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CONSERVATION LAWS AND DIFFERENTIAL
CONCOMITANTS

A. P. STONE

1. Introduction

The notion of a conservation law on a manifold has appeared previously in
papers by H. Osborn, P. R. Eiseman, D. E. Blair, and the author (see [1], [3],
and [7]). In the first three sections of this paper the origin of the conservation
law problem for manifolds and some earlier results are reviewed. The last
section extends results obtained in [3].

In order to formulate a definition of a conservation law on a manifold let
us recall the notion of a conservation law in physics. A conservation law is an
equation in the form

which simply expresses the fact that the quantity of u contained in a domain
D of (JCJ, JC2, x3) space changes at a rate equal to the flux of the vector
(vv v29 v3) into D; i.e.,

ilf fc ***«*>-Us-^
Conservation law form may also sometimes be obtained from a system

(1.1) V, + AVx = 0,

where V is a column vector of n unknown functions, A is a square matrix
depending on V, t, and JC, and the subscripts t and x denote partial
differentiations. If we can write A Vx = Wx, then

(1.2) Vt + Wx - 0

is a system of conservation laws. These examples then lead (see [8]) to the
definition of a conservation law on a manifold. A differential 1-form φ on a
manifold M is a conservation law for a linear operator, on 1-forms, if both φ
and hφ are exact. A general problem is then to determine all conservation
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laws for a given endomorphism h of differential 1-forms on a given manifold
M. Various generalizations of this problem are possible. For example, a
conservation law problem could be posed for a family {Λ̂ } of vector 1-forms.
One may restrict the problem by imposing algebraic and analytic conditions
on A. A conservation law problem may also be formulated in terms of
differential forms of degree/?,/? > 1. In this paper the problem is restricted to
the study of conservation laws for a single vector 1-form, Λ. The analysis
divides itself into two cases according to whether or not the trace of h is
constant. The main result, in Section 4, which concerns the case in which the
trace of h is constant, is that there do exist conservation laws for h. The case
of non-constant trace is reviewed in Section 3.

2. Notation and remarks

Let M denote a compact, orientable, n-dimensional Riemannian manifold
without boundary, and suppose E denotes the module of C0 0 differential
1-forms on M. An endomorphism h of 1-forms induces mappings

λ(*>: APE -> APE, q <p8indl <p <n,

of /?-forms which are given by

/\θp)

I Λ ' * ' Λ^-<*>> Λ W i ) Λq\{p-q)\ I

where π runs through all permutations of (1, ,/?), and |π| denotes the sign
of the permutation. In particular, if a and β are 1-forms, then

A(1)(α Λ β) = ha A β + a A hβ,

Λ(2)(« Λβ) = haA hβ.

Also if p = Λ, then h^\θx A Aθn) = ( - l ) * " 1 ^ - ^ ! Λ Aθn) where
&n-q is the (n — #)-th coefficient in the characteristic equation hn =
Σ"~o &jhJ of h with hf = h ° h ° ° /1,7-times. That is, except for sign,
&j is the 7-th invariant of A. In particular &n-X is the trace of h. The induced
mappings satisfy an identity

1 q~λ

h(q) = - γ Σ (-l

where both sides of the above expression are assumed to operate on/?-forms,
with q < /?. This identity is established in [9] and is closely related to a similar
identity involving the Newton transformations. It should also be noted that h
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is invertible if and only if A(9) is invertible as an operator on gr-forms. In the
sequel it is assumed that h is invertible.

If the commutator of A(1) and exterior differentiation d is denoted by dh9 so
that

dh \

then dh reduces to d when A is equal to the identity. Moreover under the
assumptions that the space is contractible and A is nonsingular and has an
identically vanishing Nijenhuis tensor, dh will satisfy a Poincare lemma [10].
The same cannot be said for the commutators of A(<?) and d when q > 1,
though that is not of interest here. For these commutators one has

where the above expression is assumed to operate on/?-forms. For q > 1, it
must be assumed that the Nijenhuis tensor [A, A] of A vanishes identically.
The Nijenhuis tensor of h is defined, for θ E E, by the formula

(2.1) [A, h]θ = -h^dθ + h^dhθ - dί

It is easily checked that [A, A] e EndA(E, E Λ E), where A denotes the C°
functions on M. This formula may be rewritten as

(2.2) [A, A] = -h^d+ dhh.

The definition of the concomitant [A, A] may be extended so that [A, A] can be
regarded as an element of End^Λ^is, Ap+ίE). The formula then becomes

(2.3) [*>*] = " Λ ( 2 ) r f + d»hil) + t/Λ(2>,

where both sides of (2.3) act on p-forms. If h, k are vector 1-forms, the
concomitant [A, k] can be formed and is defined by setting

(2.4) [*> £ ] - 5 K * - ( * ) * } •

The formulas (2.1)—(2.3) are then recovered by setting A = k and using the
relation (A2f> - A(1)A(1> = -Λ(2).

In view of the preceding discussion it is obvious that if [A, h] = 0, then θ is
a conservation law for A if and only if dhθ = dhhθ = 0, by virtue of the
Poincare lemma. Moreover if θ is a conservation law for A, then so are the
forms A'0, i > 1, where Λ1 denotes Λ ° A ° ° Λ, /-times. Thus it seems
natural to impose the condition that the Nijenhuis tensor [A, h] vanish
identically in studying the conservation law problem. This view is somewhat
reinforced by the following additional consideration. If one considers the
problem of finding differentiable functions g\ i = 1, 2, , such that
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hdf = dg\ for a given A and given functions/', then locally that problem is

the same as investigating the system

_w_ . ._!...

which arises if hdx' = h'adxa is given in terms of local coordinates
{Λ:1, ,x"}. The obvious integrability condition is therefore

9χΛ \ dxj a x * J'

which follows from d2gι/dxjdxk = d2gι/dxkdxJ. Now if it happens that

we would then obtain the integrability condition,

dxa J dxa \ dxJ dxk /

which is just the vanishing of the Nijenhuis tensor Hjk. (2.5) is obtainable
from (2.1) if one sets θ = dx\ and hθ = hι

adxa in (2.1), and assumes that
[A, A]</x' = 0.

3. Preliminary results

The notation and results in this section appear in [2] and [3] and are
included in this paper for the convenience of the reader. First note that an
inner product on KPE is defined by setting

(α, 0) = f α Λ *β,
JM

where a and β are /?-forms, and * is the Hodge operator. Then if A, and tr A
denote the transpose and trace of A, it follows from a direct calculation that

(3.1) M1>* + *A<1>

Since

(α, h^β) = ί aΛ* A(1)£ = [ α Λ {-A,(1) * + (tr A) •} β

= f
JM

M

A/1} is the adjoint of A(1) relative to the inner product ( , ). It then follows by
an induction argument that hjp) is the adjoint of hSp) when p > 1. The
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adjoints of dh and [A, k] are denoted respectively by δh and ady[A, k], and

these are also found by direct calculations. The results are as given in the

following formulas, where 8 is the adjoint of d, and the operators δh and

&dj[h, k] maρ/7-forms to {p — l)-forms. We have

(3.2) δh = δh^ - hγ%

(3.3) δh = (-IΓ+-+* * {dh + d(tτ A) Λ •} S

(3.4) = (-1)^ + 1 * {[A, fc] +1{ J(tr Afc) - W(tr k) - kd(tr A)} Λ } *•

It is then possible to define a generalized Laplacian operator ΔΛ by setting

ΔΛ = dhδh + δhdh which appears in [2]. However, our study of conservation

laws does not require use of this operator.

The vanishing of the concomitant [A, A] implies the vanishing of [A', hJ] for

any pair of nonnegative integers / and j. Hence if it is assumed that

[A, A] = 0, then formula (3.4) yields the following results:

(3.5) d(M hr+ι) = hd(tτ hr) + hrd{ir A),

(3.6) hrd{ixh)=j~d{\.rhr^\

(3.7) Λrf(trAr) = ( τ r ^ - f ) r f ( t Γ * r + 1 ) ' for r = 1,2,3, .

Formula (3.5) is a consequence of formula (3.4) coupled with the fact that

[A, A] = 0 implies [A, Ar] = 0, for integers r > 1. The proof of formula (3.6)

proceeds by an induction argument. If r = 1, then the vanishing of [A, A] in

formula (3.4) yields the formula (3.6). If r > 1, then the assumption that

hrd(tτ A) = (1/r + l)rf(tr AΓ+1) yields Ar+W(tr A) = (1/r + 2)d(tr hr+2) since

[AΓ+1, A] = 0. Formula (3.7) is a straightforward consequence of (3.5) and

(3.6). We are then led to the following proposition.

Proposition 3.1. If[K h] = 0 and tr A is not a constant, then

(a) d(\x hr) is a conservation law for h,for all positive integers r,

(b) d(tτ A) is a conservation law for hr,for all positive integers r.

The preceding result cannot be a global one in the event A is cyclic with

generator d(tr A). The condition that A is cyclic simply means that the

characteristic and minimal polynomials of h are the same, and thus if h were

cyclic, then

έ/(tr A) Λ Arf(tr A) Λ Λhn~ιd(tr A)

= - U ( t r A) Λ d(tτ A2) Λ Λd(tr hn\
n\ ~
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and hence {tr Ay}"=1 would serve as coordinates, which is impossible if M is
compact. In fact it will never be possible to find n independent global
conservation laws even when A is globally defined. In any case the existence
of conservation laws for A, or A1, is guaranteed if tr A is not a constant. When
tr A is constant then no existence statement concerning conservation laws can
be made, at least on the basis of the formulas (3.5), (3.6), and (3.7). In the
next section the constant trace case is examined.

4. Constant trace case

If we suppose that tr A is a constant with [A, A] = 0, then a solution to the
problem of finding conservation laws for A is obtained if it is possible to
produce a vector 1-form k with tr k not constant and such that the mixed
concomitant [A, k] vanishes identically. If such an operator k exists, then
d(tr k) is a conservation law for A. The existence of such a vector 1-form thus
hinges on obtaining a solution to a system of n(£) differential equations in n2

unknowns which arise from the condition [A, k] = 0. This system is overde-
termined when n > 3. In particular if k could be chosen by setting k = α/,
where a is a scalar function, then da is a conservation law for A. This simple
choice of k is possible provided there exists a solution to [A, cd] = 0, which
again involves an overdetermined system but with fewer unknowns. A remark
concerning this possibility is made at the conclusion of this section. However
rather than constructing any solutions explicitly the approach in this section
will be to exhibit a candidate k with nonconstant trace and thus verifying that
[A, k] = 0 under the added hypothesis that A be cyclic. The key to producing
the result is the following proposition which is a consequence of a theorem
due to E. T. Kobayashi. We suppose that the characteristic equation of A has
the form hn = aol + axh + +αn_1A

Λ~1.
Proposition 4.1. If A is cyclic, has an identically vanishing Nijenhuis tensor,

and has constant trace, then there exist coordinates {xι}%\ such that hdx1 =
dxi+ι when i = 1, 2, , n - 1 and

hdxn = aodxι + axdx2 + +aH_xdxn.

Proof. The proposition is established by first noting that the conditions of
constant trace and vanishing Nijenhuis tensor imply that the coefficients {αj,
i = 0, 1, , n — 1, of the characteristic equation are constant, as noted in
Corollary 3.7 [3], or as a consequence of Proposition 3.9 in the same paper.
The existence of the coordinates {x*} then follows from E. T. Kobayashi's
theorem [5].
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The above proposition then implies that with respect to the basis
i = 1, 2, , n, of 1-forms, h is represented by a companion matrix

0
0
0

1
0
0

0
1
0

0
0
1

0
0
0

0 "1 "2 "3 un-\

This basis is in fact a local basis of conservation laws for A, and thus one
possible solution of the conservation law problem has been obtained. How-
ever since the goal was to produce a vector 1-form k such that d(tτ k) is a
conservation law for A, we continue.

If an operator k is defined by setting

kdx1 1-1 + xidxn

for i = 1, 2, , n (with dx° = 0), then k is also represented by a compa-
nion matrix with respect to the basis {dx1}, and d(tτ k) will be a conservation
law for A. This last statement follows by simply noting the following results:

(4.1)

(4.2)

(4.3)

tr hk = (n - 1) + a^x1 + aλx
2 + +a

n_ι

hd(tr k) = </(tr Afc).

(4.3) would also be an immediate consequence of the vanishing of the
concomitant [Λ, k] which can be verified directly from formula (2.4), which
we rewrite in the form

(4.4)
h, k] = | { - [h^dk

-[dhk+dkh]}.

, n9 and henceIt is then routine to check that [h, k]dxι = 0 , / = 1,
formula (4.3) is a result of formula (3.4).

The preceding discussion serves to establish the following result.
Proposition 4.2. If h is cyclic, has identically vanishing Nijenhuis tensor, and

has constant trace, then there exists a vector I-form k with nonconstant trace
and identically vanishing concomitant [A, k].

Proposition 3.1 may now be combined with the preceding results to obtain
the following result.
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Proposition 43. Suppose that h is cyclic and has identically vanishing

Nijenhuis tensor. Then

(a) // tr A is not constant, d(iτ A) is a conservation law for h, and

(b) // tr A is constant, there exists a vector \-form k with nonconstant trace

and identically vanishing concomitant [A, k] such that d(tr k) is a conservation

law for A.

It should be noted that the operator k as defined above is certainly not

unique. One could also, for example, define k by setting kdxi = dxι~~ι +

ft{xl)dxn, i = 1, , n, provided that fn(x") is not constant and that the

functions^ are differentiable.

Next, it should be noted that for an arbitrary vector 1-form k the hypothe-

ses that [A, A] = [A, k] = 0 are not enough to guarantee the vanishing of

either [A, kr] or [hr, k] when r is an integer larger than 1. This statement is

clear, for example, in the case r = 2 if one considers the identities

[A, hk] + [k,h2] = A(1)[A,fc] +[k,h]h +[A,A]/t,

[h,k2] +[k,kh] =^(1)[A,Λ] +[k,k]h+[h,k]k.

However, for the choice of k made earlier in this section, i.e., kdx1 = dx'~ι

+ x'dx", direct calculations do yield the results that [Ar, k] = [A, kr] = 0 for

r > 2, and consequently it is possible to obtain the following analog of

statements (a) and (b) of Proposition 3.1.

Proposition 4.4. If A is cyclic, has identically vanishing concomitant [A, A],

and has constant trace, then there exists a vector \-form k such that [A, k] = 0

and

(a) d(tτ k) is a conservation law for hr,r > 1,

(b) d(\x kr) is a conservation law for h, r > 1.

Remark. In the first paragraph of this section it was noted that if one

could find a differentiable function α such that [A, al] = 0, then da is a

conservation law for A. This is a simple consequence of formula (3.4) which in

this event would yield

U A ( t Γ Λ ) A
A da = -—=*- da,

n
since tr A is constant. Thus da is an eigenvector of A with constant eigenvalue

(tr h)/n. For example, if n = 2, (x,y) are local coordinates and A is given by

hdx = {\- x)dx - xdy,

hay = xdx + {\ + x)dy,

then [A, A] = 0. The choice a = (x + y) thus yields the results [A, al] = 0

and A da = dα, since tr A = 2. One might then be led to conjecture that

under the hypotheses of constant trace for A and vanishing Nijenhuis tensor
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that a differentiable function a exists such that [A, al] = 0 if and only if da is
an eigenvector of h with constant eigenvalue λ. However a straightforward
calculation, for θ G E, shows that

[h,al]θ = \{hda/\θ - da/\hθ),

and hence [h, al] need not vanish when h da = λ dlα.
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