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0. Introduction
Recently several authors have studied generic submanif olds (anti-holomor-

phic submanif olds) immersed in Kaehlerian manifolds by using the method
of Riemannian fibre bundles ([3], [4] and [8] etc.).

The purpose of the present paper is to characterize generic submanif olds of
an even-dimensional Euclidean space.

In §1, we recall fundamental properties and structure equations for generic
submanif olds immersed in an even-dimensional Euclidean space.

In §2, we prove some lemmas under the assumption that the /-structure
induced on the submanif old and the second fundamental tensors commute.

In §3, we characterize generic submanifolds of an even-dimensional
Euclidean space under certain conditions.

In 1971 Yano and Ishihara [6] proved the following.
Theorem A. Let M be a complete submanif old of dimension n immersed in a

Euclidean space Em of dimension m (1 < n <m) with nonnegative sectional
curvature. Suppose that the normal connection of M is flat and the mean
curvature vector of M is parallel in the normal bundle. If the length of the
second fundamental form of M is constant in M, then M is a sphere Sn(r) of
dimension n, an n-dimensional plane En{c Em), a pythagorean product of the
form

(1) Sp*(rx) X *S*»(rN), ^ + +pN = n,\<N<m-n,

or a pythagorean product of the form

Pi + ' +PN +P = n,l<N<m-n,
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where Sp(r) is a p-sphere with radius r, and Ep ( c Em) a p-dimensional plane.

If M is a pythagorean product of the form (1) or (2), then M is of essential

codimension N.

Using a method quite similar to the one used in Lemma 1.2 of Yano and

Kon [8] we can prove that the sectional curvature of an w-dimensional

submanifold immersed in Em with flat normal connection is always non-

negaive if the second fundamental tensor of the submanifold is parallel. By

means of Theorem A, we have

Theorem B. Let M be a complete submanifold of dimension n immersed in a

Euclidean space Em of dimension m (1 < n < m) with flat normal connection. If

the second fundamental tensor of M is parallel, then M is of the same type as

stated in Theorem A.

To characterize the submanifolds we shall use Theorem B.

The authors would like to express here their sincere gratitude to Professor

Kentaro Yano who gave them many valuable suggestions to improve the

paper.

1. Structure equations of generic submanifolds

Let E2m be a 2m-dimensional Euclidean space, and 0 the origin of a

Cartesian coordinate system in E2m, and denote by X the position vector

representing a point of E2m with respect to the origin. Since E2m is even-

dimensional, E2m can be regarded as a flat Hermitian manifold, and hence

there exists a tensor field F of type (1,1) with constant components such that

(1.1) F2 = -I, (FX) (FY) = XY

for any vectors X and Y, where / denotes the identity transformation, and the

dot the inner product in the Euclidean space E2m.

Let M be an /z-dimensional Riemannian manifold covered by a system of

coordinate neighborhoods { U; xh] and immersed isometrically in E2m by the

immersion /: M -^ E2m. Throughout this paper the indices A, i,j, k, , t

run over the range {1, 2, , n}, and the summation convention is used

with respect to this system of indices. We identify /(M) with M itself.

Put

(1.2) X, = d,X, 3f = 3/ΘJC'.

Then Xt are n linearly independent vector fields tangent to the submanifold

M. Denoting by gjΊ the components of the induced metric tensor of M, we

have

(1-3) gβ = Xj Xi,

since the immersion is isometric.
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Denote by Cx2m - n mutually orthogonal unit normals to Λf. Throughout
this paper the indices w, V, W, x,y and z run over the range {n +
1, , 2m}, and the summation convention is used with respect to this
system of indices. Therefore denoting by Vj the operator of the van der
Waerden-Bortolotti covariant differentiation with respect to the Christoffel
symbols {,*.} formed with gβ, we have the equations of Gauss and Weingar-
ten for M

(1-4) V, = h/Cx,

(1.5) VjCx = -h*xX,

respectively, where hβ

x are the second fundamental tensors with respect to the

normals Cx and hjx = hJh

ygιhgyx, gyx being the metric tensor of the normal

bundle of M given by gyx = Cy Cχ9 and (#") = (gβy\

Since the ambient manifold E2m is Euclidean, the equations of Gauss,

Codazzi and Ricci for M are respectively given by

0 6) κkβh = hkhχhβX ~ hjHχhki>

(1.7) Vkh/ - V,V - 0,

(1.8) Kjty* = hjt

xh/y - hit

xhjy,

where Kkji

h and Kjiy

x are the curvature tensors of M and the connection

induced in the normal bundle respectively.

Now we consider the submanifold M of Elm which satisfies

NP(M)±F(NP(M))

at each point PGM, where NP(M) denotes the normal space at P. Such a

submanifold M is called a generic submanifold (an anti-holomorphic sub-

manifold), [4], [7]. From now on we consider generic submanifolds immersed

in an even-dimensional Euclidean space E2m. Then we can put in each

coordinate neighborhood

(1.9) FXj = fj% - JjxCx,

(1.10) FCx=fx%,

where f/ is a tensor field of type (1,1) defined on M, ff & local 1-form for

each fixed index x, and/^1 = Sf^%x-

Applying F to (1.9) and (1.10) respectively, and using (1.1) and those

equations, we can easily find

(1.11) fjtf - Sjh + fj*fx

h,

(1.12) fjtf-O, ffi-O,
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Moreover, (1.11) and (1.12) imply

and consequently M admits the so-called/-structure satisfying/3 + / = 0 (see

[2], [3]).
Substituting (1.9) into (FXj) (FX^ = Xy Xt gives

(1.14) fXtSH-gβ-fjJi'gv

By putting^,. = jj'gΦfjx = f/gyx, we easily see that

(1-15) fβ--ftP fjx-U

If we apply the operator V. of the covariant differentiation to (1.9) and take
account of VjF = 0, then we obtain

FVj Xt = {Vjf,h)Xh - ffVj Xh - (Vjf*)Cx - f*Vj Cx.

Substituting (1.4) and (1.5) into the above equation yields

(i i6) v,* = h/fx

h - h/jr,

(1-17) Vjff = h/f/.

In the same way, from (1.10) we can also obtain

(1.18) v,Λ" = hJtx Λ

(1.19) ΛV - W
where hjtx = hjxgit and/"' = fig"1 because of (1.4) and (1.5).

We now consider a tensor field S of type (1,2) whose local components are
given by

where

is the Nijenhuis tensor formed with f/1. When the tensor field S vanishes
identically, the/-structure induced on Λf is said to be normal (see Nakagawa
[2]). But, for generic submanifolds of a Euclidean space, substituting (1.16)
and (1.17) into the above equation, we find

Hence if Sβ

h vanishes identically, we have

(1.20) (hίtjh' + htoj y* - {hJtjh + KJDJ* = o,

because fβ is skew-symmetric.
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Transvecting (1.20) withj£/ and taking account of (1.12) and (1.13), we find

(1-21) hity fh< + hhty Ji - (hβx fh%J)f? = 0.

Taking the skew-symmetric part with respect to the indices i and A in (1.21)
yields

(hjJh%
J)fiX ~ {hjtJify%

x = 0,

which, transvected with /z

v, gives h^J^ = 0 because of (1.12) and (1.13).
Consequently (1.21) becomes hity fh' + hhty Si = 0. Thus we have

Lemma 1.1. Let M be an n-dimensional generic submaniSold oS an even-
dimensional Euclidean space E2m. Then the /- structure induced on M is normal
ij and only iS

(1-22) h/j;=f/h/x.

Here we first notice that the condition (1.22) does not depend on the choice
of mutually orthogonal unit normal vectors Cx. In fact, if we take another set
of mutually orthogonal unit normals 'Cχ9 then we have

(1.23) 'Cx = σ/C,,

where (σ/) is a special orthogonal matrix of degree 2m - n. Defining the
second fundamental tensor 'hjΊ

x with respect to 'Cx by Vy Xt = 'hβ

x'Cx, we
have,

'hβ

x = σ/h/,

which implies our assertion.
In this point of view we shall investigate some properties concerning the

/-structure induced on M satisfying (1.22) for later uses.
2. Lemmas concerning hj Jι

t — Sj%ι

x

In this section, we assume throughout that the /-structure induced on M
satisfies (1.22), and the normal connection of M is flat. Then from (1.22) we
have

(2.1) h/Si + KSj = 0,

(2.2) VV, " V*Λ - °>
which is a direct consequence of the equation (1.8) of Ricci.

Transvecting (2.1) with/^1 and taking account of (1.11), we obtain

Taking the skew-symmetric part with respect toy and k in the above equation

gives

(W (V/ - °
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Transvecting this equation withχA we find

(2.3) h/fy< = PγM*f/,

where we have put

(2.4) Pyz

x = h/fjs;.

Let Pyzx = gwxPyz

w. Then Pyzx is symmetric for all indices because of (1.19)
and (2.3).

Next, transvecting (2.2) with// and using (2.3), we can get

P XP uf.w = P UP xf.w

zu yw Ji zy uw Ji >

which together with (1.13) gives
(2 5) P XP u = P XP u

V^ ' / * uz * yw s uw * yz >

because Pyzx is symmetric for all indices. From (2.5) it follows that

(2 6) P XP u = P P x

\*"Ό) Γuz Γyx ΓxΓyz >

where we have put
(2.7) Px = gyzPyz\

Lemma 2.1. Let M be a generic submanifold of an even-dimensional
Euclidean space E2m with flat normal connection. If the f-structure induced on
M satisfies (1.22), then we have

(2.8) Λ/ft/, = W

Proof. Differentiating (2.3) covariantly along M and using (1.17), we find

Taking the skew-symmetric part in the above equation and using (1.7) and
(2.1), we obtain

(2.9) 2λ**V£, = {VkPyz*)f; - ( W U * + 1PyzXKefr

Transvecting (2.9) with// gives

(2-10) VfcP^/ = {VtPy*

which implies

(VkPγ/)f/-fy'(vtr

since Pyz

x = P^. Therefore (2.9) reduces to

Transvecting the above equation with^y and taking account of (1.11), we
obtain
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which together with (2.3) implies

Thus (2.8) is verified with the help of (2.5), and consequently the proof of the
lemma is completed.

Lemma 2.2. Under the same assumptions as those stated in Lemma 2.1, we
have

(2.11) Vjhx =VjPx,

where hx = gJihji

x.
Proof. Differentiating (2.1) covariantly and using (1.16), we find

(vkh/)/> + h/{hki%' - VΛ') + (vΛ hit

x)f + h^h^/; - V Λ " ) = °>
which together with (2.3) and (2.8) implies

(v* h/)f< + (v, hit*)f; = o.

By taking the skew-symmetric part of the above equation with respect to the
indices k andy, we see that

The last two equations together with (1.7) give (Vkhit

x)fj = 0. Transvecting
this equation with// and using (1.11) we obtain

which transvected with gύ thus yields

(2.12) Vhh* = ( V , /

On the other hand, from (2.4) and (2.7) we have

p χ = κ,xf%'
If we differentiate the above equation covariantly and take account of (2.12),
then we have

Substituting (1.18) into the above equation and using (1.12), we arrive at
(2.11). Hence Lemma 2.2 is proved.

3. Some characterizations of generic submanif olds

We first prove
Lemma 3.1. Let M be a generic submanifold of an even-dimensional

Euclidean space E2m with flat normal connection. If the f-structure induced on
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M satisfies (1.22), then we have

where Δ = gJiVjVr

Proof. From the Ricci identity and (1.8) and Kjiy

x = 0:

we obtain, in consequence of (1.7),

(3.2) V*VfcV " W * = W " ^
where KjΊ is the Ricci tensor of M given by

(3.3) Kβ = hxhjix - hβ

xh/x.

Transvecting (3.2) with hJi

x and making use of (1.6), (2.8), (3.3), (2.2) and

(2.7), we get

(3.4) (V*V,λ/)/^ - (VjVhh*)h"x = {PyxEPJ"Pu** ~ P'Py^Pu™)^.

Consequently (3.4) reduces to

(vkvkh/)h*x = ( w ) ^
because of (2.6).

On the other hand, we have by definition

Thus the last two equations give (3.1). This completes the proof of the lemma.

The mean curvature vector

which is globally defined on M, is said to be parallel in the normal bundle if

Vjhx = 0. In this case we have V, Px = 0 by means of (2.11). Since h/hJi

x =

Pxh
x, the function hjxhJι

x is constant on M. Hence (3.1) implies V^ hjΊ

x = 0,

and consequently by means of Theorem B in §0 we have

Theorem 3.2. Let M be an n-dimensional complete generic submanifold of a

2m-dimensional Euclidean space E2m with flat normal connection. If the f-struc-

ture induced on M satisfies (1.22), and the mean curvature vector is parallel in

the normal bundle, then M is an n-sphere Sn(r), an n-dimensional plane En

( C E2m), a pythagorean product of the form

/>„••• ,pN > hPt + +pN = n,\ <N <2m- n,
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or a pythagorean product of the form

(2) S*«(r,) X xSp»(rN) X Ep

9

Pι>' ' " >PN>P > l>Pι + +Λv + /> = n, 1 <N < 2m - n,

where Sp(r) is a p-sphere with radius r > 0 and Ep a p-dimensional plane. If M

is a pythagorean product of the form (1) or (2), then M is of essential

codimension N.

Combining Lemma 1.1 and Theorem 3.2 we conclude

Theorem 3 3 . Let M be an n-dimensional complete generic submanifold of a

2m-dimensional Euclidean space E2m with flat normal connection. If the /-struc-

ture induced on M is normal, and the mean curvature vector is parallel in the

normal bunde, then M is of the same type as stated in Theorem 3.2.

We next prove

Lemma 3.4. Under the same assumptions as those stated in Lemma 3.1, the

scalar curvature of M is constant.

Proof. From (2.10) we have, in consequence of (2.7),

(3-5) V,PX = (Λ'VΛ)/,'

which implies

(3.6) Jj VtPx = 0.

Differentiating (3.5) covariantly and using (1.17) we find

Taking the skew-symmetric part with respect toj and / in the above equation

and using (2.1) and (2.2), we obtain

V,(Λ'VΛ)ίx - V,(Λ'VtPx)ί* + 2{fx'V,Pz)hj?f° = 0.

Transvecting the above equation with/yϊ and using (1.11) and (1.12) give

which together with (2.4) and (2.7) implies

{fx'V,Pz)(h* - Pz) = 0.

Transvecting the above equation withjζ* and using (1.11) and (3.6), we have

(VjPx)(hx - Px) = 0. Thus from (2.11) it follows that

(3.7) (VΛ)(** - px) = o.

On the other hand, the scalar curvature Γ̂ of M is given by

(3.8) K = (hx - Px)hx

because of (2.8) and (3.3). Differentiating (3.8) covariantly and taking

account of (2.11) and (3.7), we can see that K is constant on M. Thus Lemma

3.4 is proved.
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Finally we prove
Theorem 3.5. Let M be an n-dimensional compact generic submanifold of a

2m-dimensional Euclidean space E2m with flat normal connection. If the f-struc-
ture induced on M satisfies (1.22), then M is locally symmetric.

Proof From (2.8) and (3.3), we have

(3.9) Kβ = (hx-Px)hβx.

Differentiating (3.9) covariantly and taking account of (2.11), we find

(3.10) VkVkKβ = (A* - P ' ) V V

Substituting (1.6) and (3.9) into (3.2) and using (2.8), we obtain

Thus (3.10) becomes

vkvkκβ = (hx - pηVjV K -VJVIK

because of (2.11) and (3.8). From Lemma 3.4 it follows that VkVkKβ = 0.
Since M is compact, the identity

gives

(3.11) V ^ , = 0.

On the other hand, if we substitute (1.6) into the right-hand side of the
Ricci identity:

^l^mKkjih ~ ^m^lKkjih = KmlkKtjih + KmljKktih + KmliKkjth + KmlhKkjiί

and use (2.8), then we get

V/VmA^Λ = V W V 7 ^ ,

which implies that

(3.12) V' Ψ

(3.13) V'V

By means of (3.11) and the second Bianchi identity:

(3-14) V,A^ + VkKJlih + VjKιm = 0,

we have Ψκljih = 0. Thus (3.12) and (3.13) reduce respectively to

which together with (3.14) imply that

(3.15) V'V,*^ = 0.
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Since M is compact, from the identity:

it follows that V\Klβh = 0 because of (3.15). This gives the proof of the

theorem.

Combining Lemma 1.1 and Theorem 3.5 we have

Theorem 3.6. Let M be an n-dimensional compact generic submanifold of a

2m-dimensional Euclidean space E2m with flat normal connection. If the f-struc-

ture induced on M is normal, then M is locally symmetric.
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