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AN APPLICATION OF GAUGE THEORY TO
FOUR DIMENSIONAL TOPOLOGY

S. K. DONALDSON

I.I Introduction
This paper contains a detailed account of a result in 4-manifold topology,

announced in [7], which is proved by analytical and geometrical methods.
It is a consequence of a theorem of J. H. C. Whitehead [22] that the

homotopy type of a closed simply connected 4-manifold is entirely determined
by the cup-square

Q: H2(X;Z) -> H4(X;Z) - Z.

If we fix an orientation this becomes a quadratic form on the free Abelian
group H2(X;Z) with determinant ±1, realised dually on homology as the
"intersection form". Many writers have discussed the problem of finding
which forms may arise from 4-manifolds of various kinds [11], [12].

Very recently M. H. Freedman has shown [8] that any form of determinant
± 1 may be realised by a simply connected topological 4-manifold. Moreover
he proves that the form, together with one extra piece of data (the Kirby-
Siebenmann obstruction in Z/2, always zero for smooth manifolds or for even
forms) determines the manifold up to homeomorphism.

It has been known for 30 years that some forms cannot be realised by a
smooth simply connected 4-manifold. We recall that one may divide the
forms on the one hand into the even and odd forms (i.e., whether the form
takes only even values) and on the other hand into definite and indefinite
forms. Then Rohlin's theorem asserts that any even form coming from a
smooth simply connected 4-manifold has signature divisible by 16. In particu-
lar the even definite form £8 of rank 8 cannot occur in this way. The theorem
which we prove here bears instead on the definite forms which we can take
without loss of generality to be positive.
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Theorem 1. Let X be a compact smooth simply connected oriented 4-manifold

with the property that the associated form Q is positive definite. Then that form is

equivalent, over the integers, to the standard diagonal form, so in some base:

Q(ux,u2,-',ur) = u\ + ul + ••• +M 2.

There are many nontrivial definite forms [16, Chapter 5] so many of the
manifolds constructed by Freedman cannot be given a differentiable structure.
The most obvious problem remaining in this area is to discover for which
values of m, n the manifold constructed by Freedman corresponding to the
form

1
0

can be smoothed. In particular when m—\\ the form for n = 3 is realised by,
for example, a smooth quartic surface in CP3, while the form for n = 0 cannot,
according to the theorem, come from a smooth simply connected 4-manifold.
It is not yet clear whether the methods which we use here can be extended to
the intermediate cases.

In another direction, the fundamental group does not seem to play a very
important role in these methods, and one could hope to extend the result a
long way here. It will appear that the present proof works under the weaker,
but rather strange, hypothesis that there be no nontrivial representations of
flτ,(JI0inSί/(2).

Acknowledgement. The author wishes to thank Professor M. F. Atiyah for
his advice, help and encouragement during the course of this work, and is also
very grateful to M. J. Hopkins and C. H. Taubes for many useful conversa-
tions.

1.2. Method of proof

The bare structure of the proof of Theorem 1 is much simpler than the more
technical material which makes up the bulk of this paper, so we give it now.

We will find associated t o l a space 9ϊtσ( JQ which can be compactified to
an orientable 5-manifold with boundary X and a certain number of point
singularities, one singularity for each pair ±<x of solutions of

β(α) = l, α E i / 2 ( X ; Z ) .

Call this number n(Q). A neighborhood of one of these singular points in
(UV{X) will have the form of a cone on CP2, so if we remove these
neighborhoods, we get an orientable manifold with boundary the disjoint
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union of X and n(Q) copies of CP2. We do not know, at this stage of the
argument, how the orientations of the copies of CP2 compare.

The only arithmetical fact about quadratic forms which we use in this
observation:

Lemma 2. // Q is any positive definite quadratic form over Z, then

«((?)< rank(ρ)

with equality if and only if Q is equivalent to the standard form.
Proof. By induction on r — rank(β). If a is any solution of Q(a) = 1, we

may split:

Zr = Z .αθα x ,

β^(β.a)a®(a-(β.a)a),

and, because Q is definite, n(Q) = n(Q \a±) + 1, rk Q = τk(Q \a±) + 1.

On the other hand, the signature of the manifold X is σ(Q) = rank(ζ>) since
Q is definite, and signature is an invariant of oriented cobordism, so

rank(β) ^ n(Q).a(CP2) = n(Q).

Thus by our observation we must have σ(Q) = n(Q), and Q is the standard
form.

1.3. Connections and self-duality

The space 91tσ = (DTlσ(Λr) will be defined by using the ideas and methods
developed for the study of the "gauge theories" of mathematical physics. There
are now several thorough expositions ([5], [13] for example) of these ideas, so
we will only say enough here to fix notation and the basic facts which we shall
use.

p

If G is a compact Lie group, and I a principal G bundle over the 4-manifold
x

X, one may define the space & of all connections on P. Any two connections
A, B differ by an element

A -B<ΞQ\Q)

of the vector space of 1-forms with values in the bundle of Lie algebras
associated to P, so & is an affine space. For any vector bundle V associated to
P a connection A induces a differential operator

and if ^has a Riemannian metric, we get adjoints d*A\ ίlp+ι(V) -> QP(V), and
covariant derivatives V^: QP(V) -> QP(V) ® Ω1. The curvature F(A) of any
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connection is an element of Ω2(g), and

F(A + *) = F(A) + d^α + i[α, β], β E

The group § of automorphisms of /> acts as a symmetry group on all this
structure, and connections are equivalent if they are in the same orbit of § on
&. Considering § as T(P X A d G) this action is given by

g(A) = A - (dAg)g-K

We wiU be concerned with the cases G = SU(2), U(\) and only very briefly
with the second. The topological classification of such bundles is by

G = SU(2); P classified by c2(P) E H4(X; Z) = Z,

G= U(\); P classified by cx(P) <ΞH2(X;Z).

In the second case we summarise all we need in
Proposition 3. If P is a ί/(l) bundle over X, and A any connection on P, then

the image of cx(P) in H2(X;K) is represented in de Rham cohomology by the
closed 2-form -^jF(A)(Qis in this case a trivial bundle); all 2-forms within this
cohomology class occur as the curvature of some connection, and on the simply
connected manifold X any two connections with the same curvature are isomor-
phic. In particular, if X has a Riemannian metric, there is a unique connection on
P, up to equivalence, with harmonic curvature: ΔF = 0.

The corresponding characteristic class representation for an SU(2) bundle is:

c2(P) = -^JTr(F(A) Λ F{A)) G Z,

which also has a version for manifolds with boundary. If Y is a compact
oriented 3-manifold, and A a cpnnection on an SU(2) bundle over Y, there is
an invariant (see [5] Appendix 3)

Tc2(A) E R/Z

with the property that any time Y = dZ and A extends to a connection A over
the oriented 4-manifold Z:

Tc2(A) = j-2JTr{F{A) Λ F(A)), modZ.

(The analogous invariant for ί/(l) connections over circles is the holonomy
around the circle.)

Self-duality. On an oriented Riemannian 4-manifold the 2-forms decom-
pose:

Ω2 = ίl
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into the spaces of "self-dual" and "anti self-dual" forms, defined by the ±1
eigenspaces of the operator *: Ω2 -> Ω2, and thus by the property:

(1) α G ί ϊ l i f α Λ α = ± ( α Λ *α) = ±|α|2.vol.

There is a similar decomposition of bundle valued forms and so of the
curvature F(A) of a connection on P:

F(A) = F+ (A) + F_(A) G Ω2

+ ( β ) θ 0?(β).

The tool which we shall use to prove Theorem 1 is the notion of a self-dual
connection [2], that is to say, a connection with self-dual curvature, F_(A) = 0.
These were defined and studied for the following reason: for an SU(2)
connection A the " Yang-Mills action "

lF{A)fI*=f\FiΛ)\2dμ=f\F+\2+\F_\2dμJx Jx

is bounded below by the absolute value of

-8ττ2c2(P) = / -Tr(FΛF) = ί \F+\2-\F_\2 dμ
Jx Jx

by (1) above, and for c2 < 0 there is equality if and only if A is self-dual.
Conversely if the bundle P admits a self-dual connection, then c2 < 0; and if
c2 = 0, so P is topologically trivial, any self-dual connection is flat, i.e., F = 0.
In general a flat connection over a manifold is (up to isomorphism) equivalent
to a representation of π} in the structure group, so for the simply connected
manifold X of the theorem any flat connection is isomorphic to the standard
product connection on SU(2) X X; we call this connection θ.

This decomposition into self-dual and anti self-dual parts gives a differential
operator acting on 1-forms:

d~: Ω1 -> Ω2., the composite Ω1 -* Ω2 ^ Ω2..

Similarly if we have any connection A, there is

with Laplacians Δ^ on Ω°(F), Ω^F), Ql(V) given respectively by d%dA,
dAd*χ + d%dA, dAd% and associated harmonic spaces H$, i/J, i/2; // A is
self-dual, these are the harmonic spaces associated to the elliptic complex:

For the rest of this paper we suppose that X is given some Riemannian
p

metric and that I is an SU(2) bundle with c2(P) = - 1 .
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1.4. Instantons and conformal invariance

All the self-dual connections on the bundle P (c2(P) = -1) over the
standard Riemannian S4 are explicitly known, and this example provides the
basic model for the general theory.

Notice first that the self-duality condition depends only upon the conformal
class of the Riemannian metric. Moreover the action

j\Ffdμ

contained in any open set U is likewise independent of conformal changes.
This means on the one hand that the conformal group S0(5,1)+ of S4 acts on
the set of self-dual connections on P; on the other hand that any self-dual
connections on S4 can be interpreted by the conformal equivalence R4 ->
S4\{pt} as a self-dual connection or "instanton" on R4, and that the Chern
class can be recovered from

(2) f \

A theorem of Uhlenbeck implies that the converse is also true. For later use
we state a form of this result as

Proposition 4 [20, Theorem 4.1]. If A is an SU(2) connection (on the trivial
bundle) over the punctured ball 2?4\{0}, self-dual with respect to some smooth
Riemannian metric on B4 and with finite action:

f \F(A)\2dμ<n,

then there is a bundle automorphism g: B4\{0} ^> SU(2) such that g(A) extends
smoothly over B4.

Hence we may recover a self-dual connection on P (up to isomorphism)
from an instanton on R4 with total action 8ττ2.

According to the classification, established in [2] for example, the equiva-
p

lence classes of self-dual connection on I form a single orbit under the
s4

conformal group. There is a single SO(5) invariant class (coming from the
sΊ

natural connection on the fibration I), hence the set of these equivalence
s4

classes is parametrised by a moduli space 9\L(S4) = 50(5, \)+/SO(5) - B5,
the open 5-ball. Interpreted as instantons on R4 these connections can be
specified by a "centre" in R4, about which they have 50(4) symmetry, and a
scale which we can measure, for example, by the radius of the ball about the
centre containing action 4ττ2 (i.e., one half of the total). Then the conformal
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group acts by translations on the centres and dilations x -> a.x on the radii.
Using quaternionic notation: R4 = H, su(2) = ImH, the instanton Io λ with
centre 0 and radius λ can be given by the explicit connection matrix:

with curvature

(We shall not make any use of these equations.)
Thus one sees that the compactification B5 = 9tt(S4) U S4 has an intrinsic

interpretation in terms of the connections; a point x of S4 represents the limit
point of a sequence of connections whose curvature becomes concentrated in
diminishing balls about x. The whole object of §§II and III of this paper is to
show that an analogous moduli space tyίL(X) exists for the manifold X of the
theorem, and that it may be compactified in the same way.

1.5. Taubes' theorem on the existence of self-dual connections

According to the Hodge Theory the second real cohomology group of any
compact Riemannian manifold is represented by the space of harmonic
2-forms. The * operator commutes with the Laplacian Δ; so on a 4-manifold
these harmonic forms decompose into self-dual and anti self-dual parts;
%2 = %l θ3Cf. By the defining property (1) the dimensions of these two
spaces are just the numbers of positive and negative eigenvalues in a di-
agonalisation of the quadratic form:

Λa9 a<ΞH2(X;R).

(This is very close to some of the earliest applications of the theory of
harmonic forms [9, §52.2]); so an equivalent form of the hypothesis in
Theorem 1 that the intersection form is positive definite is the statement that
the space %2(X) of anti-self dual harmonic forms vanishes.

In the recent paper [18] C. H. Taubes constructs self-dual connections on the
bundle P under precisely this hypothesis [18, Theorem 1.1]. They are con-
structed there by means of an "implicit function theorem" which we state here
for later use:

p

Proposition 5 [18, Theorem 2.2]. Let Ao be a connection on I. There are

constants C, ε0 > 0, depending only on the Riemannian structure of X, the
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U-norm y.FX v40)||L3 and the 1st eigenvalue μ(A0) of the operator Δy ί o =

on Ω?(g) such that if

then there is a self-dual connection Ao + d^u = AQ + a = q(A0) with u G Ω?(g)
and

(i)\\VAa\\L2<C.S(A0),

(ϋ) | | f l | |L2 < C.\\F_(^O)IILV3.

The construction is %-invariant, and q(A0) varies smoothly with Ao.
Given any point of X and λ > 0, Taubes applies this to a connection Ao

constructed to have most of its curvature in a ball of radius λ around that
point. The hypothesis %l(X) — 0 means that the 1st eigenvalue of Δ on Ω? is
positive and ensures that μ(A0) is bounded away from zero as λ -» 0.

A much easier observation, which we need to complete these preliminaries, is
that for the 4-manifold X with positive definite form each U(l) bundle has a
unique self-dual connection up to isomorphism. This follows directly from
Proposition 3 and the fact that the harmonic curvature form is automatically
self-dual.

II.1. Sobolev spaces, reducible connections

and properties of the space %

We shall need to refer to Sobolev spaces L£(p > 1, k G N) of sections of

bundles associated to P\ that is, of sections locally represented by functions

with their first k derivatives in Lp. A smooth connection A gives definite

norms || \\L%{A)
 o n these spaces, for example:

= f (\vAs\2 +\s\2)dμ.=\\vAs\\L | | | £ f
Moreover it is convenient in this §11 to widen the definition of & to allow A
differing from a smooth connection by an element of LJ(Ώ,1(Q)). This differen-
tiability is high enough not to make any essential differences in the properties
discussed in §1 (and also the norms || \\Lι(A) are defined for k < 3) but allows us
to work in Banach spaces.

We define the moduli space 9Il(X) to be the set of equivalence classes of
self-dual connections on P, that is to say a subset of the quotient space:

and use the notation/?: & -> ®, A -+[A]. The techniques which we use here to
study the moduli space (D1t are essentially those of [2], but we emphasise the
role of the ambient space © rather more.
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We discuss first the reducible connections on P. These may be understood
from various different points of view. If we pick a base point in I , a
connection gives, by parallel transport, a representation of the space of loops
in Xinto SU(2). The connection is reducible if this representation takes values
in some proper subgroup of SU(2). Since P is topologically nontrivial, the only
possibility is that this subgroup be a copy of Sι. Alternatively a connection is
reducible if there is a decomposition

E = L θ L~ι

of the C2 vector bundle E associated to P compatible, in the obvious sense,
with the connection. Topologically the complex he bundles are classified by the
first Chern class in H2(X; Z), and since by the Cartan formula

the number of such topological reductions is the number

of §1.2. (The factor \ appearing since we have a choice of L, L"1.) Hence by
Proposition 3 and the remark at the end of §1.5, there is a unique self-dual
connection on P, up to equivalence, for each of these n(Q) reductions.

If A is a reducible connection on P corresponding to a splitting E — L θ L"1,
then for any eiθ E Sλ the element γ of the group of automorphisms §
corresponding to a constant rotation of L by eiθ and L~ι by e~iθ is a covariant
constant; dAy — 0. Hence γ fixes A in 6B, and moreover the action of γ on
bundle-valued forms commutes with all the differential operators associated
with A. In particular the stabiliser Γ̂  ^ Sλ of A in & acts on the harmonic
sub-spaces H\9 H% of the Q valued forms. The bundle Q splits naturally into the
direct sum of a trivial line bundle and the complex line bundle L2. It will
become important to note that since

the harmonic spaces H\, /f2 are contained entirely within the complex part
2P(L2), acted on by Γ̂  in the obvious way.

Conversely, if a connection A has a nontrivial stabiliser Γ̂  in β, then it is
reducible. Similarly a connection is reducible if and only if the harmonic space
H$ of covariant constant sections of g is not zero, and this is then one
dimensional.
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Theorem 6. (i) % is a Hausdorff space, and the open subset %* of equiva-

lence classes of irreducible connections forms a Banach manifold, with charts

constructed from "slices":

TAε = {A + a I d*Aa = 0, ||β||L2 < ε}. (ε sufficiently small).

Moreover p: p~ι(%*) -» %* is a principle β / ± 1 bundle.

(ii) // A is reducible, then TA acts on TAε and the map TA,*/γA ""> ® i s a

homeomorphism to a neighborhood of [A] in %, smooth off the fixed point set of

Proof. Results of this type are now standard [2], [13], so we shall be brief.

First, the groups β, §/±\ are Lie groups in the L\ topology and have Lie

algebra L4(Ω°(g)); moreover they act smoothly on (&. Second, we may always

reduce the problem to a local one in the following sense: if A E &, and ε is

sufficiently small, then any g E § for which there is an A + a with ||α||L2,

\\g(A + a) — A\\Li both less than ε may be factored as:

g = yg with γ E Γ,, ||g - 1||LJ < const ε.

To see this, consider § as a subset of L4(Ω°(g 0 C)) and write g = gx + g2,

gx G H%, g2 G H^ ( ± with respect to L2 inner product). Then dAgλ = 0 and

K & I L ϊ > const.||g2||L2+i, k = 0,1,2,3,

so that

b = g(A + a) - A =~dAgg-1 + gag~\

dAg2 = dAS = bg- ga.

Thus from ||£||L2 ||α||L2 < ε we deduce in turn that ||g2Hz,2 < const.ε for k —

1,2,3,4, so that the constant component gx differs from an element γ e Γ̂  by

0(ε). Then write

g = g\ + #2 = Y + (Si ~ Ύ + £2)

By the same argument, if 4̂, 5 E Φ, then for small enough ε any g ELQ moving

an element within ε of A to an element within ε of B can be factored into an

automorphism sending A to B and an automorphism close to 1, so % is

Hausdorff in the quotient topology.

Now the proof is standard calculus.

(i) The set $ * C % representing irreducible connections is open since the

condition HA = 0 is an open condition ("semi-continuity of cohomology"),

and @/± 1 acts freely onp~\B*). The smooth map

S:TAtBX S/±l^&9
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has derivative at a = 0, g — 1:

DS: Ker</* X Q°(g) -> S21(g), (a, v) -* a + ^ ϋ ,

which is an isomorphism since Ker rf^ = HA = 0 and Ω^g) = Im dΛ Θ Ker ί/j}.
Hence 5 is locally a diffeomoφhism and so, appealing to the discussion above,
a diffeomorphism to its image. The cited properties oi p~x{%*)-*%* follow
easily from this,

(ϋ) This time DS is surjective but has Kernel HA. Thus the restriction

(H^1- the complement in the L2 inner product) is a local diffeomoφhism.
Similarly, since multiplication Γ̂  X expί/fj"1) -» § has derivative 1 at the
identity there is a unique splitting of g E § close to 1 as g = γg, γ G Γ ,̂
£ E expiH^). So in this case a neighborhood of [A] in ® is homeomorphic to
TA>e/Γ , and/?: 7̂  ε -* ίB* is clearly smooth off the fixed point set of Γ .̂

We see then that in the local model of a neighborhood of a reducible
connection in®:

TAyTA C Q\L2)/Sι X O r,

the component Ker d* C Ω1^ corresponds to the deformations of A within the
space of equivalence classes of reducible connections, and that transverse to
this set % has a quotient singularity of the form Complex Hubert space/S1.

Π.2. Local properties of the moduli space

If A E & is self-dual the self-dual connections within the slice TAε are given
by the set Z(Φ) of zeros of the map

TAtB ={A+a\d*Aa = 0, \\G\\LI < ε) * Z,2

2(Ω_2(g)),

Φ(A + a) = F_(A + a) = dAa + \[a, a].

The essential fact which we use is that the derivative of Φ:

- (

is a Fredholm operator (recall that a bounded linear map is Fredholm if it has
finite dimensional kernel and cokernel and a closed range). This is an im-
mediate consequence of the ellipticity of the differential operator: d\ + dA

since it is well known that elliptic operators over compact manifolds are
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Fredholm. Thus first, it has an index

lndQx(DΦ)A = dimKeΓ^Φ)^

= index(rf* + d~A\ Q\q) -> Ω ( g ) θ Ql(q)) + d i m # .

The index of d\ + dA is independent of A E & and can be computed by the
Atiyah-Singer index theorem in terms of the original data X, P to be [2]:

index(rf* + d-Λ) = S\c2(P)\ - \(χ(X) - τ(X)) = 5,

since by our assumptions on X, χ — 2 + b2, r = b2. Thus the index of (DΦ)^
is 5 or 6 as A is irreducible or not, corresponding as we shall see to the fact that
if A is reducible, we have to divide Z(Φ) by Γ̂  to get a true neighborhood of
[A] in®.

Second, it is a general property of nonlinear maps of this type that we may
reduce them locally to a linear part and a finite dimensional nonlinear part.
This was done by Kuranishi in [10] and by Smale in [16]; we shall use the
following simple lemma, in which all maps are to be intepreted as germs about
the origin.

Lemma 7. Let E -> i% /(0) = 0, be a smooth map between Banach spaces with

the property that L — (Df)0 is a Fredholm operator of index k > 0. If we choose

complements
E = kerL®E\ F = Im L θ F\

so that dim Ker L = dim F' + k, then there are a diffeomorphism ψ of E and a
smooth map φ: E -> Fr such that

/o ψ - 1 ^ ) = Lx + φ(x) G l m L Θ F = F.

Proof. By the open mapping theorem, L \E,: E' -> Im L has a bounded
inverse L which we can extend to F in the obvious way, so that LL—\ — ττ;
7r: F -> F* the projection.

Then ψ: E -* E, ψ(xr) = x' + L(f(x') - Lx'\ has derivative \E at the
origin and is thus a local diffeomorphism with

Lψ(x') = Lx' + LL(f(x') - Lx')

Soifx' = ψ-1(jc), then

(x)) = Lx

as required.
Note also that, with the obvious definition (c.f. [16]), a point y — yx + y2 E

Im L θ Ff = i 7 is a regular value for/if and only if j>2 is a regular value for the
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finite dimensional map φ \L-\(yι), and for any such regular value the preimage
f~\y) is a smooth submanifold of E of dimension K.

Applying this first to the self-duality equations in TA ε, and choosing the
harmonic space HA as the complement of Im dA, we have

Proposition 8. For any self-dual A, ε sufficiently small there is a map φ from
a neighborhood of the origin in the harmonic space H\ to the harmonic space HA

such that if A is irreducible, a neighborhood of [A] in 9IL is carried by a
diffeomorphism onto

Z(φ) = φ~\Q) c H\ (and dim H\ - dim i/j = 5)

and if A is reducible, so H\, HA are complex spaces, φ is YA equivariant and a
neighborhood of [A] is modelled on

Z(φ)/TA s Z(φ)/Sι (anddimR HA - dimR i/j = 6).

This position follows straight from the lemma: the second part because the
symmetry group Γ̂  acts on the whole procedure.

Thus just as HA detects the reducibility of a connection, the vanishing of the
space HA signals whether or not 0 is a regular value for Φ, and so whether or
not the moduli space has generic behaviour about A: either a smooth 5-mani-
fold or the quotient of H\ = C3 by Γ̂  s Sι. The 1st eigenvalue μ of Δ^ =
dAod*o on Ω?(g) in Taubes implicit function theorem (Proposition 5) appears
for essentially the same reason. Anticipating here Proposition 18 we can say
that the subset K C 91L of classes where HA Φ 0 is compact.

II .3. Perturbation of the moduli space

For the proof of the main theorem used in §1.2 we have to establish the
existence of a smooth 5-dimensional space with only finitely many explicitly
known singularities. If the harmonic space HA vanishes for all self-dual A, then
the moduli space 9IL would have this property, but in general we know very
little about these spaces, so we argue that one may find a perturbation σ of the
self duality equations such that the corresponding zero set 91tσ has generic
form.

This is the formal setting for the perturbation: the group Q/± 1 acts on the
Banach spaces

So we get a pair of bundles, £ 3 °* S 2 say, over the manifold ®*, associated to
the principal bundle /?"!(®*); and the anti-self dual component of the curva-
ture induces a canonical section Φ of &2. The allowable perturbations σ are to
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be smooth sections of S 3 : the "uniform norm" ||σ(Λ)||L2(i4) in the fibre over
[A] E $* is well defined as is the "covariant derivative" (Vσ)^, a linear map

(Vσ)M ]: Kerd\ « ( T » ) M ] - Sj « Lf(a?(fl)),

(in effect the slices TAε define a connection on &k). If we interpret σ as a
section of S2, v(Φ + σ)is Fredholm and of the same index as vΦ, since Vσ
factors through L2, and L\ =* L\ is compact.

All of this makes sense over the whole of % provided that σ is defined in a
TAε with the appropriate Γ̂  symmetry. We give such σ the topology of uniform
convergence of ||σ||L2(yί) and convergence of Vσ in operator norm, uniformly
on compact sets.

It is convenient to treat the reducible connections first. Suppose that A is a
reducible self-dual connection with HA = Cp, p > 0 so that we have an Sι

equivariant map

H\ ^C3+p<^HA

ι = Cp

with (Dφ)0 = 0 by construction. Pick a complex linear epimorphism
a: H\ -> Z/2, and for sufficiently small 17 > 0 define φ, also equivariant, by

φ(z) = φ(z) + η.β(\z\/η).a(z),

where a(z) E HA, and β is a cut off function. Then in a small enough
neighborhood of 0, φ~\0) is a smooth 6-dimensional manifold, and φ~\0)/Sι

ss C 3 /S ] is a cone on CP2. In the notation of Lemma 7 we replace

Φ : Γ ^ - L 2 ( Ω ? ( g ) ) , Φ(ψ-'*) = Lx + φ(x)

by Φ

equal to Φ outside a small neighborhood of
Doing this for each of the n(Q) reducible self-dual connections we can pass

without loss of generality to the case when the compact set K is contained in
%* since all our subsequent perturbations will be supported in ®*. It is
convenient then to prove

Lemma 9. // F C C ί/ C Φ* are open sets with U covered by finitely many
slices TA ε, then the set G of " good perturbations" σ, supported in U and such that
the zero set V Π Z(Φ + σ) is cut out transυersally {i.e., (V(Φ + σ)) is onto for
all [A] E V Π Z(Φ + σ)) is open and dense.

Given Lemma 9 we can find three open sets K C Uλ C C U2 C C l/3, each
covered by finitely many slices TA ε, since # is compact. The set of good
perturbations over Uλ supported in U2 is open and dense, and by applying
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Lemma 9 to (U^\Uλ) C U3\UX and the fact that Φ is already good outside UX9

we can find the required small perturbation σ such that 9!tσ = Z(Φ + σ) is a
smooth 5-manifold with n(Q) singular points, equal to 9IL outside a compact
set.

Proof of Lemma 9. If σ is any perturbation bounded in || \\L2 and 0 < R
< oo, then the set of [A] in Fsuch that ||(Φ + °)(^)WL2(A) ^ ^ is compact (for
in each of the slices TAε covering1 U an L\ bound on Φ + σ gives an L\ bound
on (d~A + d%)a and so an L\ bound on a by ellipticity, and L\ ~> L\ is
compact).

That G is open, in the topology we defined, follows almost immediately from
this and the fact that the set of surjective operators on a Banach space is open
in operator norm.

Similarly, using this compactness, to prove any given σ is in G we may
reduce to the case when U is contained in some TAε and the local representa-
tion

/ = Φ + σ: E = Ker d* ΠL]^L\ = F

can be decomposed in the manner of Lemma 7 over U (since a finite
intersection of open dense sets is open and dense). We may then suppose that
the finite dimensional complement F' lies in L3, and so choose a regular value
of/in F' arbitrarily small in Lj norm by applying the usual Sard lemma to φ:
Ker L -> F'. Then we extend this to get an element of G by using a bump
function j8(||α||).

II.4. Orientability of 9ϊtσ

To prove that the 5-manifold 9ILσ Π ®* is orientable, for any good per-
turbation σ, we again use a general fact about Fredholm operators [1], [3].
Suppose V, W are bundles over some (compact) manifold M and that T is a
compact parameter space with bundles F, W over M X T such that Vt =
V\MX{ί] ^V,Wt = W. If we are given a family {Lt} of Fredholm operators:

L . T(V,) - Γ(^)

varying continuously with t E Γ, there is an element

ind{L,} <ΞK0(T)9

1 We ought here to suppose that the slices TAe are centred on smooth connections A— this is
possible since the smooth connections are dense in £.
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which has the property that if dimKerL, is constant for / in some closed
subset S C T — so that Ker{L,}, coKer{L,} form vector bundles over S —

(*) ind{L,} \s = Ker{L,} - CoKer{L,} G KO(S).

(The numerical index used previously is then the image of this KO index under
the augmentation: KO(T) -> Z.) Since the reducible connections are a nui-
sance here, we choose a base point x0 G X and form the restricted gauge group
§0 C δ of automorphisms equal to the identity on PXQ9 Then §0 acts freely on &9

so we get bundles

over the product &/§0 X I = 9 X I , and a family of operators:

L[A] = d* + d~A + (vσ)A: T{Ϋ[A]) -* T(w[A]).

Note first that the natural projection

becomes a fibration when restricted to the dense open subset %* C % of
irreducible connections, with fibre S0(3); hence the tangent bundle to μσ Π <•©*
will be orientable if and only if its lift to π~\μσ Π ©*) is.

Second we recall that the characteristic class wx is defined on KO, and since
by the property (*) above:

ηr*(Tμ°) = Ind{LM]} in Kθ(π'ι(μσ Π ®*)),

it suffices to prove that w^Ind L[A]) = 0 G H\%\ Z/2).
Thirdly observe that for all / G [0,1] the operator

is Fredholm, so that by forming the corresponding family of operators over a
cylinder, we have

Ind{LM]} = Ind{J* + dA] G KO(&).

Now the next lemma, together with these preliminary remarks, proves that
μσ Π <$* is orientable.

Lemma 10. Let M be a simply-connected 4-manifold, Pk an SU(n) bundle

over M with Chern class c2 — k. If we form the space:

of equivalence classes of connections on Pk, and the corresponding family of

operators d* + d~ on Lie algebra valued forms, then we have

w,(Ind(έ/ + d~)) = 0 G Hι(&(M, n, k)\Z/ϊ).
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Proof. The lemma is stated in more generality than we need since the proof
will use the stable range n> 3.

The adjoint representation of SU(3) on £u(3), when restricted to SU(2),
decomposes into the direct sum

§ u ( 2 ) Θ R Θ V,

where Fis a complex vector space. This means that if we regard %(M, 2, k) as
being included as a subset of reducible connections in %(M, 3, k), in the
obvious way, the stable real vector bundle

ind{rf* + <r}(M,3, k),

when restricted to ®(Λf, 2, k\ differs from

ind{</* + <Γ}(Λf,2, k)

by the sum of (±) a trivial real bundle and a complex stable bundle. Hence

is the restriction of wλ(ind{d* + d-}(M,3, k)) <Ξ H\%(M93, kχZ/2) to

Then we claim that %(M, n9 k) is simply connected for n> 3; this will
obviously complete the proof of the lemma. §0 = §0(M,n, k) acts freely on the
contractible affine space of connections so π,(®(M, n, k)) is isomorphic to the
set of connected components of §0(M, n, k).

The 4-manifold M is simply connected so it is, homotopically, a wedge of
2-spheres with a 4-cell attached [12]. The bundle Pk is trivial over the
2-skeleton and, since π2(SU(n)) = 0, any element of β0 can be deformed to be
the identity on a neighborhood of the 2-skeleton. Thus collapsing the 2-skele-
ton, we may reduce to the case when M = S4. Similarly Pk is trivial on the
complement of a point, so we may reduce to the case when k = 0 and the
bundle is trivial. Then the components of βo(S4, n9 0) are the homotopy groups

which vanish for n > 3.
Notes, (i) ind{d* + d~) is not strictly defined on the noncompact space %.

However, this plainly does not affect the argument, which only involves
compact subsets.

(ϋ) For the case at hand, when k = 1, n = 2, one may alternatively argue
that the full quotient φ = %/SO{3) is simply connected.

(in) The point to this proof is that we may regard the group SU{2) as being
the first member of either the family of symplectic groups Sp(n) or of the
special unitary groups SU(n). For the manifold S4, or more generally for any
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spin manifold, there is an essential loop in the spaces corresponding to the

symplectic groups, and it is detected by the index of the Dirac operator [3],

whereas this loop does not persist in the other family, as we have seen above.

Ill

In this section we prove

Theorem 11. There is an open subset ?S\LX of the moduli space 9H =

of self-dual connections on P which is a smooth 5-manifold diffeomorphic to

X X (0, λ 0 ) , λ 0 > 0, and with the property that the complement 91L\9!tλo is

compact.

Once this has been done the proof of Theorem 1 will be complete—since the

perturbed space 91tσ of §11 is identical to 9H outside a compact set and so may

be compactified to have boundary X by using the collar of Theorem 11.

The proof which we give may be regarded as an essay on the fundamental

results of C. H. Taubes and K. K. Uhlenbeck [18], [20], [21], and is divided into

four parts:

III. 1. Convergence of a sequence of connections over the 4-ball.

111.2. Convergence of a sequence of connections over X.

111.3. The definition of 91tλo and of a covering map 91tλo ^ X X (0, λ 0 ).

111.4. Proof that/? is 1-sheeted, hence a diffeomorphism.

III.l.

Proposition 12. There is a constant C > 0 such that if {m,} is a sequence of

metrics on the 4-ball B4, each sufficiently close to the Euclidean metric and

converging in C°°(BA) to a limiting m^\ and if {A^ is a sequence of connections

(on the trivial bundle) over BΛ with Ai self-dual with respect to metric mt and

satisfying

Then there is a subsequence {/'} C {/}, and Ai equivalent to Ai such that A^

converge in C°° on the half sized ball \B* = {X GR4\\X\< $} to a limiting

connection A^; self-dual with respect to the metric m^.

This proposition follows from Theorem 1.3 of [21]. Identifying in the usual

way a connection on the trivial bundle with a matrix of 1-forms, we may

suppose by that result that the At are chosen to satisfy:

(ϋ) |μ i . | | L f < const.||F(i,.)llL*> for any/? ^ 2.
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Just as in §11 the constraint (i), together with the self-duality condition,

d-A,+±[4^,1=0,
gives an elliptic system of equations, and for C sufficiently small the standard
convergence argument applies (by the a priori inequality, Theorem 3.5 of [20]
we can take ^{A^W^, and so |M/||Lf, bounded for any given/?).

III.2

The local result of §111.1 above allows us to prove the following theorem for
a sequence of connections defined over X.

Theorem 13. Let At EL & be a sequence of self-dual connections on the bundle
P over X. Then there is a subsequence {/'} such that either one of the following
holds.

(i) Each Ar is equivalent to an Av G 6E, converging in C°° to a self-dual
connection A^ on P; hence

[Λ]^[AJ iπ91tc«.
(ϋ) There are a point x E X and on the complement K of any geodesic ball

about x bundle isomorphisms

Pi,:KXSU(2)^P\κ

such that p*(Av) -> θ (theproduct connection) in C°°(K).
There is considerable overlap in this theorem with the results of [15], one

may compare also [14]. We prove a combinatorial lemma first.
Lemma 14. Given L, C > 0 and a sequence offunctions ft > 0 on X with

one may find a subsequence {/'} C {/}, a finite set {xλ, x29- -.x^ C X and a
countable collection {Ba} of small geodesic balls in X such that the half sized balls
cover X\{xx, ,.*,}, and for each a

I{aj') = j fadμ

is eventually less than C.
Proof of Lemma 14. X has a countable base of neighborhoods {Bq}qξΞN

made up of small geodesic balls, and for each q we have

I(q9i)=f ftdμ<L.
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Thus we may find, for each fixed q, a subsequence V such that I(q, /')
converges, and by a "diagonal argument" we can arrange that this happens for
all q simultaneously: I(q9 /') -> I{q) say. That is just the standard fact that
some subsequence of the/ converge in the sense of distributions.

Suppose that JC19 , JC7 are points of X each of which lies in no ball Bq with
I(q) < c/2 (i.e., the limiting distribution "contains δ-functions" at the points
Xj). Then we may choose disjoint balls Bj containing Xj and satisfying

I /., dμ > c/2 for all large enough /'

so that

L>ffvdμ> 2 f fi'dμ>ik.
JX j=\ JBj

Thus / is at most 2L/c, and in particular there are only finitely many points of
this type. Then we can select the required cover of A ^ l ^ , JC2, ,JC;} from
among the balls Bq.

Proof of Theorem 13. Suppose that B C X is any geodesic ball of radius r.
We can find a geodesic coordinate system xι in B such that

ds2=

If we expand this by a factor r"1 to give a map:

χB:B
4^B9y

i^ryi = xi

9

the induced metric on B4 is r 2 (δ l 7 + r2θ\y\2)dyιdyj, which is conformally
equivalent to a metric differing, with all its derivatives, by 0(r2) from the
Euclidean metric.

Thus we may apply Lemma 14 to the sequence of action densities:

/,=H4) | 2 , ffidμ=Zπ2 by §1.3,

with the constant C of Proposition 12, and choose the balls Ba so small that the
hypotheses of Proposition 12 apply to the metrics on BA induced by the
"conformal charts"

Because of the conformal invariance of the Yang-Mills action we may apply
Proposition 12 to deduce that for each a some subsequence of the χ^(Ar)
converge after suitable bundle automorphism on \B4 (all ensuing subse-
quences will be suppressed in the notation), and by a diagonal argument we
may suppose this is true for all a simultaneously.
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Thus in terms of local representations for the connections Av over the cover
jB we have connection matrices

Ar(a)^Aja) in C»(i*e)

with transition functions gr(a, β): \Ba Π \Bβ -> SU(2) satisfying the com-

patability condition

(1) Ar(a) = - dgr(a9 β)gr(a9 β)~l + &'(«, β)AAβ)gA«> β)~*

The g, /(α, β) are bounded since SU(2) is compact, and the Av(a) converge in

C00; so dgr(a, β) is uniformly bounded, and we may thus find a subsequence

converging uniformly. Then (1) implies that this convergence is in C°°. Once

again we may arrange the subsequence so that this happens for all (α, β)

simultaneously.

Thus the data (A^ct), gJtoL9 β)) represents a self-dual connection on a

bundle Q over X\{xl9- ,JC/}; and if i?y is some small ball centred on

Xj(j= 1, ••,/), then

(2) [ iFiAjfdμ^Kmf \F(AV)\2 dμ < 8ττ2.
y*/\{*} JBj\{xj)

The bundle β |Λ.\{X.} ^s topologically trivial, so by Uhlenbeck's Removability of

Singularities Theorem (Proposition 4) the connection A^ and the bundle Q

extend over all of X. Thus there is strict inequality in (3) above (by the

definition of xy in Lemma 14). On the other hand, all connections are self-dual,

so

Finally given any compact K C X\{κl9- ,/c7} we may construct bundle

isomorphisms

such that p*(Ar) -• A^ in C°°(AΓ), by induction on the number of balls \Ba

covering Λjust as in [21, §3]. In particular,

so from (2), (3) / = 0 or 1 and we have either one of the following:

(i) When / = 0, Q s P; so we find the convergent sequence Ar in &.

(ii) When / = 1, Q is trivial; so A^ = θ by the discussion of §1.3, and we find

the required bundle maps over each K.
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III.3

Theorem 13 shows that one needs to consider connections with curvature
concentrated in small balls in order to compactify the moduli space 91L (just as
for the case X = S4 in §1.4). Taubes constructs self-dual connections of this
type depending upon a point in X and a scale λ 0 > λ > 0; thus he constructs a
map:

Λrx(o,λ0)-»9it,

and one can prove directly [19] that this map is a diffeomorphism to its image.
However, we find it easier here to define a map p from an open subset of 911
representing these concentrated solutions to X X (0, λ0)—thus approximately
inverse to Taubes construction. The definition of any such map is bound to be
rather arbitrary; the one we choose is slightly complicated but suits our later
needs.

We could define the "radius" and position of a self-dual connection by
taking the smallest ball which contains one half of the total action, just as for
the instantons. However, we will "smooth" this definition in the following way.

Let β be a smooth even bump function approximating, and dominated by
X[_i i], and for any pair x9 y of points in a Riemannian manifold and s > 0 set

βs(χ,y) = β(^ψ1).

Then for the basic instanton action density

f = \F(I0Λ)\2 onR4,

the function Rτ: R4 X R -> R given by

has, as one can very easily see, the following properties:
(i) dRr/ds ψ 0, so by the implicit function theorem and the fact that Rι is

monotone there is a smooth function s(x) on R4 such that Rf(x9 s(x)) = AIT1.
(ϋ) s(x) (which is rotationally symmetric) has a unique nondegenerate

minimum at 0 with minimum value K say.
Each of these is an open property, so will be shared by functions sufficiently

close to Rr.
Definition 15. For any connection A over a Riemannian manifold define
(a) RA(x9 s) = jβs(x, y) \ F(A)y |2 dμy9

= K~x min{.y | 3x, RA(x, s) = 4π2}.
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Thus X(A) is essentially the radius of the smallest ball containing action 4ττ2,
but this definition has been smoothed by β. Clearly, by Theorem 13, any
sequence [At] E μ without convergent subsequences has λ(^4z) -> 0.

Suppose that A is a self-dual connection on P, λ(A) = λ, and we pick a
point x E X where the minimum in Definition 15(b) is attained. Then for some
fixed small r > 0 we can take a "conformal chart" in the manner of Theorem
13, but this time scaling by a factor λ:

Xλ:(r/X)B4CR4-*B(x,r)cX.

Define A = Xχ(A% and let the induced metric on (r/X)B4 be λ2m; so as in
Theorem 13, m tends to the Euclidean metric as λ -> 0, uniformly with all its
derivatives on bounded regions in R4.

Theorem 16. (i) On each bounded region 0/R4, A -» J 0 1 , uniformly in C00 for
[A]e<3l9asX(A)-*0.

(ϋ) There is a function δ(r) tending to zero as r -» 0 such that the curvature
densities satisfy a bound:

\F(A(y))\ < consφΓ+ δ, y ε R4, M < {r\'K

Note. We use the convention of writing const, for a general constant
depending at bottom only on the Riemannian metric of X and always
independent of λ.

Proof, (i) We apply Proposition 12 again. If Aέ is a sequence of self-dual
connections on P with X^A^ -> 0, then the corresponding λi are self-dual in
metric m, and satisfy

/ R J F ^ I 2

The metrics mi converge to the Euclidean metric on R4; thus we may run the
argument of Theorem 13 again to deduce that the At have a convergent
subsequence with limit a self-dual connection on R4. This time we do not have
curvature gathering over points because of the normalisation chosen: X(Aι) = 1.
The convergence is uniform on bounded regions, and again by the choice of
normalisation the limit must be the instanton Ioι (by the classification dis-
cussed in §1.4 and the property (ii) of Rf above).

Since the limit is the same for every possibly subsequence the rate of
convergence depends only upon λ(Λ).

(ϋ) This bound will become rather important in our development of §111.4.
To preserve continuity we give the proof in the Appendix.
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Corollary 17. There is aλo>O such that if A is a self-dual connection on P
with λ(A) < λ0, then the minimum in Definition 15(6) is attained at a unique
point x(A) in X and the map

p: 91tλo = {[A] E 9H|λ(Λ) < λ0} -> XX (0, λ 0 ) ,

= (x(A)9λ(A))9

extends to a smooth map on some neighborhood of ty!Lλ in ®. // [At] is any
smooth path in ®, Ao E 9Itλ , there is a bound:

^const.λK)]^^,)^,

both derivatives being evaluated at t = 0.
Proof. Any two minima must be separated by a distance of at most 2λ, since

the ball of radius λ about each contains more than \ of the total action. Since
the question is also conformally invariant, we may change scale and pass to A.

The curvature densities \F(A)\% converge uniformly on bounded regions of
R4 to the instanton action density f=\F(I0l)\2 as λ(A) -> 0. So by the
openness of the two properties of R7 noted before Definition 15 there will be a
unique minimum corresponding to A for sufficiently small λ, and the position
of a nondegenerate minimum varies smoothly with parameters, so the map p
defined above is smooth.

Likewise for the second part; the statement is again scale invariant, so we
may pass to the corresponding path Anft=\F(At) |2. Thus

dλ(A)
dt

,

^ const. fβ(y)\dμy

^const.\\F(A)yjjtF(A,

Similarly

ιι i ιι C

U0,y)]f,(y)\ί=

where H is the Hessian corresponding to the minimum at t = 0.
To conserve notation we will allow ourselves to rechoose the positive

number λ 0 throughout the rest of this section, to give the space 91Lλ the
desired properties. In any case <3H\91Lλ is compact by Theorem 13.
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Proposition 18. Let [A] e 9ϊt λ o .

(i) Given r > 0, [A] -> θ in C°°(X\B(x(A), r)) as λ(A) -> 0.

(ϋ) The first eigenvalue μ(A) of' ΔA on Ω?(g) tends to the first eigenvalue μι of

Δ on ill cis λ(A) -> 0. S/nce ju,! > 0 , 9H λ w α smooth 5-manifold for λ 0

sufficiently small by the discussion of §11.

Proof, (i) is just a re-statement of Theorem 13, alternative (ϋ), with

uniformity in λ just as in Theorem 16.

(ii) If ω is the first (normalised) eigenfunction of Δ^, then ||έ/^ω|||2 = μ(A),

and we compare ω with ω' = (1 — βr)ω where βr is supported in B(x(A), r),

equal to 1 in the half-sized ball. Since Hέ/Jω'H^ > MiH^'H^, and A ^> θ on

supp ω' by (i) above, we deduce the result by taking r sufficiently small. This

goes precisely as [18, Proposition 8.8], so we omit the details.

(iii) The ZΛnorm on 2-forms transforms by a factor λ"1 under a scale change

of λ, so it plainly suffices to show ||F(yί)||L4 bounded; but this follows from

Theorem 16 (ii) once r, and so δ(r), is taken small enough for

to be integrable at infinity.

Theorem 19. For sufficiently small λ 0 ,

is a covering map.

Proof. First note that Theorem 13 implies that p is a proper map, and it is

easy to see that a proper local homeomorphism is a (finite) covering, so it

suffices to prove that

is an isomorphism for [A] E 9IL, λ(A) sufficiently small. By the application of

the index theorem described in §11.2 we know each space is 5-dimensional, so

it suffices again to exhibit a linear map:

such that dp ° a is invertible, which will certainly be true if

(1) \(dpoa)ξ-ξ\ <\ξ\ forallξEΓXXR.

To define α we show that one can displace a solution A by an approximately

conformal transformation of X. Choose r so small that S(r) < 1 say, and let/,

be the flow on A" given in local geodesic coordinates xι by the vector field



304 S. K. DONALDSON

where ξ = (υ\ φ). Thus ft = 1 outside B(x(A), r/2). Lifting to the bundle ft

defines a flow on φ; set [At] = q(ft(A)) G 911 where q is Taubes' map as in
Proposition 5, so [At] is defined for sufficiently small t (depending on λ).

Then put α(£) = ft[At] \t=0 G (Γ9IL)[i4]. a is plainly linear since the whole
process varies smoothly with ξ. To check property (1): observe first that if mt is
a path of Euclidean structures on R4 with m0 the standard one, then for
ω G Λ2R4,

d
at ω const, lωl

where π is the projection onto the "trace free" part. Hence on X,

jt\F_(f,(A)\ < const.|F(Λ)| \v&vm\.

(All derivatives -jt in this proof are to be understood as being evaluated at
t = 0; S κ is the Lie derivative.) Furthermore, one easily sees that, because xι

are geodesic and so/, approximately conformal,

|ττβκm| < const.p|||, 0 < p < r/2

where the left-hand side is evaluated at x G X, and p = d(x, x(A)). Scaling
down the bounds of Theorem 16 with δ = 1 we have

< const λp"3 \ξ\ λ < p < r/2.

So

jt\\F.(MA))\\LP

which gives

each bounded by const λ.11|. (We would improve the bound on the L 4 / 3 norm
by taking 8 smaller, but this is not necessary here.) So using the bounds on
q(A0) — Ao in Proposition 5 and recalling that At — q(ft(A)), we obtain

i const.|||,
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since by Proposition 18 11̂ (̂ 4)1̂ 4 < const.λ \ and the eigenvalue μ(A) is not
small. But this implies \\i(F(At) - F(ft(A)))\\L2 < const. \ξ|. So by Corollary
17, applied to the path At - ft(A),

d d
-jtP\At) - —pft{A) <const.λ|£|,

i.e.,

a)ξ — —pft(A) < const.λ|£|.

If the metric on X were flat in the ball of radius r about x(A), then by the
construction ^-tp(ft(A)) would equal ξ exactly. In general one easily sees that
the difference is bounded by const, λ. | ξ \, so

and, property (1) is satisfied once λ = λ(Λ) is sufficiently small.

Ill.4. The proof that/? is a diffeomorphism

To prove that/?: 91Lλ - ^ I X ( 0 , λ 0 ) is a diffeomorphism, it suffices now to
show that if we pick some point Λ:0 in X, then for λ 0 sufficiently small any pair
[Λ], [B] G 91tλo of self-dual connections with

x(A) = x(B) = x09 λ(A) = λ(B)=λ

can be joined by a short path in 911 (in a sense made precise below). The metric
on X has always been at our choice, and there is a small saving of labour here
if we suppose it to be flat in some ball B(x0, r)—although this does not, of
course, affect the truth of the result as one easily sees by deformation.

First we note a small lemma.

Lemma 20. There are constants K,C>0, independent ofR, such that if A is
a connection defined on the trivial bundle over the annulus

|JC| < 2 J R }

with \\F(A)\\co < K/R2, we may find a connection A over the ball 2RB4, equal to

A in R <\x |< 2/?, and having

\\F(A)\\co<C.\\F(A)\\c<>

Proof. Under conformal re-scaling by factor R~ι, the norms ||F(;4)||co,
ί each transform by a factor R2, so it suffices to do this when R = 1.
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Connections 
Al ,  B1 on the 

bUndl: 

BOO, r) 

Thus once K is small enough we may find an "exponential gauge" in the 
manner of [20, $21, so that without loss of generality the connection matrix 
over the annulus satisfies 

IIAIlco G c o n s t . l l ~ ( ~ ) l l ~ o .  
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Then set A = (1 — β)A, whence

F(A) = dΛ + \[A, A] = (1 - β)F(A) -dβΛA + \{β2 - 3β)[A, A],

so | |F(i) | | co < const.||F(i4)||co as required.
This lemma is used to compare the connection A on the bundle P over X

with the instanton and the flat connection. First we need some more notation:
for the instanton Iyv over R4, with centre y and scale v, write Γyυ for the
corresponding connection over SΛ. Similarly, the connection A over the large
ball ^rλ~ιB4 C R4 has curvature bounded by

\F(A)(y)\ < const/M4,

since in this case we may take 8 = 0 in Theorem 16. Thus we may conformally
map this large ball to the complement in S4 of a small cap Cλ over the north
pole, of radius 0(λ), and the connection we get there has uniformly bounded
curvature, independent of λ. By Lemma 20 we may extend this connection to a
connection, A' say, defined over all of S4, and maintain a uniform bound on
the curvature of A'. Clearly A' has Chern class - 1 .

Theorem 21. (i) If Aλ be the restriction of the connection A to X\B(x0, \/λ),
then after a suitable bundle automorphism

(ii) Similarly, after a suitable bundle automorphism,

Proof, (i) By Theorem 16 (ii), scaled down:

\F(A)X\ < const.λ2/p4, P = d(x, x0).

So the curvature is uniformly bounded, independent of λ, on the annulus
^}/λ < p< 2vX, and for λ sufficiently small we may extend Aλ over all of X
(by Lemma 20) to a connection on the trivial bundle, preserving a uniform
bound on the curvature. Thus

/P < const.λ2^.

Furthermore, just as in Proposition 18, the eigenvalue μ(Ax) is not small, so we
may apply the implicit function theorem of Taubes (Proposition 5) to find a
self-dual connection Ax + a = q(Aλ\ which is without loss of generality the
product connection θ, with ||α||L2 ( / ί ) < const.λ. Moreover by the form of the
construction, a — d\ u so that

(a) d%a = d*Aa + {w, a) = {F_(AX\ u} + {a, a],
(b)dθ-a={a,a}+F_(Aλ).
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(We write { , } for algebraic bilinear expressions whose particular form is not
important here.) By the ellipticity of d* + d~,

\\a\\Lf < const.[||(</f + d-θ)a\\\LP + | M |

and combined with standard estimates of the quadratic terms in (a), (b) this

gives

\\a\\Lf < const.||i^_(^41)||^ < const.λ2/^,

once λ is sufficiently small. (The situation is not at all delicate here, compared
with [18], because of the uniform bound on the curvature of Ax.)

(ii) We apply the same argument to the connection A' over S4 with

II^-U')IL* < const. (YoLCλ)
l/p < const.λ4/'.

One obtains a lower bound on the eigenvalues μ(A') by using the Weitzenbόch
formula for connections over S4 [18, Proposition 2.2], [2, p. 145]:

ΔAω = \VjVAω + fs.ω + {F_9 ω}, ω G Ω?(g),

where s = Scalar curvature of S4 > 0.
So this time we get \\A' — Γy V^L^ < const.λ4/p for some^, v. Now in general,

if A, A + a are connections, then

F(A +a)= F(A) + dAa + \[ay a]

implies

\\F(A + a) ~ F(A)\\L2 ^ const. {\\a\\iftA) +\\a\\l<},

and in dimension 4, L\(A) <** L4 with embedding constant independent of A
[18, Lemma 5.2]. Thus in our case,

from which one easily sees, by the normalisation λ(^4) = 1, x{A) — 0, that
|j>| + | ? - 11< const.λ2, so

W ~ ΓoAm*) < const.λ4^,/; > 2.

The bounds (i), (ii) of Theorem 21 will also, of course, be satisfied by the
connection B. Thus to complete the proof of Theorem 11 we have to use these
to show that A and B can be joined, after suitable bundle automorphism, by a
path in & which is short enough to project onto the moduli space. This is
slightly easier to write down if we use a small modification of Proposition 5.
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Proposition 22. Let A be any self-dual connection on P, there are constants

C, ε, depending only upon the first eigenvalue μ(A) and the metric on X, such

that if b G ίl\q)and

we may construct a self-dual connection A + b + q(b, A) = A + b + a with

\Li < C{\\F_(A + b)\\L> +\\F(A)\\L<\\F_(A + b)^},

The construction is %-invariant (§ acting on A, a, b), and a varies smoothly

with b.

This proposition follows by the method of proof of [18, Theorem 2.2],

applied to the equation F_(A + b + d%u) = 0. In the equation corresponding

to [18, (5.2)] we lose the term in F_(A0), which means that we do not need to

involve \\F_\\L3 in [18, (5.12.b)].

Lemma 23. Suppose that A, B are self-dual connections on P, x(A) = x(B)

= xθ9 λ(A) = λ(B) = λ. // λ is sufficiently small, then we may suppose that,

after a suitable bundle automorphism', B = A H- b with

\\vAb\\L2 < const.λ1/2, ||6||L2 < const.λ3/2.

Proof of Theorem 11, given Lemma 23. Suppose that, on the contrary, p:

91tλo -+ XX (0, λ 0 ), which is a covering by Theorem 19, had at least two

sheets. Then for arbitrarily small λ we could find A, B as in Lemma 23

representing different sheets. By Proposition 18 the eigenvalue μ(A) is not

small, and 11^(^)11^ < const.λ"1. Thus we can apply Proposition 22 to the path

A + tb from A to B, and find a path in 911, [A(t)\ say: [Λ(0)] = [A],

[A(\)] = [B]. Moreover \\F(A(t)) - F{A)\\Li < const.λ1/2, from which one

easily sees, as in Corollary 17, that

\λ(A(ή) - λ(A)\ + d(x(A{t)), x0) < const.λ3/*.

So, if λ is much less than λ0, A(t) stays in 9ILλo, and x(A(t)) is close to x0.

Hence [Λ], [B] are in the same local component of the covering and so equal.

On the other hand (DίlLλo is not empty. By Taubes construction there are

self-dual connections on X with λ(A) arbitrarily small, which one may see by

estimating the curvature density of the solutions in [18], in the manner above.

Proof of Lemma 23. We proceed in three stages, corresponding to the three

regionsX\B(x0, v/λ), B(x0,2JK) and W = B(x0,2y/λ)\B(x0,y/λ).



310 S. K. DONALDSON

(a) Using Theorem 21(i) and the Sobolev embedding theorems in dimension
4 we may suppose that A is given over X\B(xθ9 \/λ ) by a connection matrix
Ax with

^JI^/3 < const.λ3/2,

c o n s t MilLf < const.λ1/4,

< const.λ.

Similarly B is represented by some Bx. Thus in this region B = A + bλ (up
to equivalence) with ||fti||L2 < const.λ1/2, \\bλ\\Li < const.λ3/2.

(b) First we transform the bounds of Theorem 21(ϋ) on the connections A\
Bf over S4 to the small ball B(x0,2\/λ) by the obvious conformal transforma-
tion. Thus on S4 we may suppose Bf = A' + b\ \\b'\\LhAΊ < const.λ4//\ p > 2.
So \\b'\\co ^ const.λι/2 say, ||ft1|L2 < Const.λ2. Taking account of conformal
factors gives, over B(x0,2jK),

B — A 4- b2 say, with

||62||L2 < const.λ2, and ||fc2llc
0(^) ^ const.λ1/2.

The norm on 1-forms | |v( )||L2 is independent of constant scale changes, but in
going from S4 to 2?(;co,2λ1/2) we have a varying conformal factor which
introduces a lower order term. One easily calculates

const.||6'||L?(/i) +

< const. λ1/2,

since | ( i - B)(y) |< const.||fc'||co/|>> |2,y Ξ R4 So also \\b2\\Li{h) < const.λ1/2.
Moreover, it does not matter whether we use L\{Iλ) or L\(A) here.

(c) The region W corresponds under the conformal transformation of (b) to
a small annulus of radius 0(λ1 / 2) about the north pole of S4. Thus we may find
connection matrices A2, B2 for A, B respectively over B(x0,2λ1/2)\{*0} such
that in W

(i) 2II c°( w) ̂  const. λ1 / 2 , with similar bounds on B
2,

(Since we may find such a connection matrix for /0 λ, corresponding to a
stationary framing around the north pole of S4, and then A is close to Io λ by
(b) above.)
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On W we have transition functions:

[B2 =~dhh~ι +hBλh~x.

If it so happened that g — h, then we would be done, since the pair A2 — B2,
Λλ — Bx would represent a difference element ft 6 Sϊ^g), B — A + b after
automorphism and satisfying the required bounds by parts (a), (b). So the final
step is to check that we can find another set of data, (Bλ9 B2, g\w>) say, for
[B]9 where W is the smaller annulus B(x0, fX1/2)\2?(jc0, λ 1 / 2), with B2 = B2

outside of W9 and keeping A2 — B2 small.
Since the connection θ is fixed by a constant rotation of the bundle, we may

suppose that at some point of W g — h = 1 (note that this would not be true if
we had an irreducible flat connection in place of θ). Then (i) and (ii) together
with part (a) give

hence by integration, \\g — l||c°(^) < const.λ3/4. Thus if u = gh~ι = expO),
Pllc^wo ^ const. λ3//4 and L£ bounds on u are equivalent to L£ bounds on s.
Sett» = exp(γλi/2j), where

γλ./2 = Oon£(;t0, λ 1 / 2) = 1 outside #(JC 0 , | λ 1 / 2 ) ,

so that (Bl9 B2, g \w,) is another representation of [B] with

B2 = -dvv~l + vB2v~l.

Then one may check that ||2*2IIL2> 11 ̂ 211 L? a r e appropriately small. For example,

IIVB2\\L2(W) < const. {IIV^| |L 2(^) + | | ^ 2 I I L 2 ( ^ ) +11 V W \ \ L \ W ) }

(since | Vv\ -> 0 uniformly)

< const. (λ 1 / 2 +\\(wy)s\\L2iW) +\\Vy.Vs\\L2(w)}

ΐλ1/2 + X'X\\S\\LHW) +

const.(λ1/2 + λ3 / 4 + λ) < const.λ1/2.
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Appendix. Outline proof of Theorem 16 (ii)

Uhlenbeck's theorem on the removeability of singularities (Proposition 4),

applied to the point at infinity, shows that any self-dual connections / on R4

with finite action satisfies [20, Cor. 4.2]:

\F(I)(y)\< Const. (I)/\yf, y e R4.

The result which we need here is a small variant of this—since our connection

A is only defined over a large ball. However the method of proof of [20]

applies, and the proof becomes simpler if one only considers self-dual, rather

than general Yang-Mills, connections. For completeness we shall explain this

briefly, and refer to [20] for the lengthier parts of the argument.

It is convenient to work with a self-dual connection A defined over the

cylinder S3 X [0, T] which we suppose for simplicity has its standard Rieman-

nian metric. Thus for each / E [0, T] we have a connection At — A | S 3 X M on

the standard 3-sphere. We shall show that there are constants C, ε > 0 (inde-

pendent of Γ, A) such that if

then the supremum M(t) of | F(A) | on S3 X {t} is bounded by

Ce'2t for, say, 1 < ί < Γ - 1.

The " a priori estimate" [20, Theorem 3.5] shows that if ε is sufficiently small,

the absolute value of the curvature of a self-dual connection A at a point (x, t)

is bounded by a multiple of the L2 norm of the curvature in a ball of radius 1

in S3 X [0, T] about (x, t). Thus it suffices to show that

ί \F(A)\2dμ ^const.e-4'.
JS3X[t,T)

But this integral depends, as explained in §1.3, only on the boundary values:

by the hypothesis on A, We shall compare J(t) = — - T c 2 ( A t ) with its
8ττ

derivative

f 3 \F(A)\2

dμ.

Note first that if we choose a distinguished subspace R3 of a Euclidean space

R4 there are natural isomorphisms

Λ2R4 s Λ2R3 θ Λ !R3 = R3 θ R3
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corresponding in "electro-magnetic" notation to F -> (E, B), and the self-dual-
ity condition becomes E = B. Applying this to the tangent spaces of S3 X R
we get

S3X{/}

Thus both /, dJ/dt depend only upon the boundary value Ar

We use the fact that for any 1-form ω on 5 3 ,

I ω A dω ̂  — I \dω\ dμ.
JS3 2JS3

}

(If we consider S3 as the unit sphere in H, then the bound is attained by each

of the three imaginary quaternion components of the 1-form x dx.) This is

applied in the following way; once ε, and so also M(t% is sufficiently small we

can choose, for each fixed / a connection matrix At over S3 with

||Λ,||co<const.Λf(ί).

So /, dJ/dt differ by small amounts from their second order approximations,

respectively:

J T ( A )
2 ( t )

= f Tr(At Λ dAt) + Higher order terms.

JS3

Y = -2||F(,4,)||2 = -if 3 \dAt\
2dμ + Higher order terms.

Thus

/ < _ 4 — + Higher order terms.

The higher order terms may be accommodated by iteration of the argument,

just as in [20, Theorem 4.8], and once ε is chosen sufficiently small we can

integrate this differential inequality to get

/ < Const. J(\)e-4t < const.*?"4'.

Hence the L2 norm of F(A) in S3 X (t, T) is less than const.?"2', and so also

the absolute value of F, for 1 < / ̂  T - 1.
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Return now to the connection A of Theorem 16(ϋ), defined on the large ball
of radius rλ"1 in R4. If the metric m is flat, then given R we can conformally
map the annulus

{y<ΞR4\R<\y\<rλ-1}

to S3 X R. Since we know, by Theorem 16(i), that the connections^ converge
to the instanton on bounded regions of R4 as λ -• 0, we can choose R so large
that the L2 norm of the curvature is bounded by ε, and the boundary condition
is satisfied, since A comes from a connection over X. Thus the bound above
transforms to

\F(A)(y)\< const./\yf.

If, more generally, the metric m is curved, then we can work the same
argument with a small error δ in the exponent.
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