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1. Introduction

One of the major accomplishments in the theory of Riemann surfaces is the
uniformization theorem which roughly says that the universal covering of a
compact Riemann surfaces of genus greater than one is analytically equivalent
to the unit disc { z | | z | < 1}. The higher dimensional analog is one of the
central problems in hyperbolic complex analysis. In this section we summarize
one direction of this research recently moved forward by differential geome-
ters. The starting point for us is a theorem of H. Wu [30] given below.

Theorem 1.1. Let M be a compact complex Kάhler manifold of nonpositiυe

sectional curvature. Then its universal covering is a Stein manifold.

For a long time, examples of compact complex Kahler manifolds of negative
sectional curvature known to us were only compact quotients of the unit ball in
C", until recently Mostow and Siu discovered a compact Kahler surface of
negative sectional curvature which is not uniformized by the ball [20]. A
perhaps more natural and nontrivial generalization of hyperbolic Riemann
surfaces for algebraic geometers and complex analysis is the notion of negative
tangent bundle in the sense of H. Grauert.

Definition. Let M be a compact complex manifold. The tangent bundle
T(M) of M is said to be negative if it is a strongly pseudo-convex manifold
whose only exceptional variety is the zero section.

The concept of negative tangent bundle is intimately related to that of
bisectional curvature described below (see [8], [6]). Let M be a Kahler mani-
fold, and R its Riemannian curvature tensor. Given two complex planes σ and
σ' in Tp(M), p E M, we define the bisectional curvature i/(σ, σ') by H(σ9 σ')
= R(X, JX, Y, JY\ where / is the complex structure tensor of M, X E σ,
Y E σ'. Furthermore, by Bianchi identity we have the following relation

R(X, JX9 7, JY) = R(X, 7, X, Y) + R(X, JY, X, JY).
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It is not difficult to show that the tangent bundle of a compact Kahler
manifold of negative bisectional curvature must be negative in the sense of
Grauert. Now we are in a position to state our main problem.

Conjecture. // the tangent bundle of a compact complex manifold M is
negative, then there are strong restrictions on the homotopy-type of M.

The noncompact counterpart of our conjecture is a well-known result of
Andreotti and Frankel (for a proof, see [18]).

Theorem 1.2. Let M be a Stein manifold of complex dimension n. Then
Hi(M) = 0foralli>n.

Along the line of the classical uniformization theorem it is natural for us to
raise the question of the existence of a simply-connected compact Kahler
manifold with negative bisectional curvature. It should be remarked here that
this question can be reduced to complex two dimensional case by the process
indicated below. Let M be a compact complex ^-dimensional Kahler manifold
with negative bi-curvature. It is projective algebraic by Kodaira embedding
theorem. We denote by N a nonsingular hyperplane section of M. If we assume
dimcM > 3, then we have πι(M) = πι(N) by the Lefschetz theorem on
hyperplane sections. Since a subbundle of a negative bundle is negative, T(N)
is negative. Combining these two observations (1) πx(M) — πλ(N) if dim cM
> 3, (2) T(N) is negative if T(M) is, we therefore prove our assertion claimed
above. This problem constitutes the main ingredient of our conjecture. Non-
trial examples of compact complex manifolds of negative tangent bundles are
not easy to construct explicitly (see §6 for an example). It is therefore natural
for us to consider those compact quotients covered by bounded domains in
Cm. Even for a bounded domain M in Cm it is in general rather difficult to
determine whether Aut(M) has enough discrete subgroup to form a compact
quotient. Following are some known examples in C2:

( l ) Λ 2 = { ( z 1 , z 2 ) | z 1 | 2 + | z 2 | 2 < l } ,
( 2 ) Δ 2 = { ( z 1 , z 2 ) | z 1 | < l , | z 2 | < l } ,
(3) the universal coverings of "Kodaira surfaces", [14], [7].
Both B2 and Δ2 are symmetric domains in C2. The Chern numbers c2, c2 of

the compact complex quotient manifolds of B2 and Δ2 satisfy the identities
c2 = 3c2 and c\ — 2c2 respectively. These are known as the Klein-Clifford
forms which had been studied by Borel, Hirzebruch and others [3], [11].

A converse statement is a uniformization theorem of Shing-Tung Yau [33] as
a consequence of his resolution of Calabi conjecture.

Theorem 1.3 Let M be a compact complex n-dimensional manifold with
first Chern class negative definite. Then the inequality (-l)"c"~2c2(M) >
(-X)n\n(n + \)c"(M) is always true, and equality holds if and only if M is
holomorphically covered by the unit ball.
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When n is equal to two, we have c\ < 3c2 which was independently proved
by Miyaoka [19] and Yau [33]. Significant study of the conjecture concerning
the above inequality for Chern numbers of complex surfaces of general type
was started by Van de Ven, and much later a remarkable progress was
achieved by F. Bogomolov [2]. Yau's method is particularly striking since he is
able to obtain more information when c2 — 3c2 as well as a natural generaliza-
tion for higher dimensional case.

In [14] Kodaira showed that the signature (= \(c2 - 2c2)) of "Kodaira
surfaces" is always positive, and from his explicit formula one can easily
further see that "c 2 φ 3c2". Following the discussion above we can conclude
that there are nonsymmetric bounded domains in C 2 which have enough
discrete subgroups of their automorphism groups to form compact quotients.
The following global result concerning negative bisectional curvature is due to
Paul Yang [32].

Theorem 1.4. The polydisc ΔM(« > 1) does not admit a complete Kάhler
metric with its bisectional curvature H(σ,σ') bounded between two negative
constants -c2 and -d2, i.e.,

- c 2 < # ( σ , σ ' ) < -d2.
The immediate consequence is that if M (dimcM > 1) is a compact Kahler

manifold with negative bisectional curvature, then its universal covering cannot
be a polydisc. Yang's theorem indicates the sharp distinctions between a ball
and a polydisc in Cn in terms of the concept of bisectional curvature.

The following is our main result.
Theorem 1.5. Let M be a compact Kahler surface which is hyperbolic in the

sense of[\2]. Suppose that
1. M = M/Γ, where M is the universal covering of M, and Γ is a discrete

subgroup of the identity component of Aut(M) acting freely on M,
2. Γ is not isomorphic to the fundamental groups of a compact real surface.

Then M is either biholomorphic to B2 = {(zl9 z2) E C 2 11 zx |2 + | z2 |
2 < 1} or

Remarks. 1. Our conditions imply that M must be noncompact and Γ is
infinite.

2. It should be stressed that the assumption on Γ that it is contained in the
identity component of Aut(M) is a very strong restriction.

The immediate consequences related to the context of our discussion above
are the following corollaries.

Corollary 1. Let M be a Kahler surface of negative sectional curvature and
M = M/Γ where M is the universal covering of M, and Γ is a discrete subgroup
of Aut°(M) (identity component of Aut(M)) acting freely on M. Then M is
biholomorphic to the unit ball in C2.
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Corollary 2. Let M — M/T be a compact complex surface such that M is a

bounded domain in C2 with the assumption that the boundary dM of M is a

topological three-dimensional manifold, and Γ C Aut°(M) is a discrete subgroup

acting on M freely. Then M is a bounded symmetric domain in C2.

Corollary 3. Let M — M/T be a compact Kάhler surface of negative bisec-

tional curvature. Suppose that Γ C Aut°(M) acts freely on M, and Γ is not

isomorphic to the fundamental group of a compact real surface. Then M is

biholomorphic to the unit ball in C2.

Corollary 4. Let M — M/T be a compact complex surface such that M is a

bounded domain in C2. Suppose that T C Aut°(M) acts freely on M, and T is

not isomorphic to the fundamental groups of a compact real surface. Then M is a

bounded symmetric domain.

2. A theorem on homogeneous complex manifolds

Theorem 2.1. Let D — G/H be a homogeneous complex manifold, where G

is a connected Lie group acting on D effectively, and H is the isotopy subgroup of

G. If there exists a discrete subgroup T C G such that M — D/T is a compact

complex manifold of negative definite first Chern class, then D is a bounded

symmetric domain in Cn (n — dimcZ>).

Proof. Since the first Chern class of M is negative definite, it follows that

M is measure hyperbolic. D is also measure hyperbolic as it is a covering of M.

Let ED — I ED I dzλ Λ dz2 Λ Λ dzn be the differential Eisenman-Kobayashi

measure on D. Since D is homogeneous, locally | ED \ is a smooth function. Our

aim is to show that the associated two-form (or Ricci form) or ED, namely dS%

(or Ric(£D)) = -Σ Z J (3 2 ln | ED \/dzfiZj) dzt Λ dzj, is negative definite.

Since the first Chern class of M is negative definite, it is well known that we

can always construct a nonzero smooth volume form V — \ V \ dwλ Λ dw2

Λ- Λdwn on M such that -ΣiJ(d2ln\V\/dwidwj)dwi A dwj is negative
definite. We denote by EM—\EM\ dwλ A dw2 A Λ dwn the differential

Eisenman-Kobayashi measure on M. It is easy to check that ED = π*(EM),

where π: D -> D/T is the covering projection. Thus \EM\ is also locally a

smooth function.

However, it is not hard to see that f = \EM\/\ V\ is a positive smooth

function which is globally defined on M. Taking the logarithm of /, we have

In / = In I EM \ — In | V\. Since M is compact, In / takes a minimum at some

p e M. Thus rf(ln f)(p) — 0, and the matrix (32(ln f)/dwidwj(p)) is positive

semidefinite. However,

w yP)



COMPACT KAHLER SURFACES 411

It follows that, for any nonzero vector t G Tp(M),

which proves -(d2ln(EM)/dwidwJ(p)) is a negative-definite n X n matrix.

Now let q G D such that π(q) = p. Obviously -3 2 ln | ED \/ΰzfizj(q)) is also

negative definite since π*(EM) = ED. Our claim follows from the fact that D is

homogeneous.

The conclusion that D is a bounded symmetric domain in Cn is a conse-

quence of the following known facts:

1. If a Lie group G contains a discrete subgroup Γ such that G/Γ is compact,

then G is unimodular.

2. Theorem of Hano [9]. If the Ricci curvature of a Kahlerian homogeneous

space of a connected unimodular Lie group is nondegenerate, and the group

acts effectively on the space, then the group is semisimple.

In our case, ds2 = Σ/ > 7(θ2ln | ED\/dzidzJ)dzi dzj is a G-invariant Kahler

metric on G/H. It is easy to see that the Ricci tensor of ds2 is nondegenerate

since it is only a constant multiple of ds2.

3. Theorem of Kozul [17]. Let G/H be a homogeneous complex manifold

with G a connected semi-simple Lie group. Suppose there exists a G-invariant

volume form V — \ V\ dzx Λ dz2 A - - Adzn such that its associated Ricci form

- Σ / y ( 3 2 l n I Vl/dzβzj) dzλ Λ dz- is negative definite. Then G/H is a hermitian

bounded symmetric domain in Cn.

Our proof of Theorem 2.1 is therefore complete.

Note. In a letter to the author, Professor Piatetskϋ Shapiro kindly in-

formed us the following theorem of his {Geometry of classical domains and

automorphic functions, Gorden and Breach, New York, Vol. 8, 1969):

Let D = G/H be a homogeneous complex manifold with an invariant

volume V =\ V \ dzx Λ Adzn Λ dzx Λ Adzn whose Ricci form

- Σ ( 3 2 l n | V\/'dzidzj)dzx Λ dzj is negative definite. Then D is a bounded

homogeneous domain in Cn.

Depending on the validity of this statement one can shorten the argument

given above.

3. Two remarks on compact hyperbolic surfaces

In this section we shall prove the following two results concerning hyper-

bolic manifolds.

Theorem 3.1. Let M be a compact Kahler surface of hyperbolic type in the

sense of[\2]. Then the first Chern class of M is negative definite.
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Theorem 3.2. Let M be a compact Kάhler surface of hyperbolic type. Then

the Euler characteristic of M is positive.

Proof of Theorem 3.1. According to the classification theory of Enriques-

Kodaira, compact complex surfaces free of exceptional curves can be divided

into seven classes:

(1) the class of projective plane and ruled surfaces,

(2) the class of .O-surfaces,

(3) the class of complex tori,

(4) the class of minimal elliptic surfaces with bx — 0(2), Pn ^ 0, K Φ 0,

(5) the class of minimal algebraic surfaces with P2 > 0, C\ > 0,

(6) the class of minimal elliptic surfaces with bι = \(oτ 2), Pn > 0,

(7) the class of minimal surfaces with bx — 1, Pu = 0.

Class (6) and (7) are nonKahler surfaces (since their first Betti numbers are

odd), and hence not of our interest. Thus the set of all compact Kahler

hyperbolic surfaces are contained in classes (1),. . . ,

(5). However, classes (1), (3), (4) are not hyperbolic since they contain either

rational or elliptic curves. In order to complete our proof of Theorem 3.1 we

have to prove the following:

Claim 1. K3-surfaces are not hyperbolic.

Claim 2. The first Chern class of an algebraic surface of general type which

does not contain any rational curve is negative definite.

Proof of Claim 1. We need two known results to conclude this fact:

1. Theorem of Brody [4]. Let Mo be a compact hyperbolic manifold. Then

any sufficiently small local deformation Mt of Mo is also hyperbolic (i.e.,

Hyperbolicity is stable under local deformation).

2. It was proved in [13, Theorem 18] that for any .O-surface Λf0, there exists

an arbitrarily small deformation Mt or Mo which is an elliptic K3 surface.

However, an elliptic surface contains a lot of elliptic curves, hence cannot be

hyperbolic. This proves Claim 1.

Proof of Claim 2. The following result is known in the theory of surfaces

[16], [21].

Let M be an algebraic surface of general type. Then for sufficiently large

m, H°(M, mK) has enough sections to define the pluri-canonical map

φm: M -» CPN9 whereN = d i m c | mK\ ,

such that:

1. the pluri-canonical system | mK\ has no base point, and φm is a holomor-

phic map,

2. if m > 6, then φm is biholomorphic modulo ε, where ε is the union of all

nonsingular rational curves E such that KE — 0.



COMPACT KAHLER SURFACES 413

We remark that φm is said to be biholomorphic modulo ε if φm is biholomor-
phic on M — ε, and φ~}φm(z) is a connected component of ε which contains the
given point z.

Now, if M is assumed to be void of rational curves, it follows immediately
that ε is an empty set. Thus the pluri-canonical map φm is biholomorphic and
defines an embedding of M into CPN; in other words, mK is very ample if m is
sufficiently large. By a theorem of Kodaira, it implies immediately that K is a
positive line bundle over M; i.e., the first Chern class of M is negative definite.

Proof of Theorem 3.2. One way to verify this fact goes as follows. By
Theorem 3.1 the first Chern class of M is negative definite. A Theorem of Yau
[33] says that M admits an Einstein-Kahler metric. The Chern-Gauss-Bonnet
theorem furnishes us with the following formula for any Riemannian metric on
M:

The curvature tensor R is a symmetric linear transformation

such that

relative to a local orthonormal basis {/,} of one-forms. A very useful canonical
form of curvature tensor for an Einstein metric on four-dimensional manifold
was given by Berger [1]. In summary, there exists an orthonormal basis
{/l5 /2, /3, /4} of one-forms such that {lx Λ /2, /, A /3, /1 Λ /4, l2 A /3, /2 Λ /4, l3

A l4) constitute a basis for Λ2(77*(M)) such that the curvature tensor (with
respect to this set of basis) assume the following simple expression,

H Kl'
where

K =
ί*.

0

0

0

k2

0

0

0

k,
H =

0

h2

0

0

0

By a computation one can get

Therefore X(M)
proved.

0, and X(M) = 0 if M is flat. Hence Theorem 3.2 is
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Remark. There are many methods to verify Theorem 3.2; for the recent
development of the relationship between Chern numbers on complex surfaces
of general type one can consult [2], [19], [33]. Actually all one needs is the fact
ac2 ^ c2 for some a > 0 (Van de Ven's old estimate (a = 8) is sufficient for
our purpose). The proof given here is probably a "bad proof.

4. Proof of the main theorem

Before embarking on the proof we first make two remarks here (with the

same notation as in Theorem 1.5):

(i) Since M is complete-hyperbolic, Aut(M) acts properly on M in the sense
that if K{ and K2 are relatively compact subsets of M, then (Kλ9 K2) — {g €=
Aut(M) I g(K{) Π K2 φ 0 } is relatively compact in AutM) (see [12], [31]).

(ii) M admits a G-invariant (remind: G = Aut(M)) Riemannian metric (see
[24, Theorem 4.3.1, p. 316]).

It is well known that the only homogeneous bounded domains in C2 are B2

and Δ2. From Theorems 2.1 and 3.1 it suffices for us to prove that M is
homogeneous. We break our proof into several steps.

First of all, we claim that Γ must be infinite. If Γ is finite, then M is
compact. Thus Aut(M) consists of only finitely many elements since M is
compact hyperbolic, [12], [31]. Moreover, since Γ C Aut°(M), it follows im-
mediately Γ =s {1}. This is obviously a contradiction to the fact that {1} is the
fundamental group of S2. Then by recalling that Γ C Aut°(M) is a discrete
subgroup, and G° acts properly on M, we see that the orbits G°(p) are
noncompact closed submanifolds in M with dimG°(p) > 1 for all p £Ξ M. We
have to keep this fact in mind in our proof given below.

Secondly, if we denote by π: M -» M = M/T the canonical projection, it is
obvious that iτ~\V) = G°{ρ\ where V- G°(p)/T. Thus Fmust be a closed
subset in M with respect to the quotient topology since G°(p) is closed. Since
M is compact, V = G°(p)/T is a compact submanifold of M. We shall use this
fact in the sequel of our proof.

(1) Suppose there exist a point p G M such that dimΛG°(j?) = 1. By the
above argument we know that G°(p) is a closed noncompact connected
one-dimensional submanifold of M. It follows that G°(p) must be homeomor-
phic to Rι. Since Γ acts on M freely, Γ also acts freely on G°(p). Furthermore,
V — G°(p)/T is a compact one-dimensional manifold. Consequently the only
possibility if V ^ Sι and Γ s Z. We further observe that the first Betti number
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of M must be even since it is a Kahler manifold. This is a contradiction since
the rank of HX(M, Z) = Γ/[Γ, Γ] is equal to one if Γ = Z.

(2) Suppose there exists a point p E M such that dimRG°(p) = 2. By
Remark (ii) there exists a G-invariant Riemannian metric dS2 on M. With this
metric, (G°(p), dS2) is a noncompact homogeneous two-dimensional Rieman-
nian manifold. There are three cases:

Case 1. (G°(p), dS2) is isometric to the upper-half plane with Poincare
metric whose sectional curvature is negative constant.

Case 2. (G°(p), dS2) is isometric to R2 with flat metric.
In both Cases 1 and 2, V— G°(p)/T is a compact two-dimensional

manifold which is topologically covered by R2. Therefore Γ is isomorphic to
the fundamental group of a compact surface. This is a contradiction to
assumption 2 of our theorem.

Case 3. (G°(p), dS2) is isometric to the flat cylinder Sι X R.
In this case, V — G°(p)/T is a compact surface embedded in M. Since

Sι X R is flat, Fis either a flat torus or Klein bottle with the inherited metric
form (G°(p), dS2). From the fact that Γ acts freely on Sι X R as isometries, it
is not hard to see that Γ = F θ Z, where F is a finite abelian group. Since the
rank of Hλ(M, Z) = Γ/[Γ, Γ] is equal to one if Γ = F θ Z, it contradicts the
assumption that M is Kahler again.

(3) Suppose that for allp E M, dim* G°(p) = 3.
As before, G°(p) is a closed three-dimensional submanifold of M and

invariant under Γ, and G°(p)/T is a compact three-dimensional submanifold
of M — M/T for all p E M. In this way we have a smooth codimenson-one
foliation of M, whose leaves are compact three-dimensional manifolds. This
would give rise to a nonvanishing vector field on M or on a double covering of
M, and the Euler characteristic of M is thus equal to zero, a contradiction to
Theorem 3.2.

(4) There exists a point/? E M such that ά\mR G°{p) — 4.
We note that G° acts properly on M, so that G°(p) is a four-dimensional

closed orbit in M. Since dimΛ M = 4, it is led to conclude that G°{p) — M,
i.e., M is homogeneous. This is the only possibility.

The proof of our main theorem is therefore complete.

5. Proofs of Corollaries 1 4

Corollary 1 is an immediate consequence of the following facts:
1. A complete Riemannian manifold of nonpositive sectional curvature is a

K(T, 1) space.
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2. There is no compact orientable four-dimensional Λ^Γ, 1) manifold with
Γ = fundamental groups of real compact surfaces.

3. A complete hermitian manifold of strongly negative holomorphic sec-
tional curvature is complete hyperbolic [12], [13].

4. Theorem of Paul Yang (Theorem 1.4).
5. Our main result.

We only have to verify fact 2. If Γ is the fundamental group of a K(T, 1)
space, it is a standard fact that ff'"(Γ, Z) = H\M, Z). Hence we have
i/'(Γ, Z) = 0 for all i > 5 and if4(Γ, Z) = Z (M is compact orientable). If Γ
is the fundamental group of a real compact surface S, there are two possibili-
ties:

(a) If S is topologically covered by R2, then /Γ(Γ, Z) = 0 for all i > 2. This
contradicts our previous conclusion i/4(Γ, Z) = H4(M, Z) = Z.

(b) If S is topologically covered by S2, then /Γ(Γ, Z) satisfies certain
periodical property if Γ s* {1}. In particular, we have Hι(T, Z) φ 0 for some
/ > 5 if Γ s* {1} is a contradiction to the fact H%T, Z) = #'(M, Z) = 0 for
/ ^ 5 . Finally if Γ = {1}, then # 4 (Γ, Z) = 0 contradicting # 4 (Γ, Z) =
# 4 ( M , Z) = Z.

The main steps to prove Corollary 2 are an application of fact 2 mentioned
above, the well known fact that compact quotients of bounded domains are
complete hyperbolic, and the following lemma.

Lemma 5.1. Let M be a bounded domain in Cn whose boundary dM is a
(2n — X)-topological manifold. If there exists a discrete subgroup Γ C Aut(M)
such that M = M/T is compact, then iTj{M) — 0,j > 1.

Proof. We denote by dM the boundary of M as usual, which is a compact
topological (2n — l)-manifold embedded in R2n — Cn. Let d be the distance
function from the origin in R2n. Since d is a continuous function which is
defined on 3M, suppose that d assumes a maximum at p E 3M, so that we can
write d(o, p) = r > 0. If we draw a sphere with center at o and radius r,
namely Sr = {x E R2n \ d(o, x) = r}, it is elementary to show there exists no
complex analytic subvariety of positive dimension sitting on Sr. Since dM is
more convex than Sr at /?, one can also easily verify that there exists no
complex analytic subvariety passing through p of positive dimension lying on
U Π 3M, where U is an open neighborhood of p in Cn. To be precise, there
exists no nontrivial holomorphic map g: Δ = { z E C | | z | < ε } ^ ί / Π dM C
Cn such that g(o) = p where ' V is the origin of Δ.

From our assumption that there exists a discrete subgroup Γ C Aut(M)
such that M/T is compact, we can always find a compact set K C M so that



COMPACT KAHLER SURFACES 417

for each x E M there are y G K and g G Γ satisfying g(^) = Λ: (Â  is called a
fundamental domain of M = M/Γ, [23]). Let {/?,} be a sequence of points in
M converging to the point p G 3M fixed above. There correspond a sequence
of points {*,} in K and {g,} C Γ such that &(*,) = />,- for all i. Since A' is a
compact set, there exists a point x G AT such that { t,} converges to JC (passing
to a subsequence if necessary). We claim that {gi(x)} would converge top. To
prove this claim we observe that d^g^x), &(*,) = dc(x9 xt)9 where dc denotes
the Caratheodory distance function on M which is invariant under biholomor-
phisms [23]. Since {.*,} converges to x and dc is a continuous bounded function
on K X K, dc(x, Xj) tends to zero as i approaches infinity. This implies that
d(gj(x), &(*,•)) will also approach zero as / goes to infinity. We recall the fact
{gi(Xi)} -> p and observe the inequality dc> s d holds on M, where s is a
positive constant, and d is the Euclidean distance function. Now it is trivial to
see that {g/(x)} must converge top. This provides a proof of our claim.

By normal family argument we can prove {g,} converges on compacta
(passing to a subsequence if necessary) to a bounded holomorphic function
g: M -> C"1 such that g(x) = /?, g(M) C 9M. g must be a constant map from
M to C", otherwise g would map an open set containing x onto a complex
analytic variety of positive dimension lying on dM passing through the point/?.

To complete our proof we draw a sphere S in M to represent a nontrivial
class of iTj(M)J > 1. Since {gz} -> g, where g is the above constant map such
that g(M) = /?, it is clear g^S) C £/ Π M for sufficiently large i. We can
choose such a " I / " so that ί/ΠMis contractible since 3M has been assumed
to be a topological {In — l)-manifold. This would imply that g^S) can be
deformed into one point within the region U Π M for large /. Nevertheless, the
fact that gt is a biholomorphism gives rise to a contradiction to our assumption
that S represents a nontrivial class in ττy(M).

This completes the proof that w)(M) = 0 for ally > 1.
The proof of Corollary 4 is again a trivial consequence of the fact that

compact quotients of bounded domains in Cn are complete hyperbolic. As for
Corollary 3, one simply has to invoke the theorem of Yang (Theorem 1.4) that
Δ2 does not admit any complete Kahler metric whose bisectional curvature is
pinched between two negative numbers.

6. An example and additional comments

As a final remark we shall give the following example which is related to our
negative tangent bundle conjecture mentioned in the introduction.
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1. The construction of a compact Kάhler surface of negative holomorphic

bisectional curvature admitting no Riemannian metric of nonpositive sectional

curvature. Let N be a compact quotient of the complex 3-ball. By the Kodaira

embedding theorem, N is a complex submanifold of some complex projective

number space Pn. Let if be a hyperplane in Pn such that M = N Π H is

nonsingular. From the monotonicity property of the holomorphic bisectional

curvature it follows that the Kahler metric induced by N on M has negative

holomorphic bisectional curvature. By the Lefschetz hyperplane section theo-

rem, πx(M) = πx(N). Since Z = H6(N9 Z) = Hβ(πx(N), Z) = Ht{irx{M\ Z)
φ H6(M, Z) = 0, it follows that M cannot be an Eilenberg-MacLane space

and therefore cannot carry a Riemannian metric of nonpositive sectional

curvature.

2. The nonvanishing of HX{M, TM) for the manifold M constructed above.

Consider a family of hyperplanes Ht in Pn close to H. Let Mt — N Π Hr Any

two distinct Mn Mt, cannot be biholomorphic, because any biholomorphic map

φ: Mt -» Mt. is a harmonic map from Mt to N which, together with the

harmonic map Mt «=* N, contradicts the uniqueness theorem of Hartman [10]

on harmonic maps for target manifolds with negative sectional curvature.

Hence M is not rigid, and HX(M, TM) cannot be zero. This interesting

phenomenon is significant, because of the result of Siu [24] on its rigidity in the

case of compact Kahler manifold of strongly negative curvature. It shows that

such a rigidity theorem fails for compact Kahler surfaces of negative holomor-

phic bisectional curvature.

This example has already been described in [29], but the author wants to add

one remark here concerning the Hirzebruch index of M — N Π H. If we embed

N in Pn by its canonical system, it should not be difficult to give an estimate of

the Hirzebruch index of M. For most of such M the index is a negative

number. In this way one could obtain a complex surface of ample cotangent

bundle with negative index which is not an Eilenberg-MacLane space. This

type of surfaces are rather interesting, and the author will discuss this matter in

a separate paper.

Finally, the author would like to take this opportunity to point out that one

of the questions he asked in [29] (problem 5) is a known result. It is very easy

to prove that if X is a compact Kahler manifold with its sectional curvature

pinched between -1 and - \, then it is in fact of constant holomorphic

sectional curvature. In particular, X is covered holomorphically by the unit

ball. Moreover, problem 3(b) is in general false following from a nontrivial

topological fact.
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