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RIEMANNIAN EXTENSIONS

GEOFFREY HOWARD SMITH

1. Introduction
An analytic Riemannian manifold E is an extension of an analytic Rieman-

nian manifold M if there exists an isometry f:M->E imbedding M as an
open submanifold of E. We shall always assume that the extension is proper,
that is, f(M) T̂  E. We shall usually suppress reference to the map / and
identify M with /(M).

A manifold is said to be non-extendible if it has no proper extension.
Suppose M is an analytic Riemannian manifold. If U is an arbitrary

neighborhood on M, then the metric is known on M once it is known on U. If
we can construct the class {Ea} of all extensions of U then M together with
its extensions will be in {Ea}. Hence there is no loss of generality in confining
ourselves to the construction of extensions of simply connected manifolds
which can be covered by a single chart.

Let M be a simply connected analytic Riemannian manifold such that
(i) M has an atlas consisting of a single chart,

(ii) the Killing equations on M have only trivial solutions.
The purpose of this paper is to consider the properties and methods of
construction of inextendible extensions of M. The reason for insisting on
condition (ii) will be clarified in §5 via an example.

Suppose E is a simply connected extension of M. If we require E to be
Cauchy complete, then E is unique [3], but such an E need not exist. If we do
not require E to be complete, then the following difficulty arises. Let E be an
inextendible simply connected extension of a 2-dimensional manifold M.
Select any point p G E with p & M and construct the universal covering
manifold of E — {p}. Then this covering manifold is also a simply connected
inextendible extension of M so that non-extendibility is not a sufficient
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criterion for uniqueness. However, let us suppose that in addition to the
above two conditions M also satisfies the further condition:

(iii) any neighborhood of an arbitrary point in M admits at most one
reflection symmetry which leaves the point in question fixed.

Then we can show by construction that M possesses a unique simply
connected extension which satisfies a certain completeness criterion which we
discuss in §2.

2. Singularities and completeness

In order to arrive at a useful definition of completeness we need the
concept of a quasiregular singularity. For a fuller discussion than we give here
the reader is referred to the Review Article [2]. Let dM denote the Cauchy
boundary of an analytic Riemannian manifold M. A point q G dM is a
nonsingular boundary point if there exists an extension M' of M in which q is
an interior point; otherwise q is said to be a singular boundary point of M.
Roughly speaking, a quasiregular singularity of M is a singular boundary
point q G dM for which the local geometry is perfectly well behaved as one
approaches q; this occurs for example at the vertex of a cone. More precisely
we have the following. Let q be a singular boundary point of M, and let γ(f),
t G [a, b], be a curve on M U dM such that y(b) = q and for / G [α, b\ y(t)
is a semiopen geodesic arc on M with affine parameter t. Briefly, we say that
γ is a geodesic arc on M terminating at q. Let Xx, , XN (N = dim M) be
a linearly independent set of vectors at y(a) G M such that Xλ = y{a). Let
Xι(t)9 , A^(/), α < / < 6, be the vectors obtained from Xl9 , XN by
parallel translation along γ from y(a) to y(t). Corresponding to γ and the
vectors Xx(t), , ^ ( 0 there exists a unique coordinate system
(JC1, , xN) with the following properties:

(i) The equation of γ(0, t G [a, b), is xι(t) = t, x((i) = 0 for i =
2, - , N.

(ii) The coordinates x2, - , xN are normal coordinates determined by the

frame X2(i), * , ̂ ( 0 i n e a c ^ hypersurface x1 = c = constant, a < c < b.
Let g,7t(0 denote the component functions of the metric tensor in the

coordinate system (JC1, , xN) at the point y(t). If lim^j, gJk(t) exists and is
analytic for ally, k = 1, , N, then q is called a quasiregular singularity of
M.

If # is a quasiregular singularity of an analytic Riemannian manifold M,
then ([2], [1]) M is locally extendible at # in the sense that any curve on M
terminating at q is contained in an open set U which has an extension W in
which q is an interior point. Note that W £ M.
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Let us classify points of a manifold into two classes (one of which may be
empty) according as they do or do not satisfy some specified property P. We
require that P be chosen so that it is possible to decide whether or not a point
satisfies property P once the metric on an arbitrary neighborhood of the point
in question has been given. The previous paragraph shows that this classifica-
tion can be extended to the quasiregular singularities of the manifold.

A manifold M is P-complete if
(i) all points of M satisfy property P,

(ii) no quasiregular singularity of M satisfies property P.
The significance of P-completeness lies in the following considerations:
(i) If a manifold possesses a P-complete extension, then there is a con-

structive method of obtaining this extension. If the construction fails, then no
P-complete extension exists [5, §6].

(ii) If an arbitrary point is removed from a P-complete extension, then the
covering manifold of the resulting manifold will not be P-complete since it
will have a quasiregular singularity (corresponding to the removed point)
which satisfies property P. Thus it is reasonable to conjecture that simply
connected P-complete extensions are unique. An argument similar to [3,
Theorem 3] shows that this is indeed the case.

Let Q be the property that an arbitrarily small neighborhood of a point
possesses at most one reflection symmetry which leaves the point in question
fixed. Our main result is the following.

Theorem. Let M be a simply connected manifold satisfying conditions
(/)-(///) of §1. Then a unique simply connected Q-complete extension of M can
be constructed.

As an example let N be the 2-ellipsoid a2x2 + b^y2 + c2z2 = 1 (a, b, c
distinct) with the six axis points removed. Let M be an open simply con-
nected submanifold of N which can be covered by a single coordinate system.
Then the universal covering manifold E of N is the unique simply connected
(^-complete extension of M. By taking appropriate quotient manifolds of E
other β-complete extensions can be constructed, including N. We can extend
N to a Cauchy complete extension of M by adjoining its six nonsingular
boundary points.

Our reasons for considering this specific property Q are as follows:
(i) A solution always exists,

(ii) The essential ideas of the construction are exhibited.
(iii) The above example and geometric intuition suggest that adjoining all

nonsingular boundary points to a Q-complete manifold results in an inex-
tendible manifold. This is indeed the case, although we shall not consider the
matter here [5].
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3. Heuristic remarks on the construction

Let M be a simply connected analytic Riemannian manifold which has an
atlas possessing a single chart. Assume that M possesses a simply connected
extension E. If x0 E M c E is a fixed point, then E can be identified with
the set of homotopy classes of curves on E with base point xQ. Define a chain
Q/o * * * QΛ t o b e a sequence Co, , Ck of curves in Euclidean space R^
(N = dim M) together with a sequence /0, , fk of analytic invertible
R^-valued functions such that for i = 0, , k - l,fs maps the end point of
C, to the initial point of C / + 1 and such that the domain of fk includes the end
points of Ck. In an obvious way a covering of a curve in E starting at x0 by
coordinate neighborhoods induces a chain in R^ with the fj corresponding to
coordinate transformations. Some chains (termed admissible chains) can be
lifted to curves on E with base point x0 in the sense that the given chain is
induced by some such curve. We can construct E from the set of admissible
chains if we have, firstly, a criterion to decide whether or not a given chain is
admissible and, secondly, an equivalence relation among the admissible
chains formulated so that homotopic curves on E with base point x0 induce
equivalent chains; E will then be the set of equivalence classes of admissible
chains. Suppose C is a curve on E with base point x0. Then the metric
function at any point of C is the analytic continuation along C of the metric
function at x0. A chain induced by C will have a metric function defined at
its initial point which can be analytically continued along the chain. This will
be a necessary condition for admissibility. If E were complete (in the Cauchy
sense), then it would also be sufficient. However, certain difficulties will
become apparent which make it necessary to exclude some exceptional points
from the extension.

4. Space elements and their extensions

Suppose we wish to extend an analytic Riemannian manifold M. It is more
convenient to focus our attention on a neighborhood of some arbitrary point
in M rather than M itself. Since M is analytic and satisfies condition (i) of §1,
this is no loss of generality since the metric is known everywhere on M once it
is known on a neighborhood of a single point of M.

Let (SX(RN, YLK) denote the set of Revalued germs of analytic functions at
x G R^. An iV-dimensional elementary space element is a set

S = { x , {gJk}\x e R " ; gjk e % ( R * R ) ; j , k-l, - , N )

where the gJk satisfy
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(ii) ΣjfkgJku
Juk > 0 for all nonzero (u\ , uN) G

Condition (ii) then implies

We define an equivalence relation " ~ " on the set of ΛΓ-dimensional
elementary space elements (to be denoted by S^) by letting S = { c, {gjk}}
— {χ'> {gjk}} i f t h e r e exists/ G ΦX(RN, RN) with/(x) = xf and with invert-
ible Jacobian matrix / such that G = / ' G 7 , where G (resp. G') denotes the
matrix (gJk) (resp. (gjjj) and Jf is the transpose of /.

We write/(£) for {Λ;', {gjk}}, S for the equivalence class of S in ξ>N and
SN for {S\S G S^}. Each S G %N is called an N-dimensional space element.

Let γ: [0, 1] -+R* parametrize a curve C in R*, and let 5 = {γ(0), {gjk}}
G S^. The curve C is S-admissible, if each gjk can be analytically continued
along C, and (γ(/), {gJk(ή}} G S^ for all / G [0, 1], where gjk(i) denotes the
continuation of gjk along C to γ(0

Define a map TΓ: %N -> R^: {x, { gJk}} H^ X. For some S G S^ let M be an
open simply connected neighborhood of π(S) such that any curve in M with
initial point π(S) is S-admissible. Such a neighborhood is a Riemannian
manifold (denoted by M(S)) in an obvious way and is called a local manifold
representing S. An extension of S G S^ is a Riemannian manifold is for
which there is an isometry /: M(S) —»E imbedding some local manifold
M(S) representing S as an open submanifold of E.

5. Construction of extensions

In this section we make precise the heuristic discussion of the chain
construction given in §3.

The initial (resp. terminal) point of a curve C on a manifold will be
denoted by η(C) (resp. τ(C)). An invertible/ G S ^ , (R", R") is admissible
on C, if it can be analytically continued along C, and the continuation is
invertible at each point of C. We write C(/) for the continuation of/to τ(C),
and if γ parametrizes C we write /(C) for the curve with parametrization
t | - > / / (Y(0)> where/ denotes the continuation of/to y(t).

An elementary chain β = Co/O CJk in R^ is a finite sequence of
curves Co, , Ck in R* together with a sequence /0, ,fk of analytic
R^-valued functions such that

(i) each/ is an invertible function on a neighborhood of τ(Q),

We write η(β), τ(S) for η(C0)Jk(r(Ck)) respectively.
Consider a curve C covered by open sets Ul9 , 14 on some manifold.
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The curve C together with a choice of coordinate system on each Ut induces

an elementary chain Co/O CJk. A different choice of coordinates on each

\Ji induces a different elementary chain Cό/ό * * C\Jk. These elementary

chains are said to be transforms of each other. For the purposes of our

construction it is necessary to be able to define a transform without reference

to a given manifold.

An elementary chain β' = Q/ό CjJk is a transform of an elementary

chain 6 = Co/O CJk (both in R^) if there is a sequence Ao, , hk+ι

of analytic germs such that

(i) A, is admissible on Ci9 i = 0, , k9

(ii) C; = A^Q, i = 0, - , K

(iiϊ) ff = A/+1 ofi o (CA))-1, / = 0, , *,

(iv) hk+ j is analytic and invertible at τ(β).

We write A = {Ao, , A*+1}, η(h) = Ao, τ(A) = hk+ι, A(β) = β, and say

that A is admissible on β.

We remark that the above definition may seem unnatural in that the two

chains are based on the same number k of open sets. However, to give a

definition of a transform which mirrors the covering of a curve in any two

ways would be even more cumbersome than the above definition and, as we

shall shortly show nothing essential would be gained by such a definition.

Roughly speaking, a chain β is S-admissible if S E %N can be analytically

continued along 6. More precisely we have the following.

An elementary chain β = Co/O Ckfk in R^ is S-admissible (S E c>N),

if π(S) = η(β), and if there exist 50, , Sk+ι E ξ>N with So = S such that

(i) C, is Sf admissible,

(ii) Si+ι = fi(Ci(Si)) where C^S,-) denotes the analytic continuation of S,

along Ci to τ ( Q .

We denote S ^ by β(5), and note that if h is admissible on β, then

τ(Λ)[β(5)] = h(e)[η(h)(S)], so that β ( S ) ̂  A(β)[η(AχS)].

An N'dimensional chain is a pair (β, 5), where S E S^, and β is an

S'-admissible elementary chain. A transform of a chain ( β , S) is a chain

(A(β), T7(A)(S)) where A is admissible on β.

Suppose M is an open simply connected neighborhood of ττ(S) (S E c>N)

such that C is S-admissible for all curves C in M with η(C) = <π(β\ Then

any closed curve C in M with η(C) = 77(5) = τ(C) is called a null-loop for S.

We are finally in a position to formulate an equivalence relation among

chains in such a way that equivalent chains will correspond to homotopic

curves on a simply connected extensions of a given space element.

For a fixed S e S ^ let χ(S) denote the set of all chains (β, S) with

S 6 S . Arbitrary chains (6, S) and (β', S") E χ(S) are equivalent (written
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(β, S) ~ (β', S")) if (β, S) can be transformed into (β', S") by a finite
sequence of the following operations:

E t: Replacement of a chain (Co/O Q/J Q 4 , 5) by a transform of
the chain (Co/O C/eC/'ύ Q 4 , S) where e is the identity
transformation and C, = QC/'

E2: Replacement of a chain (Co/O C eC/Ji Q 4 , 5) by a trans-
form of the chain (Co/O CJ{ CJk, S) (Same notation as Ex)

E3: Replacement of a chain (Co/O Qf/Df/' Q/fc, S) by a trans-
form of the chain (Co/O CJt1 Q 4 , 5) where Z> is a null loop
for (Co/O C^'iXS) andj; = /," o ^

E4: Replacement of a chain (Co/O Q/J Q 4 , 5) by a transform of
the chain (Co/O CJfDff CJ^, 5) (Same notation as £3)

The equivalence class of (β, S) E χ(S) is written <β, 5 ) .
We remark that operations Ex and 2s2 are essentially equivalent to the

alternative definition of a transform discussed previously.
Let E(S) = {<β, 5>|(β, S) Gχ(S)}. From a naive point of view one

would expect that E(S) is an inextendible simply connected extension of S.
In fact, choose any (β, 5) E <β, S> E £(5), and let C/ be an open simply
connected neighborhood of π(Q(S)) such that every curve on U with initial
point ir(G(S)) is β(S>admissible. Put V = {<βCe, 5)10 c U}9 where e is
the identity transformation. If the map φ: V -* U: (QCe, S ) H> T(C) is an
injection for all (β, S) and suitable choice of U, then £(5) is an analytic
manifold (cf. Theorem below). However, if there exists <β, S} E E(S) such
that every local manifold representing Q(S) contains at least one pair of
isometric points (points are said to be isometric if they have isometric
neighborhoods), then the chain construction may break down. As an example
consider the metric

(1) g = _.(2 + Z \p2dφ ® dφ + dp® dp + dz® dz.

If for all integers k we identity the points (p, φ, z) and (p, φ + 2/cττ, z) for
all φ, z and all p > 0 by the coordinate transformation x = p cosφ, y =
p sin φ, z = z, then we have

χ2 + χv2 J «*; - Xx2+y1 , Λ ,
x 2 + y2 x* +

, ^ ( 1 - λ)

+ J>2 4;
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where

P

As p -> 0 we have λ -> 1 for z > 0, so that the boundary points z > 0, p = 0

can be included in an extension of (1) provided we perform the above

identification.

If we perform the transformation

Φ Φ
x = p cos——, y = p sin——, z = z,

Vy V3then

+ — ϊ-dy ® dy
2 + 2x2 + y2 x2 + y2

where

α = 2 +

As p —»0 we have α -* 1 for z < 0 (for now V ? = -z), so that the boundary

points z < 0, p = 0 can be included in an extension of (1) provided we

identify the points (p, φ + 2 V3 far, z) and (p, φ, z) for all integers k and all

φ, z, and p > 0.

The chain construction would force both identifications, leading to a

contradiction. One way to circumvent this difficulty is to insist on the

condition that every point p of the manifold M to be extended possesses a

neighborhood in which no two points are isometric. This implies [4] that M

possesses no Killing vectors which is our reason for assuming condition (ϋ) in

the introduction. In fact, as we show below, the above condition can be

relaxed slightly (cf. condition (iii)) in the introduction, but not to the extent of

allowing nontrivial Killing vectors.

A space element S is regular if there exists a local manifold M(S)

representing S in which no two distinct points are isometric. A chain (β, S) is

regular if S and its continuation to any point of β are regular. Suppose U is

any open simply connected neighborhood of π(S) such that C(S) is regular

for all curves C in U with η(S) = π(S). Then any closed curve C in U with

η(C) = τr(5) = τ(C) is a regular null loop for S. If in operations Ev , E4

above we restrict ourselves to regular chains and regular null loops, then
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(Theorem below), E(S) is an extension of S for any regular space element S.
However, this restriction is too drastic. As an indication of how to proceed
consider the ellipsoid a2x2 + b^y2 + c2z2 = 1 with a, b9 c distinct. At any
point/? on the ellipsoid with x(p),y(p), z(p) all nonzero we obtain a regular
space element Sp from the usual metric. The space E(Sp) (constructed by
restriction to regular chains) is isometric to the octant x > 0, y > 0, z > 0 of
the ellipsoid. To this octant we attach the Cauchy boundary, but omit the
three axis points. We paste together copies of this octant-with-boundary along
corresponding boundary components to obtain the universal covering mani-
fold of the ellipsoid without axis points. From this covering manifold one can
by appropriate identifications obtain the ellipsoid without axis points. Since
these are nonsingular boundary points the original ellipsoid can be recovered.

A space element S is semiregular if there exists a local manifold M(S)
representing S such that

(i) there is a nontrivial isometry/: M(S) -> M(S)
(ii) each point of M(S) is isometric to at most one other point of M(S),

(iii) the matrix of (df)^Sy in a suitable coordinate system is

-1

Theorem. Every regular or semiregular space element possesses a unique

simply connected Q-complete extension.

Proof. Let S be a regular space element, and let E = {<(β, S>|(β, S) is
regular, S G S } . For any <6, 5> G E choose an arbitrary (β, S) E <β, 5>,
and let U be an open simply connected neighborhood for π(G(S)) such that
the local manifold U(Q(S)) contains no pair of isometric points. (Such a U is
called a regular neighborhood for 6(S)). Let V= {(GCe, S}\C C ί/},
where e is the identity transformation. The map

φ: V-> U:(eCe,S)H>τ(C)

is an injection as a consequence of G(S) being regular and the easily proved
fact that if Qx(Sλ)φ ^(S^ then necessarily (β1 ? Sx) ^ (ί^, S^. By this
method an analytic atlas can be constructed for E. A Riemannian metric can
be defined on each coordinate neighborhood, so that E will be a Riemannian
manifold if it is Hausdorff.

Let xi = <β, , £,>, i — 1, 2, be points of E which cannot be separated by
disjoint open neighborhoods. Suppose Ui C R^ (N = dim S) is a regular



60 GEOFFREY HOWARD SMITH

neighborhood for β^S1,), and let

Further let

( β , 5 ) G Vx Π F2,

and suppose

φ: VλΠ V2^RN

is a chart. Since β^SΊ) ̂  ( ^ ( S ^ w e m a y assume

Φi(^i) = U = Φ2(V2) for some U cRN

and

Π V2).

Let C be a curve in U joining 77(6(5')) to ^(β^SΊ)) = ^((^(Sy). Since each

φ, is an injection, we have <β, , £,•> = <βCe, 5>, i = 1, 2. Hence JCJ = JC2, and

is is Hausdorff.

We next show that E is simply connected. Let x0 = (C+e, S}, where Cφ is

the constant curve at π(S), (S G 5). For (β, 5 ) = (C o/O Q/Λ, S) let Q

have parametrization t H> α^(ί), r̂ = 0, , k; 0 < t < 1. For any fixed

T G [0, 1] let Cq be the curve parametrized by /1-> α^(τθ, 0 < t < 1, and put

βj = Co/O - Sq-\C\. Then yq: [q,q + 1]^>E: t\+ <β-q, S) parametrizes
a curve &q in .E, and the curve β = Q^&y βΛ is a curve in £* with η(β) = x0.

Every regular chain (S, 5 ) induces such a curve on £, and every curve on E

with initial point x0 is induced by a chain. We note that <β, S> = τ(β).

Since the operations £Ί, , E4 do not change the homotopy class of the

induced curve, we see that curves Sj and 62 in E with η(Qx) = x 0

<&) = τ (&) a r e homotopic. (Because < e i ? S ^ = 7(6^, " ^ ^2)

and hence ί^, 5j) — (62, S^). Hence £ is simply connected.

The next step is to attach a suitable boundary to E and to paste together

copies of this manifold with boundary to yield a β-complete extension.

Let E* be the manifold E together with its Cauchy boundary BE. A chain

(β, S) is a boundary chain if S is regular, &(S) is semiregular, and the

continuation of S to any point of β other than τ(Q) is regular. In a similar

way to that described above each boundary chain can be identified with a

curve β on E* with η(Q) = JC0, τ(β) G dE. Delete from dE those points not

accessible by boundary chains. The resulting manifold with boundary is

denoted by R. Since E has a countable basis for its topology (being a
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Riemannian manifold) the number of boundary components of R is count-
able. Let {Ba}aGA be the set of boundary components of R9 A being a
countable index set. Define Φ to be the free group with generators {α|α E A)
and generating relations a2 = identity, for all a E A. For each φ E Φ as-
sociate a copy Rφ of R, and put R = Re. Let λφ: R -» Rφ be the natural map.
In the disjoint union U φ € Ξ φ Λ φ we identify B£ and 2?^ by the map
λφa ° (λφ)"1, where {^^}ae^ is the set of boundary components of Rφ. The
resulting quotient space is the unique simply connected g-complete extension
of S. This completes the proof of the theorem when S is regular. Since any
semiregular space element can be continued to a regular space element, the
theorem is also true when S is semiregular.

We denote the β-complete simply connected extension of S by K(S). With
the above notation we have the following.

Corollary. Let G denote the group of isometries of R, and let H = {(φ, e) E

(i) The group of isometries of K(S) is a semidirect product of G and Φ.
(ii) (a) // F is a subgroup of Φ X G with F n H = e, then K(S)/F is a

Q-complete extension of S. Here Φ X G denotes the semidirect product in (i).
(b) Every Q-complete extension of S has the form K(S)/F where F is a

subgroup ofΦxG with H π F = e.
Proof. For q E G, σ(g) denotes the permutation on A given by

g(Ba) = £σ<*><α>. The group G acts on Φ by g(aβ γ) =
[o(g)(a)][o(g)(β)] [σ(g)(γ)]. Suppose x E K(S). Then x E R^ for some
ψ E Φ. For any φ E Φ, g E G we define isometries φ, g and (φ, g) of #(5) by

A straightforward calculation shows that

so that the group of isometries of K(S) appears as a semidirect product of Φ
andG.

(ii) (a) follows from the fact that F Π H = e iff F acts properly discontinu-
ously on K(S).

(b) follows from the uniqueness of K(S).
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