GENERIC SUBMANIFOLDS OF AN EVEN-DIMENSIONAL EUCLIDEAN SPACE

U-HANG KI \& JIN SUK PAK

Dedicated to Professor Kentaro Yano on his 70th birthday

0. Introduction

Recently several authors have studied generic submanifolds (anti-holomorphic submanifolds) immersed in Kaehlerian manifolds by using the method of Riemannian fibre bundles ([3], [4] and [8] etc.).

The purpose of the present paper is to characterize generic submanifolds of an even-dimensional Euclidean space.

In §1, we recall fundamental properties and structure equations for generic submanifolds immersed in an even-dimensional Euclidean space.

In §2, we prove some lemmas under the assumption that the f-structure induced on the submanifold and the second fundamental tensors commute.

In §3, we characterize generic submanifolds of an even-dimensional Euclidean space under certain conditions.

In 1971 Yano and Ishihara [6] proved the following.
Theorem A. Let M be a complete submanifold of dimension n immersed in a Euclidean space E^{m} of dimension $m(1<n<m)$ with nonnegative sectional curvature. Suppose that the normal connection of M is flat and the mean curvature vector of M is parallel in the normal bundle. If the length of the second fundamental form of M is constant in M, then M is a sphere $S^{n}(r)$ of dimension n, an n-dimensional plane $E^{n}\left(\subset E^{m}\right)$, a pythagorean product of the form

$$
\begin{equation*}
S^{p_{1}}\left(r_{1}\right) \times \cdots \times S^{p_{N}}\left(r_{N}\right), \quad p_{1}+\cdots+p_{N}=n, 1<N \leqslant m-n, \tag{1}
\end{equation*}
$$ or a pythagorean product of the form

$$
\begin{align*}
S^{p_{1}}\left(r_{1}\right) \times \cdots \times & S^{p_{N}}\left(r_{N}\right) \times E^{p} \\
& p_{1}+\cdots+p_{N}+p=n, 1<N \leqslant m-n, \tag{2}
\end{align*}
$$

where $S^{p}(r)$ is a p-sphere with radius r, and $E^{p}\left(\subset E^{m}\right)$ a p-dimensional plane. If M is a pythagorean product of the form (1) or (2), then M is of essential codimension N.

Using a method quite similar to the one used in Lemma 1.2 of Yano and Kon [8] we can prove that the sectional curvature of an n-dimensional submanifold immersed in E^{m} with flat normal connection is always nonnegaive if the second fundamental tensor of the submanifold is parallel. By means of Theorem A, we have

Theorem B. Let M be a complete submanifold of dimension n immersed in a Euclidean space E^{m} of dimension $m(1<n<m)$ with flat normal connection. If the second fundamental tensor of M is parallel, then M is of the same type as stated in Theorem A.

To characterize the submanifolds we shall use Theorem B.
The authors would like to express here their sincere gratitude to Professor Kentaro Yano who gave them many valuable suggestions to improve the paper.

1. Structure equations of generic submanifolds

Let $E^{2 m}$ be a $2 m$-dimensional Euclidean space, and 0 the origin of a Cartesian coordinate system in $E^{2 m}$, and denote by X the position vector representing a point of $E^{2 m}$ with respect to the origin. Since $E^{2 m}$ is evendimensional, $E^{2 m}$ can be regarded as a flat Hermitian manifold, and hence there exists a tensor field F of type $(1,1)$ with constant components such that

$$
\begin{equation*}
F^{2}=-I, \quad(F X) \cdot(F Y)=X \cdot Y \tag{1.1}
\end{equation*}
$$

for any vectors X and Y, where I denotes the identity transformation, and the dot the inner product in the Euclidean space $E^{2 m}$.

Let M be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$ and immersed isometrically in $E^{2 m}$ by the immersion $i: M \rightarrow E^{2 m}$. Throughout this paper the indices h, i, j, k, \cdots, t run over the range $\{1,2, \cdots, n\}$, and the summation convention is used with respect to this system of indices. We identify $i(M)$ with M itself.

Put

$$
\begin{equation*}
X_{i}=\partial_{i} X, \quad \partial_{i}=\partial / \partial x^{i} \tag{1.2}
\end{equation*}
$$

Then X_{i} are n linearly independent vector fields tangent to the submanifold M. Denoting by $g_{j i}$ the components of the induced metric tensor of M, we have

$$
\begin{equation*}
g_{j i}=X_{j} \cdot X_{i} \tag{1.3}
\end{equation*}
$$

since the immersion is isometric.

Denote by $C_{x} 2 m-n$ mutually orthogonal unit normals to M. Throughout this paper the indices u, v, w, x, y and z run over the range $\{n+$ $1, \cdots, 2 m\}$, and the summation convention is used with respect to this system of indices. Therefore denoting by ∇_{j} the operator of the van der Waerden-Bortolotti covariant differentiation with respect to the Christoffel symbols $\left\{{ }_{j}{ }_{j}{ }_{i}\right\}$ formed with $g_{j i}$, we have the equations of Gauss and Weingarten for M

$$
\begin{align*}
\nabla_{j} X_{i} & =h_{j i}{ }^{x} C_{x} \tag{1.4}\\
\nabla_{j} C_{x} & =-h_{j}^{k}{ }_{x} X_{i} \tag{1.5}
\end{align*}
$$

respectively, where $h_{j i}{ }^{x}$ are the second fundamental tensors with respect to the normals C_{x} and $h_{j x}^{i}=h_{j h}{ }^{y} g^{i h} g_{y x}, g_{y x}$ being the metric tensor of the normal bundle of M given by $g_{y x}=C_{y} \cdot C_{x}$, and $\left(g^{j i}\right)=\left(g_{j i}\right)^{-1}$.

Since the ambient manifold $E^{2 m}$ is Euclidean, the equations of Gauss, Codazzi and Ricci for M are respectively given by

$$
\begin{align*}
K_{k j i}^{h} & =h_{k}^{h}{ }_{x} h_{j i}^{x}-h_{j}^{h}{ }_{x} h_{k i}^{x}, \tag{1.6}\\
\nabla_{k} h_{j i}^{x}-\nabla_{j} h_{k i}^{x} & =0 \tag{1.7}\\
K_{j i y}^{x} & =h_{j i}^{x} h_{i y}^{t}-h_{i t}^{x} h_{j y}^{t}, \tag{1.8}
\end{align*}
$$

where $K_{k j i}{ }^{h}$ and $K_{j i j}{ }^{x}$ are the curvature tensors of M and the connection induced in the normal bundle respectively.
Now we consider the submanifold M of $E^{2 m}$ which satisfies

$$
N_{P}(M) \perp F\left(N_{P}(M)\right)
$$

at each point $P \in M$, where $N_{P}(M)$ denotes the normal space at P. Such a submanifold M is called a generic submanifold (an anti-holomorphic submanifold), [4], [7]. From now on we consider generic submanifolds immersed in an even-dimensional Euclidean space $E^{2 m}$. Then we can put in each coordinate neighborhood

$$
\begin{align*}
& F X_{j}=f_{j}^{i} X_{i}-f_{j}^{x} C_{x} \tag{1.9}\\
& F C_{x}=f_{x}^{i} X_{i}, \tag{1.10}
\end{align*}
$$

where f_{j}^{i} is a tensor field of type $(1,1)$ defined on M, f_{j}^{x} a local 1-form for each fixed index x, and $f_{x}^{i}=f_{j}^{y} g^{j i} g_{y x}$.

Applying F to (1.9) and (1.10) respectively, and using (1.1) and those equations, we can easily find

$$
\begin{align*}
& f_{j}^{t} f_{t}^{h}=-\delta_{j}^{h}+f_{j}^{x} f_{x}^{h} \tag{1.11}\\
& f_{j}^{\prime} f_{t}^{x}=0, \quad f_{t}^{x} f_{j}^{t}=0, \tag{1.12}
\end{align*}
$$

$$
\begin{equation*}
f_{t}^{x} f_{y}^{t}=\delta_{y}^{x} \tag{1.13}
\end{equation*}
$$

Moreover, (1.11) and (1.12) imply

$$
f_{j}^{h} f_{h}^{t} f_{t}^{i}+f_{j}^{i}=0,
$$

and consequently M admits the so-called f-structure satisfying $f^{3}+f=0$ (see [2], [3]).

Substituting (1.9) into $\left(F X_{j}\right) \cdot\left(F X_{i}\right)=X_{j} \cdot X_{i}$ gives

$$
\begin{equation*}
f_{j}^{h} f_{i}^{k} g_{h k}=g_{j i}-f_{j}^{x} f_{i}^{y} g_{x y} . \tag{1.14}
\end{equation*}
$$

By putting $f_{j i}=f_{j}^{t} g_{t i}, f_{j x}=f_{j}^{y} g_{y x}$, we easily see that

$$
\begin{equation*}
f_{j i}=-f_{i j}, \quad f_{j x}=f_{x j} \tag{1.15}
\end{equation*}
$$

If we apply the operator ∇_{j} of the covariant differentiation to (1.9) and take account of $\nabla_{j} F=0$, then we obtain

$$
F \nabla_{j} X_{i}=\left(\nabla_{j} f_{i}^{h}\right) X_{h}-f_{i}^{h} \nabla_{j} X_{h}-\left(\nabla_{j} f_{i}^{x}\right) C_{x}-f_{i}^{x} \nabla_{j} C_{x}
$$

Substituting (1.4) and (1.5) into the above equation yields

$$
\begin{gather*}
\nabla_{j} f_{i}^{h}=h_{j i}^{x} f_{x}^{h}-h_{j}^{h} f_{i}^{x}, \tag{1.16}\\
\nabla_{j} f_{i}^{x}=h_{j t}^{x} f_{i}^{t} . \tag{1.17}
\end{gather*}
$$

In the same way, from (1.10) we can also obtain

$$
\begin{align*}
\nabla_{j} f_{x}^{h} & =h_{j t x} f^{h t} \tag{1.18}\\
f_{x}^{t} h_{j t}^{y} & =h_{j x}^{t} f_{t}^{y} \tag{1.19}
\end{align*}
$$

where $h_{j t x}=h_{j}^{i} x_{i t}$ and $f^{h t}=f_{j}^{t} g^{j h}$ because of (1.4) and (1.5).
We now consider a tensor field S of type (1,2) whose local components are given by

$$
S_{j i}^{h}=[f, f]_{j i}^{h}+\left(\nabla_{j} f_{i}^{x}-\nabla_{i} f_{j}^{x}\right) f_{x}^{h}
$$

where

$$
[f, f]_{j i}^{h}=f_{j}^{t} \nabla_{t} f_{i}^{h}-f_{i}^{t} \nabla_{t} f_{j}^{h}-\left(\nabla_{j} f_{i}^{t}-\nabla_{i} f_{j}^{t}\right) f_{t}^{h}
$$

is the Nijenhuis tensor formed with f_{i}^{h}. When the tensor field S vanishes identically, the f-structure induced on M is said to be normal (see Nakagawa [2]). But, for generic submanifolds of a Euclidean space, substituting (1.16) and (1.17) into the above equation, we find

$$
S_{j i}^{h}=\left(h_{j x}^{t} f_{t}^{h}-f_{j}^{t} h_{t}^{h}\right) f_{i}^{x}-\left(h_{i x x}^{t} f_{t}^{h}-f_{i}^{t} h_{t}^{h}\right) f_{j}^{x} .
$$

Hence if $S_{j i}{ }^{h}$ vanishes identically, we have

$$
\begin{equation*}
\left(h_{i t x} f_{h}^{t}+h_{h t x} f_{i}^{t}\right) f_{j}^{x}-\left(h_{j t x} f_{h}^{t}+h_{h t x} x_{j}^{t}\right) f_{i}^{x}=0, \tag{1.20}
\end{equation*}
$$

because $f_{j i}$ is skew-symmetric.

Transvecting (1.20) with $f_{y}{ }^{j}$ and taking account of (1.12) and (1.13), we find

$$
\begin{equation*}
h_{i t y} f_{h}^{t}+h_{h t y} f_{i}^{t}-\left(h_{j t x} f_{h}^{t} f_{y}^{j}\right) f_{i}^{x}=0 \tag{1.21}
\end{equation*}
$$

Taking the skew-symmetric part with respect to the indices i and h in (1.21) yields

$$
\left(h_{j t x} f_{h}^{t} f_{y}^{j}\right) f_{i}^{x}-\left(h_{j t x_{i}} f_{i}^{t} f_{y}^{j}\right) f_{h}^{x}=0,
$$

which, transvected with f_{z}^{i}, gives $h_{j t z} f_{h}^{l} f_{y}^{j}=0$ because of (1.12) and (1.13). Consequently (1.21) becomes $h_{i t y} f_{h}^{t}+h_{h t y} f_{i}^{t}=0$. Thus we have

Lemma 1.1. Let M be an n-dimensional generic submanifold of an evendimensional Euclidean space $E^{2 m}$. Then the f-structure induced on M is normal if and only if

$$
\begin{equation*}
h_{j x}^{t} f_{t}^{i}=f_{j}^{t} h_{t x}^{i} \tag{1.22}
\end{equation*}
$$

Here we first notice that the condition (1.22) does not depend on the choice of mutually orthogonal unit normal vectors C_{x}. In fact, if we take another set of mutually orthogonal unit normals ${ }^{\prime} C_{x}$, then we have

$$
\begin{equation*}
{ }^{\prime} C_{x}=\sigma_{x}^{y} C_{y}, \tag{1.23}
\end{equation*}
$$

where ($\sigma_{x}{ }^{y}$) is a special orthogonal matrix of degree $2 m-n$. Defining the second fundamental tensor ' $h_{j i}{ }^{x}$ with respect to ${ }^{\prime} C_{x}$ by $\nabla_{j} X_{i}={ }^{\prime} h_{j i}{ }^{x \prime} C_{x}$, we have,

$$
' h_{j i}^{x}=\sigma_{y}^{x} h_{j i}^{y},
$$

which implies our assertion.
In this point of view we shall investigate some properties concerning the f-structure induced on M satisfying (1.22) for later uses.
2. Lemmas concerning $h_{j}^{t}{ }_{x} f_{t}^{i}=f_{j}^{t} h_{t x}^{i}$.

In this section, we assume throughout that the f-structure induced on M satisfies (1.22), and the normal connection of M is flat. Then from (1.22) we have

$$
\begin{gather*}
h_{j t}^{x} f_{i}^{t}+h_{i t}^{x} f_{j}^{t}=0, \tag{2.1}\\
h_{j t}^{x} h_{i y}^{t}-h_{i t}^{x} h_{j y}^{t}=0 \tag{2.2}
\end{gather*}
$$

which is a direct consequence of the equation (1.8) of Ricci.
Transvecting (2.1) with $f_{k}{ }^{i}$ and taking account of (1.11), we obtain

$$
h_{j k}^{x}-\left(h_{j t}^{x} f_{y}^{t}\right) f_{k}^{y}+h_{s t}^{x} f_{j}^{t} f_{k}^{s}=0
$$

Taking the skew-symmetric part with respect to j and k in the above equation gives

$$
\left(h_{j t}^{x} f_{y}^{t}\right) f_{k}^{y}-\left(h_{k t}^{x} f_{y}^{t}\right) f_{j}^{y}=0
$$

Transvecting this equation with f_{z}^{h} we find

$$
\begin{equation*}
h_{j t}^{x} f_{y}^{t}=P_{y z}^{x} f_{j}^{z} \tag{2.3}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
p_{y z}^{x}=h_{j i}^{x} f_{y}^{j} f_{z}^{i} \tag{2.4}
\end{equation*}
$$

Let $P_{y z x}=g_{w x} P_{y z}{ }^{w}$. Then $P_{y z x}$ is symmetric for all indices because of (1.19) and (2.3).

Next, transvecting (2.2) with $f_{z}{ }^{j}$ and using (2.3), we can get

$$
P_{z u}{ }^{x} P_{y w}{ }^{u} f_{i}^{w}=P_{z y}{ }^{u} P_{u w}{ }^{x} f_{i}^{w}
$$

which together with (1.13) gives

$$
\begin{equation*}
P_{u z}{ }^{x} P_{y w}{ }^{u}=P_{u w}{ }^{x} P_{y z}{ }^{u}, \tag{2.5}
\end{equation*}
$$

because $P_{y z x}$ is symmetric for all indices. From (2.5) it follows that

$$
\begin{equation*}
P_{u z}{ }^{x} P_{y x}{ }^{u}=P_{x} P_{y z}{ }^{x}, \tag{2.6}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
P^{x}=g^{y z} P_{y z}^{x} . \tag{2.7}
\end{equation*}
$$

Lemma 2.1. Let M be a generic submanifold of an even-dimensional Euclidean space $E^{2 m}$ with flat normal connection. If the f-structure induced on M satisfies (1.22), then we have

$$
\begin{equation*}
h_{j t}^{x} h_{i y}^{t}=P_{y z}^{x} h_{j i}^{z} \tag{2.8}
\end{equation*}
$$

Proof. Differentiating (2.3) covariantly along M and using (1.17), we find

$$
\left(\nabla_{k} h_{j t}^{x}\right) f_{y}^{t}+h_{j}^{t x} h_{k s y} f_{t}^{s}=\left(\nabla_{k} P_{y z}^{x}\right) f_{j}^{z}+P_{y z}^{x} h_{k t}^{z} f_{j}^{t}
$$

Taking the skew-symmetric part in the above equation and using (1.7) and (2.1), we obtain

$$
\begin{equation*}
2 h^{s t x} h_{k s y} f_{j t}=\left(\nabla_{k} P_{y z}^{x}\right) f_{j}^{z}-\left(\nabla_{j} P_{y z}^{x}\right) f_{k}^{z}+2 P_{y z}^{x} h_{k t}^{z} f_{j}^{t} \tag{2.9}
\end{equation*}
$$

Transvecting (2.9) with $f_{w}{ }^{j}$ gives

$$
\begin{equation*}
\nabla_{k} P_{y w}^{x}=\left(\nabla_{t} P_{y z}^{x}\right) f_{w} f_{k}^{z} \tag{2.10}
\end{equation*}
$$

which implies

$$
\left(\nabla_{k} P_{y z}^{x}\right) f_{j}^{z}=f_{y}^{t}\left(\nabla_{t} P_{z w}{ }^{x}\right) f_{k}^{w} f_{j}^{z},
$$

since $P_{y z}{ }^{x}=P_{z y}{ }^{x}$. Therefore (2.9) reduces to

$$
h_{t}^{s x} h_{k s y} f_{j}^{t}=P_{y z}{ }^{x} h_{k t}{ }^{2} f_{j}^{t}
$$

Transvecting the above equation with f_{i}^{j} and taking account of (1.11), we obtain

$$
h_{i}^{s x} h_{k s y}+h_{t}^{s x} h_{k s y} f_{i}^{w} f_{w}^{t}=P_{y z} x_{k i}^{z}+P_{y z} x_{k t} h_{k}^{z} f_{i}^{w} f_{w}^{t}
$$

which together with (2.3) implies

$$
h_{i}^{s x} h_{k s y}+P_{w z}{ }^{x} P_{u y}{ }^{z} f_{k}^{u} f_{i}^{w}=P_{y z}{ }^{x} h_{k i}{ }^{z}+P_{y z}{ }^{x} P_{w u}{ }^{z} f_{k}^{u} f_{i}^{w} .
$$

Thus (2.8) is verified with the help of (2.5), and consequently the proof of the lemma is completed.

Lemma 2.2. Under the same assumptions as those stated in Lemma 2.1, we have

$$
\begin{equation*}
\nabla_{j} h^{x}=\nabla_{j} P^{x} \tag{2.11}
\end{equation*}
$$

where $h^{x}=g^{j i} h_{j i}{ }^{x}$.
Proof. Differentiating (2.1) covariantly and using (1.16), we find
$\left(\nabla_{k} h_{j t}{ }^{x}\right) f_{i}^{t}+h_{j t}^{x}\left(h_{k i}{ }^{y} f_{y}^{t}-h_{k}{ }_{y} f_{i}^{y}\right)+\left(\nabla_{k} h_{i t}^{x}\right) f_{j}^{t}+h_{i t}^{x}\left(h_{k j}{ }^{y} f_{y}^{t}-h_{k}{ }^{t}{ }_{y} f_{j}^{y}\right)=0$, which together with (2.3) and (2.8) implies

$$
\left(\nabla_{k} h_{j t}{ }^{x}\right) f_{i}^{t}+\left(\nabla_{k} h_{i t}\right) f_{j}^{t}=0
$$

By taking the skew-symmetric part of the above equation with respect to the indices k and j, we see that

$$
\left(\nabla_{k} h_{i t}^{x}\right) f_{j}^{t}-\left(\nabla_{j} h_{i t}{ }^{x}\right) f_{k}^{t}=0
$$

The last two equations together with (1.7) give $\left(\nabla_{k} h_{i t}{ }^{x}\right) f_{j}^{t}=0$. Transvecting this equation with f_{l}^{j} and using (1.11) we obtain

$$
\nabla_{k} h_{i l}^{x}=\left(\nabla_{k} h_{i t}^{x}\right) f_{l}^{y} y_{y}^{t},
$$

which transvected with $g^{i l}$ thus yields

$$
\begin{equation*}
\nabla_{k} h^{x}=\left(\nabla_{k} h_{i t}{ }^{x}\right) f^{i y} f_{y}{ }^{t} . \tag{2.12}
\end{equation*}
$$

On the other hand, from (2.4) and (2.7) we have

$$
P^{x}=h_{s t} f^{x s y} f_{y}^{t}
$$

If we differentiate the above equation covariantly and take account of (2.12), then we have

$$
\nabla_{j} P^{x}=\nabla_{j} h^{x}+h_{s t}^{x}\left(\nabla_{j} f^{s y}\right) f_{y}^{t}+h_{s t}^{x} f^{s y}\left(\nabla_{j} f_{y}^{t}\right) .
$$

Substituting (1.18) into the above equation and using (1.12), we arrive at (2.11). Hence Lemma 2.2 is proved.

3. Some characterizations of generic submanifolds

We first prove
Lemma 3.1. Let M be a generic submanifold of an even-dimensional Euclidean space $E^{2 m}$ with flat normal connection. If the f-structure induced on

M satisfies (1.22), then we have

$$
\begin{equation*}
\frac{1}{2} \Delta\left(h_{j i}{ }^{x} h_{x}^{j i}\right)=\left(\nabla_{j} \nabla_{i} h^{x}\right) h_{x}^{j i}+\left\|\nabla_{k} h_{j i}^{x}\right\|^{2} \tag{3.1}
\end{equation*}
$$

where $\Delta=g^{j i} \nabla_{j} \nabla_{i}$.
Proof. From the Ricci identity and (1.8) and $K_{j i y}{ }^{x}=0$:

$$
\nabla_{k} \nabla_{j} h_{i h}^{x}-\nabla_{j} \nabla_{k} h_{i h}{ }^{x}=-K_{k j i} h_{t h}{ }^{x}-K_{k j h}{ }^{t} h_{i t}{ }^{x},
$$

we obtain, in consequence of (1.7),

$$
\begin{equation*}
\nabla^{k} \nabla_{k} h_{j i}^{x}-\nabla_{j} \nabla_{h} h^{x}=K_{j i} h_{i}^{t x}-K_{k j i h} h^{k h x} \tag{3.2}
\end{equation*}
$$

where $K_{j i}$ is the Ricci tensor of M given by

$$
\begin{equation*}
K_{j i}=h^{x} h_{j i x}-h_{j i t}{ }^{x} h_{i x}^{t} . \tag{3.3}
\end{equation*}
$$

Transvecting (3.2) with $h^{j i}{ }_{x}$ and making use of (1.6), (2.8), (3.3), (2.2) and (2.7), we get

$$
\begin{equation*}
\left(\nabla^{k} \nabla_{k} h_{j i}^{x}\right) h_{x}^{j i}-\left(\nabla_{j} \nabla_{h} h^{x}\right) h_{x}^{j i}=\left(P_{y x z} P_{w}^{y z} P_{u}^{x w}-P^{y} P_{y x w} P_{u}^{x w}\right) h^{u} \tag{3.4}
\end{equation*}
$$

Consequently (3.4) reduces to

$$
\left(\nabla^{k} \nabla_{k} h_{j i}^{x}\right) h_{x}^{j i}=\left(\nabla_{j} \nabla_{i} h^{x}\right) h_{x}^{j i}
$$

because of (2.6).
On the other hand, we have by definition

$$
\frac{1}{2} \Delta\left(h_{j i}^{x} h_{x}^{j i}\right)=\left(\nabla^{k} \nabla_{k} h_{j i}^{x}\right) h_{x}^{j i}+\left\|\nabla_{k} h_{j i}^{x}\right\|^{2}
$$

Thus the last two equations give (3.1). This completes the proof of the lemma.
The mean curvature vector

$$
H=\frac{1}{n} h^{x} C_{x},
$$

which is globally defined on M, is said to be parallel in the normal bundle if $\nabla_{j} h^{x}=0$. In this case we have $\nabla_{j} P^{x}=0$ by means of (2.11). Since $h_{j i}{ }^{x} h^{j i}{ }_{x}=$ $P_{x} h^{x}$, the function $h_{j i} h^{j i}{ }_{x}$ is constant on M. Hence (3.1) implies $\nabla_{k} h_{j i}{ }^{x}=0$, and consequently by means of Theorem B in $\S 0$ we have

Theorem 3.2. Let M be an n-dimensional complete generic submanifold of a $2 m$-dimensional Euclidean space $E^{2 m}$ with flat normal connection. If the f-structure induced on M satisfies (1.22), and the mean curvature vector is parallel in the normal bundle, then M is an n-sphere $S^{n}(r)$, an n-dimensional plane E^{n} ($\subset E^{2 m}$), a pythagorean product of the form
(1) $S^{p_{1}}\left(r_{1}\right) \times \cdots \times S^{p_{N}}\left(r_{N}\right)$,

$$
p_{1}, \cdots, p_{N} \geqslant 1, p_{1}+\cdots+p_{N}=n, 1<N \leqslant 2 m-n
$$

or a pythagorean product of the form
(2) $S^{p_{1}}\left(r_{1}\right) \times \cdots \times S^{p_{N}}\left(r_{N}\right) \times E^{p}$,

$$
p_{1}, \cdots, p_{N}, p \geqslant 1, p_{1}+\cdots+p_{N}+p=n, 1<N \leqslant 2 m-n,
$$

where $S^{p}(r)$ is a p-sphere with radius $r>0$ and E^{p} a p-dimensional plane. If M is a pythagorean product of the form (1) or (2), then M is of essential codimension N.

Combining Lemma 1.1 and Theorem 3.2 we conclude
Theorem 3.3. Let M be an n-dimensional complete generic submanifold of a $2 m$-dimensional Euclidean space $E^{2 m}$ with flat normal connection. If the f-structure induced on M is normal, and the mean curvature vector is parallel in the normal bunde, then M is of the same type as stated in Theorem 3.2.

We next prove
Lemma 3.4. Under the same assumptions as those stated in Lemma 3.1, the scalar curvature of M is constant.

Proof. From (2.10) we have, in consequence of (2.7),

$$
\begin{equation*}
\nabla_{i} P_{x}=\left(f_{x}^{t} \nabla_{t} P_{z}\right) f_{i}^{z} \tag{3.5}
\end{equation*}
$$

which implies

$$
\begin{equation*}
f_{j}^{t} \nabla_{t} P_{x}=0 \tag{3.6}
\end{equation*}
$$

Differentiating (3.5) covariantly and using (1.17) we find

$$
\nabla_{j} \nabla_{i} P_{x}=\nabla_{j}\left(f_{x}^{t} \nabla_{t} P_{z}\right) f_{i}^{z}+\left(f_{x}^{t} \nabla_{t} P_{z}\right) h_{j s}^{2} f_{i}^{s}
$$

Taking the skew-symmetric part with respect to j and i in the above equation and using (2.1) and (2.2), we obtain

$$
\nabla_{j}\left(f_{x}^{t} \nabla_{t} P_{z}\right) f_{i}^{z}-\nabla_{i}\left(f_{x}^{t} \nabla_{t} P_{z}\right) f_{j}^{z}+2\left(f_{x}^{t} \nabla_{t} P_{z}\right) h_{j s}^{z} f_{i}^{s}=0 .
$$

Transvecting the above equation with $f^{j i}$ and using (1.11) and (1.12) give

$$
\left(f_{x}^{t} \nabla_{t} P_{z}\right) h_{j s}{ }^{z}\left(-g^{s j}+f^{s y} f_{y}^{j}\right)=0,
$$

which together with (2.4) and (2.7) implies

$$
\left(f_{x}^{t} \nabla_{t} P_{z}\right)\left(h^{z}-P^{z}\right)=0
$$

Transvecting the above equation with f_{j}^{x} and using (1.11) and (3.6), we have $\left(\nabla_{j} P_{x}\right)\left(h^{x}-P^{x}\right)=0$. Thus from (2.11) it follows that

$$
\begin{equation*}
\left(\nabla_{j} h_{x}\right)\left(h^{x}-P^{x}\right)=0 \tag{3.7}
\end{equation*}
$$

On the other hand, the scalar curvature K of M is given by

$$
\begin{equation*}
K=\left(h^{x}-P^{x}\right) h_{x} \tag{3.8}
\end{equation*}
$$

because of (2.8) and (3.3). Differentiating (3.8) covariantly and taking account of (2.11) and (3.7), we can see that K is constant on M. Thus Lemma 3.4 is proved.

Finally we prove
Theorem 3.5. Let M be an n-dimensional compact generic submanifold of a $2 m$-dimensional Euclidean space $E^{2 m}$ with flat normal connection. If the f-structure induced on M satisfies (1.22), then M is locally symmetric.

Proof. From (2.8) and (3.3), we have

$$
\begin{equation*}
K_{j i}=\left(h^{x}-P^{x}\right) h_{j i x} \tag{3.9}
\end{equation*}
$$

Differentiating (3.9) covariantly and taking account of (2.11), we find

$$
\begin{equation*}
\nabla^{k} \nabla_{k} K_{j i}=\left(h^{x}-P^{x}\right) \nabla^{k} h_{j i x} \tag{3.10}
\end{equation*}
$$

Substituting (1.6) and (3.9) into (3.2) and using (2.8), we obtain

$$
\nabla^{k} \nabla_{k} h_{j i}^{x}-\nabla_{j} \nabla_{i} h^{x}=0
$$

Thus (3.10) becomes

$$
\nabla^{k} \nabla_{k} K_{j i}=\left(h^{x}-P^{x}\right) \nabla_{j} \nabla_{i} h_{x}=\nabla_{j} \nabla_{i} K
$$

because of (2.11) and (3.8). From Lemma 3.4 it follows that $\nabla^{k} \nabla_{k} K_{j i}=0$. Since M is compact, the identity

$$
\frac{1}{2} \Delta\left(K_{j i} K^{j i}\right)=\left(\nabla^{k} \nabla_{k} K_{j i}\right) K^{j i}+\left\|\nabla_{k} K_{j i}\right\|^{2}
$$

gives

$$
\begin{equation*}
\nabla_{k} K_{j i}=0 \tag{3.11}
\end{equation*}
$$

On the other hand, if we substitute (1.6) into the right-hand side of the Ricci identity:

$$
\nabla_{l} \nabla_{m} K_{k j i h}-\nabla_{m} \nabla_{l} K_{k j i h}=K_{m l k}^{t} K_{t j i h}+K_{m l j}^{t} K_{k t i h}+K_{m l i}^{t} K_{k j i t h}+K_{m l h}^{t} K_{k j i t}
$$

and use (2.8), then we get

$$
\nabla_{l} \nabla_{m} K_{k j i h}=\nabla_{m} \nabla_{l} K_{k j i h},
$$

which implies that

$$
\begin{gather*}
\nabla^{l} \nabla_{m} K_{l j i h}=\nabla_{m} \nabla^{l} K_{l j i h} \tag{3.12}\\
\nabla^{l} \nabla_{m} K_{k l i h}=-\nabla_{m} \nabla^{l} K_{l k i h} . \tag{3.13}
\end{gather*}
$$

By means of (3.11) and the second Bianchi identity:

$$
\begin{equation*}
\nabla_{l} K_{k j i h}+\nabla_{k} K_{j l i h}+\nabla_{j} K_{l k i h}=0 \tag{3.14}
\end{equation*}
$$

we have $\nabla^{l} K_{l j i h}=0$. Thus (3.12) and (3.13) reduce respectively to

$$
\nabla^{\prime} \nabla_{m} K_{l j i h}=0, \quad \nabla^{\prime} \nabla_{m} K_{k l i h}=0,
$$

which together with (3.14) imply that

$$
\begin{equation*}
\nabla^{l} \nabla_{l} K_{k j i h}=0 . \tag{3.15}
\end{equation*}
$$

Since M is compact, from the identity:

$$
\frac{1}{2} \Delta\left(K_{k j i h} K^{k j i h}\right)=\left(\nabla^{l} \nabla_{l} K_{k j i h}\right) K^{k j i h}+\left\|\nabla_{l} K_{k j i h}\right\|^{2}
$$

it follows that $\nabla_{k} K_{l j i h}=0$ because of (3.15). This gives the proof of the theorem.

Combining Lemma 1.1 and Theorem 3.5 we have
Theorem 3.6. Let M be an n-dimensional compact generic submanifold of a $2 m$-dimensional Euclidean space $E^{2 m}$ with flat normal connection. If the f-structure induced on M is normal, then M is locally symmetric.

Bibliography

[1] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
[2] H. Nakagawa, On framed f-manifolds, Kōdai Math. Sem. Rep. 18 (1966), 293-306.
[3] J. S. Pak, Note on anti-holomorphic submanifolds of real codimension of a complex projective space, to appear in Kyungpook Math. J.
[4] M. Okumura, Submanifolds of real codimension of a complex projective space, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 4 (1975) 544-555.
[5] K. Yano, On a structure defined by a tensor field fof type $(1,1)$ satisfying $f^{3}+f=0$, Tensor 14 (1963) 99-109.
[6] K. Yano \& S. Ishihara, Submanifolds with parallel mean curvature vector, J. Differential Geometry 6 (1971) 95-118.
[7] , The f-structure induced on submanifolds of complex and almost complex space, Kōdai Math. Sem. Rep. 18 (1966) 120-160.
[8] K. Yano \& M. Kon. Generic submanifolds, to appear in Ann. Mat. Pura Appl.
Kyungpook University, Taegu, Korea

