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THE CONFORMAL INVARIANCE OF
HUYGEN'S PRINCIPLE

BENT 0RSTED

Introduction

In this paper we study certain hyperbolic equations satisfying the strong
Huygen's principle (SHP) in the sense that the elementary solutions are
supported on a hypersurf ace. Recently Lax and Phillips [7] have discussed the
wave equation on odd-dimensional rank-one symmetric spaces and shown
how certain coordinate transformations yield the SHP by reduction to the
wave equation in Euclidean space. Also Helgason [3] has given examples of
compact groups and symmetric spaces on which the SHP holds for the
natural wave equations.

We will adopt the approach begun in [12] and indirectly suggested in [7] to
show that, if there is a confoπnal transformation between two Lorentz
manifolds Mι and M2 of constant scalar curvature, then the wave equation in
M! satisfies the SHP if and only if the same is true in M2. In this case the
transformation maps characteristic cones to characteristic cones, so it is
perhaps not surprising that it also provides a transformation between the
elementary solutions. As a corollary we get new examples of Lorentz mani-
folds on which the wave equation satisfies the SHP.

More generally we derive similar principles for certain ultrahyperbolic
equations on pseudo-Riemannian manifolds of constant scalar curvature, and
we discuss the SHP for the Dirac and Maxwell equations. Finally we point
out an elementary connection between causality-preserving transformations
and automorphisms of complex domains.

The author is indebted to Professor R. Phillips for sending a preprint of [7],
and to Professors S. Helgason and I. E. Segal for enlightening remarks on the
topics of the present paper.

1. Let M be a pseudo-Riemannian manifold of dimension n with pseudo-
metric g and constant scalar curvature K. Consider the Laplace-Beltrami
operator • on Λf, [12], [13], and the generalized wave operator
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As shown in [12] this operator is conformally quasi-invariant in the follow-
ing sense: if T: F-> Wis a conformal diffeomorphism between two open sets
in M, so that the pull-back metric T*g = yg for some positive function γ (the
Jacobian of T raised to the (2/n)th power), then

In other words, for every smooth function/ on W we have

(2) L(γ(*) ( π-2 ) / 4/(Γ(x))) = Ί{xγ^'\LS){T{x)),

which in particular says that the null-space of L is invariant under the action

(3) f(x)^y(Xy-2V4f(T(x)).

The resulting representation of the conformal group of M has in special
cases been studied in detail [4], [12], [11]. Note that (3) fails to be unitary in
L\M\

Now suppose we are given two such manifolds Mx and M2 of the same
dimension n with data as above, i.e., pseudo-metrics gλ and g2, constant scalar
curvatures Kι and K2 and "wave" operators Lx and L2 as in (1). We wish to
generalize the covariance in (2) to mappings between Mx and M2: Let Vλ and
V2 be open sets in Mι and M2, and T: Vλ -» V2 a conformal diffeomorphism,
T*g2 = ygv Then we have that Lx and L2 are intertwined via Γas follows:

Proposition 1. Under the hypotheses above we have for any smooth function
fon V2that

(4) Lλ{Ί(xt

In particular, solutions to L2f = 0 on V2 are mapped to solutions of Lλf' = 0 on
Vx via

(5) Ax) = γ(*)("-2)/4/σW)
/V00/. γ(x) being related to the Jacobian of a conformal transformation

between spaces of constant scalar curvature has to satisfy the following
(nonlinear) differential equation (in [5] this is carried out for positive definite
metric on a compact manifold, and the general case follows by similar
differential geometric arguments)

(6) Di* = - 7 Γ — τ τ ( * i * " *2Λ(Λ+2)/('I-2))>
lyn — i)

where h(x) = γ(Λ:)(/1"2)/4. On the other hand, by Lemma 3.1 in [12] we have

(7) Di A?*/ " γAΓ C t / = (Di A) T*f9
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so that by combining (6) and (7) we get

which is exactly (4). Note that one can prove that (6) is also a sufficient
condition for a positive function h(x) to be equal to γ(jc)(π~2)/4 corresponding
to some conformal transformation of Mx into a φace of scalar curvature K2.

Remark 2. (a) This proposition was established in [12] in many special
cases and has been a natural conjecture.

(b) Equation (6) is actually invariant under conformal transformations in
Mx of the form (3) by virtue of the quasi-invariance (2).

It is clear that (5) also sets up a correspondence between distributions in Vx

and V2 and that we still have (4) and a correspondence between solutions to
L^f = 0 and Lxh = 0. (5) preserves singular support, so if/is supported along
a hypersurface, so is h. This is the well-known use of coordinate transforma-
tions as in (5) to arrive at a SHP in one manifold by knowing it in another.
The virtue of conformal transformations is that they preserve characteristic
cones (in the case of Lorentz manifolds, i.e., metrics of signature ( + - • * * - ) )
for the Laplace-Beltrami operators, so that the local behavior of solutions is
the same in conformally equivalent regions. Hence in any manifold locally
conformally equivalent to the examples given in [3] (e.g., R X SU(2n)) we
have the SHP.

Now let Mo be Rn {n even > 4) with its standard Lorentz metric

ds2 = dx\- dx\- -dx2

and wave operator Lo = 92/9.x2 — 92/3x| — — 92/9Λ;2. This has re-
tarded and advanced fundamental solutions supported on the boundary of
the forward (resp. backward) light cone. As a first example of our techniques,
let us construct a conformal transformation of Mo into the de Sitter space

H = {(y»yl9 ,yΛ) e Rn+ι\y2

0 +y\-y\ y2

n = 1},

which is a homogeneous space for 0(2, n - 1) with isotropy group 0(1, n — 1)
(the Lorentz group). Let

n*)-{\ 4*'
2

+\x2

where x2 = x\ - x\ - - x2. Then [11] T is a conformal diffeomorphism
from {JΓ|1 + \x2 φ 0} onto {y\y^ -1} (in particular from a neighborhood
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of the origin of Mo). On H we have LH = \2H ~ ( 0 - 2 ) / 2 ) 2 a n d y(x) =
(1 + ^Λ:2)"2 SO that

(8) L o γ ^ - ^ Γ * = y<n+2V4T*LH.

Since a δ-signal in Mo propagates along the boundary of the light-cone, i.e.,

along light-rays, also in H sharp signals will remain confined to light-rays.

This is true locally by (8) and hence eveywhere by the homogeneity of H. In

particular spacelike Cauchy data of small support will propagate to form

lacunae where the solution is zero. Also in H, the universal covering of H,

homogeneous for the universal covering group of 0(2, n — 1), the SHP is

satisfied.

More generally, suppose Mx and M2 are globally hyperbolic [1] Lorentzian

manifolds of constant scalar curvature (e.g., H and Mo above) so that each

has defined on it unique global retarded and advanced fundamental solu-

tions. For example E*(x, x') is the distribution on Mx X Mx satisfying

LxEx

+(x, x') - δ(jc, JCO

(acting on second coordinate) where δ(x, ) is the Dirac δ-distribution at the

point x and for a fixed x, E*(x, x') has forward time-like support. Similarly

for £f, E2

+, E2~. Then [12]

Proposition 3. Let T: Mx —> M2 be conformed with Mx and M2 as above.

Then

(9) y(xf-^4E2

+(nx), T(x'))y(x)("-2)/4 = Ef(x, x'),

(and the same for E~).

Considering the conformal compactification of Mo (n = 4) we get as a

corollary the advanced fundamental solution on R X S3 to be (at T = p = 0)

v f
 ATΓ s in p

where p is the polar angle on S3 from the north pole.

In the setting of Proposition 3 the Greens function

Gx(x, x') = Ex+(x, x') - Ex~(x, x')

will satisfy a relation similar to (9). Define for a test function φ(x) on Mx (and

similarly in

(10) (φ,φ)i = f f Gx(x,x')φ(x')~φc)dx'dx.
JMx

JMλ

Then by virtue of the covariance of G we have for any test function ψ on M2

andφ = γ<Λ+2>/4:r*ψ
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(ψ, 9)1 = / f <?,(*, *'M*') ("+ 2 ) / 4Ψ(n*'))Ψ(n*)) γ(*) ( n + 2 ) / 4

•M Y

M2

JM2

= (Ψ, Ψ)2

Hence the Hermitian form (10) is conformally invariant, and if positive (as on
Mo, see also [8]) it defines an invariant unitary structure on the space of test
functions. Actually this invariant form is defined on the space of solutions /
to the wave equation via

f{x) = f G(x, jc')φ(*O dx\
JM

where the action of the conformal group of / is the one given by (3). This
action then leaves invariant (/,/) = (<p, φ). In some cases [11], [4] there
results an irreducible unitary continuous representation of the conformal
group of the manifold on the space of solutions to Lf = 0.

Finally let us give a list of (conformally flat) locally symmetric Lorentzian
manifolds of constant scalar curvature which have open dense subsets which
are conformal images of open sets in the linear space Mo. In particular they
all satisfy the SHP for the wave operator [12]. The cases are (n even > 4):

(a)RX S"-\

(c) 0(1, Λ)/0(1, n - 1),

(d)0(l, q)/0(q) X 0(1, n - *)/0(l, n - q - 1) (, = 0, 1, , n - 1),
(e) 0(2, q)/0(l9 q) X 0(n - q)/0(n - q - 1), (q = 1, 2, - - , n - 2),

and any covering of these.
If in (d) q = n — 1, then the manifold is

0(1, n - l)/0(n - 1) X 0(1, l)/0(l),

where the first part is the "space" part, and the second the "time" part. By an
extra coordinate transformation (nonconformal) the "time" part can be made
Sι or its covering R so that we also get the SHP on R X 0(1, n - l)/0(n - 1)
as in [3], [7].

Remark 4. Suppose R is equipped with the metric h(s)2ds2 where h is
positive; the corresponding Laplace-operator is h~\d/ds)h~ι(d/ds). On the
other hand if a: R-*R is monotone and bijective, we have d2/ds2f(a(s)) =
a'(s)2f(a(s)) + a"(s)f\a{s)). Hence the change of coordinate via a maps
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d2/ds2 into h'\d/ds)h-ι(d/ds) if and only if a\sf = h(Sy
2 and a"(s) =

h(s)~ι(h~ι)'(s) = -h'(s)h(s)~3. But the second equation is implied by the first
which can simply be solved by a(s) = Js

0 h(t)~ιdt.
As another special case of the above we mention R X SL(2, R) (universal

covering) where minus the Killing form on sl(2, R) induces a pseudometric of
signature ( + — ) which together with the (negative) metric ~ds2 on R makes
this space into a Lorentz manifold on which L = C - d/ds2 + 1 satisfies the
SHP. Here C is the Casimir operator of SX(2, R). In fact, this case arises in
(e) when n = 4 and q = 2.

Remark 5. The spectrum of L on (S£(2, R) X Sι)/Z2 o* U(\, 1) plays a
role in the decomposition of holomorphic discrete series representations of
SU(2, 2) when restricted to S(U(\, 1) X £/(l, 1)), quite analogous to the case
of restrictions to the maximal compact subgroup S( U(2) X U(2)).

2. Both the Dirac equation (for zero mass) and Maxwell's equations (in
vacuum) are known to satisfy the SHP in w-dimensional Minkowski space (n
even > 4). This is readily seen from the fact that the components of the fields
satisfy the wave equation.

The conformal invariance of Dirac's equation has been studied in [6]. Let
us summarize what we shall need: Assume M is a Lorentz manifold of
dimension 2m with H2(M, 2^) = 0 (so that the spin bundle is well-defined).
Denote by S the spin bundle (with complex fiber dimension 2m) with
structure group Spin(l, 2m - 1), a double covering of SO(\, 2m - 1). The
Dirac operator D acts on sections of S by composing the covariant differ-
entiation in S with Clifford multiplication, in local coordinates D =
Σ?=! Y/Ve where {e,} is an orthonormal Lorentz frame at x €Ξ M and
Ίi = y(̂ ,)> the γ-matrices corresponding to γ: TXM ^> Sx ® 5*.

Suppose T: M —»M is conformal (maybe only in an open set), then the
differential T+: TXM^> TT^M preserves the inner product up to a scalar,
in particular it has an action on the spin fiber (via the spin covering
Spin(l, 2m - 1) -> SO(\,2m - 1))

Now the action on a section ψ of S is going to be

v(τy. ψ(x) _ yτ4χ)(2m-l)/4τ{τ

We then have (the integrated form of the corresponding infinitesimal formula
in [6], see also [4] for the flat case)

(11) DV{T) = (yτ-,)1/2V(T)D.
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(11) also holds when T maps from one manifold into another. Clearly then,

(12) Z>ψ = 0

is conformally invariant, and the SHP holds for the hyperbolic equation (12)
if and only if it holds on a conformally equivalent manifold. In particular the
SHP holds for (12) on, e.g., R X S3.

Remark 6. If M is a reductive coset space G/H, we can parallelize S as
follows [9]: Let p be the complement of the Lie algebra of H and assume the
actions

a:H->SO(p),

a: H -+ Sρin(p) -> Aut L,

where L is the fiber of the spin bundle

S = G XH L.

Let T(S) be the smooth sections and

η:

where η is (well) defined by

U
for ψ G T(S). η(ψ) satisfies for h G H and g G G

Then the action of D is
2m

where {Λ̂ } is a Lorentz frame at the origin, and v is the usual identification
of p with vector fields on G/H, As proven in [9] in the positive definite case
we also here have

where C is the Casimir operator (so that v(C) is the Laplace-Beltrami
operator on G/H\ and c is the constant from before. Hence the square of
the Dirac operator in this way becomes the wave operator. We conclude that
if the wave equation in G/H satisfies the SHP, so does Dirac's equation (this
is the case [3] e.g. on R X K, K a compact semi-simple Lie group of odd
dimension).

For Maxwell's equations on forms ω of degree m, dim M = 2m,

dω = 0, δω = 0,

where δ = *d* is the adjoint to d: AkM^>Ak+ιM, we have for T conformal,
τ*d (always) and δT* = γΓ*δ (when acting on forms of degree m).
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Hence ω —» T*ω preserves solutions to Maxwell's equations, even when going
from one manifold to another. We conclude that Maxwell's equations satisfy
the SHP on all manifolds locally conformally equivalent to even-dimensional
Minkowski space.

3. The role of conformal transformations as seen above is to preserve the
characteristic cones, in other words, they are causality preserving. A manifold
M endowed with a smooth field of proper closed convex cones (one cone in
each tangent space) is said to be causal [10] with the natural induced time-like
and space-like ordering. The group preserving the causal structure is called
the causal group of M, and in the cases above it essentially coincides with the
conformal group. The cone-field however need not be derived from a pseudo-
metric (in which case the cone is of rank 2) but can be of higher rank, as e.g.
in H(n), all Hermitian n X n matrices, where the cone of all positive definite
matrices has rank n. Another example is U(ή) with the left-invariant cone
field induced from H(ri), the Lie algebra (up to multiplication by i). There is
in some cases a close connection between causal manifolds and their causal
groups on the one hand, and open subdomains of C1 and their automorphism
groups on the other.

Suppose D is a Hermitian symmetric space of tube type, and M its Shilov
boundary, dimR M = diπ^ D = n. At a point x E M the tangent space TXM
has a complement Kx so that

(12) TXM + Kx = C ,

and (12) is the local splitting in purely real and imaginary coordinates. The
direction from x into D is given by a cone VinKx (the cone defining the tube
domain).

Remark 7. Realizing D as a tube domain [x + iy\y EL V) (e.g., the upper
half-plane) the splitting (12) is simply in x and y, the real and imaginary
coordinates.

Suppose T: D —> D is biholomorphic, and consider x E M. M is also stable
under T and the differential on M

T+ on D is complex-linear and preserves D so that T+ is of the form (relative
to the splitting (12) at x and T(x))

=(A

* UT
* \0 B

where A = B by complex linearity, and A is the differential of T on M. Here
B must preserve F (since T preserves D\ hence A preserves V which proves
that T on M is locally causality preserving, where we equip M with the
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cone-field defined by V. In other words, locally we have that / times a
timelike direction on M is a direction into D. Note also that in the same way
one gets that a holomorphic transformation from a domain of tube type to
another, on the Shilov boundary is causality-preserving (as for example the
Cayley transform).

It would seem that reversing the argument (given a causality-preserving
transformation on Λf, extend it to an isomorphism of D) requires a little more
work.

The interpretation of Huygen's principle in terms of objects on D is
apparently not known; but it seems that hyperbolicity and causality on the
boundary somehow reflects the geometry of D.
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