). Since Σ(l y_,) does not depend on (f, z, t), it

will not affect the 2 d + 1 component of the differential form defining ind^ We

stabilize as often as necessary without affecting indj.

The bundle W does not extend over M in general. This causes certain

technical problems which we correct as follows. σg(B)(0): W ^ W is surjec-

tive. We split this surjection to express W' — W1' θ W'\ where W" is the null

space of σg(2?)(0), and W is identified as the orthogonal complement of W" in

W. We will use the boundary condition to construct a homotopy qu which joins

Sld+\q) to S2d+\q0) which does not depend on (z, f, /)• If we replace q by

qΰxq, we do not change the ellipticity conditions. We then replace (qoλq)u by
s2d+X%)(%λ<l)u t o construct a homotopy joining S2d+\q) to S2d+\q0).
Consequently we shall assume without loss of generality that q0 = I.

We ignore smoothness questions for the moment and work with continuous

symbols and homotopies. In computing the degree of homogeneity, we con-

sider t as a variable of order d and ξ as a variable of order 1. Since | ξ \2 + t2 is

not homogeneous, it is more convenient to work with the homogeneous

function|ξ\2 + \t\2/d. We define

Σ(T*M)d= {te,t)GT*MΘ\:\ξ\2 + \t\2/d=l}.

Radial projection defines homeomorphisms between Σ(T*M) and Σ(T*M)d.

We parametrize Σ(T*M)d by setting

z = -cos(0), f = si

for 0 < θ < 7r and (f, t) G Σ(T*dM)d. Let a = cos(0) + / sin(0) Then
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The parameter a ranges over a half-circle. Let β = a2 range over the whole
circle. Then

where the ijj are linear combinations of the qj. For example, iid—2,

q = z2 + q]Z + q2,

4q = (1 + iqλ - q2)β2 + (2 + 2q2)β + (l - iqλ - q2).

Homotopy 3.1.1. Replace q by q by multiplying # by exp(-ί/wLOG(-2α))
for 0 < u < 1. The multiplicative factor only depends on (z, | ξ \, | ί |).

It is clear q(ξ, t, 1) = 1. We will construct a homotopy qu so that qu(ζ, t, 1)
= 1 for all u. This homotopy will project back to define a continuous
homotopy on Σ(T*M)d. We restrict henceforth to the parameter space Sι X
Σ(T*dM)d. The second step is to reduce the problem to the first order. We
define

-β i
0 -β

9,1-
0
0

1

0

0

0 0 -β

X Σ{T*dM)d

This is invertible for all (£ t, β). The two matrices Ld(q) and Sd+\q) are
related by the identity

L"{q)

1

β

β2

βd

0

1

"C
O

β "

—

1

0

0

0
0

0

βa.

9ι
1

0

0
0

0

1

0

0

Id

0

0 Sd+\q),
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where qx = (q(β) - q(O))/β and qέ = (q^β) - ?,_i(O))/jβ for i > 1. This
gives an identity of the form

Ld(q) = Hλ(ξ,t~,β)Sd+\q)H2(β),

where Hx is an upper triangular matrix, and H2 is a lower triangular matrix.
Hontotopy 3.1.2. We first construct a homotopy H'u connecting Sd+\q)

with Ld(q) by homotoping Hi through triangular matrices to the identity, and
then set Hu(ξ9t9 β) = (H'uy

ι(ξ9 f, 1) H'u(ξ919 β) to ensure that Hu(ξ9t] 1) = 1

for all u. This connects Sd+\q) with an elliptic endomorphism a{ξ, t)β +
b(ζ, t) which is first order in the parameter β\ a{ζ, t) + b(ζ9 t) — L

For the next homotopies, we define the projection

Homotopy 3.1.3. Consider (aβ H- ub)πx + (auβ + b)(\ - πx) for 0 <

Homotopy 3.1.4. Consider (α + ub)βπx + (au + b)(l - πx) for 0 < u < 1.
We refer to [1] for a proof that these endomorphisms are elliptic. This

connects {aβ + b) to {a + 6)0^ + (α + Z>)(1 - ^ J = ^ + (1 - πx). We
adjust the homotopy as above to ensure that it is always / at β = 1.

We use the boundary condition for the final homotopy. There is a natural
identification of range πx with Π + ( τ ) discussed in [1]. We stabilize again to
consider (/JTΓ, + (1 - πx)) Θ \w, θ \w>. on F 2 d + 1 .

Homotopy 3.1.5. We use the boundary condition to identify rangeίTη) with
W'. We rotate these two subspaces to transform this operator through a
homotopy to irx + (1 - πx) θ βlw, θ 1 ,̂,. On Σ(T*M)d, β = α2 so we can
eliminate this last factor of β in a homotopy as was done in Homotopy 3.1.1.

We connect these homotopies to define qB(u) joining S2d+\q) to S2d+\q0).
The process which assigns to an elliptic pair (q, B) the homotopy qB(u) has
certain functorial properties.

Definition 3.1.1.(a) Such a process is said to be invariant if it is coordinate
free. Let a be an endomorphism independent of (£, t), and let Aj = a θ θa
y-times on Vj. The symbol aqa~λ is elliptic with respect to the boundary
condition AdBA~d

x = B. We require that

(aqa-χ)B,(u) = A2d+xqB(u)A-2

ι

d+x for all u.

(b) Such a processs is said to be continuous if it depends continuously on
parameters. Let (q(v), B(v)) be a continuous 1-parameter elliptic family. We
require that (q(v))B(v)(u) depends continuously on all variables.
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(c) Such a process is said to depend locally on (ξ, t) if there is no global

information required. Let (f0, /0) G (T*dM)d be given, and (q\ B*) be elliptic

for i — 1,2. Assume that

q\ξo,z,to) = q2(ξo,z,to) for all z,

We require that

?]?'(w)(?o> z> 'o) = ?i2(")(fo> z> 'o) f o r a 1 1 z> M

The following is an immediate consequence of the construction given.

Lemma 3.1.1. The process which associates to an elliptic pair (q, B) a

homotopy qB(u) joining S2d+ι(q) to S2d+\q0) is invariant and continuous, and

depends locally on (ξ, t).

In §2.4 we defined an extension using a different process. It is clear that that

processs is invariant, continuous, and local in (ξ, t). We show that these two

processes are equivalent by proving that these three properties essentially

characterize such a process of d = 1.

Lemma 3.1.2. Suppose we are given two processes which associate to an

elliptic (q, B) a homotopy qι

B(u) joining S2d+\q) to an endomorphism depending

on (I ξ I, z, 111) for u—\. Assume the processes are invariant and continuous, and

depend locally on (ξ, t) for i = 0,1. Then we can construct a 2-parameter family

qB(u, v) joining qB(u) to qι

B(u), which is invariant, continuous, and local in (ξ, t)

and such that qB{\, v) depends only on (| ζ | , z, 111); i.e., the defining condition is

preserved.

Proof. Without loss of generality we assumed that the process i = 1 is

given by the stabilization of the homotopy of §2.4. Let q — qo(z — iτ), and let

τ(v) be the 1-parameter family joining τ to an endomorphism which depends

on (|f I, z,\t\). Let q(v) = qo(z — iτ(v)). In Homotopies 2.4.1 and 2.4.2, we

do not change Π + (T). In Homotopy 2.4.3 we rotate Π + ( T ) to W. Therefore

(q(v), B) is elliptic. We define q(u, v) = q(uv) to define a homotopy joining

q — q(0) to q(v) for u G [0,1]. We apply the other process with starting

condition q(v) as u G [1,2] to construct the 2-parameter family qB(u, v). The

homotopy qB(u,0) is equivalent to the application of the other process to q.

The homotopy q(u)(l) is the homotopy of §2.4 with another homotopy glued

on for u G [j, 1]. Since #(1) only depends on (\ξ\, z,\t\), the local nature

implies that q(u, 1) only depends on (| ξ \, z, \ 11). We just undo this additional

homotopy to construct a homotopy from q(u, 1) to the homotopy of §2.4 to

complete the proof.

We use the homotopy qB(u) to define an extension of S2d+ι(q) over

dMX [-1,0]wΛΓ which agrees with S2d+\q0) on dM X {-1}. We use the
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geodesic flow to identify dM X [ - 1 , 0 ] M M with M so this extension becomes

defined over M. When this construction is applied to q — Σp, we denote the

resulting extension by (Σp)B — ΣpB supressing the stabilizations involved in

the interests of notational simplicity. By an abuse of notation we let ΣJpB —

ΣJ~\Σp)B. We emphasize that in general this does not desuspend; (op)B is

not the suspension of some extensionpB. We define

i n d ^ p , P, B) = (-1)"1 f Tch(p) Λ TODD(M) Λ c h ( Π + (Σ2pB)).
JΊ.\T*M)

By Lemmas 3.1.2 and 2.4.1, this agrees with the definition given in the second

section if d = 1.

3.2 Functorial properties of ind,

In this section we will verify that ind(p, P, B) and ind^p, P, B) have the

same functorial properties. We assume that (P, B) is a dth order differential

operator (not pseudo-differential) which is elliptic with respect to the cone β.

Lemma 3.2.1. // (P, B) is elliptic with respect to the cone 6, then the

following hold.

(a) ind^p, P, B) is a homotopy invariant o/(P, B).

(b) There are local formulas a(y, p, p) and a(x, p, P, B) which depend

functorially on the jets of the metric, the jets of the connection on V, the

connection \-form of Vp, and the jets of the total symbols of(P) and (P, B) such

that

i n d ^ p , P,B)= f a(y, p, P)dvol(y) + [ a(x, p, P, B)dvol(x).
JM JdM

Proof. The proof is exactly the same as that given for Lemma 2.4.3, and is

therefore omitted.

In Lemma 1.3.1 we considered a twisted product formula relating the twisted

index formula and the index formula. In that lemma, we supposed dMλ — dM2

= 0 . We now consider the generalization to the case dMλ — 0 , dM2 ψ 0.

We will consider the other case dMλ Φ 0, dM2 = 0 later.

Lemma 3.2.2. Let dMx = 0 , and let Q: C 0 0 ^ ) -> C°°(V2) be a dth order

elliptic complex over Mx. Let P: C°°(F3) -» C°°(F3) be a dth order operator over

M 2 , and let B be a boundary condition such that (P, B) is elliptic with respect to

the cone β. Over Mx X M2 we define

QR = ( Q
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with boundary condition B' — B θ B. Then

(a) (R9 B') is elliptic with respect to the cone β,

(b) ind(p, R9 B') = ind(p, P, B) index(ρ),

(c) ind^p, R, B') = ind^p, i>, B) index(ρ).

Proof, (a) and (b) follow from Theorem 3.4(a) of [7]. (c) is proved by

making a calculation similar to that made for the proof of Lemma 1.3.1. Let
eo = (o -i) a c t i n block form on (Vx θ V2) ® F3. We can construct a homotopy

connecting e0 to the identity by replacing -1 by exp(τπw) as 0 < u < π. We

may apply Lemma 2.4.1 to replace the symbol Σr by e0Σr in computing ind^

Choose local coordinates (y\ £') for Γ*(Λf,). Let (t, v) be the real parame-

ters of Γ*(M, X M2) θ I2. We supress the dependence of our symbols on

y — (>V yi) ^OΓ notational convenience. We defined ind, for symbols which

were pseudo-differential in (f, t). We perform a homotopy to replace # by a

symbol such that

=|{ 1 | 2 "/ onF,, W * ( | ' ) = | ί 1 | 2 ' ' / onF2.

This does not affect the ellipticity condition. We compute

We change notation to replace -iq by q without changing index((2). Let c> 0

be the parameter \ξλ\2d + t2. Then Σ(q)2 = c2l. Let π ± ( Σ # ) denote the

projection on the ±c eigenspaces Π ± (Σq). Then for c > 0

e0Σr = / > (ξ 2 , c) ® W + (ΣίJίί1, ί) Φ/»({2,-c) ® »_(Σ?)(ί\ ί)

The boundary condition 5 ' commutes with the projections π± (Σq). Conse-

quently, the homotopies defined in §3.1 respect this decomposition, and we can

express e0ΣrB, in terms of ΣpB and 77V(Σ#). Since π±(Σq) are projections,

they commute with suspension so that

ch(Π+ Σ(e0ΣrB,)) = ch(Π+ (Σ2pB))(ξ2, c, v) ch(Π+ (Σq))(ξ\ t)

+ ch(Π + {Σ2pB))(ζ2, -C υ) ch(Π.(Σ 9 ) ) (€' , t).

We replace the region | ξ \2 = t2 + ϋ 2 = 1 by the region | f |2</ + z2 -h r2 + υ2 =

1, and parametrize this region in the form: | ζ \2d + r2 = c2, z 2 + t>2 + c 2 = 1,

c > 0. After performing the integral over Σ(T*M{)d parametrized by (y\ ξ\ t)

and taking into account the induced orientations, we compute

f TODD(M,) Λ ch(Π+ (Σq)) = index(β) (-l)m,
;Σ(ΓM)

f TODD(M,) Λ ch(Π (Σq)) = -index(ρ) (-l)



438 P. B. GILKEY & LANCE SMITH

which implies that

= index(ρ) ί Tch(p) Λ TODD(M 2) Λ ch(π+(Σ2pB)){ξ2

9 c, v)(-\)m2

JΣ2T*M2

f Tch(p) ΛTODD(M2) Λch(Π+(Σ2

Σ2T*M2

where the integral is restricted to range over c > 0. When we combine the

second integral and take into consideration the change in orientation imposed

by replacing c by -c, this yields index(β) indj(p, P, B) which completes the

proof.

Lemmas 3.2.1 and 3.2.2 are simple formula consequences of the fact that the

process involved in defining the extension ΣpB is invariant, continuous, and

local in (f, t).

Before we consider the other generalization of Lemma 1.3.1 to the case

dMλ φ 0 and dM2 = 0 , we review the Atiyah-Bott index theorem. Let Q:

C^ίK,) -> C°°(V2) be an elliptic complex over Λf,, and let B: C 0 0 ^,) ->

C°°(W') be a boundary condition. We omit the parameter λ and define T as in

the second section. We say that (β, B) is elliptic with respect to {0} if the

symbol of Q is elliptic for ξφO, and σg(B)(ξ): Π + ( τ ) ( f ) ^ W is an

isomorphism for ξ φ 0. We consider the operator

Q θ B: C°°(K,) -* C°°(F2) θ C°°(»"),

and define index (Q, B) = dimker(Q θ B) - dimcoker(Q θ B\ In general,

this is not index(Q5) = dimker((?β) — dimcoker(ρβ) since B need not be

surjective. We use the boundary condition to define an extension qB of

S2d+\q) to a symbol which agrees with S2d+\q0) near dM. The Atiyah-Bott

formula [1] expresses

index(β, B) = f TODD(M) Λ ch(Π +

This is too general a setting for our purposes so we specialize. Let

and let B = 2^ θ B2 be a boundary condition. We assume that (R, B) is

self-adjoint and that (R, B) is elliptic with respect to the cone β. The

self-adjointness condition is equivalent to assuming that (Q9 Bλ) and (Q*9 B2)

are adjoints. The ellipticity with respect to the cone βimplies that both {Q, Bλ)

and (Q, B2) are elliptic with respect to {0}, but it is a much stronger condition.
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Under these conditions, it is immediate that

so this index is given by a local formula.
We noted that index(β, B) Ψ index(β^) in general. However, in this more

restricted situation, we can prove

Lemma 3.2.3. Let (R, B) be self-adjoint and elliptic with respect to β, and

assume R = (ρ o*) a n d B ~ B\® B2 Tnen

(a) there is a map A: C°°(W) -> C°°(F, θ F2) such that BA = \w,,

Proof. We prove (a) by induction on d. We first suppose d — 1 so B — Bω:
V -> W is simply an endomorphism. The ellipticity implies that B is surjective,
so we can choose A such that AB — \w,. Let A(ψ)(x, r) = f(r)Aψ(x) where
f{r) is a smooth function which is identically 1 near r = 0 and identically 0
away from dM. Then A: C°°(JF') -> C*(W) -> C°°(F) and BAψ = ψ. Next we
suppose d = 2 so

2? = (5oo) Φ {BuDr + fi.o): C°°(F) - C°°(^' Φ »7).

^OQ and Bu are endomoφhisms. ,β10 is a first order tangential operator. The
ellipticity with respect to 6 implies that ί ^ θ i , , : Π+(τ)(0, /) -> W is an
isomoφhism so in particular Bω and 5 Π are surjective. Define Am and An

such that ̂ oo^oo = Vό a n ( * ^n^i i = V, ^ e define

Φo> Ψ I ) = /

and verify BA = 1^,. The general case is completely similar and is therefore
omitted. This proves that B is surjective, which yields (b).

We can twist two index problems to get another index problem. Let Q:
C 0 0 ^ , ) -> C°°(V2) over Mx and let Q: C°°(VX) -> C°°(V2) over M2 be two

elliptic complexes. We form

R = I 2 ^ : c o o (F 1 0 F! θ F2 ® V2) -+ C°°(VX 0 F2 θ V2 0 F,)

over M — Mλ X M2. The symbol of ^ is elliptic, and if dM = 0 it is
immediate that index(Λ) = index(Q)index(Q). We refer to [2] for details. If
dMx Φ 0, we must impose boundary conditions.

Lemma 3.2.4. Let R = {°Q ψ) with boundary condition B — Bλ θ B2 over
M2. Assume (R, B) is elliptic with respect to the cone G and that RB is
self-adjoint. Let dM2 = 0 and let Q be an elliptic operator over M2. Let

Q -
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Then (R, B) is elliptic with respect to {0} and

index(R,B) = index(Q, B)index(Q).

Proof. Introduce fiber coordinates (ξ\ z) over Ml9 and ξ2 over M2. The

ellipticity of the symbol f is immediate since

If p is a symbol, let/?„ = p(x9 0, f, Z>r). We diagonalize q*q to assume q*q = a2.

After choosing a suitable basis for K, θ V2 we can assume r has the form

la q \
\q -a)

for a ^ 0.

If ξ2 — 0, the ellipticity is clear so we may assume a > 0. We solve the

equations

^Φ ± = ±iaφ± , Limφ ± (r ) = 0, σ*B(ξλ)φ± = ψ.

If φ ± = (φ1,,, φ i ), we define Φ± = (φL , ^ / φ i ) , then rπΦ± = 0. Let Φ =

αΦ+ +Z?Φ_. Then this has the boundary values ((a + ft)ψ,, ι(α — 6)ψ2)
 W e

solve α + & = 1, α — b = -/ to find Φ with the desired boundary values. This

proves the ellipticity. The multiplicative property of the index is a formal

computation which is exactly the same as that given in [2] if dM = 0 , is

therefore omitted.

We specialize to the following case. Let M2 — T2 be the flat torus, and let

Vx = V2 — U be a holomorphic line bundle with Chern character 1. Let

Q = (d/dz)d: C°°(U) -> C°°(U)9 which has index d; the case d = 1 was

discussed in Example 1.3.1. Let (R, B) be as given in Lemma 3.2.4 and form

R. If a = ξ2 + /£2, then the symbol of R is given by

Decompose Σ(Γ*(M, X M2)) = Σ3(M,) X M2, and integrate ch([/) over M2

to get 1. When the change of orientation is taken into account, we conclude

d • index(ρ, B) = f TODD(M ) Λ ch Π. Σ 1 ° q*\ I -(-1)"".
h\τ*Mύ \ \ \q adjB}J

We let β = ad. This defines a ύf-fold branched cover of Σ3(Γ*M,) so

inάcx(Q,B) = f TODD(M,)Λch(π+(Σ(f
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If we replace β by -β, we reverse the orientation and recognize the resulting
matrix as Σ2q. Therefore we have

Lemma3.2.5. Let R - (°Q$*) with boundary condition B = Bxθ B2 over M.

Assume that (R, B) is elliptic with respect to the cone 6 and that RB is

self-adjoint. Then

index((g, Bx) = index(QBi)

This lemma is the generalization of Theorem 1.3.2 involving multiple suspen-
sions. We can use this lemma to prove

Lemma 3.2.6. Let R — (@ o *) w^tn boundary condition B — Bx Θ 5 2 over

Mx. Assume that (R, B) is elliptic with respect to the cone S and that RB is

self-adjoint. Let P be elliptic with respect to the cone β over M2 with dM2 = 0 ,

and let p be a representation of πx(M2) such that Vp is topologically trivial. We

extend Vp to Mx X M2 to be independent of the first factor. Let R — (Q?P) and

B — B ® 1. Then {R, B) is elliptic with respect to the cone β and

ind(p, R, B) = index((?β) ind(p, P) = ind^p, R, B).

Proof. The ellipticity of the symbol with respect to the cone β is immediate.
We suppose for the sake of simplicity that the symbol of p is diagonalizable;
the general case follows using Jordan normal form. We study the symbol Q fa)
for scalar a. We solve the equations

rnφ±= ±Jλ2-a2φ±= ±μφ±, Limφ±(r) = 0, σ^(B)(ζι)φ± = ψ.
r->oo

Since the matrix ( i μ fα

μ) has eigenvalue λ, we can choose Φ± = (x± φ\ y±φ2)
so that rnΦ ± = λΦ ± . If (α, λ) φ (0,0), then the vectors (x+ , y+) and (JC_, y_)
are linearly independent. Thus we can choose c + and c_ so that σg(B)(ξλ)(c+

Φ+ +c_Φ_) = ψ. This proves the ellipticity. The first equality is a purely
formal calculation, and we refer to [2] for details.

Because ind(ρ, P) and indj(p, R, B) are homotopy invariants, we can
perform a homotopy to replace P by a pseudo-differential operator with
P2 = | £2 fl> This does not affect the ellipticity. This replaces f by

l £ 2 f -
q

-\er-
q

it

it

q'

q

\e\

— it

*

-it
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We now argue exactly as in the proof of Lemma 2.3.2 that this implies

ind^p, R,B) = f Tch(p) Λ TODD(M2) Λ ch(Π+/?)(-1)"2

JS{T*M2)

Ί.\T*Mλ)

We now use Theorem 1.3.2 and Lemma 3.2.5 to evaluate this formula as
ind(p, P) - index(QB).

The next functorial property we will study is related to the process of taking
powers. Lety be an odd positive integer and let βy = {λ: λ7 E β}. This is the
complement of a narrow cone about R — {0}.

Lemma 3.2.7. Let(P, B) be elliptic with respect to the cone βj and let
Bj = B&BP® -> ΘBPJ-\ Then

(a) (PJ, Bj) is elliptic with respect to the cone β,

(b) ind(p, P ^ ) = ind(p, Λ £X
i^inά^P^B^^'md^P^B).
Proof. There is of course a similar ellipticity statement which is omitted

here as we shall not need it. If ξ Φ 0, the spectrum of p is contained in the
complement of Qjm This implies that the spectrum of pj is contained in the
complement of β which verifies interior ellipticity. Let (f, λ) φ (0,0) and let
(λ,, ,λy} be the distinct yth roots of λ. Decompose pJ

n—\ — (pn — λx)
" '(Pn — λj). Suppose Φ is given with

(pj - λ)Φ = 0, LimΦ(r) = 0, σ*(B))(ζ)Φ = 0.
r-*oo

We verify the ellipticity of the boundary condition by checking that this

implies Φ = 0. Define φi, = (pn — λ / = 1 ) •••(/>„ — λ y ). Then

( ) () ( ( , = 0.

Since (pn - λj)φ, = (p£' - λ)Φ = 0, the ellipticity of (P, B) implies φ, = 0.
Since (pn — λ 2)φ 2 = φ, = 0, we apply the same argument to conclude φ2 = 0.
By induction this implies φ7, = Φ = 0 which completes the proof of (a).

If j is an odd integer, since the spectrum of PB lies in a cone near the real
axis, {signRe(λ)} |λ|~7'5 = (signRe(λy)} \λ\~js except for a finite number of
λ". This implies η(s, PJ, Bj) = η(js, P, B) which proves (b).

We prove (c) as follows. Let {*!,•••>(/} be the jth roots of it and let
p — p — tr We apply the construction of §3.1 to define q(ξ, t, λ)andjp.(f, t, β)
corresponding to q = Σ(pJ) and p. respectively. The identity q = φ φ.
implies q = p{ - -p.. Define a homotopy from SJ(p.) — p. θ Ij_x to /,_, θ
p. θ Ij-i by rotating the relevant subspaces using block elements of GL(j, C).
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Multiply these homotopies to construct a homotopy from SJ(q) to p
θ θ£) , and apply Homotopies 3.1.2 through 3.1.5 to this homotopy to
create a 1-parameter family of homotopies. We treat (φ θ Θp.) as though
it were an operator of order j d. The resulting homotopty is equivalent to the
homotopy defined by treating this symbol as though it were of order d.
Therefore

ind1(p,PΛΛy ) = Σ / / 2 + T c h ( p ) Λ T O D D ( M ) Λ c h ( π + ( Σ ( ^ ) J ) ( - l ) w .
Σ (T*M)

Let 2 k + 1 — j . There are k + 1 branches of theyth root function which lie
in the same half-plane of C — R as does it. These define functions φ. which are
homotopic to Σp. The remaining k branches define functions p. which are
homotopic to p + z7. Since this corresponds to a reversed orientation, these
cancel off to give ind,(ρ, P, B) which completes the proof.

The remaining functorial properties are much easier to prove. We summarize
them in the following.

Lemma 3.2.8. (a) Let (P, B) be elliptic with respect to 6. Then ind(p, P, B)
= -ind(p,-P, B) and'mάλ(ρ9 P, B) = -ind^p,-P, B).

(b) Let (Pi9 Bf) be elliptic with respect to & and of the same order. Then

ind(p, Px θ i>2, Bλ θ B2) = ind(p, P 2, B2),

ind,(p, Pλ θ P2, Bλ θ B2) = ind,(p, Pl9 B,) θ ind^p, P 2, B2).

(c) Let β 0 te /Λe complement of the 45° C0«e αfeί?Mί R+ . If (P, B) is elliptic
with respect to β0, then ind(p, P, B) = ind,(p, P9 B) = 0.

Proof. Assertions (a)-(c) for ind were proved in [7]. We note Σ(-p)(ξ, t) —
-Σ(/?)(£, -t). -Σ is homotopic to Σ where we replace (-1) by exp(τπε) for the
homotopy. Thus we can compute ind, for -P by replacing t by -t. This
reverses the orientation and changes the sign as claimed. Assertion (b) is
immediate since our constructions are additive over direct sums and the Chern
character is additive. If (P9 B) is elliptic with respect to β, then we can define
Σ(p)B(ξ, t) for t in the upper half-plane. By homotoping t<0 to t>0
through the imaginary axis, this replaces Σ(p)B by a symbol which only
depends on 11 \. The integral vanishes for such a symbol; the proof is thus
complete.

These functorial properties suggest that ind = ind! in general, but we have
not been able to establish this fact in general. Unfortunately, there are
formidable technical difficulties which prevent a straightforward application of
the methods of [2] which are related to the fact that it is not possible to
introduce pseudo-differential boundary conditions in defining the eta in-
variant. The authors hope to deal with the higher order case in a later paper
using the functorial properties established in this section.
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