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A REGULARITY THEORY FOR
HARMONIC MAPS
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0. Introduction
In this paper we develop a regularity theory for energy minimizing harmonic

maps into Riemannian manifolds. Let u: Mn -> Nk be a map between Rieman-
nian manifolds of dimension n and k. It was shown by C. B. Morrey [17] in
1948 that if n — 2, then an energy minimizing harmonic map is Holder
continuous (and smooth if M and N are smooth). Since that time results have
been found under special assumptions on N. Eells and Sampson [5] proved in
1963 that if N is compact and has nonpositive curvature, then every homotopy
class of maps from a closed manifold M into N has a smooth harmonic
representative. In the case where the image of the map is contained in a convex
ball of N9 there is a complete existence and regularity theory due to Hildebrandt
and Widman [15] as well as Hildebrandt, Kaul and Widman [13]. Recently
Giaquinta and Giusti obtained results for the case in which the image lies in a
coordinate chart [9], [10].

In this paper we show that a bounded, energy minimizing map u: Mn -» Nk

is regular (in the interior) except for a closed set S of Hausdorff dimension at
most n — 3. We also show S is discrete for n = 3. Moreover, we derive
techniques (see Theorem IV) for lowering the dimension of S under the
condition that certain smooth harmonic maps of spheres into N are trivial.
This can be checked in some interesting cases, for example if N has nonpositive
curvature or if the image of the map lies in a convex ball of N, we show S = 0
and any minimizing harmonic map into such a manifold is smooth. Using our
methods, it is possible to reduce the dimension of S if N is a sphere or Lie
group by studying harmonic spheres in N. Our methods work for functional
which are the energy plus lower order terms, and thus have direct bearing on
the question of the existence of global Coulomb gauges in nonabelian gauge
theories.

We point out that there is a strong historical precedent for partial regularity
results in problems involving elliptic systems (see Almgren [1], De Giorgi [3],
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Giusti and Miranda [11] and Money [19]). Moreover, the types of singularities
which arise in this problem have been observed in connection with other
elliptic systems by De Giorgi [4] and others [11], and explicitly for harmonic
maps by Hildebrandt, Kaul and Widman [13]. We also observe that the
method we use for reducing the dimension of S is taken from H. Federer [7].

The problem which we deal with in this paper is to prove the regularity of
vector-valued functions which minimize the ordinary Dirichlet integral subject
to a family of smooth nonlinear (manifold) constraints. We use comparison
maps as was done by Morrey for n = 2. The major difference is that for n > 2
one cannot localize the problem in the image. Finding comparison maps which
satisfy the constraints is a major technical difficulty of this paper. If one
assumes that the image is a bounded domain in Euclidean space (without
constraints), the comparison construction is straightforward. Our methods
work for a restricted class of functionals because we need a scaling inequality
(see Proposition 2.4) to construct maps satisfying the constraints. In a second
paper we carry out a similar program to obtain complete boundary regularity
for solutions to the Dirichlet problem. The reason is that in this case the
obstruction to regularity is a harmonic map of a hemisphere which is constant
on the boundary, and one can show that such a map is trivial. This generalizes
previous results by Hildebrandt and Widman [15] and R. Hamilton [12] on the
boundary value problem.

1. Statement of results

Let Mn and Nk be Riemannian manifolds of dimension n and k. For
technical reasons we assume that N C Rk is isometrically embedded in
Euclidean space. We assume throughout that M is compact, possibly with
boundary, and that N is an open manifold. For r > 0 let Cr(M, N) be the
space of maps u: M -» N which have continuous derivatives through order r,
so that Cr(M, N) C Cr(M, Rk) is a Banach submanifold. Likewise let
Cra(M, N) for a G (0,1] denote the subset of Cr(M9 N) whose rth deriva-
tives are Holder continuous with exponent a.

In order to discuss harmonic maps from M to N, we work in the separable
Hubert space L](M, Rk), the set of maps u: M -* Rk whose component
functions have first derivatives in L2. By L2

ΪO(M, Rk) we mean those L\ maps
which are zero on 3M. Define

L2(M, N)= {we L2(M, Rk): u(x) G N a.e. x G M}.

Note that if dim M = 1, then L2(M, N) is a Hubert submanifold of L2(M, Rk),
but this is not so for dim M > 1. The set L2(M, N) inherits strong and weak
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topologies from L\{M, Rk). Moreover, the space L\(M, N) is a strongly closed
subset with the additional property that the set {u E L](M, N): \\u\\l2< C}
is weakly compact in L](M, Rk).

For u E L2

X(M, Rk), the energy functional is given by

E{u) = f (du(x), du(x)) dV=[ e(u).
JM JM

Here the Lagrangian e(u) is given in local coordinates by

ayβ i

where gaβ is the metric tensor of M. The norm on L](M, Rk) is then given by

\u\\2

l2 =

where dV is the volume element of M. A harmonic map u: M -»N is a weak
solution of the Euler-Lagrange equation for E in L](M, N) (see (2.1)).

For certain applications of our results we will need to consider critical points
of functionals with additional lower order terms. Let E(u) = E(u) + V(u)
where V(u) = fM υ(u). In local coordinates, v(u) will have the form

v(u) = dV.

More invariantly, if 0 is an open neighborhood of N in Rk, then γ E Cr(M X 0,
Γ*M 0 Rk) and Γ E C ( M X 0, R). By an E-minimizing map we mean a map
u E L2(M, N) such that £(w) < £(w) for any map w E L2(M, N) with
( w - ^ G l j o f M , lϊ*). Throughout the paper we will assume that the metric
on M is C 2 and γ, Γ E C for r ^ 2. Our first result is a "sufficiently small"
type result. The explicit dependence on parameters is derived in detail in
Theorem 3.1. Here Bσ(a) is the geodesic ball about a in M.

Theorem I. Let u E L2(2?σ(α), N) be an E-minimizing map such that u(x)
E No a.e. for some compact subset No C N. If σ and o2~nE{u) are sufficiently
small, then u is Holder continuous on Bσ/2(a).

It is well known, but difficult to find in the literature (see [2]), that u is
smooth in the interior of Bσ/2(a) once we have that u is continuous there.

For an ^-minimizing map w, a point x E M is a regular point if u is
continuous in a neighborhood of x. Let $1= <3l(w) be the set of all regular
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points and S = S(u) be the complement of Φl in the interior of M. The singular

set S is then obviously a closed subset of int(M). The reader should refer to

[6,2.10.2] for a discussion of Hausdorff dimension.

Theorem II. Let u G L\(M, N) be E-minimizing with u(x) G JV0 a.e. for a

compact set No C N. It then follows that dim(S Π int M) < n — 3 where n =

dim M and dim A is the Hausdorff dimension of a set A. If n = 3, then S is a

discrete set of points.

We state the next results as a theorem only to motivate our results. Recall

that a harmonic map is a weak solution to the Euler-Lagrange equations for E

on L\(M, N). Suppose u G L\λoc(Rn, N) is a map such that du/dr = 0 a.e.

Then there is a map w: Sn~λ -* JV such that w(x) = w(x/\ x |), and it is easy to

see that u is harmonic if and only if w is harmonic. In fact E(u | 2?σ(0)) =

(n — 2)~λan~2E(w). Moreover, the map u has a singularity at 0 if and only if w

is not a constant map.

Theorem III. Let u G L\{M, N) be an E-minimizing map and let z G S Π

int M. Γ/iere exists a sequence σi G R+ , σ, >̂ 0 swc/z ί/iαί ί/ie maps W; G

LftJ^O), N), Ui(x) = wίexp^ t) converge to u G LftΛ^O), ΛΓ). ?%έ? ma/? w w

a nonconstant harmonic map satisfying u(x) = w(x/\x\)9 w G L](Sn~\ N)

harmonic.

A homogeneous harmonic map with an isolated singularity at 0 will be

referred to as a tangent map (TM). A tangent map which is E-minimizing on

compact subsets of Rn is a minimizing tangent map (MTM).

Theorem ΓV. Suppose there is an integer / ̂  3 such that every MTM from

RJ -» N is trivial, 3 <j <L Then ifuE L2

λ(M, N) is E-minimizing with

u(x) G No a.e., then dim(S Π int M) < n — I — 1. If n — lΛ- 1, then S w α

discrete set of points, and ifn<l+ 1, S = 0 .

This theorem has the following corollary which is closely related to the work

of Eells and Sampson [5] and Hildebrandt, Kaul and Widman [13].

Corollary. If the sectional curvature of N is nonpositive or if u(M) is

contained in a strictly convex ball of N, then S = 0 that is, any E-minimizing

map u G L\(M, N) is smooth.

Proof. To prove the corollary from Theorem IV, it suffices to show that

any tangent map RJ -» N for j ^ 3 is trivial; that is, any smooth harmonic

u: SJ~ι -> N is trivial. But this is elementary because if N has nonpositive

curvature, we can lift u to a map ύ: SJ~ι -> N where N is the universal cover of

N. Since the square of the distance function p to a point is strictly convex we

have that p2 o u is a2.1 subharmonic function on Sj~x which is hence constant.

Thus u is constant. The same argument works if u(M) is contained in a convex

ball of N. This proves the corollary.
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2. The Euler-Lagrange equation and scaling inequalities

We compute the Euler-Lagrange equation for E and show that ^-minimizing

maps are weak solutions of this equation. As in the previous section, No will be

compact subset of N.

Lemma 2.1. If u is E-minimizing on M and u(x) E No a.e., then u satisfies

the formal Euler-Lagrange equations for E. These equations have the form

(2.1) Δ M W - A(du, du) + 2 Bi,a(*> M ( * ) ) f £ + C(x> «(*)) = °>
i,a

where A, B,C are smooth in their arguments, and A is quadratic in du.

Proof. We will say that a map is stationary for E if dE(u(t))/dt\ί=0 for

any differentiable curve of maps «: (-ε, ε) -> L2

X(M, Rk) where u(t) G

L](M, N)9 w(0) = M, and u(t) - u G L2

h0(M, Rk). Of course it is true that an

^-minimizing map is stationary. We will show that the space of admissible

variations {ψ = w'(0): u(t) satisfies the above condition) is large enough so

that u satisfies the Euler-Lagrange equation for E. Note that it does not make

sense to discuss differentiable curves in L\(M, N) per se because L\(M, N)

does not have a local smooth structure.

Let θ be an open neighborhood of N in Rk such that the map Π: Θ -» N9

given by Π( >>) = nearest point in N to y, is a smooth fibration. Since No is a

compact set, 0 contains a uniform neighborhood of No. Thus for / sufficiently

small and any C°° /^-valued function φ which is zero on dM, we can define

u(t)(x) = π(u(x) + tφ(x)).

Observe that for x G M the curve /1->/(/) = u(t)(x) is smooth for small t and

/'(0 ~ φ(X)dU(u(x) + tφ(x)) is uniformly bounded. Moreover, du(t)(x) =

(du(x) + tdφ(x)) dπ(u(x) + tφ(x)) is smooth in t for almost all x. We find

M O H u = Hφ(*) ' rfΠ(ιι(jc) + tφ(x))\\h2 < c(φ)[l + l |dι | | l f 2 ] ,

and w(/) is differentiable in L2(M9 Rk). Note that

where J Π ^ is the tangential projection Rk -> 7̂ iV for j> G TV. Let

S ( M ) = -2ΔMw - J ^ γ o u + (rf^γ Λi) 4- dNT

be the expression for the Euler-Lagrange equation of the unconstrained

problem. Then we have

/ «), nu(x)(φ(x))) dV

= f\Uy(x)(S(u)),φ(x))dV=O
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for all φ. We find that, in a distributional sense, dHuM&(u(x)) — 0. Because

X ) (Δ W «) = ΔMw - d2πu(x)(du, du) = ΔMw - A(du, du),

(A is the second fundamental form of JV in Rk), the equations can be put in
the required form. We are not really interested in the exact form of the lower
order terms. This completes the proof of Lemma 2.1.

Our theorems will be proved by covering M with geodesic coordinate balls
and proving regularity for ^-minimizing maps on balls. Let Bx = ^"(0) be the
unit ball in Rn. For Λ > 0, let ^A denote the class of functionals E on Bx with
metric gaβ such that gaβ(0) = δα/8 and lower order terms satisfying, for x E Bu

(2.2)

If u is ^-minimizing for E E ^A and u(x) E NQ a.e., we say u E %A. The lower
order terms are handled by showing that Λ is a dimensional constant which
shrinks with the radius of a coordinate ball. In fact, if E is a functional and
Bσ(p) is a geodesic ball in M of radius σ centered at p E M, we define a
functional Ep*σ on Bλ by setting

E' '(w) = [ (\dw\2 + o(dw • y(y, w)) + σ2T(y, w))gy
2dy

(2.3) J»<

where w(y) — u(σy) and gσ(y) = g(oy). Since M and No are compact, we can
choose Λ so that EPtt/ E ^A for all p and some σ > 0. It follows that if
Ep>σ E <gK9 then EpM E ξFλA for any λ E (0,1 ]. We state the following.

Lemma 2.2. Given Λ > 0, there exists σ0 > 0 such that for 0 < σ < σ0 and
p G M, if u is E-minimizing, then w(y) — u{QΎφp σy) is Ep'"-minimizing where
Ep'σ E \ .

Thus we restrict our attention to E E ^A where Λ is small. Let E be the
energy functional in the Euclidean metric on Bλ. Let Eσ, Eσ denote energies
taken over Bσ, 0 < σ < 1. The inequalities

Ea(u) - Eσ(u) |< cA(σ^β(iί) + σ^2Ea(u)l/2 + Aσή



A REGULARITY THEORY FOR HARMONIC MAPS 313

are straightforward provided Λσ < 1. Consequently for σ E (0,1 ] we have

Eσ(u) < (1 + cAσ)Ea(u) + cAσn~\

Ea(u) < (1 + cAσ)Eσ(u) + cAσ"~\

provided cA < \. We have the following.
Lemma 2.3. If A is sufficiently small, and u is E-minimizing for E GfΛ (i.e.,

u E 3CΛ), ίΛe« there exists a constant c = c(n) > 0 swcA that for σ E (0,1 ]
Elu) < 0 + cΛσ)£α(w) + cAσ"-1

for any w E L](BV N) with w = uonBx ~ Ba.

Proof. Since Eσ(u) < ^σ(w), this follows directly from the above inequali-
ties.

We can now prove the first basic inequality of the paper. We use the
notation

Eσ

x(u)=ί \du\2(y)dy.
JBa{x)

Proposition 2.4. Let u E %A for A sufficiently small. Then we have

σ2-"Eσ

x(u) < c[p2-"Ep

x(u) + Λp]

forx E £ 1 / 2 , O < σ < p < ^ .
Proof. By rescaling as discussed above, we can work on Bλ instead of

Bι/2(x). This will introduce at worst an extra multiplicative factor. For almost
all σ E (0,1 ] we have f\x\=σ \ du \2 dξ < oo where ξ is a variable on the sphere.
Introduce the comparison map

vσ(x) = u(x), \x\>σ9

vσ(x) = u(σx/\x\), \x\<σ.

Since the result is trivial for n = 2, we assume n > 2. Denote by | d^u |2 the
tangential energy along the spheres | x \ — r, so that | du | 2 = | d^u |2 + | du/dr |2.
We compute

-<-»"•(£«">-JLJSM
From Lemma 2.3 we get, with c — cΛ,

Ea(u)< (\ + co)Ea(va) + co"-

i^-L
du

CO
\x\ = σ
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This implies

(2.4) 0 < v2-n I\x\=σ

du.

dr
+ c.

Since Ea(u) is a nondecreasing function, we can integrate this inequality from

σ to p

co)n-2o2-(2.5) (1 + co)n-2o2-Ea(u) < (1 + + HP ~ <0,
where we have discarded the radial derivative term. This implies directly the

conclusion of Proposition 2.4. Note that c is a constant times Λ.

If we take the radial derivative term into consideration in the above

argument we can prove more. Note that if we set uλ(x) — u(λx) for λ E (0,1 ],

then as in (2.3) we have uλ E %λA for u E %A, and

(2.6) £,(«λ) - λ2-"Eλ(u).

Lemma 2.5. There is a sequence λ(z) -> 0, λ(/) E (0,1], such that wλ(/)

converge weakly in L\(BX, N) to a limiting map u0 E L2

ι(Bl9 N). The map u0 is

a harmonic map satisfying duo/dr — 0 a.e. in Bx.

Proof. From the previous result and (2.6), Eλ{ux) is bounded for λ E (0,1 ],

and therefore we get a weakly convergent sequence wλ(/) -> u0 E L\{BV N).

Since wλ(/) E 3C λ ( / ) Λ, it satisfies Euler equations of the form (2.1).

It follows easily that u0 satisfies the Euler-Lagrange equation for E and

hence u0 is harmonic. To see that duo/dr = 0 a.e., first note that (2.5) implies

the existence of a number Lo with

(2.7) Lo = Hmσ2-»Ea(u) = MmEx(uσ).

If we integrate (2.4) from 0 to λ keeping the radial derivative term, we have

du2

L ,2-n dx cλ)" 2λ2~"Eλ(u) - Lo] + cλ.

By a change of variables

,2-n

dr

Therefore we have

im /lim .2-/1

du
dr

dx = 0,

dx.

which implies

2.5.

that duo/dr = 0 a.e., for any weak limit w0. This proves Lemma
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In §4 we will show that this convergence is actually norm convergence. To

do that will require some preliminary regularity results. The first is (see

Theorem 3.1)

Regularity Estimate 2.6. There exists ε > 0 depending only on n and No C N

such that ifuG %A, Λ < ε, and Ex(u) < έ, then u is Holder continuous on Bx/2

and satisfies \ u(x) — u( y) | ̂  c \ x — y |α for x j E Bx/2 where c, a > 0 depend

only on n, No.

We first note that Theorem I follows immediately from this result by

rescaling, see Lemma 2.2. Secondly, we can immediately prove the corollary.

Corollary 2.7. // u G L](Bl9 N) is in %A and S is the singular set of u, then

%n~~2(ξ> Π Bx/2) = 0. More generally, if u G L](M, N) is E-minimizing, then

%n~\ξ> Π int M) = 0.

Proof. By rescaling, the second statement follows from the first. For

x G S Π B]/2, choose normal coordinates y centered at x. Let uxλ(y) =

u(expx λy). Then the maps uxλ are in %λA (see Lemma 2.2). By the regularity

estimate we have

(2.8) ε < Ex(ux λ ) - A2"" f \du\2 dx

for all x G S Π Bλ/29 λΛ < ε. For 8 G (0, ε/Λ), let {Bδ(xx)9... 9Bd(xt)} be a

maximal family of / = 1(8) disjoint balls of radius 8 with center x. 6 § Π Bι/2.

By maximality, S Π Bι/2 C U^.= 1 B2ft{xi\ Applying (2.8) on each ball and

summing, we get

(2.9) I8n~2<ε-ιf \du\2dx^ε-χE(u).

Since S Π Bx/2 C U / B2ls{xi)9 we see that %n~\% Π Bx/2) < cE(u). In par-

ticular %n( U. B^Xi)) < c82E(u\ and by the dominated convergence theorem

lim f \du\2dx = 0.

Using this in (2.9) then shows %n~2(S Π Bx/2) = 0.

3. The c-regularity theorem

In this section we prove regularity of minimizing maps under the assumption

that the energy is small. Precisely we prove

Theorem 3.1. There exists a constant έ = έ(n, No) such that if u G 3CA,

Λ < έ, and Ex(u) < ε, then u is Holder continuous on Bx/2 and \ u(x) — u(y) \<

c\x — y\aforx, y G Bx/2 where a = a(n) > Oandc = c(n, No).
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We will prove this theorem by establishing energy decay estimates on small

balls. We first show that if έ is chosen small, it is possible to approximate u by

smooth maps into N. To see this we let φ: R" -> R+ be a smooth radial

mollifying function so that support (φ) C Bλ and fRnφ(x)dx = 1. We then

note that if w* = JB^φ(x)u(x) dx, we can apply a version of the Poincare

inequality to assert

f I u - u* |2 dx < cxEλ(u) < c,έ.
JBλ

(Throughout this section cl9 c2, will denote constants depending only on

/2, No.) This inequality implies in particular that u* lies near many values of

u(x) for x E Bγ. Hence in particular we see that dist(ι/*, N) < c 2 (έ) 1 / 2 . This

inequality gains in power when it is combined with the scaling inequality

Proposition 2.4, for we can apply it on the ball B%(x) for any x E B\/2,

0 < h < \. That is, we apply it to the scaled map uxh:B"-»N given by

By Proposition 2.4 we have

Eι(uX9k) = h2-»EBM(u) < c 3 E 1 («) + c3ε < c4e,

provided x G Bι/29 h E (0, i ] . Thus if we set

where φ ( Λ )(x) = h~nφ(x/h\ we have

(3.1)

for any x E # 1 / 2 > A E (0, ^ ] . Let Θ be a normal neighborhood of JV in Rk, and

let Π: Θ -> iV denote the smooth nearest point projection map. Since No is

compact, Θ contains a uniform neighborhood of No. By (3.1), if ε is chosen

small we will have w(Λ)(x) E 6 for all x E 2?1 / 2, and we can define a smooth

map uh: Bι/2 -* Nby uh(x) — Π © w ( Λ )(χ). We note the following result.

Lemma 3.2. Lei /Γ = ε 1 / 4, and suppose h E (0, h]. Then we have

ί \du
D\/2

sup \u
x(=B 1/2
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Proof. The first inequality is standard. To prove the second, observe

2

I Λ<») | 2 (x) = / qfh~\x - y)du(y) \ dy
J D

*zjφW(X-y)\du\2(y)dy.
B

By Proposition 2.4 this implies

for any x G 5 , / 2 . This implies the second inequality and completes the proof
of Lemma 3.2.

In order to compare our approximating maps to w, we must force them to
agree with u on the boundary of some small ball. To achieve this we observe
that inequality (3.1) is a pointwise inequality, that is, x is fixed and h
arbitrarily small. Thus we can choose h — h(x) and the inequality still holds
for each x. Let τ = ε1/8, and suppose θ E(τ, i). We choose h — h(r\ r — \ x \
to be a nonincreasing smooth function of r satisfying

(3.2) Λ(r) = A forr<0,/ι(0 + τ) = O, | Λ'(r) | < 2έ1 / 8.

We can then set

„<*<*»(*) = ί φWχ»(χ-y)u(y)dy,

and by (3.1), uhM(x) = Π ° M ( Λ ( X ) ) (X). We can prove the following result.
Lemma 3.3. For θ E (T, £], ίλe wα/7 wΛ is in L2

ι(Bι/2, N) and satisfies
uh-uon Bι/2 - Bθ+τ, and

f
B$

I duh |
2 dx < c 9 f I t/w |2 dx.I |

+ 2τ~Bθ-τ

Proof. Since Π is a smooth map, it suffices to prove the lemma for w(Λ)

instead of uh. We first note that by a change of variable, u(h\x) can be written

u<h\x)= f φ(y)u(χ-h(x)y)dy.
JBλ

From this expression it is clear that uw is smooth if u is smooth. We first
consider a smooth u: Bι/2 ~* Rk- If Ω is a domain compactly contained in
Bx_τ, then we compute

3M ( Λ ) r , Λ du , Ί v dλ ,
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Thus it follows that

ί \du^\2dx < cjf ψ(y)\du\2 (x - hy) dydx.

For x E Ω, we let z — x — h(x)y. This defines a map Fy: Ω -» Ωτ, where we let

Ωτ = {x: dist(;c, Ω) < T}. By (3.2) we see that Fy is a diffeomorphism onto

Fy(Ω) with Jacobian approximately one. Thus by change of variables we can

estimate

ί \du\2(χ-h(x)y)dx^lί \du\2dx.

Therefore we have

(3.3) ί \duw\2dx^cu( \du\2dx.

Now if ut is a sequence of smooth maps B3/4 -> Rk converging strongly to u

in L2(B3/4, N), then (3.3) implies

ί I du\h) - du)h) |2 dx <cu[ I du, - duj \2 dx,

and hence {u\h)} is Cauchy in L](Bι/2, Rk). From this it follows that

lim^oo u\h) = u(h\ and u(h) = u on Bϊ/2 - B0+τ. We can then apply (3.3) with

Ω = Bθ+T ~ Bθ to get the conclusion of Lemma 3.3.

In order to prove Theorem 3.1, it suffices by Morrey's Lemma [16,2.4.1] to

prove that

for any x G Bι/2, r E (0, \\ We will prove that if ε is sufficiently small, then

we have

(3.4) r2~nEr{u) < cur
2a

for r E (0, \\. The previous estimate can then be gotten by reapplying (3.4)

with varying center point. We now state a result which is a discrete version of

(3.4).

Proposition 3.4. There exists ε = ε(«, No) > 0 such that if u E %A, Λ < ε,

and Eλ(u) < ε, then we have

θ2~nEθ- (u) + ΘA < \{Ex{u) + Λ)

for some θ = θ(n, No) E (0,1).

Proof of Theorem 3.1. We show how Theorem 3.1 follows from Proposition

3.4. We will prove (3.4) by an iterative procedure. Observe that the scaled map
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UQ(X) = u(θx) lies in %§h and from Proposition 3.4 we have

EiM = p-nE$'(u)<e.

Thus Proposition 3.4 is applicable to Uf, and we get

Θ2-"EΘ- (uf) + Θ2A < i ( £ , K - ) + flλ).

But this is the same as

(0 2) 2~w£^(w) + Θ2A < \{β2~nE§ (u) + 0λ).

Applying Proposition 3.4 on the right we get

(θ2)2-"EP{u) + Θ2TL < (i)2(£,(«) + Λ).

Repeating this argument i times we get

(θ'f^Ep (u) + Θ<A^ l-^E^u) + Λ)

for any nonnegative integer i. Given any r E (0,1), there is an integer i so that
r G [θi+\ θ% Setting a = (Iog2)/(21og 0"1), we have

(β'f^EXu) + rΛ ̂  (0<)2 α(£i(") + Λ)

for any r G (0,1). This implies

r2-"Er(u) < θ2-n-2«r2a(Ex(u) + Λ),

which verifies (3.4). As we have observed, this proves Theorem 3.1.
Proof of Proposition 3.4. Let v be the solution of the linear Dirichlet

problem
Δt> — 0, in2?1 / 2,

v = u(h) ondBι/2.

Thus t>: Bι/2 -» Rk is a smooth harmonic map. We observe the following
properties of v. First we note that by Lemma 3.2, u(h)(Bι/2) C ^ / 4 ( M ( Λ ) ( 0 ) ) .

Thus it follows that the image of v is also contained in this ball. In particular
we have

(3.5) s u p | ϋ - M

( / Γ ) | 2 < c 1 3 ε 1 / 2 .

The mean value inequality for subharmonic functions implies the result

sup \dυ\2 < cl4j \dv\2.
#1/2 BW2

Since v minimizes energy on J51 / 2 for its boundary, we have

Ώ
\/2
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by Lemma 3.2. Therefore, we have

(3.6) sup I dv |2 < cl5Ex(u).

For any θ E (0, \ ] we can estimate

V * / 0V h J 16 0V /

< 2cl6θ
2-"fB {I rf(«(« - v) |2 + I dv | 2} Λc,

where we have used the inequality (3.1) and the smoothness of Π. By (3.6) we
see that

(3.8) θ2-»( \dv\2<clΊθ
2Eλ(u)

JBΘ

for any θ G (0, ̂ ). Integrating by parts we have

Using (3.5) and the harmonic property of v we get

(3.9) f I d(u^ - v ) \ 2 < c ι s ? ' 4 f I Δt/Λ~> I .
*>\/2 D\/2

The Euler equation (2.1) for u tells us

= f ψih\x - y)[A(du, du) - Bdu- C] dy.
JR"

From the form of B, C we conclude

I Au^(x) \< cj φ^(x - y)[\ du |2 + Λ] dy.
JRn

Integrating over Λ: E Bι/2 we finally have

λ/2

Combining this with (3.7), (3.8), and (3.9) gives

(3.10) θ2-»Eθ{uh-) < c2Oθ2-»?/\Ex(u) + Λ) + c20θ
2Ex(u)

for any θ E (0, ±).
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Let yn G (0,1/16] be a number to be chosen depending only on n, and let
θ — P\ Let p be the greatest integer less than or equal to 0/(3 T) where
T = έ 1 / 8 and write

p

[θ,θ + 3pτ] = L U , |//|=3τ,

where each It is a closed interval of length 3τ. Since yn < - ,̂ we have
;?> j Γ 1 / 1 6 - 1. We have

P

f \du\2dx= 2 ί \du\2dx<Eλ(u).
Jr<Ξ[θθ + 3pτ] / = 1 ^ 6 /

Thus we can choose an interval Ij for somey with 1 <y < p such that

(3.11) ( \du\2 dx < p~xEx{u) < c2l

Let θ be the number such that Ij = [θ — τ, θ + 2τ], and let h(x) be as in
Lemma 3.3. Thus uh(x)(x) E L\(Bx/2, N) and satisfies MΛ = u for r ^ θ + T,
and

Thus by (3.11) we have

(3.12) / \h\
Jr(Ξ[θ,θ + τ]

By Lemma 2.3 we have

Eθ+T(u) < c2ΛEθ+τ(uh) + c24AΘ"-\

since 0 + T < 20. By (3.12) this implies

^( i/) < c25Eθ(uh~) 4- c^e / ^ ί t t ) + c25λθn-\

Combining this with (3.10) and using θ G [θ, 2Θ] we have

P-"EΦ(U) < c26(θ2-nε1^ + 0 2 ) ( ^ ( W ) + Λ t).

Since &=&" this gives

(92-M^- (u) < ^ ( ε 1 / 1 6 " ^ " - 2 ) + ε-2^)(^i(") + A).

We choose yn = min{[32(« - 2)]"1, 64"1} and hence

θ2-nEe-{u)^c21ε
2HEλ(u)Λ-K).

This implies

Θ2-"(EΘ- (u) + 0Λ) < (c 2 7 + I)ε 2 ^(^(w) + βλ).
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Choosing ε so small that (c2 7 + l)ε2γ" < \ finishes the proof of Proposition
3.4.

4. Extension and compactness theorems

In this section we study convergence of ^minimizing maps. This study
involves the construction of lots of comparison maps. Our basic tool is the
cone-type comparison already used in the proof of Proposition 2.4. For a fixed
point M* G Rk, we introduce the notation

Wσ(u) = f \u-u*\2dx.

This notation will be used throughout this section. Recall that EΩ(u) denotes
the energy taken over a region Ω C Rn; likewise WQ(u) = /Ω | u — u* \2 dx. Let
C" = B2~ι X [-σ, σ] be the cylinder of height and diameter 2σ.

Lemma 4.1. Let u G L\(dC", N) be given such that u(x, -σ) = uλ(x\
u(x, σ) = u2(x) for x G B^~λ with ul9 u2 G L\(B"~X

9 N). Suppose also that
u(x, t) = °u(x)for (x, t) G S"~2 X [-σ, σ]. In particular we have w1 = u2 = °u
on dB£~ι = Sσ"~

2 with °u G L2(S^~2

9 N). Then there exists an extension
ΰ G L2(Cσ", N), u — uon 9Cσ

w, satisfying the inequalities

E(ΰ) < cσ(Ea(Uι) + Ea(u2) + σE(°u)),

W(U) < cσ(Wβ(Uι) + Wo(u2) + oW{°u)).

Proof. By scaling the domain we assume σ = 1. The easiest proof of this
lemma is to observe that there exists a bi-Lipschitz homeomorphism /: dB" -»
3C" which extends to a bi-Lipschitz homeomorphism /: B" -+ CJ1 where/(x)
= I x \f(x/\ x |). Let Π: B" - {0} -> dB" be the radial projection, i.e., U(x) =
x/\ x I . Define a projection map Π: CJ1 ~ {(0,0)} -> 3Cf by ft = /° Π o f~\
Then define i7 = u ° ft. As in Proposition 2.4

E(ΰo f) ^(n-2)~ιE(uo f).

Due to Lipschitz equivalence

E(ΰ) < KE(ΰ o / ), E(u o / ) < UΓ^(M)

with constant # depending on the Lipschitz constants of f~x and /. These
inequalities and a similar argument for W yields the results of Lemma 4.1.

Since our main extension lemma, Lemma 4.3, will be proved by induction on
dimension, we first give the result for n = 2 where the proof is quite different
and the result much simpler.
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Lemma 4.2. If u G L\(S]9 N) and E(u)W(u) < δ 2 for a number 8{ =

δ,( JV0), then there exists ΰ G L2(i?2, N) with ΰ \dBi — u and

Eσ(ΰ) < cλ{E(u)W(u))λ/\ Wσ(ΰ) < cxσW(u).

Proof. As usual we take σ = 1. Let δ2 = E(u)W(u) so that δ2 ^ δ2. If Sι is

parametrized by θ E [0,2π), then we have

I u(θ) - u* | 2 < 2 f2π I u(θ) - u* 11 u'{θ) I dθ < 2δ.

Thus if δ, is small, then min | u — w* | is small. Let M be the (Money [18,5.4])

harmonic map minimizing E for boundary values given by u. Since δx is small,

the boundary values of ΰ lie in a convex ball (see Hildebrandt, Kaul and

Widman [13]), so it follows that \\u - w*!!̂  < c 2δ 1 / 2. The Euler-Lagrange

equation for ΰ is

Δw = Aΰ(dΰ, dΰ).

This implies the inequality (in weak form)

±Δ I ΰ - u* |2 - \dΰ |2 = (ΰ - ιι*, As(dΰ9 dΰ))

>-\\ΰ-u*\\J\A\\ao\da\2.

Thus if δj is small, we have Δ | ΰ — u* | 2 > 0, so by the mean value inequality

W(ΰ)< \W{u).
To get the estimate on E(ΰ% we compare u to Π o v, where v: B\ -> Λ^ is

the solution of the linear Dirichlet problem with boundary values u and Π is

projection from a normal neighborhood of No onto N. By standard Hι/2 norm

estimates, £(t>) < cδ 1 / 2. Since ΰ is minimizing, we have

E(ΰ) < £ ( Π o v) < c 3 £ ( ϋ ) ^ c 4δ !/2.

This proves Lemma 4.2.

We now prove a higher dimensional version of this.

Lemma 4.3. For n > 2 there exists δ = δ(w, No) and a constant q — q{n)

such that ifεG (0,1) is given and u G L](dB£, No) satisfies σ4~2nE(u)W(u) <

δ2ε^ (note that W depends also on a fixed vector u* G Rk), then there exists

ΰ G L2(£σ", N), ΰ \dBn = u such that

E(ΰ) < c5(εσE(u) + ε^σ^Wiu)),

W{ΰ)<c5ε~qσW{u).

Proof. First note that Lemma 4.2 implies Lemma 4.3 for n = 2 with

q(n) — 1 which proves the first step of our induction. Also, by rescaling we

take σ = 1. The following lemma is part of our construction. We leave its proof

until later.
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Lemma 4.4. Let σ G (0, \\ Aσ — Sn~ι X [-σ, σ]. Assume Lemma 4.3 is true

for π - 1 , and let v G L2

x(Sn'ι9 N) satisfy E(v)W(v) < o2n~\8')2 where

δ' = δ'(n — 1, No) depends on the constants arising from Lemma 4.3 for n — 1.

Then there exists a combinatorial constant a = a(n) < 1, a constant K = K(n),

and a map v G L\{Aa, N)9 v\sn-ιx{σ] = v, v\s*-ix{_a] = v' where υf G

L\{Sn~\ N) such that

E(ϋ) < KσE(υ) + Kσ~ιW(v),

E(v') < σE(v) + K

W(v')<KW(υ).

We assume for now that Lemma 4.4 is true and proceed with the proof of

Lemma 4.3. Let ε G (0,1) be given and choose an integer s with as « ε

(α = a(n) given in Lemma 4.4) and a cylinder of height 2σ = ε. Consider the s

disjoint annuli Aiσ given by

Aiσ= {x GBX: 1 - 2 ϊ ' σ < | j c | < 1 - 2(i - l )σ)

for i = 1, , j . Apply Lemma 4.4 on each of the Aiσ by taking 0 = 1̂  = u on

the outer boundary of Ax σ and at the ith step t? = ̂ , = ϋ^j where ϋ^j is the

value on the inner boundary obtained via Lemma 4.4 at the previous step.

Note that as long as 2sσ = εs < {, each annulus At σ is uniformly equivalent

(Lipschitz) to Sn~ι X [-σ, σ]. In order to apply Lemma 4.4 we must have

) < a2n~\8')2, but from the (i - l)-st application we get

W(vi)<KlV(vi_ι).

By iteration this gives (provided k ̂  2)

Thus we may continue s times provided

K*E(u)W(u)

2σ-2K2s-ιW2(u)

We check these inequalities by noting

so that the first inequah'ty is equivalent to

E(u)W(u) < c6ε
2"-
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that is, taking q = In - 4 - In K/lna, δ(n, No) = c\/2δ' in the hypothesis of
Lemma 4.3 for n. Now if the second inequality of (4.1) fails and the first holds,
we have KΈ(u)W(u) < 2σ-2K2s-χW2(u) which implies E(u) <
2o~2Ks~λW(u). In this case we do not need to apply Lemma 4.4 at all since we
can extend u homogeneously into Bλ by ΰ(x) = u(x/\ x |), and we have

E(u) < eE(u) + 2σ-2Ks-]W(u)

< εE(u) + cΊε-2+]nK/lnaW(u)

as required.
We can thus assume that (4.1) is true and that we have applied Lemma 4.4

s times. We then let ΰ\Aja = ϋi9 the extension obtained at the ith state from
Lemma 4.4. We extend ΰ into Bx_se by setting ΰ(x) = ^'((1 — sέ)x/\ x |). This
gives a map ΰ G L\(Bλ, N) with ΰ \dBn — u. By Lemma 4.4 we have

E{ΰ\AUσ) = E(vt) < KioEivt) + σ-'Wfo))

I B\-sε) < E(vs) < as~ιE(u) + 2σ-2K'W(u)9

Adding these up we get

/ s \
E(ΰ) < αs~λ -f Kσ 2 Λ1"1 U(w)

ι=i /

Since α5 + ίΓαE^^ 1 '" 1 < (1 + 2ϋΓ(l - α ) " 1 ^ = c9ε and ϋ: s = ε1111^/111", we
get the conclusion of Lemma 4.3.

Proof of Lemma 4.4. It remains to prove that Lemma 4.4 follows from
Lemma 4.3 for n — 1. Let JC,, -9xq be a maximal array of points on Sn~ι

satisfying | x, - Xj\> a for i ^ . By maximality, Sn~ι C Uf=1 J ^ " 1 ^ , ) . For
each i < q, let σz E [σ, 2σ] be chosen so that the restriction vt = v \9B»-\X) lies

? 3 W ) d

f \dv\2dμ,

\v-u*\2dμ.
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Let Bt = B^~x{xi) C S"~ι. The existence of such σi follows from Fubini's
theorem. We have

af'^Eiυ^W^) < cuo
Λ-2nE(υ)W(υ).

Thus we can apply Lemma 4.3, for ε to be chosen, on Bt provided

(4.2) cuo
4~2nE(v)W(v) < (δ )V~,

where δ = 8(n — 1, No)9 q = q(n — 1). Let υ\ E L2(Bi9 N) be given by Lemma
4.3 satisfying

£(t>,') < c12(εσ£(ϋ/ ) + ε ' ^ σ " 1 ^ ^ ) ) ,

W(v{) < c , 2 e " W ( ϋ ) .

From the choice of oi this implies

ip**-'*-1! \v-u*\2dμ\9

W(υ'Λ < cπε"^ f I υ - u* I2 rfu.
J n—\

We also observe that since any point JC E S"*"1 is contained in a bounded

number (depending only on n) of balls i ? ^ X(xi)> w e have

2 / 5 π i \dθ\2dμ<cX4E(v)>

(4.4) f 7 * (Xi)

\v- u*\2dμ<cl4W(v).

From the choice of xl9 9xq we see that there is a fixed integer In and families
Φp ,®^ of balls such that

7 = 1

and each ®y is comprised of a family of disjoint balls. Since Sn~ι C U?=1 Bi9

we have Σ?=! £(t? | £,-) > £(t?). Thus for some <$>j9 say ® p we have

(4.5) 2 ^ ( f l l - β i ) ^ ^ 1 ^ ^ ) -
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Let θ = U B ί € Ξ φ i Bi9 and define the extension v on (Sn~ι - Θ X [-σ, σ]) by

v(x, 0 = v(x). On each cylinder Bt X [-σ, σ], apply Lemma 4.1 to get ΰ G

L\(Bt X [-σ, σ], N) satisfying ϋ(x, σ) = v(x), ϋ(x, -σ) = υ^x), and v(x, t) =

v(x) for (x, t) G (8B.) X [-σ, σ]. We have

E(v\ Bt X [-σ, σ]) < cl5σ(E(v | J9.) + E(υl) + σE(Όt))9

W{v\Bt X [-σ, σ]) < cιsσ(W(v \ B,) + W(v^) + aW^)),

E(v\ (Sn~ι - 6) X [-σ, σ]) - 2σ£(ϋ | S"~ι - 6),

^ ( ϋ I (5 1 1 - 1 - 6) X [-σ, σ]) = 2σW(v \ Sn~ι - 6).

Therefore we have by (4.3) and (4.4)

£ ( ϋ ) < c{6oE(v) + c 1 6 ε-%-^(t ;) ,

^ ( ϋ ) < c 1 6 ε - W ( ϋ ) .

Let v' = v\Sn~l X {-σ}, so that by (4.3), (4.4), and (4.5)

£(υθ < E(v I 5 W - 1 - θ) + 2 £(*>,•)
1 = 1

< (1 - I-ι)E(v) + cXΊεE(v) + CX1E^O-2W(V),

q

W(υ') < ^(t;) + 2 W(v't) < cπε-W(υ).
ι = l

We now fix ε so small that <x(n) = (1 — I~λ + c17ε) < 1. This fixes all con-

stants E(v)W(V) < σ 2 w " 4 ( δ ' ) 2 with (δ ') 2 = cϊl(δ)2ε^. This completes the proof

of Lemma 4.4.

The main application of Lemma 4.4 is to give a significant improvement of

Theorem 3.1. We now prove this.

Proposition 4.5. Given B > 0 there exists a constant ε0 = εo(«, No, B) such

that ifu G %A, Λ < ε0, Ex(u) < B, and Wλ{u) < ε0, then u is Holder continuous

on Bx/1 and \ u(x) — u(y)\< c \ x — y |α for JC, y G Bι/2 where a = a(n) > 0

andc = c(n, NQ).

Proof. By Fubini's theorem, there exists σ G [|, 1] such that

W(u\dBσ) = f \u-u*\2dξ<W{(u)<Sε0,
JdBa

E(u\dBσ)^SEx(u) <SB.

Applying Lemma 4.3 on Bσ9 there exists u G L2(Bσ, No) with u \ dBσ - u such

that if W(u I dBσ) < S-ισ2n-482εW~x

Eσ(u) < Sc5(εσB + ε^σ^εo) .
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Since u G %λ, we can apply Lemma 2.3 to get

Ea(u) < 0 + cAσ)Eo(ΰ) + cKσn~x < cιs(εB + ε"%).

Fix ε so small that cιsεB < 2~xεσn~2 where ε is given in Theorem 3.1. If ε0 is so

small that c 1 8 ε " % < 2-χεσ"~2 and Sε0B < i-χσ2n~48 V , then we have

σ2~nEσ(u) < ε, σΛ < ε so we can apply Theorem 3.1 to assert that u is Holder

continuous onBσ/2. Proposition 3.5 now follows.

We now look at weak limits of minimizing maps. We cannot show that these

are again minimizing. Our first result is a compactness theorem which says that

weak convergence is actually strong. The key ingredient in its proof is

Proposition 4.5.

Proposition 4.6. Let {wz} C %A be a weakly convergent (in L2) sequence

with limit u0 such that Eλ(ut) < c 1 9. Then u0 is locally Holder continuous outside

a closed set S o with 3Cn~2(S0) = 0. Moreover, ut converges to u0 in L\-norm on

Bι/2 and uniformly on compact subsets ofBι/2 ~ So.

Proof. Since the uf have uniformly bounded energy, we may assume they

converge in ZΛnorm to w0. By lower semi-continuity Eλ(uQ) < c 1 9. Let So be

the singular set of w0. We prove that S o is small by noting that if W*(u0) < εoσ
n

for some w* E Rk and ε0 > 0 (ε 0 given by Proposition 4.5), by ZΛconvergence

we have W£(u^) < εoσ
n for large /". By Proposition 2.4, there exists B > 0 such

that σ2~nE*(ui) < B for all /. Moreover, if Proposition 4.5 is applied on a ball

of radius σ, then the assumption on Λ is Λ < ε oσ - 1 which is automatically

satisfied for σ small. Thus we can apply Proposition 4.5 to MZ giving us a

uniform Holder estimate on ui in Bσ/2(x), and hence ui converges uniformly

on Bσ/2(x) to M0 and u0 is Holder continuous there. In particular, by the

Poincare inequality, if σ2~nE*(u0) is small, then u0 is Holder continuous on

Ba/2(x). Thus by the argument given in Corollary 2.7 we have %n~2(ξ>0) = 0.

We have also shown that ui converges uniformly to u0 on compact subsets of

Bx/2 - S o.

To prove the Z^-convergence of w, to w0, we now observe that we can cover

S o Π Bλ/2 by a family of balls {£,,(*,)} such that Σ, ηn~2 < ε for any ε > 0. If

0 = Uz. B (Xj), we can estimate by Proposition 2.4

(4.7) Ee(uj) < zEf/KUj) < C 2o2^~ < c20ε

for anyy. On the other hand, we have shown uniform convergence of Uj to u0

on Bx/2 — 0 so subtracting the Euler equations (2.1) for wy and uk, multiplying

by Uj — uk and putting in a cutoff function we easily get

\d(uj-uk)\2dx^c(6,A) sup \ujuj-uk
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Therefore we have from 4.7

\d(uj-uk)\2dx<c2lε + c(Θ, Λ ) sup \uj-uk\.

Thus {Uj} is a Cauchy sequence in L](Bι/29 No) which therefore converges in

Lpnorm to u0. This completes the proof of Proposition 4.6.

Let %A B denote the set of maps u E %A with Ex(u) < B. Let %AB denote

the closure of %A B taken in L](Bl9 No). We now prove a strong version of

Lemma 2.5.

Proposition 4.7. Given u E %AiB and x0 E Bι/2, there is a sequence λ(z) ->

0, λ ( 0 G (0, i ] , sucΛ ίΛαί the maps uXoMi) E L ^ , iV0) <fe/iπ«/ 6y uXθtλω(x)

= w(λ(/)(jc — x 0 )) converge in L\-norm on B" to a harmonic map u0 E %0 B,

satisfying duo/dr = 0 a.e. on Bx. Moreover, the convergence is uniform on

compact subsets ofBλ ~ So.

Proof. Since u is a strong limit of minimizing maps, we get inequality (2.4)

satisfied for u and hence by Lemma 2.5 there is a sequence λ(i) -» 0 such that

MXQ λ ( 0 converges_weakly to a harmonic map u0 satisfying duo/dr — 0 a.e.

Since uXoMi) E %Mi)AtB, it follows that there is ύt E X λ ( / ) Λ > j B with ||fi,. -
wx0 λ(i)Hi2 < *~l- From this we see that ύi converges weakly to u0 and hence

strongly by Proposition 4.6. Therefore, {uXoλ(i)} converges strongly to u0 and

we have proven Proposition 4.7.

5. Dimension reduction of §

We prove Theorems II and IV simultaneously in this section by adapting to

our setting a dimension reducing argument of H. Federer [7]. We first need

some preliminary results.

Lemma 5.1. Suppose I > 3 and u E L\λoc{Rι, N) satisfies g,u/dxι = 0 a.e.

Then there exists u0 E L\λoc(Rι~\ N) such that u(x', xι) = uo(x') a.e. xr E

Rι~λ. If u is E-minimizing on each compact subset of Rι, then u0 is E-minimizing

on each compact subset of Rι~λ.

Proof. Suppose on the contrary that v: Bι

σ~
x -> No satisfies v = u0 on

ΰBι

a~
x and Eσ(v) < Eσ(u0) — η for some η > 0. Let λ » 0 be a large number

and consider a map v: Bι

a~
λ X [-λ — 2σ, λ + 2σ] -> iV0 satisfying v(x\ xι) —

v{x') for I xι I < λ and constructed by Lemma 4.1 on Bι~ι X [-λ — 2σ, -λ] and

K~λ X [λ, λ + 2σ] so that v = u on 3 ( ^ - 1 X [-λ - 2σ, λ + 2σ]) and E(v)

< 2λEσ(v) + c where c depends on σ, w, t>. By the minimizing property of u in

R1 ~ S we have

(2λ + 4σ)Eσ(w) < 2λ£ f f (ϋ) + c.
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Choosing λ large we contradict the inequality Eσ(υ) < Eσ(u) — η. This proves

Lemma 5.1.

The next result guarantees that, in a very simple situation, limits of minimiz-

ing maps are minimizing.

Lemma 5.2. Let u0 E L2

ιloc(Rι, No) with I > 3 be a harmonic map with an

isolated singularity at 0 such that u0 satisfies duo/dr = 0 a.e. Suppose u E

L2

Uoc(Rn, No), n>l9 is given by u(x'9 x") = uo(x'), x' E Rι, x" E Rn~ι. Sup-

pose there is a sequence ut E %A B such that ut converges to u in L2

ι(Bι, No) and

Λ, -» 0. Then both w, u0 are E-minimizing on compact subsets of Rn, Rι. In

particular, u0 is a minimizing tangent map (MTM).

Proof. We first show that u is minimizing. Note that because of the

homogeneity of u it suffices to prove the u is is-minimizing on B[ X B"~ι. We

first prove a preliminary inequality. Suppose v0 E L](B[y No) such that vQ = w0

on dB {. We will modify v0 to make it agree with u near the origin. For any

δ > 0, define a map vδ E L2(B[, N) by

(v(x) for|jc|>«,

We then have

(5.1) Eδ(vδ)^δ( \dvo\
2dx.

For any ε E (0,2~1δ), define vSε: B[ -> N by

ίvδ(r,ξ) ίoτr>2ε,

vδ,e(r>£) = \ uo(r>£) f o r r < ε ,

[i?β(p(r),0 f o r ε < r < 2 ε

where r, ζ are polar coordinates in Rι and p(r) is the linear function

p(r) = (2 - 2ε) - e" !(l - 2e)r.

Since wo(r, ξ) is independent of r and v0 = u0 on dB{, we see that vδ ε E

L](B[y No) and satisfies vδ ε = M0 on dB[, vδ E = u0 in Bε. We now estimate

£ l K e ) < ^ l ( ^ ) + ̂ ε(Wθ) + ί I *«,. l' <&.

By (5.1) and the homogeneity of w this implies

(5-2) ^
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By change of variable this gives

dv> 2

*B{~Bl dr
dx

dp

From the definition of υδ this implies (since dvδ/dr = 0 on | x \ < 8)

f(5.3)
J *2ε~Dε

We also can estimate

dr

dx/ I ( t t
JB2ε~Bε

Changing variables we get

(5.4) / r-2 I d^9β |
2 dx < c2εf

D2ε ΰε a \

Combining (5.2), (5.3) and (5.4) we get

(5.5) E 1 ( t ; M ) < ( l + c 2 ε + ε'-2δ1-/)^1(t;0)

~2 |

dx.

(p, {) dξdr.

dx.

dBi

Now, given a map v: B[ X B" ι -»JV0 which agrees with M on the boundary,

we apply (5.5) on each Rι slice (with x" fixed) and integrate over B\~ι. We use

the notation | dW\2 =\d'W\2 + | d"W\2 for a map W(x\ x"). We have from

(5.5)

4- c2ε

(5.6) _(\d'v\2 + ει-2j ι ^du]2.

From the definition of ϋβ ε we can estimate

ί I J % . I2 dx' < c ^ " 1 f ε f I rf"^ |2 (p, ί, JC") dξdr.

Changing variables we get

ί \d"vδE\
2dx'<c4e[f \d"υ\2dx'+ ί \d"vδ\

2dx'\.
JB[ε ' \JB{ JBί J
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We also see that fBβ | d"υδ |
2 dx' < 8jdBs \ d"υ |2. Combining with (5.6) we then

have

f \dvδε |2 dx'dx" < (l + c5ε + e 7" 2* 1" 7) /" \dv \2 dx'dx
JB[xBγ-' ' JB{XBΓl

I2 + ε '" 2

We can choose δ so that

δf \dv\2<2ίι \do\2 dx'dx".
JdBJ;XB?-1 JB{δXBΓl

Thus we can choose ε, 8 small so that

(5.7) / \dvsjdx^f \dv\2dx + η
JB{B?~l JB[XBγ-'

for any given η > 0. The point is we have from the above construction vδ ε = u
on d(B{ X B"~ι) as well as vδ ε — u on Bδ X i?""', a neighborhood of S = {0}
X B"~ι. Since by Proposition 4.6, wz converges uniformly to u away from S, it
is obvious that u minimizes on each compact subset of Rn ~ S. Therefore we
have

" <*-''*β |2

By (5.7), since η is arbitrarily small we have

I du I2 < ί \dv I2,

and u is minimizing. Applying Lemma 5.1 successively, we get that u0 is
minimizing, and this finishes Lemma 5.2.

We now return to Hausdorff measure, and define for E C Rn, s > 0,

Following [7], we observe that for any E

(5.8) φs(E) = 0~

We also need the following density result (see [6,2.10.19(2)])

(5.9) Ήm λ - y ( £ n ΛJ(JC)) > c6 > o

for φ5 a.e. Λ: E £. We need the following result on the behaviour of φs under
weak convergence.
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Lemma 5.3. Suppose ut is a sequence in %A which converges weakly to u in

L2

X(B", TV). //§,-, S denote the singular sets ofui9 u respectively, then we have

ψs{% Π Bn

x/2) ^ ϊmϊ φs(S,. Π Bn

λ/2)

for any s > 0.

Proof. For any ε > 0, let {#,.(>,)} be a covering of S Π B\/2 by balls
satisfying

Now the set K - B\/2 ~ U.B^Xg) is compact subset of B\/2 ~ S, so by

Proposition 4.6 it follows that fory sufficiently large, the map Uj is smooth on

K. Thus we have

for j large. In particular we have

φ^π^^φiSn^j + ε

for any ε > 0, j large. This gives the conclusion of Lemma 5.3.

Proof of Theorems II and IV. Suppose u €Ξ L](M, N)is ^-minimizing with

singular set S C int M. Let 0 < s < n - 2 be such that ψs(ξ>) > 0. Then by

(5.9) we can choose/?0 G S such that

(5.10) limλ:γ(§Π^/2)>0

for a sequence λif -> 0, where i?λ is taken in normal coordinates Λ: centered at

p0. We look at the scaled maps uλ(x) = u(λx). By Proposition 4.7 we can

choose a subsequence of λ,, call it λ/? so that wλ converges weakly in

L\(B"9 N) to a harmonic map M0, strongly in L\(B"/2, N), where M0 satisfies

duo/dr = 0 a.e. If S λ denotes the singular set of uλ in .S", we clearly have

S λ Π 5^ / 2 = {x/λ: x G S Π £j;/ 2} and hence φ s (S λ Π Λf/2) = λ"V(§ Π

Bχ/2). Thus (5.10) implies

Thus by Lemma 5.3 we have

φ (S0 n *r/2) >o.
Since duo/dr = 0 a.e., we have λS0 C So for any λ > 0, and there are two

possibilities: either we have s < 0, or we can choose a point xλ G So Π Θ Ĵ1 by

(5.9) such that

ϊΐmλ-y(Son #£(*!)) > 0
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We choose Euclidean coordinates centered at .x̂  so that Λ:1 is radial at xx.

Repeating the above argument at xx we get a radially independent harmonic

map w, E L\λoc{Rn, No) with φs(ξ>ι Π BΊ) > 0. Since u0 satisfied 3wo/3r = 0,

it follows that dux/dxι = 0 a.e. If s — 1 ^ 0, we stop. Otherwise, there is a

point x2 E S, Π dBγ~\ R"~x = {(0, x2

9- •,*")} and we repeat the argument

at x2. If we repeat this procedure m times, we get harmonic maps wy E
LUoc(^w> #o) for y = 1, ,/w such that wy | £? E %AtB for suitable 5 (see

Proposition 4.7) and duj/dr = duJ/dxa = 0 a.e. α = 1, J . Also we would

have φ5(S Π B") > 0 forj= 1, ,m. We can repeat the argument until we

have ^ — m < 0. In order to have constructed wm, we must have had s — m -+• 1

> 0. Since s < « — 2, and m is an integer we then have m < n — 2. If

m = n-2, then we would have Sm D i Γ ~ 2 = {(JC1,- , Λ " " " 2 , 0 , 0 ) } contradict-

ing the fact that 5Cw~2(Sm) = 0. Therefore we have m < « — 3, and hence

φ'(Sw Π £?) = 0 for t > n - 3. Since φ s (S m Π ^^) > 0, we have s < n - 3,

and since s can be any number smaller than dim S we have shown dim S < n

- 3 .

If we make the additional assumption that for j — !,••-,/ we have no

nontrivial MTM from Rj -> No, then we can say more. If m = n — 3, then we

have um E L\Xoc{R\ No) such that ιιm | B»λ E 3CΛ i ?, and um(x\ x") = tim(x")

for xf E Λw" 3, x/r E R? where wm has an isolated singularity at x" = 0.

Therefore, by Lemma 5.2, ύm E L 2

l o c ( i? 3 , iV0) is an MTM and hence trivial by

assumption. Thus we had m < n — 4. We can repeat the same reasoning for

m — n — 4, ••-,« — / and we conclude that m < « — / — 1 which then implies

5 < n — I — 1 for any s < dim S and hence dim § < « — /— 1.

Finally, suppose we had n — I + 1 and S Φ 0 . If /?0 E S and u0 E

L^ loc(Λπ, iV0) is a blown-up harmonic map at p0, then the above argument

shows that u0 has singular set S o = {0} and u0 is an MTM. If there were a

sequence/?, E S with/?, -*/?0>
 t h e n w e could choose λ(ι') = 4dist(/?z, /?0) and

consider the scaled maps wλ(/) E L](BX, No). By the choice of λ(/), we have

S λ ( / ) Π 3-Bjy4 7̂  0 for each /. Since the limit u0 has an isolated singularity at

0, this contradicts Proposition 4.7. Therefore S is discrete. The same argument

shows that, in general, for n = 3 either S = 0 or S is discrete. This completes

the proofs of both Theorems II and IV.
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