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ALMOST FLAT MANIFOLDS

ERNST A. RUH

1. Introduction

A compact riemannian manifold M is said to be ε-flat if the riemannian
sectional curvature K and the diameter doiM satisfy the inequality | K \ d2 < ε.
In [3] Gromov proved that any sufficiently flat riemannian manifold possesses
a finite cover which is diffeomorphic to a nil-manifold. In addition, Gromov
demonstrated that every nil-manifold carries an ε-flat metric for any ε > 0.
Recently, following Gromov's original ideas and improving the estimate for the
pinching constant ε = ε(«), Buser and Karcher [2] gave a detailed proof of this
result.

In the present paper we prove a stronger version of this theorem by showing
that M itself, and not only a finite cover, possesses a locally homogeneous
structure. In fact, we prove that under suitable curvature assumptions, M is
diffeomorphic to the quotient of a simply connected nilpotent Lie group N by
an affine finite extension Γ of a lattice in N. In this form the theorem
generalizes the well known Bieberbach theorem on euclidean space-forms.

The main idea in this proof is the same as in Min-Oo and Ruh [9], [10],
where we solved a certain partial differential equation on M. Here the
additional problem stems from the fact that the elliptic operator in question is
not strictly positive. The cokernel of this operator is responsible for the fact
that the model N is not known a priori, but has to be constructed in the proof.

In addition to the deformation techniques employed in [9], [10], we utilize
one of the main ideas in Gromov's proof, the imitation of the proof of
Bieberbach's theorem as presented in Chapter 3 of Buser-Karcher [2]. How-
ever, dependence on this chapter makes estimates for the pinching constant
ε = ε(n) better than exp(-exp«2) impossible. Nevertheless, we feel that a
realistic constant would be exp( — n2)\ accordingly no estimate of ε(n), n =
dim Λf, is given in this paper.
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2. The result

The main result of this paper is the following generalization of Bieberbach's

theorem on compact euclidean space forms and Gromov's theorem on almost

flat manifolds. To formulate the theorem we recall that Γ is called an extension

of L by H if 1 -> L -> Γ -> H -> 1 is an exact sequence of group homomor-

phisms.

Theorem. Let M denote a compact riemannian manifold, d the diameter, K

the sectional curvature, and n the dimension of M. There exists a constant

ε = ε(n) > 0 such that \K\d2 < ε implies that M is diffeomorphic to T\N,

where N is a simply connected nilpotent Lie group, and Γ is an extension of a

lattice L C N by a finite group H.

Remark. As in the case of the Bieberbach theorem it is possible to specify

the manner in which the fundamental group Γ of M acts on N. The construc-

tions of the proof provide a riemannian metric as well as a connection D which

is compatible with this metric. Left translation in the Lie group N coincides

with parallel translation with respect to D. The fundamental group Γ acts as a

group of affine isometries of N, i.e., the elements of Γ can be viewed as

diffeomorphisms of N preserving the connection D as well as the metric.

In case M is flat, N = Rn, and the above result is the Bieberbach theorem.

The finite cover M' of M with covering group H = T/L is a nil-manifold

L\N, and we recover Gromov's theorem. The estimate | H\< 2 l4 d i m O ( n> of

Buser-Karcher [2] holds here as well.

To put the main result of this paper into proper perspective, we wish to

introduce a qualitative version of the concept of Lie group. To motivate this

concept, we recall that the structure of a Lie group on a simply connected

manifold with basepoint e is determined by a connection D on the tangent

bundle with curvature R — 0 and parallel torsion, i.e., DT = 0. The connection

is provided by the left invariant vector fields and, vice versa, provides left

invariant vector fields. With this in mind the following definition is natural.

Definition. A compact manifold P with metric connection D is called an

ε-almost Lie group, if (|| DT \\ + || R \\)d2 < ε, where d is the diameter of P.

A similar generalization of Lie groups, called soft Lie groups, was proposed

by Regge and Ne'eman [11]. In [7] Nomizu proposed to study a more general

concept. A natural question to study is whether an almost Lie group is always

diffeomorphic to Γ \ G with Γ an extension of a lattice L of a Lie group G. The
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answer is yes if the model group is abelian, i.e., if the torsion is zero (close to
zero is sufficient). This is the result of the present paper. Theorem 1 of [9]
shows that the answer is yes if the model group is compact and semi-simple,
i.e., if the "Killing form" constructed from the torsion is negative definite. We
conjecture that, for a suitable ε = ε(«), any ε-almost Lie group modelled on a
compact Lie group is diffeomorphic to Γ \ G, with G a Lie group and Γ an
extension of a lattice in G. Manifolds modelled on U(2) should be of interest
here because they occur in physics.

3. Outline of proof

The starting point of the present proof is Chapter 3 of Buser-Karcher [2],
where the linear holonomy h(a) of closed loops a in M is studied. The main
result is that if a loop a is not too long and if h(a) is close to the identity in
0{n), then, for a suitably small pinching constant ε(«), h(a) is in fact
extremely close to the identity. As a consequence, the points h{ά) E O(n) with
a a closed loop in M occur in well defined clusters, and these clusters are the
elements of a finite group H. Center of mass arguments show that H is
isomorphic to a subgroup of the orthogonal group O(n).

In the first step of the proof, we use the above information on the linear
holonomy to construct a flat connection V' on TM with holonomy group H.
In general, the torsion T of V' is nonzero. We prove that \\T\\ is bounded by
a constant times the square root of ε(π), and therefore is arbitarily small for a
suitable choice of ε(n).

In the second step, we construct a flat connection D near v ' with parallel
torsion T - TD, i.e., DT - 0. To solve the partial differential equation DT-Q
we follow, as in [9], [10], the method of Newton-Kolmogorov-Moser and solve
a linearized deformation equation well enough for the iteration to converge to
a connection D with DT — 0. As in [9], [10], the construction of D requires the
study of a certain elliptic operator Δ". The additional difficulty here is that Δ"
is not strictly positive because no assumption is made on the sign of the
curvature of the riemannian manifold.

We overcome this difficulty by comparing Δ", lifted to a finite cover Q of M,
to the Laplacian on functions. The kernels have the same dimension, and the
L2-norms on the orthogonal complements are nearly the same. Therefore an
estimate of Li-Yau [8] on the first eigenvalue of the Laplacian yields an
estimate from below for the norm of Δ" restricted to the orthogonal comple-
ment of the kernel.
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In the third and final step of this proof we observe that the connection D

defines a Lie group structure on the universal cover M of M. Now let N denote

this Lie group with underlying manifold M. We identify the fundamental

group of M with a subgroup Γ of the group A of affine transformations of M.

N, via left translation, is a normal subgroup of A. We then define the groups L

and H to be kernel and image respectively of the homomorphism Γ c ^ ^

A/N. Finally, we show that, for suitably small ε(n), the Lie group N is

nilpotent.

The norms utilized in this paper are defined exactly as in [10]. In particular,

II || denotes the maximum norm, and || \\s q the Sobolev norm in Lq involving

the first s derivatives.

4. The proof

We begin with a review of the results of [2, Ch. 3] which are relevant for the

present proof. To simplify notation we normalize the diameter of M: d = 1,

and work with curvature bounds | K\< Λ2, i.e.,Λ2 = ε(n). We pay no attention

to estimates for ε(n) and prove only the existence of ε(n) > 0 such that the

theorem holds.

Let p E M denote an arbitrary point. The exponential map exp: TpM -> M

has maximal rank at least in a ball Br with center at 0 E TpM and radius

r — 77Λ"1. The curvature assumptions are such that r is large compared to the

diameter d = 1 of M. On Br we define the riemannian metric exp* g, where g is

the metric on M, in order to turn exp into a local isometry. Let u — (Xλ, , Xn)

denote the field of orthonormal frames on Br defined by parallel translation,

with respect to the Levi-Civita connection of exp* g, along geodesic rays of an

orthonormal frame M(0) in 0 E Br. As usual we identify the frame u(x) in TxBr

with a linear map, an isometry in this case,

u(x):Rn-*TxBr.

Let mr — BrΠ exp~\{p}). The elements of πr are discrete in Br. To each

a E πr we associate a local isometry

Sa:Br^Br

defined as follows: Let ώSα(0): T0Br -» TpM -> TaBr be the isometry provided

by the exponential map mapping T0Br and TaBr respectively to TpM, and

extend this isometry of tangent spaces by mapping geodesic rays originating at

0 E Br to corresponding geodesic rays originating at a E Br. The map Sa is a

local isometry, because it projects to the identity on M and it can be extended

as long as the geodesic rays remain in Br.
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The parallelization u of Br gives rise to a holonomy map

defined by a H> w(α)"1 o dSa o u(0): R" -» Γo£,. -* Γα£ r -> R". In the following

estimates the distance d(a, b),a,b E SO(n) is defined to be the absolute value

of the maximal rotation angle of ab~λ. The following proposition summarizes

the main results of [2, Ch. 3] relevant to the present proof. The slight

modification in notation is due to the fact that we wish to identify the geodesic

loops a through p E M with the corresponding endpoints of geodesic segments

starting in 0 E Br, and view them as local diffeomorphisms Sa of Br. The

advantage of this is that the abstractly defined Gromov product of [2] turns

into composition of the corresponding local diffeomorphisms.

Proposition. Let w = 2 l 4 d i m 5 O ( ' ί ) , p > 104w. For suitably small ε(n) > 0

the following assertions hold:

(i) Let a,β(Ξπp satisfy d(h(a\ h(β)) < 0.47. Then d(h(a)9 h(β)) < 0.01,

and a ~ β if d(h(a), h(β)) < 0.47 is an equivalence relation.

(ii) The set H of equivalence classes is a group with multiplication defined by

composition of representative local isometries Sa.

(iii) The order of H is at most equal to w.

(iv) Each element ofH can be represented by an element a E B2w.

In the sequel we wish to view H as a subgroup of O(n). To achieve this we

define a map ω0: H -> O(«), where the image of an equivalence class is its

center of mass in O(n). This map is an almost homomorphism in the sense of

[4]. Theorem (3.8) of [4] shows that there is a homomorphism ω: H -> O(n)

near ω0. Because of the proposition, assertion (i), ω is injective and we identify

H with its image in O(n). Without change in notation, we modify the

definition of the holonomy map mr -> O(n) slightly to

h:πr->HCθ(n)9

where the arrow maps a loop a to the corresponding equivalence class.

After these preparations everything is ready for the first step of the proof,

the construction of a flat connection v ' on TM. To this effect we construct a

reduction Q of the structure group O(n) of the principal bundle P of

orthonormal frames to H.

Let Pq,q E M denote the set of orthonormal frames in TqM, and η a

positive function with support in the interior of Bp. Let u denote the frame

field on Bp defined above, and let exp"1!^} denote the inverse image of q,

where exp is the exponential map Tp -> M considered earlier. As a consequence

of the proposition and the small curvature, the orthonormal frames

{(exp^wίj^g; y E exp"1!^}, g E H} C Pq = O{n) fall into | H | ^ w equiva-

lence classes. For every y E exp"1^} and g E H chosen suitably, (exp^ u(y))g
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is contained in every equivalence class exactly once, and H permutes the

classes. We define the center for each class with respect to the weight iη(y),

where v — Ση(y)\ compare [6] for details. Because the center of mass con-

struction is equivariant with respect to isometries, (right action of H in Pq) H

permutes the centers. Let Qq C Pq denote the set of these centers. Now

Q— ΌqξΞMQqΊs a. principal bundle with fiber H, and is a reduction of P to

the structure group H.

The fiber bundle Q on M defines a flat connection v ' on the bundle P of

orthonormal frames. We proceed to estimate the torsion T of v ' . Essentially,

V ' is obtained by averaging the connections defined by the images under the

exponential map of the frame field u defined on Bp. A first contribution to T

is therefore the torsion of the flat connection v " defined by the frame field u.

To estimate this contribution we estimate the difference V — V ", where V is

the Levi-Civita connection on Bp with respect to the metric exp*g defined

earlier. Such an estimate was obtained in [5]. The result is | | v — V "II < C | J R T |

•p, where K is the sectional curvature, c is a constant depending on the

definition of 11 11 only, and the assumption on the pinching constant ε(n) is

such that Bp is roughly isometric to a euclidean ball of radius p. Since

\\TU\\ < | | v — V"ll, the above estimate implies that, for sufficiently small

ε(n% \\TU\\ is arbitrarily small. A second contribution to T is caused by the

nonzero derivative with respect to y E Bp of the weight function η utilized in

the definition of Qq. Let η be equal to 1 on Bp_λ and decreasing to zero on

Bp — Bp_v approximately with gradient 1. The contribution of dη is then

proportional to 1/p. A third contribution to T is caused by the deviation of

the center of mass construction from the corresponding linear average of

connections. This contribution is negligeable since the equivalence classes

utilized in the construction are contained in small balls in Pq = O(n). The final

estimate is

(1) I I Γ Ί K c Λ ,

where c SL constant depending on the dimension, and Λ is the square root of

e(n).
In the second and main step of the proof we construct a flat connection D

near v r with parallel torsion. D will be the limit of a sequence of flat

connections on M. We start with a few definitions. Let β denote a/?-form on M

with values in TM provided with a flat metric connection D'. We define

i

(2)
8'β(X2, --,Xp)= Σ (Dltβ)(ek,X2,-- ,Xp),

k=\
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where (eu ,en) is an orthonormal basis in TM, and (X.) are vector fields on
M.

For further reference we list the expressions for d' ° d' and δ' © δ' respec-
tively:

(3)

where Γ' is the torsion of D\ and T'(Xi9 Xj)β is an abbreviation for the
covariant derivative of β with respect to D' in direction T'(Xi9 Xj)9

( 4 ) « ' o

The sequence of flat connections Z)' with limit D will be constructed by
means of gauge transformations. We continue with listing properties of gauge
transformations; compare [1]. Let σ denote a section of TM 0 Γ*M, and let
j = (/ + a)"1, where 7 is the identity in Hom(ΎΛf, TM) = TM 0 T*M. For σ
small enough, 5 = (/ + σ)"1 exists and is a section of Aut TM and thus an
element of the gauge group. The gauge group acts on the affine space of
connections on TM. The image s*D = Ds of D under s is

/)* = s o £ o s " 1 ,

If Z> is flat, then Z>* is flat as well. Let T and Ts denote the torsion of D and D*
respectively. Then

Γ(X, Y) =DS

XY- Ds

γX- [X,Y]

= j D j ^ y ) - sDY(s~lX) - [X, Y]

(5) = T(X9Y) + s(Dxs-χ)Y- S(DYS-1)X

where d' is the "exterior derivative" defined above.
After these preparations we define a sequence of gauge transformations sι

transforming the flat connection V' into a flat connection D with parallel
torsion. Starting with D° — Vr we define inductively

Di+\ =s*Dt
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where s = (/ + σ1')"1, and σ' is a section in TM ® Γ*M to be defined below.
To facilitate notation we denote σ* and T\ the torsion of D\ by σ and Γ
respectively. Let d" and δ" denote the adjoint operators of δ' and d' respec-
tively with respect to a metric g' on TM with D'g' = 0. We define

{fλ Δ' = df8' + b'd\
W Δ" = </"δ" + δ"</",

and let a'o and αj denote the projections of a differential form a on M with
values in ΓM to kerΔ' and (kerΔ')± respectively. (Same definition for Δ".)

In the following main lemma we define the differential form σ utilized in the
inductive definition of D\ and state the estimates sufficient to prove conver-
gence.

Main lemma. Let D' be aflat metric connection on TM with holonomy group
H of order \ H | < w, and T the torsion of D'. There exists a constant A > 0
depending on w, the dimension n, and the curvature K of M such that \\T\\ < A
implies that σ = δ"β, where β is the unique solution of Δ"β = -T[ perpendicular
to ker Δ", satisfies

(ii) l lσ | | l w < c\\T[\\Qq,where c is a constant depending on wyn and d —
diam Λf, || || is the maximum norm, and 11 II,. q is the Sobolev norm defined in
[10, (5.1)].

The proof of the main lemma is similar to the proof of the main lemma of
[10]. The following modifications are required. The L2-estimate for /? in [10]
follows from a Bochner formula. The corresponding formula in the present
case does not furnish the required information, because no assumption is made
on the sign of the curvature. The Bochner formula will be replaced by a
comparison of Δ" to the Laplace operator on functions. The improvement of
the L2-bound to a bound for higher Sobolev norms is the same as in [10] and
does not require further discussions. The second modification of the proof is
necessary, because the present main lemma is sharper than its counterpart in
[10]. Here we estimate ||έ/'σ+ T{\\ in terms of | |Γ | | IIΓ{||0^ and not just
II7ΊI2.

We first estimate ll/?llOf2. To do this we work on the holonomy bundle Q
over M. The reason is that TQ is trivial. Let u = (eλ,— -,en) denote an
orthonormal frame field, parallel with respect to D' lifted to Q. To estimate the
norm of Δ" on (kerΔ")"1 we compare Δ" to the Laplace operator Δ (for
functions on Q) operating on the component functions βjk, with respect to the
frame field u of β.
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The adjoints of d' and δ' respectively with respect to the metric defined by u

are

S"a{X2,---,Xp) = - 2 (Dtka)(ek,X2, -,Xp)

(7) k=\
- 2 (^ek)a(ek,X2, ,Xp),

k=\

d"a{X0, -',Xp)= 2
(8)

P

Σ
i=0

Σ(-l)'(άivXl)a(x0, ,Xl, ,Xp),

where div et is the divergence of et with respect to the volume form provided by
w, and the vector fields Xi are parallel.

The Laplace operator applied to the component functions of a 2-form α with
values in TQ is given by the formula

(9) ΔαjΛ = -a!jk,pp - (div ep )a)k.p,

where the index/? after the semi-colon indicates the derivative in direction ep,
and the Einstein summation convention is in effect.

The corresponding formula for Δr is

(10) (Δ'α)J* - -a%pp + Tpγkp^q - T«kapJ;q9

where Tp

qj are the components of the torsion T of D'. From (9) and (10) it
follows that

(11) Δαj, - (Δ'α)}* = - (dive,)α}fc:j, - 7^«ί, :, + T^Jpiq.

We observe that the difference between the two operators is a first order
differential operator of norm ||Γ| |. In addition, the kernel of Δ, which is equal
to the space of forms with constant components, is contained in the kernel of
Δ'. Let λ denote the first eigenvalue of Δ on the manifold Q, and λ' a lower
bound for the L2-norm of Δ' applied to the elements in (ker Δ)-1-. (11) yields

(12) λ ' > λ - c | | 7 Ί | .

Thus, for | |Γ| | small enough, λ' is essentially bounded from below by λ. To
obtain a lower bound for λ' we utilize the estimate

(13) λ ^ - ^ - + min{(«- 1)5,0}
Δdι
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of Li-Yau [8], where 8 is the Ricci curvature of the riemannian manifold Q,

and dQ is its diameter. In our case, for suitably small pinching constant ε(«),

the metric on Q is a small perturbation, in the C1-topology, of the original

metric on M, and the above estimate applies with δ close to zero. In addition,

dQ<dw. The conclusion is that kerΔ = kerΔ', and that Δ'"1: (kerΔ")"1-*

(kerΔ')-1 is bounded in L2 by a constant depending only on the dimension of

M. (The diameter d of M was normalized to 1.) The analogous estimate holds

for Δ""1, and we obtain the following estimate for the differential form β of the

main lemma:

(14) l l iβ | | O i 2 <c | | 7 ϊ l l O w .

As in [10, (5.7)] interior regularity estimates for the elliptic operator Δ" yield

(15)

We continue with an estimate for dive^. The Levi-Civita connection for the

metric defined by u is equal to

D' + A~lT,

where Λ : F Λ F Θ F - > F ® F Λ F is the vector space isomorphism defined

by skew symmetrization in the last two variables, V = V* is the tangent space

of Q at the point under consideration, and T is the torsion of Df. Let UJk

denote the components of U — A~ιT with respect to the frame field u —

(el9- ,en). Because D/ei = 0, the divergence of ek is

άiwek =-Ufk.

We define Lg = A~1TQ, U[ = A~ιT[9 where Γo' and T[ are, as defined earlier, the

projections of Γ t o kerΔ' and (kerΔ')"1 respectively. Now Γo', and therefore £/0',

have constant coefficients with respect to u. Since the integral over Q of div ek

is zero, and \\T\\ < 1, we obtain

(16) l l d i v e j | o > ί < c | | 7 ΐ l l o > ί .

As a consequence, the norms of the following differential operators of order

zero are

(17) H«/'-<Hlo.,<cll77llo,,,

(18) l lδ '-δ"l l O l ,<cl l7ΐ l l«> f ί .

We continue with an estimate for d'T[. The first Bianchi equation, because

the curvature of D' is zero, reads

dT(elt eJt ek) = d'T{(en eJt ek) = SΓ{Γ(elt βj), ek),
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where S denote the cyclic sum with respect to /, j, k. We abbreviate

T'(T\ei9 βj\ ek) = T o T'(ei9 ej9 ek) and have

d'T[ = S(Ti o 7J) + S(T[ o 7J) + S(!Γ0' o T

Because of the estimate (18) and D'TQ - 0, we obtain

l|έ/TίllO f 2<c||7ΊI IIΓίllo,^.

In addition, \\d'T[\\ < c\\T\\ < 1, and therefore

llrf/7Tllo,,
( } Hrf/Tίll0^

The basic strategy for the proof of the main theorem is the same as in [10].

Let Ws denote the Sobolev space of differential forms on Q with values in TQ

involving the first s derivatives and q > n with norm defined in [10, (5.1)]. The

estimate (15) yields WOq estimates for σ = δ"β and d"β. First, we improve

these estimates to Wλq estimates. The basic tool is the following Z^-interior

regularity estimate for the solution u of a linear elliptic system Lu = f of order

s.

(20) ll«llr+J,,<c(ll«llo,2 + l l/l l r,J,

where the constant c depends on the coefficients of the operator L and the

domain of definition of u. As in [9], [10], it is important to be sure that c

depends only on the data provided in the main lemma. Since the proof of this

is exactly the same as in the previous papers [9], [10] we omit the discussion of

the constants here. As in [9], [10], we cannot use the full strength of (20) to

estimate II β II2,̂  instead of the estimate (15), because the assumptions on the

coefficients of Δ" are not strong enough for this. Instead we estimate || σ || 1 of

the main lemma in the following more complicated fashion.

We define

(21) γ = _ ( ^ σ + Γί),

and obtain the elliptic systems

(22) d"σ = -T[-y9 δ"σ = δ'Όδ"β.

(23) d"{d"β) = d" o d"β9 δ"(d"j8) = γ.

Because of (3), (4), and (15) the right-hand sides of both systems are bounded

by (II7YII 0>^ + II y II0^), and (20) yields

(24) Hσll^+llrf'iSll^^cOlΓίllo^+llγlloJ.

The differential form γ satisfies the elliptic system

(25) d"Ί = -d"(d"σ + T[)9 δ"γ = δ" ° δ"{d"β).
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In addition, (21), together with (17) and (18), shows that the norm llγόΊI0,2 °f
the projection of γ to kerΔ" is bounded by c II77IIJ .̂ On the other hand, the
L2-norm of Δ" on (kerΔ")"1 is bounded from below essentially by \
This follows from (13), (17) and (18). Now (19), (20), (24) and (25) yield

This estimate, by the Sobolev lemma, implies the first assertion of the main
lemma. The second follows from (24) and (26).

The main lemma proves that the sequence (D')9 i E N, of flat connections
converges, if e{n) is chosen suitably small, to a flat connection D with parallel
torsion. To check this claim let ( Γ ' ) / e N denote the sequence of torsion tensors
of the connections D\ and let ΓJ and T[ denote the projections of Γ1 to the
space of parallel tensors with respect to D\ and its orthogonal complement
respectively. We prove that Σ£L0 II T{\\ Oq converges with the speed of a geomet-
ric series Σ rι with 0 < r < θ < 1, where a suitable choice of ε(n) permits any
θ > 0. The computation (5) implies

(27) r + 1 = T* + T{ + d'o + Ofllσll ||</'σ||),

where 0(11 σ|| Ilί/'σ||) denotes a continuous term of maximum norm c||σ||
II d'o ||. The main lemma implies

(28) Ti+X = Γo' + 0 ( l | Γ ΐ l • IIΓ/llo,J.

While TQ is by definition parallel with respect to D\ it may not be parallel with
respect to Di+ι = Dι + (/ + σ)~ιDiσ. However, because of assertion (ii) of the
main lemma, the Sobolev lemma and estimate (20), the projection of Γo

z to the
orthogonal complement of the kernel of Δ/+1 = di+ι8i+ι + 8i+ιdi+ι satisfies
the estimate

(29) IIΓ/ + 1 | l 0 , ,<dlΓ' | | lir'Ho^.

The iteration starts with the connection D° = Vr whose torsion, because of
(1), can be rendered as small as we please by a suitable choice of ε(n). (28)
shows that the sequence of continuous torsion tensors (Γ*), for a suitable
choice of ε(«), is bounded. In fact we can achieve c||Γ'|l < θ for c as in (29)
and any θ > 0.

The main lemma, assertion (ii), and (29) now imply that (D')i E N con-
verges in WOq to a connection D. The torsion tensors converge to the torsion
tensor T of D in WQq as well. The projection of T to (kerΔ)"1 is zero in WOq

and therefore vanishes identically, and T has constant coefficients in terms of a
parallel section u. T satisfies the Jacobi identity and defines a Lie algebra Q
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with bracket [,] = T on Rn = uιTpQ. The differential form ω: TM -> g,
defined by X*+ u~ιX, satisfies the system of elliptic differential equations

dω + [ ω , ω ] = 0 , δω = O.

Therefore ω, and hence u and D, are smooth.
In the final step of the proof of the theorem we lift the covariant derivative

D to the universal cover M of M. Let e G M denote an arbitrary point, and
u(e) an orthonormal frame in TeM. Let {Xl9-—9Xn} denote the vector fields
on M obtained by parallel translation of u(e) with respect to the flat connec-
tion D. Because DT = 0, where T is the torsion of D, the vector fields {Jζ.} are
a basis of some Lie algebra. Let N denote the Lie group with underlying
manifold M and neutral element e ELM defined by {Xt} viewed as a basis of
the left invariant vector fields. N will turn out to be a nilpotent Lie group.

The Lie group of affine transformations A on N = M is by definition the
group of diffeomorphisms of M leaving the connection D invariant. The
fundamental group Γ of M acts by decktransformations on M and is a
subgroup of A. The Lie group N, via left translations, is also a subgroup of A.
N is in fact a normal subgroup because the differential of a diffeomorphism
ξ E A rotates the vector fields by a constant orthogonal matrix. We define the
lattice L and the finite group H of the theorem to be the kernel and image
respectively of the homomorphism Γ C A -> A/N.

To complete the proof we refer to a theorem of Zassenhaus and Kazdan-
Margulis, compare Raghunathan [12, Th. 8.16]: There exists a neighborhood
U C N such that if L is any discrete subgroup of N, then L Π U is contained in
a connected nilpotent Lie subgroup of N. In addition, the size of the neighbor-
hood U can be estimated in terms of the Lie bracket. Since the index of L C Γ
is bounded by the number w of the proposition, the pinching constant ε(n) can
be chosen so small that the nilpotent subgroup of the above theorem coincides
with N and N is nilpotent.
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