$C R$-SUBMANIFOLDS OF A KAEHLER MANIFOLD. II

BANG-YEN CHEN

1. Introduction

A submanifold N in a Kaehler manifold \tilde{M} is called a $C R$-submanifold if (1) the maximal complex subspace \mathscr{D}_{x} of the tangent space $T_{x} \tilde{M}$ containing in $T_{x} N, x \in N$, defines a differentiable distribution on N, and (2) the orthogonal complementary distributiion \mathscr{D}^{\perp} of \mathscr{D} is a totally real distribution, i.e., $J \mathscr{D}_{x}^{\perp} \subseteq$ $T_{x}^{\perp} N, x \in N$, where J denotes the almost complex structure of \tilde{M}, and $T_{x}^{\perp} N$ the normal space of N in \tilde{M} at x.

In the first part of this series, we have obtained several fundamental results for $C R$-submanifolds. In the present part, we shall continue our study on such submanifolds. In particular, we prove that (a) the holomorphic distribution D of any $C R$-submanifold in a Kaehler manifold is minimal (Proposition 3.9); (b) every leaf of the holomorphic distribution of a mixed foliate proper $C R$-submanifold in a complex hyperbolic space H^{m} is Einstein-Kaehlerian (Proposition 4.4); and (c) every $C R$-submanifold with semi-flat normal connection in $\mathbf{C} P^{m}$ is either an anti-holomorphic submanifold in some totally geodesic $\mathbf{C} P^{h+p}$ of $\mathbf{C} P^{m}$ or a totally real submanifold (Theorem 5.11).

2. Preliminaries

Let \tilde{M}^{m} be a complex m-dimensional Kaehler manifold with complex structure J, and N be a real n-dimensional ($n \geqslant 2$) Riemannian manifold isometrically immersed in \tilde{M}^{m}. We denote by \langle,$\rangle the metric tensor of \tilde{M}^{m}$ as well as that induced on N. Let ∇ and $\tilde{\nabla}$ be the covariant differentiations on N and \tilde{M} respectively. Then the Gauss and Weingartan formulas for N are given respectively by

$$
\begin{gather*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y), \tag{2.1}\\
\tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.2}
\end{gather*}
$$

Communicated by K. Yano, March 5, 1981.
for any vector fields X, Y tangent to N, and ξ normal to N, where σ is the second fundamental form, and D the normal connection.

For any vector X tangent to N and ξ normal to N we put

$$
\begin{gather*}
J X=P X+F X \tag{2.3}\\
J \xi=t \xi+f \xi \tag{2.4}
\end{gather*}
$$

where $P X$ and $t \xi$ (respectively, $F X$ and $f \xi$) are the tangential (respectively, normal) components of $J X$ and $J \xi$ respectively.

In the following we shall denote by $\tilde{M}^{m}(c)$ a complex m-dimensional complex-space-form of constant holomorphic sectional curvature c. We have

$$
\begin{align*}
\tilde{R}(X, Y) Z= & \frac{c}{4}\{\langle Y, Z\rangle X-\langle X, Z\rangle Y+\langle J Y, Z\rangle J X \tag{2.5}\\
& -\langle J X, Z\rangle J Y+2\langle X, J Y\rangle J Z\} .
\end{align*}
$$

We denote by R and R^{\perp} the curvature tensors associated with ∇ and D respectively. A submanifold N is said to be flat (respectively, to have flat normal connection) if $R \equiv 0$ (respectively, $R^{\perp} \equiv 0$). For any vector fields X, Y, Z, W in the tangent bundle $T N$, and ξ, η in the normal bundle $T^{\perp} N$, the equations of Gauss, Codazzi and Ricci are given respectively by

$$
\begin{align*}
R(X, Y ; Z, W)= & \tilde{R}(X, Y ; Z, W)+\langle\sigma(X, W), \sigma(Y, Z)\rangle \tag{2.6}\\
& -\langle\sigma(X, Z), \sigma(Y, W)\rangle \\
\tilde{R}(X, Y ; Z, \xi)= & \left\langle D_{X} \sigma(Y, Z)-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right), \xi\right\rangle \\
& -\left\langle D_{Y} \sigma(X, Z)-\sigma\left(\nabla_{Y} X, Z\right)-\sigma\left(X, \nabla_{Y} Z\right), \xi\right\rangle, \\
\tilde{R}(X, Y ; \xi, \eta)= & R^{\perp}(X, Y ; \xi, \eta)-\left\langle\left[A_{\xi}, A_{\eta}\right] X, Y\right\rangle, \tag{2.8}
\end{align*}
$$

where $R(X, Y ; Z, W)=\langle R(X, Y) Z, W\rangle, \cdots$, etc.
Definition 2.1. A submanifold N of a Kaehler manifold \tilde{M} is called a CR-submanifold if there is a differentiable distribution $\mathscr{D}: x \rightarrow \mathscr{D}_{x} \subseteq T_{x} N$ on N satisfying the following conditions:
(a) \mathcal{Q} is holomorphic, i.e., $J \mathscr{D}_{x}=\mathscr{D}_{x}$ for each $x \in N$, and
(b) the complementary orthogonal distribution $\mathscr{D}^{\perp}: x \rightarrow \mathscr{D}_{x}^{\perp} \subseteq T_{x} N$ is totally real, i.e., $J \mathscr{D}_{x}^{\perp} \subseteq T_{x}^{\perp} N$ for each $x \in N$.

If $\operatorname{dim} \mathscr{D}_{x}^{\perp}=0$ (respectively, $\operatorname{dim} \mathscr{D}_{x}=0$), N is called a complex (respectively, totally real) submanifold. A CR-submanifold is said to be proper if it is neither complex nor totally real.

For a $C R$-submanifold N we shall denote by ν the orthogonal complementary subbundle of $J \mathscr{Q}^{\perp}$ in $T^{\perp} N$. We have

$$
\begin{equation*}
T^{\perp} N=J \mathscr{Q}^{\perp} \oplus \nu, \quad \nu_{x}=T_{x}^{\perp} N \cap J\left(T_{x}^{\perp} N\right) . \tag{2.9}
\end{equation*}
$$

A subbundle μ of the normal bundle is said to be parallel if $D_{x} \xi \in \mu$ for any vector $X \in T N$ and section ξ in μ.

A $C R$-submanifold N in a Kaehler manifold \tilde{M} is said to be anti-holomorphic if $T_{x}^{\perp} N=J \mathscr{D}_{x}^{\perp}, x \in N$.

3. Some basic lemmas

First we recall some basic lemmas for later use.
Lemma 3.1 [4]. Let N be a CR-submanifold of a Kaehler manifold \tilde{M}. Then we have

$$
\begin{gather*}
\left\langle\nabla_{U} Z, X\right\rangle=\left\langle J A_{J Z} U, X\right\rangle, \tag{3.1}\\
A_{J Z} W=A_{J W} Z, \tag{3.2}\\
A_{J \xi} X=-A_{\xi} J X \tag{3.3}
\end{gather*}
$$

for any vector fields U tangent to N, X in \mathscr{D}, Z, W in \mathscr{D}^{\perp}, and ξ in ν.
Lemma 3.2 [4]. The totally real distribution Q^{\perp} of any $C R$-submanifold in a Kaehler manifold is integrable.
Lemma 3.3 [1], [2], [4]. Let N be a CR-submanifold of a Kaehler manifold \tilde{M}. Then the holomorphic distribution DD is integrable if and only if

$$
\begin{equation*}
\langle\sigma(X, J Y), J Z\rangle=\langle\sigma(J X, Y), J Z\rangle \tag{3.4}
\end{equation*}
$$

for any vectors X, Y in \mathscr{D}, and Z in \mathscr{D}^{\perp}.
Lemma 3.4 [2]. Let N be a CR-submanifold in a Kaehler manifold \tilde{M}. Then the leaves of \mathscr{D}^{\perp} are totally geodesic in \tilde{M} if and only if

$$
\begin{equation*}
\left\langle\sigma\left(\mathscr{D}, \mathscr{D}^{\perp}\right), J_{\mathscr{D}}{ }^{\perp}\right\rangle=\{0\} . \tag{3.5}
\end{equation*}
$$

Lemma 3.5. Let N be a CR-submanifold in a Kaehler manifold \tilde{M}. We have the following statements:
(a) If the leaves of \mathscr{D}^{\perp} are totally geodesic in \tilde{M}, then

$$
\begin{gather*}
\sigma\left(\mathscr{D}^{\perp}, \mathscr{D}^{\perp}\right)=\{0\}, \quad\left\langle\sigma\left(\mathscr{D}^{2}, \mathscr{D}^{\perp}\right), J^{\mathscr{D}}{ }^{\perp}\right\rangle=\{0\}, \tag{3.6}\\
\tilde{H}_{B}(X, Z)=2\|\sigma(X, Z)\|^{2}+2\left\langle A_{J Z} J X, J A_{J Z} X\right\rangle \tag{3.7}
\end{gather*}
$$

for any unit vectors X in \mathscr{D}, and Z in \mathbb{D}^{\perp}, where \tilde{H}_{B} denotes the holomorphic bisectional curvature of \tilde{M}.
(b) If (3.6) holds, the leaves of \mathscr{D}^{\perp} are totally geodesic in \tilde{M}.

Proof. Let N be a $C R$-submanifold in a Kaehler manifold \tilde{M}. Then \mathscr{D}^{\perp} is integrable (Lemma 3.2). Let N^{\perp} be a leaf of \mathscr{D}^{\perp}. We denote by σ^{\perp} and $\sigma^{\prime \prime}$ the second fundamental form of N^{\perp} in \tilde{M} and N, respectively. We have

$$
\sigma^{\perp}(Z, W)=\sigma^{\prime \prime}(Z, W)+\sigma(Z, W)
$$

for any vectors Z, W in \mathscr{D}^{\perp}. Thus, by Lemma 3.4, the leaves of \mathscr{D}^{\perp} are totally geodesic in \tilde{M}, if and only if (3.6) holds.

Assume that the leaves of \mathscr{D}^{\perp} are totally geodesic in \tilde{M}. For any vector fields X, Y in \mathscr{D} and Z, W in \mathscr{D}^{\perp}, equation (2.7) of Codazzi and (3.5) give

$$
\begin{aligned}
\tilde{R}(X, Y ; Z, J W)= & \left\langle D_{X} \sigma(Y, Z)-\sigma\left(Y, \nabla_{X} Z\right), J W\right\rangle \\
& -\left\langle D_{Y} \sigma(X, Z)-\sigma\left(X, \nabla_{Y} Z\right), J W\right\rangle \\
= & \left\langle\sigma(X, Z), J \tilde{\nabla}_{Y} W\right\rangle-\left\langle\sigma(Y, Z), J \tilde{\nabla}_{X} W\right\rangle \\
& +\left\langle A_{J W} X, \nabla_{Y} Z\right\rangle-\left\langle A_{J W} Y, \nabla_{X} Z\right\rangle \\
= & \langle\sigma(X, Z), J \sigma(Y, W)\rangle-\langle\sigma(Y, Z), J \sigma(X, W)\rangle \\
& +\left\langle A_{J W} X, \nabla_{Y} Z\right\rangle-\left\langle A_{J W} Y, \nabla_{X} Z\right\rangle
\end{aligned}
$$

Thus by applying (3.5) and Lemma 4.1 we find

$$
\begin{aligned}
\tilde{R}(X, Y ; Z, J W)= & \langle\sigma(X, Z), \sigma(J Y, W)\rangle-\langle\sigma(Y, Z), \sigma(J X, W)\rangle \\
& +\left\langle A_{J W} X, J A_{J Z} Y\right\rangle-\left\langle A_{J W} Y, J A_{J Z} X\right\rangle
\end{aligned}
$$

from which we obtain (3.7).
Corollary 3.6. Let N be a proper anti-holomorphic submanifold in $\mathbf{C} P^{h+p}$. If the leaves of \mathscr{D}^{\perp} are totally geodesic in $\mathbf{C} P^{h+p}$, then the holomorphic distribution is not integrable.

This corollary follows from Lemmas 3.4 and 3.5.
For the holomorphic distribution \mathscr{D}, we have
Lemma 3.7. Let N be a CR-submanifold in a Kaehler manifold \tilde{M}. Then
(1) the holomorphic distribution is integrable, and its leaves are totally geodesic in N if and only if

$$
\begin{equation*}
\left\langle\sigma(\mathscr{D}, \mathscr{D}), J \mathscr{Q}^{\perp}\right\rangle=\{0\} \tag{3.8}
\end{equation*}
$$

(2) the holomorphic distribution is integrable, and its leaves are totally geodesic in \tilde{M} if and only if

$$
\begin{equation*}
\sigma(\mathscr{D}, \mathscr{D})=\{0\} \tag{3.9}
\end{equation*}
$$

Proof. Let N be a $C R$-submanifold in a Kaehler manifold \tilde{M}. If (3.8) holds, then also (3.4). Thus the holomorphic distribution \mathscr{D} is integrable (Lemma 3.3). Moreover, from (2.1), (2.2) and (2.3) we have

$$
\begin{aligned}
\left\langle\nabla_{X} Z, J Y\right\rangle & =\left\langle\tilde{\nabla}_{X} Z, J Y\right\rangle=-\left\langle\tilde{\nabla}_{X} J Z, Y\right\rangle \\
& =-\left\langle A_{J Z} X, Y\right\rangle=-\langle\sigma(X, Y), J Z\rangle=0
\end{aligned}
$$

for any vector fields X, Y in \mathscr{D}, and Z in \mathscr{D}^{\perp}. Thus the leaves of \mathscr{D} are totally geodesic in N. The converse of this has been proved in [4]:

Statement (2) follows from statement (1) and the following identity

$$
\sigma^{T}(X, Y)=\sigma^{\prime}(X, Y)+\sigma(X, Y)
$$

for any vectors X, Y in \mathscr{D}, where σ^{\prime} and σ^{T} are the second fundamental forms of any leaf N^{T} of \mathscr{D} in N and \tilde{M} respectively.

Let \mathscr{H} be a differentiable distribution on a $C R$-submanifold $N\left(\mathscr{H}: x \rightarrow \mathcal{H}_{x}\right.$ $\left.\subseteq T_{x} N, x \in N\right)$. We put

$$
\begin{equation*}
\stackrel{\circ}{\sigma}(X, Y)=\left(\nabla_{X} Y\right)^{\perp} \tag{3.10}
\end{equation*}
$$

for any vector fields X, Y in \mathcal{H}, where $\left(\nabla_{X} Y\right)^{\perp}$ denotes the component of $\nabla_{X} Y$ in the orthogonal complementary distribution \mathscr{F}^{\perp} in N. Then the Frobenius theorem gives the following

Lemma 3.8. The distribution \mathfrak{H} is integrable if and only if $\dot{\circ}$ is a symmetric on $\mathscr{H} \times \mathcal{H}$.

Let X_{1}, \cdots, X_{r} be an orthonormal basis in \mathcal{H}. We put

$$
\stackrel{\circ}{H}=\frac{1}{r} \sum_{i=1}^{r} \stackrel{\circ}{\sigma}\left(X_{i}, X_{i}\right) .
$$

Then $\stackrel{\circ}{H}$ is a well-defined vector field on N (up to sign). We call $\stackrel{\circ}{H}$ the mean-curvature vector of the distribution \mathcal{H}.

A distribution \mathscr{H} on N is said to be minimal if the mean curvature vector $\stackrel{H}{H}$ of \mathscr{H} vanishes identically, and \mathscr{H} is said to be totally geodesic if $\stackrel{\circ}{\sigma} \equiv 0$.

Proposition 3.9. Let N be a CR-submanifold of a Kaehler manifold \tilde{M}. Then
(a) the holomorphic distribution (2) is minimal, and
(b) the distribution \mathscr{D} is totally geodesic if and only if \mathscr{D} is integrable, and its leaves are totally geodesic in N.

Proof. Let N be a $C R$-submanifold of a Kaehler manifold \tilde{M}. For any vector fields X in \mathscr{D}, and Z in \mathscr{D}^{\perp}, Lemma 3.1 gives

$$
\begin{equation*}
\left\langle Z, \nabla_{X} X\right\rangle=\left\langle A_{J Z} X, J X\right\rangle . \tag{3.11}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\left\langle Z, \nabla_{J X} J X\right\rangle=-\left\langle A_{J Z} X, J X\right\rangle \tag{3.12}
\end{equation*}
$$

Combining (3.11) and (3.12) we obtain

$$
\begin{equation*}
\left\langle\nabla_{X} X+\nabla_{J X} J X, Z\right\rangle=0 \tag{3.13}
\end{equation*}
$$

This implies statement (a). Statement (b) follows from (3.10) and Lemma 3.8.

4. Mixed foliate $C R$-submanifolds

Definition 4.1. A $C R$-submanifold is said to be mixed totally geodesic if $\sigma\left(\mathscr{Q}, \mathscr{D}^{\perp}\right)=\{0\}$.

Definition 4.2. A $C R$-submanifold N in a Kaehler manifold \tilde{M} is said to be mixed foliate, if it is mixed totally geodesic, and its holomorphic distribution is integrable.

In [2], Bejancu, Kon and Yano proved that there is no mixed foliate proper $C R$-submanifold in $\tilde{M}^{m}(c)$ with $c>0$. In [4] the author proved that a $C R$-submanifold in C^{m} is mixed foliate if and only if N is a $C R$-product (for anti-holomorphic case, see [2]).

In this section, we shall study mixed foliate $C R$-submanifolds in a complex hyperbolic space H^{m}. For simplicity, we assume that H^{m} is a complex m-dimensional complex hyperbolic space with constant holomorphic sectional curvature -4.

Lemma 4.1. Let N be a mixed foliate $C R$-submanifold in H^{m}. Then for any unit vectors $X \in \mathscr{D}$ and $Z \in \mathscr{D}^{\perp}$,

$$
\begin{align*}
& \left\|A_{J Z} X\right\|=1 \tag{4.1}\\
& \|\sigma\|^{2} \geqslant 2 h p \tag{4.2}
\end{align*}
$$

where $h=\operatorname{dim}_{\mathbf{C}}$ D, and $p=\operatorname{dim}_{\mathbf{R}} \mathscr{D}^{\perp}$. The equality sign in (4.2) holds if and only if (a) the leaves of \mathscr{D}^{\perp} are totally geodesic in H^{m}, and $(\mathrm{b}) \operatorname{Im} \sigma=J \mathscr{D}^{\perp}$.

Proof. Let N be a mixed foliate $C R$-submanifold in H^{m}. Then Lemma 9.1 of [4] gives

$$
\begin{equation*}
\tilde{H}_{B}(X, Z)=-2\left\|A_{J Z} X\right\|^{2} \tag{4.3}
\end{equation*}
$$

for any unit vectors X in \mathscr{D}, and Z in \mathscr{D}^{\perp}. This gives (4.1).
Inequality (4.2) follows immediately from (4.1). From (4.1) it is clear that $\|\sigma\|=2 h p$ if and only if we have

$$
\begin{gather*}
\operatorname{Im} \sigma=J \mathfrak{Q}^{\perp} \tag{4.4}\\
A_{J \mathbb{D}^{+}}, \tag{4.5}\\
\mathscr{D}^{\perp}=\{0\} .
\end{gather*}
$$

The lemma thus follows from Lemma 3.5.
Let N be a mixed foliate $C R$-submanifold in H^{m}, and N^{T} a leaf of the holomorphic distribution \mathcal{D}. Then N^{T} is a Kaehler submanifold of H^{m}. We denote by $\sigma^{T}, D^{T}, \cdots$, etc. the second fundamental form, the normal connection, \cdots, etc. for N^{T} in H^{m}, and by $\sigma^{\prime}, D^{\prime}, \cdots$, etc. the corresponding quantities for N^{T} in N. Then we have

$$
\begin{equation*}
\sigma^{T}(X, Y)=\sigma^{\prime}(X, Y)+\sigma(X, Y) \tag{4.6}
\end{equation*}
$$

for X, Y in $T N^{T}$. For any Z in \mathscr{D}^{\perp}, this implies

$$
\begin{gather*}
\left\langle A_{Z}^{T} X, Y\right\rangle=\left\langle J \sigma^{T}(X, Y), J Z\right\rangle=\langle\sigma(J X, Y), J Z\rangle=\left\langle A_{J Z} J X, Y\right\rangle \tag{4.7}\\
\left\langle A_{J Z}^{T} X, Y\right\rangle=\langle\sigma(X, Y), J Z\rangle=\left\langle A_{J Z} X, Y\right\rangle \tag{4.8}
\end{gather*}
$$

Because N is mixed foliate, these give

$$
\begin{equation*}
A_{Z}^{T} X=A_{J Z} J X, \quad A_{J Z}^{T} X=A_{J Z} X \tag{4.9}
\end{equation*}
$$

Moreover, for any unit vector fields X in \mathscr{D}, and Z in \mathscr{D}^{\perp}, we have that

$$
\begin{equation*}
J \nabla_{X} Z=\tilde{\nabla}_{X} J Z=-A_{J Z} X+D_{X} J Z \tag{4.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
D_{X} J Z=F \nabla_{X} Z \tag{4.11}
\end{equation*}
$$

From

$$
\tilde{\nabla}_{X} J Z=-A_{J Z}^{T} X+D_{X}^{T} J Z
$$

we also get

$$
\begin{equation*}
D_{X}^{T} J Z=D_{X} J Z \tag{4.12}
\end{equation*}
$$

Let η be any normal vector field in ν (for the definition of ν, see (2.9)) and X, Y any tangent vector fields in \mathscr{D}, (2.5), (4.11) and (4.12) imply

$$
\begin{gather*}
\tilde{R}(X, Y ; J Z, \eta)=0, \tag{4.13}\\
R_{T}^{\perp}(X, Y ; J Z, \eta)=0 . \tag{4.14}
\end{gather*}
$$

Combining these with equation (2.7) of Codazzi we obtain

$$
\begin{equation*}
\left[A_{J Z}^{T}, A_{\eta}^{T}\right]=0 \quad \text { for } \eta \in \nu, z \in \mathscr{D}^{\perp} . \tag{4.15}
\end{equation*}
$$

Because N^{T} is a Kaehler submanifold, $A_{J \eta}^{T}=J A_{\eta}^{T}=-A_{\eta}^{T} J$. Thus by using (4.15) we have

$$
0=A_{J Z}^{T} A_{\eta}^{T}-A_{\eta}^{T} A_{J Z}^{T}=J\left(A_{\eta}^{T} A_{J Z}^{T}+A_{J Z}^{T} A_{\eta}^{T}\right) .
$$

Since J is nonsingular, this gives

$$
\begin{equation*}
A_{\eta}^{T} A_{J Z}^{T}+A_{J Z}^{T} A_{\eta}^{T}=0 \tag{4.16}
\end{equation*}
$$

Combining (4.15) and (4.16) we have

$$
\begin{equation*}
A_{J Z}^{T} A_{\eta}^{T}=0 \tag{4.17}
\end{equation*}
$$

Because N is mixed foliate, $A_{J Z} \mathscr{D} \subseteq \mathscr{D}$ for any Z in \mathscr{D}^{\perp}. Thus using Lemma 4.1 and (4.9) we get

$$
\begin{equation*}
\left\|A_{Z}^{T} X\right\|=\left\|A_{J Z}^{T} X\right\|=1 \tag{4.18}
\end{equation*}
$$

for any unit vectors X in $T N^{T}$, and Z in \mathscr{D}^{\perp}. By linearity, this implies

$$
\begin{equation*}
\left\langle A_{J Z}^{T} X, A_{J Z}^{T} Y\right\rangle=0 \tag{4.19}
\end{equation*}
$$

for orthogonal vectors X, Y in $T N^{T}$. From (4.18) and (4.19) we find

$$
\begin{equation*}
A_{Z}^{T}, A_{J Z}^{T} \in \in O(2 h) \tag{4.20}
\end{equation*}
$$

In particular, $A_{J Z}^{T}$ is nonsingular. Thus we have, in consequence of (4.17), $A_{\eta}^{T}=0$ for any vector η in ν. Since N is mixed foliate, (2.1) and (2.2) give

$$
-A_{Z}^{T} X+D_{X}^{T} Z=\tilde{\nabla}_{X} Z=\nabla_{X} Z=-A_{Z}^{\prime} X+D_{X}^{\prime} Z
$$

from which we find $D_{X}^{T} Z=D_{X}^{\prime} Z$. This shows that the normal subbundle $\left.\mathscr{D}^{\perp}\right|_{N^{T}}$ is a parallel subbundle of the normal bundle of N^{T} in H^{m}. Therefore we have

$$
\begin{equation*}
R_{T}^{\perp}(X, Y ; Z, J W)=0 \tag{4.21}
\end{equation*}
$$

for any vector fields X, Y in $T N^{T}$, and Z, W in $\left.\mathscr{D}^{\perp}\right|_{N^{\tau}}$. Let Z_{1}, \cdots, Z_{p} be an orthonormal basis of $\mathscr{D}_{x}^{\perp}, x \in N^{T}$. (2.5), (4.21) and the Ricci equation for N^{T} in H^{m} give

$$
\begin{equation*}
\left[A_{Z_{\alpha}}^{T}, A_{J Z_{\beta}}^{T}\right]=0 \text { for } \alpha \neq \beta, \alpha, \beta=1, \cdots, p \tag{4.22}
\end{equation*}
$$

Since $A_{J Z}^{T} J=-J A_{J Z}^{T}$, (4.20) shows that $A_{J Z}^{T}$ has two eigenvalues 1 and -1 with the same multiplicity h. We put

$$
V_{1}=\left\{X \in T_{x} N \mid A_{J Z_{1}}^{T} X=X\right\}
$$

Thus, for any $X \in V_{1}$, (4.22) gives

$$
A_{J Z_{1}}^{T} A_{Z_{\alpha}}^{T} X=A_{Z_{\alpha}}^{T} A_{J Z_{1}}^{T} X=A_{Z_{\alpha}}^{T} X, \quad \alpha=2, \cdots, p
$$

Moreover, for any unit vector X in V_{1}, (4.22) implies that $A_{Z_{\alpha}}^{T} X, \alpha=2, \cdots, p$ lie in V_{1}, which are orthonormal by (4.18). Consequently, we obtain $p \leqslant h+1$.

From (4.22), we may also get

$$
A_{Z_{\alpha}}^{T} A_{Z_{\beta}}^{T}+A_{Z_{\beta}}^{T} A_{Z_{\alpha}}^{T}=0 \quad \text { for } \alpha \neq \beta
$$

From the equation of Gauss and (2.5), the sectional curvature K of N satisfies

$$
\begin{equation*}
K(X, Z)=-1+\langle\sigma(X, X), \sigma(Z, Z)\rangle \tag{4.23}
\end{equation*}
$$

for any unit vectors X in \mathscr{D}, and Z in \mathscr{D}^{\perp}. Since N is mixed foliate, we also have

$$
K(J X, Z)=-1-\langle\sigma(X, X), \sigma(Z, Z)\rangle
$$

Combining this with (4.23) gives

$$
K(X, Z)+K(J X, Z)=-2
$$

By summarizing the above facts we can state the next lemma.
Lemma 4.2. Let N be a mixed foliate $C R$-submanifold in H^{m}. Then
(a) $D_{X}^{T} J Z=D_{X} J Z=F \nabla_{X} Z$,
(b) $D_{X}^{T} Z=D_{X}^{\prime} Z=-t D_{X} J Z$,
(c) $\operatorname{Im} \sigma^{T}=\mathscr{D}^{\perp} \oplus J \mathscr{D}^{\perp}$,
(d) $A_{Z}^{T}, A_{J Z}^{T} \in O(2 h)$,
(e) $p \leqslant h+1$,
(f) $A_{Z}^{T} A_{W}^{T}+A_{W}^{T} A_{Z}^{T}=0$,
(g) $K(X, Z)+K(J X, Z)=-2$, for any unit vector field X in $T N^{T}$, and orthonormal vector fields Z, W in \mathbb{D}^{\perp}.

From Lemma 4.2 and Proposition 3 of [2] we have the following.
Lemma 4.3. Let N be a mixed foliate proper $C R$-submanifold of $\tilde{M}^{m}(c)$, $c \neq 0$. Then $c<0$ and $p>1$.

Proof. Let N be a mixed foliate proper $C R$-submanifold of $\tilde{M}^{m}(c), c \neq 0$. Then Proposition 3 of [2] implies $c<0$. If $p=1$, then, for any unit vector field Z in \mathscr{D}^{\perp}, statement (b) of Lemma 4.2 implies $D_{X}^{T} Z=D_{X}^{\prime} Z=0$. Hence, Z is a parallel normal vector field of the complex submanifold N^{T} in $\tilde{M}^{m}(c), c<0$. This contradicts a theorem of Chen and Ogiue [5].

Proposition 4.4. Let N be a mixed foliate proper $C R$-submanifold of H^{m}. Then
(a) each leaf N^{T} of \mathscr{D} lies in a complex $(h+p)$-dimensional totally geodesic complex submanifold H^{h+p} of H^{m},
(b) each leaf N^{T} is an Einstein-Kaehler submanifold of H^{h+p} with Ricci tensor given by

$$
\begin{equation*}
S^{T}(X, Y)=-2(h+p+1)\langle X, Y\rangle \tag{4.24}
\end{equation*}
$$

(c) $h+1 \geqslant p \geqslant 2 ; h \geqslant 2$, and
(d) the leaves of \mathscr{D}^{\perp} are totally geodesic in N.

Proof. Lemma 4.2 implies that the first normal space $\operatorname{Im} \sigma^{T}$ is nothing but $\mathscr{D}^{\perp} \oplus J \mathscr{D}^{\perp}$. Since $\mathscr{D}^{\perp} \oplus J \mathscr{Q}^{\perp}$ is a parallel normal subbundle of the normal bundle of N^{T} in H^{m}, by a theorem of Chen and Ogiue [5], N^{T} lies in a complex $(h+p)$-dimensional totally geodesic submanifold H^{h+p} of H^{m}. Thus (a) is proved.

Since N^{T} is a Kaehler submanifold of H^{m}, equation (2.8) of Gauss gives

$$
S^{T}(X, Y)=-2(h+1)\langle X, Y\rangle-\sum\left\langle A_{\xi_{\alpha}}^{T} X, A_{\xi_{\alpha}}^{T} Y\right\rangle,
$$

where ξ_{α} 's form an orthonormal basis of $T^{\perp} N^{T}$. Thus by Lemmas 4.1 and 4.2 we obtain

$$
S^{T}(X, X)=-2(h+p+1)\langle X, X\rangle,
$$

which implies (4.24).
If $h=\operatorname{dim}_{\mathbf{C}} \mathscr{D}=1$, then from statement (b) it follows that N^{T} is of constant curvature $-2(p+2)$. Since N^{T} is a Kaehler submanifold of H^{m}, a theorem of Calabi [4] gives that $p=0$. This is a contradiction. The remaining part of this proposition follows from Lemmas 3.4 and 4.3.

Theorem 4.5. Let N be a mixed foliate $C R$-submanifold of H^{m}. If $\operatorname{dim}_{\mathbf{R}} N \leqslant$ 5 , then N is either a complex submanifold or a totally real submanifold.

This theorem follows immediately from statement (c) of Proposition 4.4.
Remark 4.1. The author believes that Theorem 4.5 holds for any mixed foliate $C R$-submanifold of H^{m}. However, he is unable to prove it at this moment.

5. Semi-flat normal connection

First we recall the following definition [6].
Definition 5.1. A $C R$-submanifold N in a complex-space-form $\tilde{M}^{m}(c)$ is said to have semi-flat normal connection if its normal curvature tensor R^{\perp} satisfies

$$
\begin{equation*}
R^{\perp}(X, Y ; \xi, \eta)=\frac{c}{2}\langle X, P Y\rangle\langle J \xi, \eta\rangle \tag{5.1}
\end{equation*}
$$

for any vectors X, Y in $T N$, and ξ, η in $T^{\perp} N$.
The main purpose of this section is to classify $C R$-submanifolds with semi-flat normal connection.

Lemma 5.1. $A C R$-submanifold N in a complex-space-form $\tilde{M}^{m}(c)$ has semi-flat normal connection if and only if

$$
\begin{equation*}
\left\langle\left[A_{\xi}, A_{\eta}\right] X, Y\right\rangle=\frac{c}{4}\{\langle J X, \xi\rangle\langle J Y, \eta\rangle-\langle J X, \eta\rangle\langle J Y, \xi\rangle\} \tag{5.2}
\end{equation*}
$$

for any vectors X, Y in $T N$, and ξ, η in $T^{\perp} N$.
This lemma follows from Definition 5.1 and the equation of Ricci.
From Lemma 5.1 we obtain the following.
Lemma 5.2. Let N be a CR-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c)$. Then

$$
\begin{gather*}
\left\langle\left[A_{\xi}, A_{\eta}\right] X, U\right\rangle=0 \tag{5.3}\\
\left\langle\left[A_{\xi}, A_{\eta}\right] Z, W\right\rangle=\frac{c}{4}\{\langle J Z, \zeta\rangle\langle J W, \eta\rangle-\langle J Z, \eta\rangle\langle J W, \xi\rangle\} \tag{5.4}
\end{gather*}
$$

for any vectors U in $T N, X$ in \mathscr{D}, Z, W in \mathscr{D}^{\perp}, and ξ, η in $T^{\perp} N$.
Moreover, we also have
Lemma 5.3. Let N be a CR-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c)$. Then

$$
\begin{gather*}
A_{\nu} \mathscr{D}=\{0\}, \tag{5.5}\\
\left\langle A_{J \mathscr{D}^{+}} \mathscr{D}, A_{\nu} \mathscr{D}^{+}\right\rangle=\{0\}, \tag{5.6}
\end{gather*}
$$

where $\nu_{x}=T_{x}^{\perp} N \cap J\left(T_{x}^{\perp} N\right), x \in N$.
Proof. From Lemmas 3.1 and 5.2 we have

$$
0=\left\langle\left[A_{\xi}, A_{J \xi}\right] X, J X\right\rangle=-\left\|A_{\xi} J X\right\|^{2}-\left\|A_{\xi} X\right\|^{2}
$$

for any vectors X in \mathscr{D}, and ξ in ν. Thus we get (5.5). Formula (5.6) follows from (5.4) and (5.5).

Lemma 5.4 is an immediate consequence of Lemma 5.3.
Lemma 5.4. Let N be a CR-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c)$. If there is a ξ in ν such that $A_{\xi} Q^{\perp}=\mathcal{Q}^{\perp}$, then N is mixed totally geodesic.

From Lemma 5.2 we have
Lemma 5.5. Let N be a $C R$-submanifold with semi-flat normal connection. Then

$$
\begin{equation*}
\left\|A_{J Z} W\right\|^{2}=\frac{c}{4}+\left\langle A_{J Z} Z, A_{J W} W\right\rangle \tag{5.7}
\end{equation*}
$$

for orthonormal vectors Z, W in \mathscr{D}^{\perp}.
Proof. For orthonormal vectors Z and W in \mathscr{D}^{\perp}, Lemma 5.2 gives

$$
\frac{c}{4}=\left\langle\left[A_{J Z}, A_{J W}\right] Z, W\right\rangle=\left\langle A_{J Z} W, A_{J W} W\right\rangle-\left\langle A_{J Z} Z, A_{J W} W\right\rangle
$$

Thus by using Lemma 3.1 we obtain (5.7).
Let N be a $C R$-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c)$. By Lemma 5.3 we obtain $A_{\nu} \mathscr{D}=\{0\}$. Define an endomorphism

$$
\tilde{A}_{\xi}: \mathscr{D}_{x}^{\perp} \rightarrow \mathscr{D}_{x}^{\perp}
$$

by

$$
\begin{equation*}
\tilde{A}_{\xi} Z=A_{\xi} Z \tag{5.8}
\end{equation*}
$$

for any vectors ξ in ν_{x}, and Z in \mathscr{D}_{x}^{\perp}. Then \tilde{A}_{ξ} is self-adjoint.
Let $\lambda_{1}, \cdots, \lambda_{r}$ be the distinct eigenvalues of \tilde{A}_{ξ}, and V_{1}, \cdots, V_{r} the corresponding eigenspaces. Then we have

$$
\begin{equation*}
\mathscr{Q}_{x}^{\perp}=V_{1} \oplus \cdots \oplus V_{r},\left\langle V_{i}, V_{j}\right\rangle=0 \quad \text { for } i \neq j . \tag{5.9}
\end{equation*}
$$

Lemma 5.6. Let N be a $C R$-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c), c \neq 0$. Then, for any ξ in ν, \tilde{A}_{ξ} is proportional to the identity endomorphism.

Proof. Under the hypothesis, Lemma 5.2 implies

$$
\begin{equation*}
\left\langle A_{\xi} W, A_{J Z} Y\right\rangle=\left\langle A_{\xi} Y, A_{J Z} W\right\rangle \tag{5.10}
\end{equation*}
$$

for any vectors ξ in ν, and Y, Z, W in \mathscr{D}^{\perp}. If \tilde{A}_{ξ} is not proportional to the identity endomorphism, $r \geqslant 2$. Let $Z=W=Z_{i} \in V_{i}, Y=Z_{j} \in V_{j}$, for $i \neq j$. Then (5.10) and Lemma 3.1 imply

$$
\begin{equation*}
\left\langle A_{J Z_{j}} Z_{i}, Z_{i}\right\rangle=0 \tag{5.11}
\end{equation*}
$$

By linearity we have

$$
\begin{equation*}
\left\langle A_{J Z_{j}} V_{i}, V_{i}\right\rangle=\{0\} \quad \text { for } i \neq j . \tag{5.12}
\end{equation*}
$$

Putting $W=Z_{i} \in V_{i}, Y=Z_{j} \in V_{j}$ and $Z=Z_{k} \in V_{k}$ for $i \neq j$, (5.10) gives

$$
\lambda_{i}\left\langle A_{J Z_{k}} Z_{j}, Z_{i}\right\rangle=\lambda_{j}\left\langle A_{J Z_{k}} Z_{j}, Z_{i}\right\rangle \text { for } i \neq j,
$$

which implies

$$
\begin{equation*}
A_{J Z_{k}} V_{j} \subseteq \mathscr{D} \oplus V_{j} . \tag{5.13}
\end{equation*}
$$

On the other hand, by Lemma 5.3 we obtain

$$
0=\left\langle A_{J Z_{k}} X, A_{\xi} Z_{j}\right\rangle=\lambda_{j}\left\langle A_{J Z_{k}} Z_{j}, X\right\rangle
$$

for any vectors X in $\mathscr{D}, Z_{j} \in V_{j}$, and $Z_{k} \in V_{k}$. This shows that $A_{J Z_{k}} V_{j} \subseteq \mathscr{D}^{\perp}$ if $\lambda_{j} \neq 0$. Combining this with (5.13) yields

$$
\begin{equation*}
A_{J Z_{k}} V_{j} \subseteq V_{j} \quad \text { whenever } \lambda_{j} \neq 0 \tag{5.14}
\end{equation*}
$$

From (5.12) and (5.14) we get

$$
\begin{equation*}
A_{J Z_{k}} V_{i}=0 \text { if } j \neq i \text { and } \lambda_{i} \neq 0 \tag{5.15}
\end{equation*}
$$

Since A_{ξ} has at least two distinct eigenvalues, we may assume that $\lambda_{1} \neq 0$. From (5.7) of Lemma 5.5 and (5.15) we have

$$
\begin{equation*}
0=\left\|A_{J Z_{2}} Z_{1}\right\|^{2}=\frac{c}{4}+\left\langle A_{J Z_{2}} Z_{2}, A_{J Z_{1}} Z_{1}\right\rangle \tag{5.16}
\end{equation*}
$$

On the other hand, Lemma 3.1 and (5.12) imply

$$
0=\left\langle A_{J Z_{j}} Z_{i}, Z_{i}\right\rangle=\left\langle A_{J Z_{i}} Z_{i}, Z_{j}\right\rangle \quad \text { for } i \neq j
$$

Combining this with (5.14) we find

$$
\begin{equation*}
A_{J Z_{i}} Z_{i} \in \mathscr{D} \oplus V_{i} \tag{5.17}
\end{equation*}
$$

Since $A_{J Z_{1}} Z_{1} \in V_{1}$ by (5.14), equations (5.16) and (5.17) give $c=0$. This is a contradiction.

From Lemmas 5.3 and 5.6 we immediately have the following.
Lemma 5.7. Let N be a CR-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c), c \neq 0$. Then for any $x \in N$, there is a unit normal vector $\bar{\eta} \in \nu_{x}$ such that

$$
\begin{gather*}
A_{\bar{\eta}} X=0, \quad A_{\bar{\eta}} Z=\lambda Z, \tag{5.18}\\
A_{\xi}=0 \tag{5.19}
\end{gather*}
$$

for any vectors X in \mathscr{D}_{x}, Z in \mathscr{D}_{x}, and ξ in ν_{x} with $\langle\xi, \bar{\eta}\rangle=0$.
Lemma 5.8. Let N be a CR-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c), c \neq 0$. If λ is nowhere zero on N, then N is mixed foliate.

Proof. Under the hypothesis, Lemmas 5.4 and 5.7 imply that N is mixed totally geodesic.

For any vector fields X, Y in \mathscr{D}, Z in \mathscr{D}^{\perp}, and ξ in $T^{\perp} N$, equation (2.9) of Codazzi gives

$$
\begin{aligned}
\tilde{R}(X, Y ; Z, \xi)= & \langle\sigma([X, Y], Z), \xi\rangle \\
& +\left\langle\sigma\left(X, \nabla_{Y} Z\right)-\sigma\left(Y, \nabla_{X} Z\right), \xi\right\rangle
\end{aligned}
$$

In particular, if we choose ξ to be the vector $\bar{\eta}$ of Lemma 5.7, we can reduce this to

$$
0=\langle\sigma([X, Y], Z), \bar{\eta}\rangle=\lambda\langle[X, Y], Z\rangle
$$

by applying (2.6) and Lemma 5.7. Since $\lambda \neq 0$, this shows that the holomorphic distribution is integrable.

Lemma 5.9. Let N be a CR-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c), c \neq 0$.
(1) Then λ is constant, and for any vectors X, Y in $T N$ and Z in \mathscr{D}^{\perp} we have

$$
\begin{align*}
F(R(X, Y) Z) & =\sigma\left(X, P \nabla_{Y} Z\right)-\sigma\left(Y, P \nabla_{X} Z\right) \\
& +\lambda^{2}\{\langle Y, Z\rangle F X-\langle X, Z\rangle F Y\}, \tag{5.20}\\
D_{X} J Z= & F \nabla_{X} Z+\lambda\langle X, Z\rangle J \bar{\eta}, \tag{5.21}
\end{align*}
$$

(2) If $\lambda=0$, then N lies in a totally geodesic complex submanifold $\tilde{M}^{h+p}(c)$ of $\tilde{M}^{m}(c)$ as an anti-holomorphic submanifold. .
(3) If $\lambda \neq 0$, then N is a mixed foliate $C R$-submanifold with $f \bar{\eta}=0$.

Proof. For any vectors X, Y in $T N$, and Z in \mathscr{D}^{\perp}, we have

$$
-A_{J Z} X+D_{X} J Z=J \nabla_{X} Z+\sigma(X, Z)
$$

Thus

$$
\begin{equation*}
D_{X} J Z=F \nabla_{X} Z+f \sigma(X, Z) \tag{5.22}
\end{equation*}
$$

By applying Lemma 5.7, this gives

$$
\begin{equation*}
D_{X} J Z=F \nabla_{X} Z+\lambda\langle X, Z\rangle J \bar{\eta} \tag{5.23}
\end{equation*}
$$

Therefore by considering the normal component of $\tilde{\nabla}_{X} D_{Y} J Z$ we obtain

$$
\begin{align*}
D_{X} D_{Y} J Z= & D_{X}\left(F \nabla_{Y} Z\right)+X(\lambda\langle Y, Z\rangle) J \bar{\eta} \tag{5.24}\\
& -\lambda^{2}\langle Y, Z\rangle F X+\lambda\langle Y, Z\rangle f D_{X} \bar{\eta}
\end{align*}
$$

On the other hand, by equation (3.9) of [4] and Lemma 8.1 of [4] we have

$$
D_{X}\left(F \nabla_{Y} Z\right)=f \sigma\left(X, \nabla_{Y} Z\right)-\sigma\left(X, P \nabla_{Y} Z\right)+F\left(\nabla_{X} \nabla_{Y} Z\right)
$$

Substituting this into (5.24) we obtain

$$
\begin{aligned}
D_{X} D_{Y} J Z= & f \sigma\left(X, \nabla_{Y} Z\right)-\sigma\left(X, P \nabla_{Y} Z\right)+F\left(\nabla_{X} \nabla_{Y} Z\right) \\
& +X(\lambda\langle Y, Z\rangle) J \bar{\eta}-\lambda\langle Y, Z\rangle\left\{F X-f D_{X} \bar{\eta}\right\} .
\end{aligned}
$$

Thus the normal curvature tensor R^{\perp} is given by

$$
\begin{aligned}
R^{\perp}(X, Y) J Z= & F(R(X, Y) Z)+f \sigma\left(X, \nabla_{Y} Z\right)-f \sigma\left(Y, \nabla_{X} Z\right) \\
& -\sigma\left(X, P \nabla_{Y} Z\right)+\sigma\left(Y, P \nabla_{X} Z\right)-\lambda\langle[X, Y], Z\rangle J \bar{\eta} \\
& +\{X(\lambda\langle Y, Z\rangle)-Y(\lambda\langle X, Z\rangle)\} J \bar{\eta} \\
& -\lambda^{2}\{\langle Y, Z\rangle F X-\langle X, Z\rangle F Y\} \\
& +\lambda\left\{\langle Y, Z\rangle f D_{X} \bar{\eta}-\langle X, Z\rangle f D_{Y} \bar{\eta}\right\} .
\end{aligned}
$$

By applying Lemma 5.7 this gives

$$
\begin{align*}
R^{\perp}(X, Y) J Z= & F(R(X, Y) Z)-\lambda\left\{\left\langle P X, P \nabla_{Y} Z\right\rangle-\left\langle P Y, P_{X} Z\right\rangle\right\} J \bar{\eta} \\
& -\sigma\left(X, P \nabla_{Y} Z\right)+\sigma\left(Y, P \nabla_{Y} Z\right) \\
& +\{(X \lambda)\langle Y, Z\rangle-\langle Y \lambda\rangle\langle X, Z\rangle\} J \bar{\eta} \\
& -\lambda^{2}\{\langle Y, Z\rangle F X-\langle X, Z\rangle F Y\} \tag{5.25}\\
& +\lambda\left\{\langle Y, Z\rangle f D_{X} \bar{\eta}-\langle X, Z\rangle f D_{Y} \bar{\eta}\right\} .
\end{align*}
$$

It follows from Lemma 5.7 that both $\sigma\left(X, P \nabla_{Y} Z\right)$ and $\sigma\left(Y, P \nabla_{X} Z\right)$ lie in $J \mathscr{D}^{\perp}$. Since $R^{\perp}(X, Y) J Z=0$ by (5.1), equation (5.25) gives (5.20) and

$$
\begin{gather*}
(X \lambda)\langle Y, Z\rangle-(Y \lambda)\langle X, Z\rangle=\lambda\left\{\left\langle P X, P \nabla_{Y} Z\right\rangle-\left\langle P Y, P \nabla_{X} Z\right\rangle\right\}, \tag{5.26}\\
\lambda\left\{\langle Y, Z\rangle f D_{X} \bar{\eta}-\langle X, Z\rangle f D_{Y} \bar{\eta}\right\}=0 . \tag{5.27}
\end{gather*}
$$

If N is a complex submanifold of $\tilde{M}^{m}(c)$, then $\mathscr{D}=T N$ and $\nu=T^{\perp} N$. Lemma 5.5 shows that N is a totally geodesic complex submanifold of $\tilde{M}^{m}(c)$.

Now we assume that N is not a complex submanifold. We have $\operatorname{dim}_{\mathbf{R}} \mathcal{D}^{\perp}=p$ >0.

Case (a). If $\mu \equiv 0$, then we have $\operatorname{Im} \sigma \subseteq J \mathscr{Q}^{\perp}$. Moreover, for any vector fields X in $T N, Z$ in \mathscr{D}^{\perp}, and ξ in ν, Lemma 5.7 gives

$$
0=\langle\sigma(X, Z), \xi\rangle=\left\langle\tilde{\nabla}_{X} J Z, J \xi\right\rangle=\left\langle D_{X} J Z, J \xi\right\rangle
$$

Since this is true for all ξ in $\nu, J \mathscr{Q}^{\perp}$ is a parallel normal subbundle. Because the first normal spaces of N lie in $J Q^{\perp}$, the fundamental theorem of submanifolds shows that N lies in a totally geodesic complex submanifold $\tilde{M}^{h+p}(c)$ of $\tilde{M}^{m}(c)$. In this case, N is an anti-holomorphic submanifold of $\tilde{M}^{h+p}(c)$.

Case (b). If $\lambda \neq 0$, then $N^{\prime}=\{x \in N \mid \lambda(x) \neq 0\}$ is an open nonempty subset of N. Lemma 5.8 tells us that each component of N^{\prime} is a mixed foliate $C R$-submanifold $\tilde{M}^{m}(c), c \neq 0$.

If $c>0$, then N is totally real (Lemma 4.3). Thus (5.26) gives

$$
\begin{equation*}
(X \lambda)\langle Y, Z\rangle-(Y \lambda)\langle X, Z\rangle=0 \tag{5.28}
\end{equation*}
$$

for any vectors X, Y in $T N$, and Z in \mathscr{D}^{\perp}. Because $\operatorname{dim}_{\mathbf{R}} \mathscr{D}_{x}^{\perp}=\operatorname{dim}_{\mathbf{R}} N \geqslant 2$ and λ^{2} is differentiable, (5.28) implies that λ is a nonzero constant on N. Thus by (5.27) we get $f D \bar{\eta}=0$.

If $c<0$, then Proposition 4.4 and Lemma 5.8 show that $\operatorname{dim}_{\mathbf{R}} D_{x}^{\perp}=p>1$. Thus for any unit vector Z in \mathscr{D}^{\perp} there exists a unit vector W in \mathscr{D}^{\perp} so that $\langle Z, W\rangle=0$. From (5.26) we find

$$
\begin{equation*}
Z\left(\lambda^{2}\right)=0 \quad \text { for } Z \in \mathscr{D}^{\perp} \tag{5.29}
\end{equation*}
$$

Let X and Z be any unit vector fields in \mathscr{D} and \mathscr{D}^{\perp} respectively. Then (5.26) gives

$$
\begin{equation*}
X(\lambda)^{2}=2 \lambda^{2}\left\langle X, \nabla_{Z} Z\right\rangle \tag{5.30}
\end{equation*}
$$

On the other hand, for such X and Z we have

$$
\left\langle X, \nabla_{Z} Z\right\rangle=\left\langle J X, \tilde{\nabla}_{Z} J Z\right\rangle=-\left\langle A_{J Z} Z, J X\right\rangle=-\langle\sigma(Z, J X), J Z\rangle .
$$

Thus by using (5.30), Lemma 5.8, and the continuity of λ^{2} we get $X\left(\lambda^{2}\right) \equiv 0$ for any vector X in \mathscr{D}. Combining this with (5.29), we conclude that λ is a nonzero constant on N. The equation $f D \bar{\eta}=0$ then follows from (5.27).

Lemma 5.10. Let N be a $C R$-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c), c \neq 0$. If $\lambda \neq 0$, then the sectional curvature of N satisfies

$$
\begin{equation*}
K(Z \wedge W)=\lambda^{2} \tag{5.31}
\end{equation*}
$$

for any orthonormal vectors Z, W in \mathscr{D}^{\perp}.
Proof. Let N be a $C R$-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c), c \neq 0$. If $\lambda \neq 0$, then N is mixed foliate (Lemma 5.8). For any vector U in $T N, P U \in \mathscr{D}$. Thus for any orthonormal vectors Z, W in \mathscr{D}^{\perp}, (5.20) of Lemma 5.9 gives

$$
F(R(Z, W) Z)=-\lambda^{2} F W
$$

From this we obtain (5.31).
Now we give the following classification theorem.
Theorem 5.11. Let N be a CR-submanifold in a complex-space-form $\tilde{M}^{m}(c)$, $c \neq 0$. Then N has semi-flat normal connection in $\tilde{M}^{m}(c)$ if and only if N is one of the following:
(1) a totally geodesic complex submanifold $\tilde{M}^{h}(c)$,
(2) a flat totally real submanifold of a totally geodesic complex submanifold $\tilde{M}^{p}(c)$ of $\tilde{M}^{m}(c)$,
(3) a proper anti-holomorphic submanifold with flat normal connection in a totally geodesic complex submanifold $\tilde{M}^{h+p}(c)$ of $\tilde{M}^{m}(c)$,
(4) a space of positive constant sectional curvature immersed in a totally geodesic complex submanifold $\tilde{M}^{p+1}(c)$ of $\tilde{M}^{m}(c)$ with flat normal connection as a totally real submanifold.

Proof. Let N be a $C R$-submanifold with semi-flat normal connection in $\tilde{M}^{m}(c), c \neq 0$. If N is a complex submanifold of $\tilde{M}^{m}(c), N$ is a totally geodesic complex submanifold of $\tilde{M}^{m}(c)$ (Lemma 5.5). Thus N is itself a complex-space-form $\tilde{M}^{h}(c)$.

Assume that N is not a complex submanifold of $\tilde{M}^{m}(c)$. Then $p>0$, and there exists a unit normal vector field $\bar{\eta}$ satisfies (5.18) and (5.19) for some constant λ (Lemmas 5.7 and 5.8).

If $\lambda=0$ and N is totally real, (5.20) shows that N is flat.
If $\lambda=0$ and N is neither complex nor totally real, then N lies in a totally geodesic complex submanifold $\tilde{M}^{h+p}(c)$ as an anti-holomorphic submanifold (Lemma 5.9). In this case, (5.1) implies that N has flat normal connection.

If $\lambda \neq 0$, Lemma 5.9 gives

$$
\begin{equation*}
D_{X} \bar{\eta} \in J \mathscr{Q}^{\perp} \tag{5.32}
\end{equation*}
$$

for any vector X in $T N$. On the other hand, Lemma 5.7 also gives

$$
\begin{equation*}
D_{X} J \bar{\eta}=\tilde{\nabla}_{X} J \bar{\eta}=-J A_{\bar{\eta}} X+J D_{X} \bar{\eta} \tag{5.33}
\end{equation*}
$$

From Lemma 5.7 and (5.32) we see that $A_{\bar{\eta}} X \in \mathcal{D}^{\perp}, J D_{X} \bar{\eta} \in T N$. Thus (5.33) gives

$$
\begin{equation*}
D \bar{\eta} \equiv 0 \tag{5.34}
\end{equation*}
$$

Now, since N is mixed foliate (Lemma 5.8), the holomorphic distribution is integrable. Let N^{T} be a leaf of \mathscr{D}. Denote by A^{T} and D^{T} the second fundamental tensor and normal connection of N^{T} in $\tilde{M}^{m}(c)$ as before. Then we have

$$
-A_{\bar{\eta}}^{T} X+D_{X}^{T} \bar{\eta}=\tilde{\nabla}_{X} \bar{\eta}=-A_{\bar{\eta}} X+D_{X} \bar{\eta}=0 \text { for } X \in T N^{T}
$$

by virtue of (5.34) and Lemma 5.7. This shows that $\left.\bar{\eta}\right|_{N^{T}}$ is parallel in the normal bundle of N^{T} in $\tilde{M}^{m}(c)$. This contradicts a theorem of [5] unless N is totally real in $\tilde{M}^{m}(c)$. If N is totally real, N is of positive constant sectional curvature λ^{2} (Lemma 5.10), and N has flat normal connection (Definition 5.1).

From (5.33) and (5.34) we find

$$
\begin{equation*}
D_{X} J \bar{\eta}=-J A_{\bar{\eta}} X \in J \mathscr{Q}^{\perp} \tag{5.35}
\end{equation*}
$$

for any vector X in $T N$. Therefore by (5.21) of Lemma 5.9, (5.34) and (5.35), we see that $\mu=J \mathscr{Q}^{\perp} \oplus \operatorname{Span}\{\bar{\eta}, J \bar{\eta}\}$ is a parallel normal subbundle, and $\mu \supseteq \operatorname{Im} \sigma$. From these we conclude that N lies in a totally geodesic complex submanifold $M^{p+1}(c)$ of $\tilde{M}^{m}(c)$ as a totally real submanifold with flat normal connection.

The converse of this is trivial.
Remark 5.1. From Lemma 5.9 it follows that the assumption of compactness in Theorem 2 of [7] can be omitted.

References

[1] A. Bejancu, CR-submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc. 69 (1978) 135-142.
[2] A. Bejancu, M. Kon \& K. Yano, CR-submanifolds of a complex space form, J. Differential Geometry 16 (1981) 137-145.
[3] E. Calabi, Metric Riemann surfaces, Annals of Math. Studies, No. 30, Princeton University Press, Princeton, 1953, 77-85.
[4] B. Y. Chen, CR-submanifolds of a Kaehler manifold. I, J. Differential Geometry 16 (1981) 305-322.
[5] B. Y. Chen \& K. Ogiue, Some extrinsic results for Kaehler submanifolds, Tamkang J. Math. 4 (1973) 207-213.
[6] K. Yano \& M. Kon, CR-sous-variétés d'un espace projectif complexe, C. R. Acad. Sci. Paris 288 (1979) 515-517.
[7] K. Yano, M. Kon \& I. Ishihara, Anti-invariant submanifolds with flat normal connection, J. Differential Geometry 13 (1978) 577-588.

