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NEIGHBORHOOD CLASSIFICATION OF
ISOTROPIC EMBEDDINGS

ALAN WEINSTEIN

1. The problem

If M is any manifold, and (P, Ω) is a symplectic manifold, then an isotropic
embedding of M in P is an embedding e: M-> P such that e*Ω = 0. (We
refer the reader to [1], [3], or [6] for definitions and proofs omitted in this
note.) A neighborhood equivalence from eλ\ A/j —» Pλ to e2: M2—> P2 consists
of

(i) a diffeomorphism g: Mλ -> Λf2,
(ii) open neighborhoods Ut of £, (AQ in Pi9

(in) a symplectomoφhism/: Uλ -» ί/2 such that/ ° ^ = e2 ° g.
We write /: eι -» e2. The isotropic embeddings and neighborhood equiva-
lences form a category S.

The symplectic normal bundle SN(e) of an isotropic embedding e: M -* P
is a symplectic vector bundle over M whose fibre over m G M i s formed as
follows. The image (Te)(TmM) is an isotropic subspace of T^P; the
symplectic orthogonal space [(Te)(Tmλf)]± contains (Te)(TmM); the quotient
of the two, which is symplectic, is the fibre of SN(e). Every neighborhood
equivalence /: eι -* e2 induces a symplectic bundle isomorphism SN(f) from
SN(eλ) to SN(e2) covering a diffeomorphism from Mx to Λf2; we thus obtain
a functor SN from S to the category S of symplectic vector bundles and
bundle isomorphisms covering diffeomorphisms.

It is shown in [6] that the functor SN is surjective in the sense that every
bundle isomorphism from SNie^ to SNie^ is SN(f) for some neighborhood
equivalence/: eλ -> e2; it is also shown that every symplectic vector bundle is
isomorphic to SN(e) for some isotropic embedding e. Thus there is a
one-to-one correspondence between neighborhood equivalence classes of
isotropic embeddings and isomorphism classes of symplectic vector bundles.

The constructions in [6] leave something to be desired: the manifold into
which M is embedded with a given symplectic normal bundle E is the
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Whitney sum P = T*M θ E, but the symplectic structure on P is not
canonical, so bundle isomorphisms do not appear to lift to neighborhood
equivalences. The purpose of this note is to improve the construction in [6] by
finding a "symplectic thickening" functor St: S -» & which is a right inverse
to SN in the sense that there is a natural transformation from ST <> SN to the
identity. To do so, we will use the construction in [7] of a phase space for a
classical particle in a Yang-Mills field.

The author would like to thank J. Marsden and T. Ratiu for a conversation
which stimulated this work.

2. The solution
Let E —> M be a symplectic vector bundle with fibre dimension In. The

frame bundle of E is the principal Sp(2n) bundle B -> M whose fibre over m
is the manifold of linear symplectomorphisms from R2n to the fibre of E over
m. The bundle associated to B -> M via the usual representation of Sp(2n) on
R 2 Λ is just the original vector bundle E —» M.

The action of Sp(2ri) on R2/l preserves not only the symplectic structure
Ω = Σ / β l dqi Λ Φi but also the 1-form ω =^Σ/ s e l (/? l ^ l — ftφ,) for which
dω = -Ω. It follows that the action admits an equivariant momentum map-
ping μ from R2/I to the dual Lie algebra &p(2n)*; the mapping μ is quadratic
withμ~1(0) = {0}.

Given any principal G-bundle over a manifold M, and any symplectic
G-manifold Q with an equivariant momentum mapping, the construction
described in [7] produces a symplectic manifold P which can be fibred over
T*M with fibre Q. This fibration is associated to the pullback of the principal
bundle from M to T*M. The map P^> T*M depends on the choice of a
connection on the principal bundle, but the symplectic manifold P and the
map P —» M do not.

Applying this construction with G = Sp(2n) and Q = R2", we obtain a
symplectic manifold P which can be fibred over T*M with fibre R 2 Λ . This
fibration is just the pullback of E to T*M, which is the same thing as the
Whitney sum T*M θ E.

Now we must find as natural isotropic embedding from M to P. The idea is
to construct a natural "zero section" from T*M to P, even though the map
P-*T*M is not well-defined. To do so, we must look at the explicit
construction of P.
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According to [7], we must take the product symplectic manifold T*B X
R2n, with its Sp(2ή) action, and "reduce at 0 e &p(2π)*, following the proce-
dure of [4]. Specifically, we consider the momentum mapping λ: T*B-^>
&p(2ri)* which is dual to the usual mappings §>ρ(2ri) -* TbB onto the tangent
spaces along the fibres of the principal bundle. Next, we take the submanifold
Σ = {(A v) G T*B X R2n\λ(β) = μ(v)}. Finally, P is the orbit space
Σ/Sp(2n).

To get a map P ->T*M, we would need an S/?(2/i)-equivariant projection
from T*B to T*M, which is essentially a connection o n 5 - » M . But let us
restrict our attention to λ'^O), which consists of those cotangent vectors to B
which annihilate the fibres of B -> M. This set λ'^O) is naturally isomorphic
to the pullback of T*M to B. Now Σ contains as a submanifold λ'^O) X
μ"ι(0) = λ^O) X {0}, which gives in P a submanifold [λ"1^) X {0}]/Sp(2ή)
wλ~\0)/Sp(2ή), which may be identified with T*M itself. Thus the zero
section M -* T*M gives an embedding e: M -> P.

Finally, one may check by using local trivializations of E that
λ~ι(0)/Sp(2ri) is a symplectic submanifold of P and that the tangent bundle
to P along e(M) splits symplectically as the Whitney sum T*M ® E. It
follows that e is an isotropic embedding and that there is a natural isomor-
phism n(E) from SN(e) to E. Thus if we set ST(E) = e, we find that n is a
natural transformation from SN ° ST to the identity.

3. A remark

With the benefit of hindsight, we may see that the construction just
described could have been "predicted" from Guillemin's symbol calculus [2]
for isotropic submanifolds of cotangent bundles. The quantization of P (see
[3], [7], and the "dictionary" in [5]) consists of the sections of the bundle over
M which is associated with the frame bundle of E, and whose typical fibre is
a quantization of R2/l. (We will ignore half-densities and half-forms in this
remark.) A quantization of R2n is given by the space of rapidly decreasing
smooth functions on Rn, with the metaplectic representation. Thus, at least if
E admits a metaplectic structure, the quantization of P is just a space of
symplectic spinors as used in [2].
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