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SECTIONAL CURVATURES AND
QUASI-SYMMETRIC DOMAINS

J. E. DΆTRI

Introduction

This paper continues our study [1], [2] of the curvature properties of the
class of homogeneous Kahler metrics arising from admissible forms on
normal y-algebras. As is well-known, this class includes the Bergman metrics
on homogeneous bounded domains. In § 1 we derive new necessary conditions
for nonpositive sectional curvature. Then in §2 we use these and the results of
J. Dorfmeister [3] to prove our main result: If a quasi-symmetric domain (in
the sense of Satake [6]) has nonpositive sectional curvature in the Bergman
metric, then it is symmetric. This should be contrasted with the result of
Zelow (Lundquist) [7], [8] that quasi-symmetric domains have holomorphic
sectional curvature bounded above by a negative constant. §3 gives an
improvement of a result in [2] and a correction.

1. Fix a normal j -algebra (β,j) with admissible form ω. This means that £
is a finite dimensional real split solvable Lie algebra with almost complex
structure j such that [X, Y] + j[jX, Y] + j[XJY] = [jXJY] and ω is a
linear form on £ such that the bilinear form (X, Y > = ω[jX, Y] is symmetric,
positive-definite, and y-invariant. Let n = [£, £], and let α be the orthogonal
complement of n in §>. By the basic structure theorem of Pyatetskii-Shapiro
[5], α is a commutative subalgebra, and n can be represented as the orthogo-
nal (cf. [1]) direct sum of the root spaces nα = ( I G n: [H, X] = a(H)X,
H 6 Q ) with [nα, n^] c na+β If εl9 , εR are the roots whose root
spaces are mapped into α by j , then R = dim α, the roots εv , εR are
linearly independent, and, with proper labelling, all roots are of the form
\εk, εk,\<k<R; \{εm ± εn), 1 < m < n < R. Further, jni^ = tu^ and

^ni(<w,+O = niten-O' m <n- Since each root space n^ is one-dimensional, we
will once and for all fix Xk e n^ so that εk(JX^ = δkl. Also we set E = Σ Xk.
Note that α does not depend on the choice of admissible form cυ [2]; hence
the same is true of the root space decomposition and the Xk.
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If S is a connected, simply-connected, Lie group with Lie algebra 3, then
< , > induces a left invariant Riemannian metric (also denoted ( , )) on S
which is Kahler with respect to the left invariant complex structure induced
byy. The associated Levi-Civita connection V is computed by

γ, z> = <[*, η , z> + <[z,x], y> + <[z, η
^ X,Y,Z<Ξ 3.

Since the metric is left-invariant Kahler, one has

(2) Vx(jY)=j(VxY), (VXY,Z} = -(Y,VXZ>, X,Y,Z(ΞZ.

Lemma. Fix m <n and Un G t u v Let

be orthogonal projection. Then for any Um, Vm

<[ Um, Un], [ Fm ) Un]) ^

In particular, [Um, Un] = 0 if and only if{Um,j[Uπ, n i ^ . J ) = 0. (JTe
the possibility that some of these root spaces are trivial)

Proof. Take any Z e n i ( ^ _ o . Note that 7[t/n, Z] = [jUn, Z] (cf. [1,
Formula (9)]). Further [5, p. 63, Formula (46)],

<[ Un, Z], [ Un> Z]> ^

which by polarizing in Z implies

(3) <[ Un, Z], [ £/„, Z']> = 2 ^ y < ί / « ' ^-><z. Z'>- Z ' Z '

Now for any Z, Z ' e n i ^ . ^ , , we havey[ί/n, [/£/„, Z]] e tu ( < i n _ o and

<y[ £/,, [yί/,, Z]], Z'> = -«[[£/„, [yί/n, Z]], Z']

= ω[[[yl/n,Z],Z'])t/π]

iun, z'], [jun, z]y
1

/„, UmXZ,Z'>.
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Thus we have

(4) J[ Un, [jUπ, Z] ] = ^ y < Un, Un}Z,

Un e n i v Z e n.((iii_£/t).

Take any Um e tu^. Then [ί/m, ί/J G n i f e + o , and for any Z e t u ^ . ^ ,

<[ί/m )ί/π]JZ> = -ω[Z, [£/m, Un]]

= ω[Um,[Un,Z]]+ω[Un,[Z,Un]]

= <j[Un,Z],Um}.

This proves that [Um, Un] = 0 if and only if <Um,j\Un, nx^.J) = 0. Thus

if we write iτUm = j[Un, Z] for some Z e ^(^-^y t h e n

[ Um, Un] = [ττί/m, ί/n] = - [ Uni [jUn, Z] ].

Using (4) and then (3), we have

<[um, £/„], [um, ί/n]> = — ι—2<un, uny\z, z>
4<O(Λ;)

1

Polarizing in ί/̂  gives the result.
Theorem 1. Suppose m <n. If the sectional curvatures of < , ) are

nonpositiυe, then for any Un G n i^ , /Ae space [Un, ni^em_εn)] is j-invariant.

Proof. Suppose there is a (necessarily nonzero) Un EL m^ such that
[Un, π i ^ . ^ ) ] is noty-invariant. Then there is a nonzero Um £ n i ^ such that
<ί/ m ,/ [C/ n ,m ( ^_J>=0, but < t / m , [ ί / n , m ( ^ _ J > ^ 0 . We compute the
sectional curvature of Um Λ Un by

<Λ(£/m, t/n)(/n, Um) = -(V^C/^ V^C^) + φUmUH, VUmUn>

since [t/m, ί/J = 0 and the torsion vanishes. From [1, Formula (15)], it
follows that Vυ Um (Ξjn^, Vσ Un <Ξj\ so that {V^ Un, Vv Um} = 0. There
is a Z e n fe_"o with <ί/m, φn, Z]) Ψ 0, so <yυJJn, Z> =\{[Z, ί/J, Um}
φ 0. Thus the sectional curvature of Um Λ Un would be positive.

The following extends Theorem 3 of [1].
Corollary. Suppose m < n, and \εn is a root (i.e., ni^ =£ 0). If the sectional

curvatures of < , ) are nonpositive, then n i ^ . ^ has even dimension (possibly
zero).
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Proof. For nonzero Un G n ± v the map ad Un: π i ^ . ^ -•ni^ is injective

[5, p. 61]. If π i ( ^ _ ^ } is odd dimensional, so is [Un, ni ( t W ι_o] which obviously

cannot then bey-invariant.

We now give some material which will help relate our computations in

normal ./-algebras to the work of Dorfmeister [3]. As we shall see in the next

section, the following definitions really occur already in [3]. Theorem 2 is

implicit in [3].

Definition. Let β = Σ nBk + Σk<ι πi ( ^ + e / ) . For Y, Z G β, we define a

product by YZ = -y'VyZ, and denote the restriction of < , > to β by σ. Next,

let U = Σ n i v We define a form p on U by 4p((/, V) = <t/, F> 4- i(U,jV)

for £/, F G U. Lastly, for y G β, we define an endomorphism φ( y) of U by

φ(Y)U=-2jVγU.

Theorem 2. β w/ίλ the above product is a commutative (nonassociative)

algebra with identity E = Σ Xk, and {Xv , XR] is a complete orthogonal

system of idempotents. Further, each Xk is primitive (cf [3,/?. 94]) in the sense

that RXk = { 7 G 2 : y i J k = Y}.

Proof Note that S is an abelian ideal in the Lie algebra £. From (1) and

(2), it is easy to see that V yZ GyS for Y, Z G β, and the definition gives a

commutative product on S. From (1) and (2) one also computes the following

covariant derivatives (cf. [2, Formulas (3)-(5), (8)-(ll), (13)-(19)]):

(5) VxXt = 8kι(jXk\

(6) V^ Y = I (βw + δ,m)yT for y G n. ( β / + o ,

(7) , r y _ ^ < y . y > ( - ^ + ; ^ ) for y e n^., , , , * < /,

<VyZ,α>=0 for 7 G m ( e^ε / ), Z G m

(Λ, /) Φ (m, /i).

Then the theorem follows easily.

2. We continue the notation of §1. Given the normal j -algebra (%J) there is

associated canonically a homogeneous Siegel domain [5, pp. 66-73] whose

construction we recall briefly. Note thaty'β = α + Σk<i πi ( C k_ e i ) is a subalge-

bra of 3 with [yβ, β] c β. ThenyT -+ (&djY)\% is a faithful representation of

7*β on the vector space β. Let K be the orbit of E under the action of the

group generated by exp{(ady*y)|β: Y G β}. Then K is a regular cone in β.

We consider β c θ U as a complex vector space where ill = jU for U G U.

As a manifold, β c θ U has a complex structure, and we denote the complex

structure operator on each real tangent space by / . Any element V G β c θ U
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determines a real vector field V° on S C Θ U by translation, and we have
(iVf = J(V°). We have the ΛΓ-Hermitian form F : U x U - ^ β c defined by
F(U, V) =\{[jU, V] + i[U, V]} which determines the Siegel domain D =
{(Z, C / ) G f i c Θ U : I m Z - F(£/, ί/) G AT). The Lie group S acts simply
transitively on D by affine transformations. For our purposes, we only need
to explicitly know the action of exp Y for Y G β; this is given by translations,
(exp 7) (Z, £0 = (Z + Y, £/). .

Choosing (/£, 0) G Z> as a base point, we identify S with D by g -* g
(iJ?, 0). The complex structure / on T(iE0)D pulls back toy, and the Bergman
metric on D pulls back to a left invariant metric on S which, by results of
Koszul [4], comes from an admissible form on §. From now on we assume ω
is that form, and < , > will denote both the Bergman metric on D and the
induced left invariant metric on S (as well as the corresponding bilinear form
on £).

An element Y G § is, as usual, both a tangent vector to S at the identity
element e and a left invariant vector field on 5. However, Y also determines a
right invariant vector field on S as well as the vector field on D given by the
action of S9 namely, (Z, U)^>d/dt(exρ tY) (Z, ί/) | / β 0 These two vector
fields agree under the diffeomorphism S ^ D and will both be denoted Y*.
One has

= j{ y*) which agrees with /( Y*^, o>)

Also for Y,ZGZ, one has [Y*, Z]e = 0, so

(10) (vyz), = (vy,z)e = (vzy*)e + [ y*, z ] # = (v z y*)e.

Since for Y G β, exp y acts on Z) by translation, one has

(11) y* = y° for 7 E S .

Now Dorfmeister [3, pp. 12-13] defines a bilinear form σ on 2 so that

Then (9), (11), (12) show that σ is the restriction of < , > from § to S. For
Yx G β, let y? also denote the translation invariant vector field on the vector
space β, and for Y2, Y3 G β, consider the function on K defined by X ->
<Yi> Y3}(ix o) The11 I3 ' P 1 41 defines a commutative product on β by
requiring

(13) σ(TiΪ2> y3) 2 l l A ^ \ r 2 ' J
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Using (11), (9), (10), (2), the vanishing of the torsion and commutativity of the
Lie algebra S, one has

o{YxY2, Y3) = -\(i

), y 3 » | e

2, r3>.

Sincey Vy y2 *s i n &> ^ s shows 3^ y2 = -jVyYi Q7\ ^ a s a similar formula for
quasi-symmetric domains but the definition of the product is formulated
differently).

Remark. In [3], the product is normalized by choosing the base point so
that the Bergman kernel function has the value 1 there. However, our
definition of the Bergman kernel on D is ambiguous up to a constant multiple
in that we have not specified a volume form on the vector space S c Θ U. We
can always make this choice to achieve the desired normalization.

Finally, [3, pp. 15-16] defines a Hermitian form p on U and a map
φ: S -• Sym(U, p) by

(14) p(ί/, K) = σ(F(ί/, V),E),

(15) σ(F( U, V), Y) = p(φ( Y) U, V), Y G 2,

where σ is extended C linearly to £ c (note that σ on S c is not then identifiable
with < , > on S θyβ). For U, F E U , one has

<[ U, V], E) = ω[jE, [U,V]]= -ω[ U, [ VJE]] - ω[ V, [JE, U]]

= l ω [ U, V] - I « [ V, U] = -<JU, F>,

which shows that

(16) p(ί/, F ) =^{<ί/, κ> + Kujvy}.

Then (15), (16), (1) and [S, U] = 0 imply that

<Φ(γ)u, vy = <[y£/, F ] , y> = -2<Vyϋ£/), F > for y G s,

which means that (14) and (15) agree with the definitions in §1 since
Vγ(jU) G U. We will extend φ linearly to S c so that (15) still holds. Then for
Y G β, U G U, one has φ(iY)U = jφ(Y)U = 2VYU.
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Now we are ready for our main result. Recall that the Siegel domain D is
quasi-symmetric if either of the following equivalent conditions hold: (1) The
cone K is self dual with respect to the inner product σ or (2) β is a Jordan
algebra with respect to the product defined by (13). (This is the formulation
in [3, p. 77]. The notion was introduced by Satake [6] with a different but
equivalent definition.)

Theorem 3. Suppose D is a quasi-symmetric Siegel domain whose sectional
curvatures {in the Bergman metric) are nonpositive. Then D is symmetric.

Proof. A quasi-symmetric Siegel domain is homogeneous and so is equiva-
lent to the canonical domain associated to some normal j-algebra (£,7). Using
the previous notation, {Xl9 , XR} is a complete orthogonal set of primi-
tive idempotents for the Jordan algebra β.

Let Uk = Φ(Xk)Vi. For U e ny we have (cf. [2, Formula (10) with H =

Thus Uk is just n ± v Fix m <n < R and take Um e tu^, Un G t u v Since the
sectional curvatures are nonpositive, Theorem 1 says [Un, π i ^ . ^ ] isy'-in-
variant. Then the projection π of the lemma commutes with j . Thus
φ(F(Un, Um))Un = -\{\un,uJJUn) ~ η[un,uJJn) « ^ π i^, and for any
Vm E n i ^ the lemma gives

2 / n , uj)un, vmy = -qjun, um], [vmjun]>

+ <[Un,Um],[Vm,Un]>

= <[jum,un],[jvm,un]y

-<[um, un], [vm,un\y

= 0.

Thus <K*Wn, Um))Un = 0. By [3, Satz 3.4, part (3), p. 95] (note that the
ordering of the idempotents is not relevant in that theorem), the domain is
symmetric.

3. We take this opportunity to improve Theorem 5 of [2]. Again we retain
the previous notation where (§,y) is a normal y-algebra, D is the associated
Siegel domain, and ω gives the Bergman metric on D.

Theorem 4. Suppose j(εk + ε,), k <l, is a root and D is quasi-symmetric.
Then ω(Xk) =
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Proof. S with the product defined previously is a Jordan algebra. For
Y G m(e + e ) and Xm, using (5), (6), (7) and an easy computation we can show

Then the Jordan condition, (Y2XJY = Y2{XmY\ shows ω(Xk) =
Remark. Theorem 4 shows that an example, given in [2], of a homoge-

neous Siegel domain with negative holomorphic sectional curvature is not
quasi-symmetric. Thus the sign of the holomorphic sectional curvature does
not characterize the quasi-symmetric domains (compare [7], [8], [9]).

We would also like to add a correction to [2]. The condition that the
eigenvalues of the adjoint representation of § are real should be included in
the defintion of normal y-algebras. The remark made after that definition that
this condition could be omitted was based on the author's misreading of the
cited notes of Rossi. Then to justify the comments made in the succeeding
paragraph, reference should also be made to I. I. Pyatitskii-Shapiro, Izv.
Akad. Nauk. SSSR Ser. Math. 26 (1962) 107-124, or H. Shima, J. Math. Soc.
Japan 25 (1973) 422-445.
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