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INTEGRABILΠΎ OF G-STRUCTURES
AND FLAT MANIFOLDS

KARSTEN GROVE & VAGN LUNDSGAARD HANSEN

Following the terminology set out by Chern [8], [9], a G-structure on an
w-dimensional smooth manifold M is a fixed reduction of the structural group
of the tangent bundle for M to the subgroup G of the general linear group
Gl(n, R) on RΛ. We say that a G-structure on M is integrable, if the reduction
can be realized by an atlas, (cf. §1).

The existence of an integrable G-structure on a smooth manifold imposes
in general strong conditions on the topology of the manifold. As our guiding
example we mention the extreme case, where we deal with a parallelization (G
is the trivial group). Here the complete answer is as follows.

Theorem [10]. A connected n-dimensional smooth manifold M is integrably
parallelizable if and only if either (i) M is noncompact and parallelizable, or (ii)
M is diffeomorphic to the n-dimensional torus T".

The purpose of the present paper is primarily to investigate integrable
G-structures for the class of finite subgroups in Gl(n, R). We prove in
particular

Theorem A. A compact n-dimensional smooth manifold M with n > 2
admits an integrable G-structure with G a finite group if and only if it admits a
flat Riemannian structure.

In order to handle noncompact manifolds in an equally satisfying way as
compact manifolds, we have found it necessary to extend our investigations
to include integrable G-structures for the class of totally disconnected (dis-
crete) subgroups in Gl(n, R). In doing this we obtain the following theorem,
which phrased in a different language essentially can be found in Auslander
and Markus [5].

Theorem B. An n-dimensional smooth manifold M with n > 2 admits an
integrable G-structure with G a discrete subgroup in Gl(n, R) // and only if it
admits an affineflat structure.

As an introduction to the investigation of integrable G-structures, we prove
in Theorem 1.1 a result of independent interest, which can be seen as a
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generalization of the construction of a holonomy covering space by Aus-
lander and Markus [5] and further treated by Auslander [2]. Theorem 1.1
states roughly that if G is an arbitrary subgroup of Gl(n, R) with identity
subgroup Go, then corresponding to an integrable G-structure we can obtain
an integrable G0-structure by passing to a suitable principal bundle space
with fibre G/Go. In particular, the manifolds in Theorem A and Theorem B
are therefore covered by integrably parallelizable manifolds.

In the last section we point out how results on flat Riemannian and affine
manifolds by Bieberbach, Auslander and Kuranishi can be used to give
information on integrable G-structures. In particular we prove (Theorem 3.3)
that for an arbitrary finite group G there exists a compact manifold with an
integrable G-structure, which does not admit an integrable finite /^-structure
unless G is isomorphic to a subgroup of H. On the other hand we also like to
think of our results as differential topological characterizations of affine flat
(resp. Riemannian flat) manifolds.

Finally, we thank the referee for valuable comments and for pointing out
Example 3.2.

1. A partial reduction to connected groups

Throughout this paper M denotes a connected paracompact ̂ -dimensional
smooth manifold with n > 2, and G denotes a subgroup of the general linear
group Gl(n, R) on Rn, with identity component Go. Note that Go is a normal
subgroup of G, and that the quotient group G/Go is discrete.

An atlas {(Ui9 φ, )} for the smooth structure on M is called a G-atlas, if all
differentials in the overlap between charts belong to G. The existence of an
integrable G-structure on M is then equivalent to the existence of a G-atlas on
M.

Given a G-structure on the manifold M, and let P(M)^>M denote the
corresponding principal G-bundle over M. By dividing out the action of Go

on P(M) we obtain a principal G/G0-bundle P(M)/G0-±M. Note that
P(M)/GQ has an induced G0-structure and is a covering space over M. We
shall now prove the corresponding statement for integrable G-structures.

Theorem 1.1. Suppose the manifold M admits an integrable G-structure.

Then there exists a principal G/G0-bundle m\ M -^ M such that M admits an

integrable G0-structure.

Proof. Let {(Ui9 φ,)} be a G-atlas on M indexed by i E /, and let
H/e/W x G/G^) denote the disjoint union of the spaces Ut X G/GQ. Let
[g] denote the element in G/Go represented by g E G, and introduce an
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equivalence relation on Π ^ / ί / , X G/Go) by defining (JC,., [g,]) G ty X G/Go

to be equivalent to (xJ9 [gj]) G ί/, X G/Go if and only if xt = Xj and
[D(ψj o φf\(Xi)] - [gj =_[_§•]. Let M denote the quotient space, and
q: Π/ e y(ίy; X G/Go)^ M the quotient map. When G/Go is given the dis-
crete topology^and M the quotient topology, it is well known that the natural
projection π: M —» M is a principal G/G0-bundle.

Put ί^g = ^(ί^. X_[g]) for / G / and g E G. Since G/Go is discrete, 6 ^ is
an open subset of M. Let φig: Uig -> RΛ be the unique map, which makes the
following diagram commutative

g

Clearly {(Uig, φiyg)} is an atlas for the smooth structure on M with index set
J X G. Our claim is that it is in fact a G0-atlas on M. To prove this, assume
that Uig Π Ujyh Φ 0 , and let z = q(xi9 [g]) = q(xp [h]) be an arbitrary point
in Uitg Π UJh. Then JC, = Xj and

or equivalently

Λ"1 o Z)(φ^,o φ7ι)φ{χj) o g G Go.

Since <̂  Λ ° φ^1 = φJh o q o φ~
ι o g = h~ι o (ψj o φ"1) o g, and Λ"1 and g are

linear maps, we get

This differential belongs to Go, and therefore {(Uig, φ/g)} is a G0-atlas on M
as asserted, q.e.d.

If G is a totally disconnected group, i.e., Go = {1}, we get
Corollary 1.2. Suppose M admits an integrable G-strucίure for a discrete

subgroup G in Gl(n, R). Then there exists a principal G-bundle m\ M -» M,for
which M is integrably parallelizable.

By taking a connected component in the manifold M in Corollary 1.2 and
using the main result in [10], we obtain in particular the following.

Corollary 13. Suppose M is compact and admits an integrable G-structure
for a finite subgroup G in Gl(n, R). Then there exist a subgroup H in G and a
principal H-bundle m\ M -» M, where M is the n-torus Tn.

On the other hand, in Example 3.5 we exhibit a principal Z^-bundle
π: M->M, where M is the torus and M does not admit an integrable finite
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G-structure. The point is that not only do we have a principal //-bundle
π: M->M in Corollary 1.3, but in fact H preserves a natural geometric
structure on M inherited from M.

2. Integrability of discrete and finite G-structures

In this section we prove Theorem A and Theorem B in the introduction.
For expositional reasons we prove Theorem B first.

Recall that an affine flat manifold M is a smooth manifold with a linear
connection V whose curvature tensor and torsion tensor vanish. It is well
known that a manifold is affine flat if and only if it is locally affine
diffeomorphic to the affine space A Λ.

Theorem B is a consequence of Proposition 2.1 and Proposition 2.2 below.
Proposition 2.1. Let G be a totally disconnected subgroup of Gl(n, R), and

suppose that M admits an integrable G-structure. Then M admits an affine flat
structure with a subgroup Φ of G as holonomy group.

Proof. Let {((7), <p,)} be a G-atlas for M with G a totally disconnected
group. We claim that the affine flat structures on the open sets Ui induced
from the affine flat space An by the coordinate maps <p,: JJif -» An agree on
nonempty intersections Ut Π Up and hence define an affine flat structure on
Λf. In order to prove this let c: / - * Lf n Uj be a smooth curve, and
X: I -> TM a smooth vector field along c. Then X is parallel along c with
respect to the connection defined by φ, if and only if φ, ° J ί - (φi ° c, A",) is
parallel along φi ° c in An, i.e., if and only if (d/di)X{ = 0. Similarly with /
replaced by7. Now Xj(t) = D(ψj ° ψi~\iMt))(Xi(t)) by definition of Xt and Xy

Since G is totally disconnected and / is connected, D(ψj ° ΦΓ1)^^,)) E G i s a
fixed linear map of RΛ and therefore (d/dt)Xt = 0 if and only if (d/dt)Xj =
0. This proves that the two connections introduced on Ui Π Uj are identical
as claimed. By covering a piecewise smooth loop in M with a finite chain of
coordinate domains Ui9 it is easy to see that any element in the holonomy
group Φ is a finite composition of differentials of coordinate changes and
hence belongs to G. This completes the proof of Proposition 2.1. q.e.d.

It is well known, and not difficult to prove, that the holonomy group Φ of
an affine flat manifold M is totally disconnected, see e.g., [12] or [14]. The
converse to Proposition 2.1 is therefore a consequence of the following.

Proposition 2.2. An affine flat manifold M is integrablely reducible to its
holonomy group Φ.
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Proof. Let {l//}/ey be an open covering of the affine flat manifold M by
convex sets, and pick arbitrary points pέ E Ut. Fix one such point p{ and
choose piecewise smooth curves cf joining pio and pt for each i φ i0. Let τ,
denote the parallel translation from/?, to/?, along c, . Define an atlas {(Lζ , φ#.)}
on M by taking as charts φ,.: Ut -» 7^M « Rn, where φ, = TΓ1 O exp"1, and
expΛ denotes the exponential map at pf defined by the given connection. We
claim that {(Ui9 φf )} is a Φ-atlas. In fact, since M has vanishing curvature and
torsion, it follows easily from the Jacobi equation that D(ψj © φ^\jix) =
Tj~ι ° 1)"1 o τix © T | for any x E Lζ. n t^ . Here τix denotes the parallel transla-
tion from Pi to x along the unique geodesic from /?, to x in Lζ . By definition
of the holonomy group Φ we thus have D(ψj ° φfι) E Φ as claimed, q.e.d.

Note that if M is a flat Riemannian manifold in Proposition 2.2, then the
holonomy group Φ is actually a totally disconnected subgroup of the orthogo-
nal group O(ri).

Suppose now on the other hand that G is contained in a compact subgroup
Gr of Gl(n, R). By averaging the Euclidean inner product on RΛ over G' if
necessary, we can assume that G is a subgroup of O(n). If G is a subgroup of
O(n), an argument similar to, but even simpler than, the proof of Proposition
2.1 shows that a G-atlas on a manifold M defines a flat Riemannian structure
on M. This proves

Proposition 23. If M admits an integrable G-structure with G contained in

a compact subgroup of Gl(n, R), then M admits aflat Riemannian structure with

a totally disconnected subgroup Φ of G as holonomy group.

It is well known that the holonomy group of a compact flat Riemannian
manifold is finite. This is a consequence of Bieberbach's structure theorem for
crystallographic groups [7]; cf. also [3], [12] or [14].

Theorem A in the introduction is therefore an immediate consequence of
the following corollary to Proposition 2.2 and Proposition 2.3.

Corollary 2.4. A manifold M admits an integrable finite G-structure if and

only if it admits aflat Riemannian structure with finite holonomy group Φ.

In general the holonomy group of a noncompact flat Riemannian manifold
is infinite (cf. [12]). However, we do not know the answer to

Question 2.5. Do there exist flat Riemannian manifolds (complete or not),
for which every flat Riemannian structure has infinite holonomy group?

Note that it is relatively easy to prove that a compact manifold with an
integrable finite G-structure is covered by a torus (Corollary 1.3). The
corresponding statement for a compact flat Riemannian manifold is equiva-
lent to the deep structure theorem for crystallographic groups proved by
Bieberbach [7].
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3. Concluding remarks

The purpose of this section is to point out some interesting consequences of
the results in §2 from the point of view of integrable G-structures.

From the work of Auslander [1] and Auslander-Markus [6] we know that
there are infinitely many different homotopy types of compact affine flat (in
fact Lorentzian flat) manifolds of dimension 3. On the other hand, we know
from the work of Bieberbach [7] (cf. also Auslander [3] or Wolf [14]), that
homotopy equivalent compact flat Riemannian manifolds are in fact affine
equivalent, and that there are only finitely many compact flat Riemannian
manifolds in each dimension up to affine equivalence. In dimension 3 we
could also refer to the classification by Wolf [14]. These facts together with
Theorem A and Theorem B in the introduction establish

Theorem 3.1. There exist compact manifolds, which admit an integrable

discrete G-structure but no integrable finite G-structure.

The following concrete example of such a manifold was pointed out by the
referee.

Example 3.2. Let M = N3/T be the homogeneous space, where N3 is the
group of real 3 X 3-matrices of the form

x,y, z 6R,

and Γ is the subgroup of N3 consisting of matrices with integral entries.
Clearly M is compact and admits an integrable Γ-structure. Suppose that

M admits an integrable G-structure for G a finite group. Then by Corollary
1.3, it is covered by the 3-torus, and hence the fundamental group Γ of M
contains a free abelian subgroup of rank 3. This is a contradiction, since an
easy computation shows that the centralizer of an arbitrary nontrivial element
of Γ is free abelian of rank 2.

In the same spirit as Theorem 3.1 we have
Theorem 3 3 . Let G be any finite group. Then there exists a compact

connected manifold M, which admits an integrable G-structure such that if M

also admits an integrable H-structure for a finite group H, then G is isomorphic

to a subgroup of H.

Proof. The first statement follows from Proposition 2.2 together with the
theorem of Auslander-Kuranishi [4] that there exists a compact flat Rieman-
nian manifold M with holonomy group G. Suppose this manifold M admits
an integrable //-structure with H a finite group. From Proposition 2.3 it then
follows that M admits a flat Riemannian structure with a subgroup Φ of H as
holonomy group. However, homotopy equivalent compact flat Riemannian
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manifolds are affine equivalent [7] (cf. also [3] or [14]), and thus in particular
they have isomorphic holonomy groups. Consequently G » Φ. Since Φ is a
subgroup of H, Theorem 3.3 follows, q.e.d.

Proceeding along the lines in the proof of Theorem 3.3. we also easily get
Theorem 3.4. Let M be a compact smooth manifold which admits an

integrable G-structure for a finite group G. Then G can be so chosen that if M

also admits an integrable H-structure for a finite group H, then G is isomorphic

to a subgroup of H.

We finish the paper by constructing an example which shows that the
converse to Corollary 1.3 does not hold.

Example 3.5. Let Σn be a homotopy sphere of dimension n, and consider
the connected sum M = Tn#Σn. When Σn is not the standard sphere, M is
P.L. homeomorphic but not diffeomorphic to Tn; cf. Wall [13, §15A]. On the
other hand, any compact flat Riemannian manifold which is homotopy
equivalent to Tn is, as we mentioned before, actually affine diffeomorphic to
Tn. From Theorem B in the introduction we therefore know that M =
Tn#Σn does not admit an integrable finite G-structure, when Σn is exotic.
Nevertheless, we claim that we can find such a manifold M and a principal
Z^-bundle π\ M -> M in which M is the standard n-torus.

First note that the group of homotopy spheres θn in dimensions n > 4 is a
finite group by Kervaire-Milnor [11], which acts freely on the smoothings of
the underlying P.L.-structure on Tn; cf. Wall [13, §15A]. Choose a n n > 4
such that θn is a cyclic group of order k, and fet Σn E θn be a generator for θn.
Then M = Tn#Σn does not admit an integrable finite G-structure. However,
we can construct a principal Z^-bundle π: M -* M in which M is diffeo-
morphic to Tn as follows. Define /: R" -> Rn by t(xv x2, , xn) = (xγ +
l/k9x2,' , xn) and represent Tn as RΛ/ZΠ, where Zrt is generated by the
translations tt: RΛ -> Rπ, i = 1, , n, defined by t^x^ ••••,*,,-••, xn) =
(xv , xi, + 1, , xn). Then / induces in an obvious way a free Zk-
action on the manifold M = Γ Π # Σ / I # •_• #Σn, k copies of Σπ, with M as
quotient. Since Σn e θn has order &, M is diffeomorphic to Tn, and the
quotient map π: M -> M is the principal bundle requested.
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